615 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			615 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Request reply cache. This is currently a global cache, but this may
 | |
|  * change in the future and be a per-client cache.
 | |
|  *
 | |
|  * This code is heavily inspired by the 44BSD implementation, although
 | |
|  * it does things a bit differently.
 | |
|  *
 | |
|  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
 | |
|  */
 | |
| 
 | |
| #include <linux/sunrpc/svc_xprt.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/sunrpc/addr.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/hash.h>
 | |
| #include <net/checksum.h>
 | |
| 
 | |
| #include "nfsd.h"
 | |
| #include "cache.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| /*
 | |
|  * We use this value to determine the number of hash buckets from the max
 | |
|  * cache size, the idea being that when the cache is at its maximum number
 | |
|  * of entries, then this should be the average number of entries per bucket.
 | |
|  */
 | |
| #define TARGET_BUCKET_SIZE	64
 | |
| 
 | |
| struct nfsd_drc_bucket {
 | |
| 	struct rb_root rb_head;
 | |
| 	struct list_head lru_head;
 | |
| 	spinlock_t cache_lock;
 | |
| };
 | |
| 
 | |
| static struct kmem_cache	*drc_slab;
 | |
| 
 | |
| static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
 | |
| static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
 | |
| 					    struct shrink_control *sc);
 | |
| static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
 | |
| 					   struct shrink_control *sc);
 | |
| 
 | |
| /*
 | |
|  * Put a cap on the size of the DRC based on the amount of available
 | |
|  * low memory in the machine.
 | |
|  *
 | |
|  *  64MB:    8192
 | |
|  * 128MB:   11585
 | |
|  * 256MB:   16384
 | |
|  * 512MB:   23170
 | |
|  *   1GB:   32768
 | |
|  *   2GB:   46340
 | |
|  *   4GB:   65536
 | |
|  *   8GB:   92681
 | |
|  *  16GB:  131072
 | |
|  *
 | |
|  * ...with a hard cap of 256k entries. In the worst case, each entry will be
 | |
|  * ~1k, so the above numbers should give a rough max of the amount of memory
 | |
|  * used in k.
 | |
|  *
 | |
|  * XXX: these limits are per-container, so memory used will increase
 | |
|  * linearly with number of containers.  Maybe that's OK.
 | |
|  */
 | |
| static unsigned int
 | |
| nfsd_cache_size_limit(void)
 | |
| {
 | |
| 	unsigned int limit;
 | |
| 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
 | |
| 
 | |
| 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
 | |
| 	return min_t(unsigned int, limit, 256*1024);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compute the number of hash buckets we need. Divide the max cachesize by
 | |
|  * the "target" max bucket size, and round up to next power of two.
 | |
|  */
 | |
| static unsigned int
 | |
| nfsd_hashsize(unsigned int limit)
 | |
| {
 | |
| 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
 | |
| }
 | |
| 
 | |
| static u32
 | |
| nfsd_cache_hash(__be32 xid, struct nfsd_net *nn)
 | |
| {
 | |
| 	return hash_32(be32_to_cpu(xid), nn->maskbits);
 | |
| }
 | |
| 
 | |
| static struct svc_cacherep *
 | |
| nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum,
 | |
| 			struct nfsd_net *nn)
 | |
| {
 | |
| 	struct svc_cacherep	*rp;
 | |
| 
 | |
| 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
 | |
| 	if (rp) {
 | |
| 		rp->c_state = RC_UNUSED;
 | |
| 		rp->c_type = RC_NOCACHE;
 | |
| 		RB_CLEAR_NODE(&rp->c_node);
 | |
| 		INIT_LIST_HEAD(&rp->c_lru);
 | |
| 
 | |
| 		memset(&rp->c_key, 0, sizeof(rp->c_key));
 | |
| 		rp->c_key.k_xid = rqstp->rq_xid;
 | |
| 		rp->c_key.k_proc = rqstp->rq_proc;
 | |
| 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
 | |
| 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
 | |
| 		rp->c_key.k_prot = rqstp->rq_prot;
 | |
| 		rp->c_key.k_vers = rqstp->rq_vers;
 | |
| 		rp->c_key.k_len = rqstp->rq_arg.len;
 | |
| 		rp->c_key.k_csum = csum;
 | |
| 	}
 | |
| 	return rp;
 | |
| }
 | |
| 
 | |
| static void
 | |
| nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
 | |
| 				struct nfsd_net *nn)
 | |
| {
 | |
| 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
 | |
| 		nn->drc_mem_usage -= rp->c_replvec.iov_len;
 | |
| 		kfree(rp->c_replvec.iov_base);
 | |
| 	}
 | |
| 	if (rp->c_state != RC_UNUSED) {
 | |
| 		rb_erase(&rp->c_node, &b->rb_head);
 | |
| 		list_del(&rp->c_lru);
 | |
| 		atomic_dec(&nn->num_drc_entries);
 | |
| 		nn->drc_mem_usage -= sizeof(*rp);
 | |
| 	}
 | |
| 	kmem_cache_free(drc_slab, rp);
 | |
| }
 | |
| 
 | |
| static void
 | |
| nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
 | |
| 			struct nfsd_net *nn)
 | |
| {
 | |
| 	spin_lock(&b->cache_lock);
 | |
| 	nfsd_reply_cache_free_locked(b, rp, nn);
 | |
| 	spin_unlock(&b->cache_lock);
 | |
| }
 | |
| 
 | |
| int nfsd_drc_slab_create(void)
 | |
| {
 | |
| 	drc_slab = kmem_cache_create("nfsd_drc",
 | |
| 				sizeof(struct svc_cacherep), 0, 0, NULL);
 | |
| 	return drc_slab ? 0: -ENOMEM;
 | |
| }
 | |
| 
 | |
| void nfsd_drc_slab_free(void)
 | |
| {
 | |
| 	kmem_cache_destroy(drc_slab);
 | |
| }
 | |
| 
 | |
| int nfsd_reply_cache_init(struct nfsd_net *nn)
 | |
| {
 | |
| 	unsigned int hashsize;
 | |
| 	unsigned int i;
 | |
| 	int status = 0;
 | |
| 
 | |
| 	nn->max_drc_entries = nfsd_cache_size_limit();
 | |
| 	atomic_set(&nn->num_drc_entries, 0);
 | |
| 	hashsize = nfsd_hashsize(nn->max_drc_entries);
 | |
| 	nn->maskbits = ilog2(hashsize);
 | |
| 
 | |
| 	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
 | |
| 	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
 | |
| 	nn->nfsd_reply_cache_shrinker.seeks = 1;
 | |
| 	status = register_shrinker(&nn->nfsd_reply_cache_shrinker);
 | |
| 	if (status)
 | |
| 		goto out_nomem;
 | |
| 
 | |
| 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
 | |
| 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
 | |
| 	if (!nn->drc_hashtbl)
 | |
| 		goto out_shrinker;
 | |
| 
 | |
| 	for (i = 0; i < hashsize; i++) {
 | |
| 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
 | |
| 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
 | |
| 	}
 | |
| 	nn->drc_hashsize = hashsize;
 | |
| 
 | |
| 	return 0;
 | |
| out_shrinker:
 | |
| 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
 | |
| out_nomem:
 | |
| 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
 | |
| {
 | |
| 	struct svc_cacherep	*rp;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
 | |
| 
 | |
| 	for (i = 0; i < nn->drc_hashsize; i++) {
 | |
| 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
 | |
| 		while (!list_empty(head)) {
 | |
| 			rp = list_first_entry(head, struct svc_cacherep, c_lru);
 | |
| 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
 | |
| 									rp, nn);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvfree(nn->drc_hashtbl);
 | |
| 	nn->drc_hashtbl = NULL;
 | |
| 	nn->drc_hashsize = 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
 | |
|  * not already scheduled.
 | |
|  */
 | |
| static void
 | |
| lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
 | |
| {
 | |
| 	rp->c_timestamp = jiffies;
 | |
| 	list_move_tail(&rp->c_lru, &b->lru_head);
 | |
| }
 | |
| 
 | |
| static long prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn,
 | |
| 			 unsigned int max)
 | |
| {
 | |
| 	struct svc_cacherep *rp, *tmp;
 | |
| 	long freed = 0;
 | |
| 
 | |
| 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
 | |
| 		/*
 | |
| 		 * Don't free entries attached to calls that are still
 | |
| 		 * in-progress, but do keep scanning the list.
 | |
| 		 */
 | |
| 		if (rp->c_state == RC_INPROG)
 | |
| 			continue;
 | |
| 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
 | |
| 		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
 | |
| 			break;
 | |
| 		nfsd_reply_cache_free_locked(b, rp, nn);
 | |
| 		if (max && freed++ > max)
 | |
| 			break;
 | |
| 	}
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static long nfsd_prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn)
 | |
| {
 | |
| 	return prune_bucket(b, nn, 3);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
 | |
|  * Also prune the oldest ones when the total exceeds the max number of entries.
 | |
|  */
 | |
| static long
 | |
| prune_cache_entries(struct nfsd_net *nn)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	long freed = 0;
 | |
| 
 | |
| 	for (i = 0; i < nn->drc_hashsize; i++) {
 | |
| 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
 | |
| 
 | |
| 		if (list_empty(&b->lru_head))
 | |
| 			continue;
 | |
| 		spin_lock(&b->cache_lock);
 | |
| 		freed += prune_bucket(b, nn, 0);
 | |
| 		spin_unlock(&b->cache_lock);
 | |
| 	}
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	struct nfsd_net *nn = container_of(shrink,
 | |
| 				struct nfsd_net, nfsd_reply_cache_shrinker);
 | |
| 
 | |
| 	return atomic_read(&nn->num_drc_entries);
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	struct nfsd_net *nn = container_of(shrink,
 | |
| 				struct nfsd_net, nfsd_reply_cache_shrinker);
 | |
| 
 | |
| 	return prune_cache_entries(nn);
 | |
| }
 | |
| /*
 | |
|  * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
 | |
|  */
 | |
| static __wsum
 | |
| nfsd_cache_csum(struct svc_rqst *rqstp)
 | |
| {
 | |
| 	int idx;
 | |
| 	unsigned int base;
 | |
| 	__wsum csum;
 | |
| 	struct xdr_buf *buf = &rqstp->rq_arg;
 | |
| 	const unsigned char *p = buf->head[0].iov_base;
 | |
| 	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
 | |
| 				RC_CSUMLEN);
 | |
| 	size_t len = min(buf->head[0].iov_len, csum_len);
 | |
| 
 | |
| 	/* rq_arg.head first */
 | |
| 	csum = csum_partial(p, len, 0);
 | |
| 	csum_len -= len;
 | |
| 
 | |
| 	/* Continue into page array */
 | |
| 	idx = buf->page_base / PAGE_SIZE;
 | |
| 	base = buf->page_base & ~PAGE_MASK;
 | |
| 	while (csum_len) {
 | |
| 		p = page_address(buf->pages[idx]) + base;
 | |
| 		len = min_t(size_t, PAGE_SIZE - base, csum_len);
 | |
| 		csum = csum_partial(p, len, csum);
 | |
| 		csum_len -= len;
 | |
| 		base = 0;
 | |
| 		++idx;
 | |
| 	}
 | |
| 	return csum;
 | |
| }
 | |
| 
 | |
| static int
 | |
| nfsd_cache_key_cmp(const struct svc_cacherep *key,
 | |
| 			const struct svc_cacherep *rp, struct nfsd_net *nn)
 | |
| {
 | |
| 	if (key->c_key.k_xid == rp->c_key.k_xid &&
 | |
| 	    key->c_key.k_csum != rp->c_key.k_csum) {
 | |
| 		++nn->payload_misses;
 | |
| 		trace_nfsd_drc_mismatch(nn, key, rp);
 | |
| 	}
 | |
| 
 | |
| 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Search the request hash for an entry that matches the given rqstp.
 | |
|  * Must be called with cache_lock held. Returns the found entry or
 | |
|  * inserts an empty key on failure.
 | |
|  */
 | |
| static struct svc_cacherep *
 | |
| nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key,
 | |
| 			struct nfsd_net *nn)
 | |
| {
 | |
| 	struct svc_cacherep	*rp, *ret = key;
 | |
| 	struct rb_node		**p = &b->rb_head.rb_node,
 | |
| 				*parent = NULL;
 | |
| 	unsigned int		entries = 0;
 | |
| 	int cmp;
 | |
| 
 | |
| 	while (*p != NULL) {
 | |
| 		++entries;
 | |
| 		parent = *p;
 | |
| 		rp = rb_entry(parent, struct svc_cacherep, c_node);
 | |
| 
 | |
| 		cmp = nfsd_cache_key_cmp(key, rp, nn);
 | |
| 		if (cmp < 0)
 | |
| 			p = &parent->rb_left;
 | |
| 		else if (cmp > 0)
 | |
| 			p = &parent->rb_right;
 | |
| 		else {
 | |
| 			ret = rp;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	rb_link_node(&key->c_node, parent, p);
 | |
| 	rb_insert_color(&key->c_node, &b->rb_head);
 | |
| out:
 | |
| 	/* tally hash chain length stats */
 | |
| 	if (entries > nn->longest_chain) {
 | |
| 		nn->longest_chain = entries;
 | |
| 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
 | |
| 	} else if (entries == nn->longest_chain) {
 | |
| 		/* prefer to keep the smallest cachesize possible here */
 | |
| 		nn->longest_chain_cachesize = min_t(unsigned int,
 | |
| 				nn->longest_chain_cachesize,
 | |
| 				atomic_read(&nn->num_drc_entries));
 | |
| 	}
 | |
| 
 | |
| 	lru_put_end(b, ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
 | |
|  * @rqstp: Incoming Call to find
 | |
|  *
 | |
|  * Try to find an entry matching the current call in the cache. When none
 | |
|  * is found, we try to grab the oldest expired entry off the LRU list. If
 | |
|  * a suitable one isn't there, then drop the cache_lock and allocate a
 | |
|  * new one, then search again in case one got inserted while this thread
 | |
|  * didn't hold the lock.
 | |
|  *
 | |
|  * Return values:
 | |
|  *   %RC_DOIT: Process the request normally
 | |
|  *   %RC_REPLY: Reply from cache
 | |
|  *   %RC_DROPIT: Do not process the request further
 | |
|  */
 | |
| int nfsd_cache_lookup(struct svc_rqst *rqstp)
 | |
| {
 | |
| 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
 | |
| 	struct svc_cacherep	*rp, *found;
 | |
| 	__be32			xid = rqstp->rq_xid;
 | |
| 	__wsum			csum;
 | |
| 	u32 hash = nfsd_cache_hash(xid, nn);
 | |
| 	struct nfsd_drc_bucket *b = &nn->drc_hashtbl[hash];
 | |
| 	int type = rqstp->rq_cachetype;
 | |
| 	int rtn = RC_DOIT;
 | |
| 
 | |
| 	rqstp->rq_cacherep = NULL;
 | |
| 	if (type == RC_NOCACHE) {
 | |
| 		nfsdstats.rcnocache++;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	csum = nfsd_cache_csum(rqstp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since the common case is a cache miss followed by an insert,
 | |
| 	 * preallocate an entry.
 | |
| 	 */
 | |
| 	rp = nfsd_reply_cache_alloc(rqstp, csum, nn);
 | |
| 	if (!rp)
 | |
| 		goto out;
 | |
| 
 | |
| 	spin_lock(&b->cache_lock);
 | |
| 	found = nfsd_cache_insert(b, rp, nn);
 | |
| 	if (found != rp) {
 | |
| 		nfsd_reply_cache_free_locked(NULL, rp, nn);
 | |
| 		rp = found;
 | |
| 		goto found_entry;
 | |
| 	}
 | |
| 
 | |
| 	nfsdstats.rcmisses++;
 | |
| 	rqstp->rq_cacherep = rp;
 | |
| 	rp->c_state = RC_INPROG;
 | |
| 
 | |
| 	atomic_inc(&nn->num_drc_entries);
 | |
| 	nn->drc_mem_usage += sizeof(*rp);
 | |
| 
 | |
| 	nfsd_prune_bucket(b, nn);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&b->cache_lock);
 | |
| out:
 | |
| 	return rtn;
 | |
| 
 | |
| found_entry:
 | |
| 	/* We found a matching entry which is either in progress or done. */
 | |
| 	nfsdstats.rchits++;
 | |
| 	rtn = RC_DROPIT;
 | |
| 
 | |
| 	/* Request being processed */
 | |
| 	if (rp->c_state == RC_INPROG)
 | |
| 		goto out_trace;
 | |
| 
 | |
| 	/* From the hall of fame of impractical attacks:
 | |
| 	 * Is this a user who tries to snoop on the cache? */
 | |
| 	rtn = RC_DOIT;
 | |
| 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
 | |
| 		goto out_trace;
 | |
| 
 | |
| 	/* Compose RPC reply header */
 | |
| 	switch (rp->c_type) {
 | |
| 	case RC_NOCACHE:
 | |
| 		break;
 | |
| 	case RC_REPLSTAT:
 | |
| 		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
 | |
| 		rtn = RC_REPLY;
 | |
| 		break;
 | |
| 	case RC_REPLBUFF:
 | |
| 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
 | |
| 			goto out_unlock; /* should not happen */
 | |
| 		rtn = RC_REPLY;
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
 | |
| 	}
 | |
| 
 | |
| out_trace:
 | |
| 	trace_nfsd_drc_found(nn, rqstp, rtn);
 | |
| 	goto out_unlock;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * nfsd_cache_update - Update an entry in the duplicate reply cache.
 | |
|  * @rqstp: svc_rqst with a finished Reply
 | |
|  * @cachetype: which cache to update
 | |
|  * @statp: Reply's status code
 | |
|  *
 | |
|  * This is called from nfsd_dispatch when the procedure has been
 | |
|  * executed and the complete reply is in rqstp->rq_res.
 | |
|  *
 | |
|  * We're copying around data here rather than swapping buffers because
 | |
|  * the toplevel loop requires max-sized buffers, which would be a waste
 | |
|  * of memory for a cache with a max reply size of 100 bytes (diropokres).
 | |
|  *
 | |
|  * If we should start to use different types of cache entries tailored
 | |
|  * specifically for attrstat and fh's, we may save even more space.
 | |
|  *
 | |
|  * Also note that a cachetype of RC_NOCACHE can legally be passed when
 | |
|  * nfsd failed to encode a reply that otherwise would have been cached.
 | |
|  * In this case, nfsd_cache_update is called with statp == NULL.
 | |
|  */
 | |
| void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
 | |
| {
 | |
| 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
 | |
| 	struct svc_cacherep *rp = rqstp->rq_cacherep;
 | |
| 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
 | |
| 	u32		hash;
 | |
| 	struct nfsd_drc_bucket *b;
 | |
| 	int		len;
 | |
| 	size_t		bufsize = 0;
 | |
| 
 | |
| 	if (!rp)
 | |
| 		return;
 | |
| 
 | |
| 	hash = nfsd_cache_hash(rp->c_key.k_xid, nn);
 | |
| 	b = &nn->drc_hashtbl[hash];
 | |
| 
 | |
| 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
 | |
| 	len >>= 2;
 | |
| 
 | |
| 	/* Don't cache excessive amounts of data and XDR failures */
 | |
| 	if (!statp || len > (256 >> 2)) {
 | |
| 		nfsd_reply_cache_free(b, rp, nn);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (cachetype) {
 | |
| 	case RC_REPLSTAT:
 | |
| 		if (len != 1)
 | |
| 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
 | |
| 		rp->c_replstat = *statp;
 | |
| 		break;
 | |
| 	case RC_REPLBUFF:
 | |
| 		cachv = &rp->c_replvec;
 | |
| 		bufsize = len << 2;
 | |
| 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
 | |
| 		if (!cachv->iov_base) {
 | |
| 			nfsd_reply_cache_free(b, rp, nn);
 | |
| 			return;
 | |
| 		}
 | |
| 		cachv->iov_len = bufsize;
 | |
| 		memcpy(cachv->iov_base, statp, bufsize);
 | |
| 		break;
 | |
| 	case RC_NOCACHE:
 | |
| 		nfsd_reply_cache_free(b, rp, nn);
 | |
| 		return;
 | |
| 	}
 | |
| 	spin_lock(&b->cache_lock);
 | |
| 	nn->drc_mem_usage += bufsize;
 | |
| 	lru_put_end(b, rp);
 | |
| 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
 | |
| 	rp->c_type = cachetype;
 | |
| 	rp->c_state = RC_DONE;
 | |
| 	spin_unlock(&b->cache_lock);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy cached reply to current reply buffer. Should always fit.
 | |
|  * FIXME as reply is in a page, we should just attach the page, and
 | |
|  * keep a refcount....
 | |
|  */
 | |
| static int
 | |
| nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
 | |
| {
 | |
| 	struct kvec	*vec = &rqstp->rq_res.head[0];
 | |
| 
 | |
| 	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
 | |
| 		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
 | |
| 				data->iov_len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
 | |
| 	vec->iov_len += data->iov_len;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note that fields may be added, removed or reordered in the future. Programs
 | |
|  * scraping this file for info should test the labels to ensure they're
 | |
|  * getting the correct field.
 | |
|  */
 | |
| static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct nfsd_net *nn = m->private;
 | |
| 
 | |
| 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
 | |
| 	seq_printf(m, "num entries:           %u\n",
 | |
| 			atomic_read(&nn->num_drc_entries));
 | |
| 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
 | |
| 	seq_printf(m, "mem usage:             %u\n", nn->drc_mem_usage);
 | |
| 	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
 | |
| 	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
 | |
| 	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
 | |
| 	seq_printf(m, "payload misses:        %u\n", nn->payload_misses);
 | |
| 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
 | |
| 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info,
 | |
| 								nfsd_net_id);
 | |
| 
 | |
| 	return single_open(file, nfsd_reply_cache_stats_show, nn);
 | |
| }
 |