2308 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2308 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright 2002 Andi Kleen, SuSE Labs.
 | |
|  * Thanks to Ben LaHaise for precious feedback.
 | |
|  */
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/cc_platform.h>
 | |
| 
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/memtype.h>
 | |
| #include <asm/set_memory.h>
 | |
| #include <asm/hyperv-tlfs.h>
 | |
| #include <asm/mshyperv.h>
 | |
| 
 | |
| #include "../mm_internal.h"
 | |
| 
 | |
| /*
 | |
|  * The current flushing context - we pass it instead of 5 arguments:
 | |
|  */
 | |
| struct cpa_data {
 | |
| 	unsigned long	*vaddr;
 | |
| 	pgd_t		*pgd;
 | |
| 	pgprot_t	mask_set;
 | |
| 	pgprot_t	mask_clr;
 | |
| 	unsigned long	numpages;
 | |
| 	unsigned long	curpage;
 | |
| 	unsigned long	pfn;
 | |
| 	unsigned int	flags;
 | |
| 	unsigned int	force_split		: 1,
 | |
| 			force_static_prot	: 1,
 | |
| 			force_flush_all		: 1;
 | |
| 	struct page	**pages;
 | |
| };
 | |
| 
 | |
| enum cpa_warn {
 | |
| 	CPA_CONFLICT,
 | |
| 	CPA_PROTECT,
 | |
| 	CPA_DETECT,
 | |
| };
 | |
| 
 | |
| static const int cpa_warn_level = CPA_PROTECT;
 | |
| 
 | |
| /*
 | |
|  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
 | |
|  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
 | |
|  * entries change the page attribute in parallel to some other cpu
 | |
|  * splitting a large page entry along with changing the attribute.
 | |
|  */
 | |
| static DEFINE_SPINLOCK(cpa_lock);
 | |
| 
 | |
| #define CPA_FLUSHTLB 1
 | |
| #define CPA_ARRAY 2
 | |
| #define CPA_PAGES_ARRAY 4
 | |
| #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| static unsigned long direct_pages_count[PG_LEVEL_NUM];
 | |
| 
 | |
| void update_page_count(int level, unsigned long pages)
 | |
| {
 | |
| 	/* Protect against CPA */
 | |
| 	spin_lock(&pgd_lock);
 | |
| 	direct_pages_count[level] += pages;
 | |
| 	spin_unlock(&pgd_lock);
 | |
| }
 | |
| 
 | |
| static void split_page_count(int level)
 | |
| {
 | |
| 	if (direct_pages_count[level] == 0)
 | |
| 		return;
 | |
| 
 | |
| 	direct_pages_count[level]--;
 | |
| 	direct_pages_count[level - 1] += PTRS_PER_PTE;
 | |
| }
 | |
| 
 | |
| void arch_report_meminfo(struct seq_file *m)
 | |
| {
 | |
| 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_4K] << 2);
 | |
| #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 | |
| 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_2M] << 11);
 | |
| #else
 | |
| 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_2M] << 12);
 | |
| #endif
 | |
| 	if (direct_gbpages)
 | |
| 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
 | |
| 			direct_pages_count[PG_LEVEL_1G] << 20);
 | |
| }
 | |
| #else
 | |
| static inline void split_page_count(int level) { }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_X86_CPA_STATISTICS
 | |
| 
 | |
| static unsigned long cpa_1g_checked;
 | |
| static unsigned long cpa_1g_sameprot;
 | |
| static unsigned long cpa_1g_preserved;
 | |
| static unsigned long cpa_2m_checked;
 | |
| static unsigned long cpa_2m_sameprot;
 | |
| static unsigned long cpa_2m_preserved;
 | |
| static unsigned long cpa_4k_install;
 | |
| 
 | |
| static inline void cpa_inc_1g_checked(void)
 | |
| {
 | |
| 	cpa_1g_checked++;
 | |
| }
 | |
| 
 | |
| static inline void cpa_inc_2m_checked(void)
 | |
| {
 | |
| 	cpa_2m_checked++;
 | |
| }
 | |
| 
 | |
| static inline void cpa_inc_4k_install(void)
 | |
| {
 | |
| 	cpa_4k_install++;
 | |
| }
 | |
| 
 | |
| static inline void cpa_inc_lp_sameprot(int level)
 | |
| {
 | |
| 	if (level == PG_LEVEL_1G)
 | |
| 		cpa_1g_sameprot++;
 | |
| 	else
 | |
| 		cpa_2m_sameprot++;
 | |
| }
 | |
| 
 | |
| static inline void cpa_inc_lp_preserved(int level)
 | |
| {
 | |
| 	if (level == PG_LEVEL_1G)
 | |
| 		cpa_1g_preserved++;
 | |
| 	else
 | |
| 		cpa_2m_preserved++;
 | |
| }
 | |
| 
 | |
| static int cpastats_show(struct seq_file *m, void *p)
 | |
| {
 | |
| 	seq_printf(m, "1G pages checked:     %16lu\n", cpa_1g_checked);
 | |
| 	seq_printf(m, "1G pages sameprot:    %16lu\n", cpa_1g_sameprot);
 | |
| 	seq_printf(m, "1G pages preserved:   %16lu\n", cpa_1g_preserved);
 | |
| 	seq_printf(m, "2M pages checked:     %16lu\n", cpa_2m_checked);
 | |
| 	seq_printf(m, "2M pages sameprot:    %16lu\n", cpa_2m_sameprot);
 | |
| 	seq_printf(m, "2M pages preserved:   %16lu\n", cpa_2m_preserved);
 | |
| 	seq_printf(m, "4K pages set-checked: %16lu\n", cpa_4k_install);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpastats_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return single_open(file, cpastats_show, NULL);
 | |
| }
 | |
| 
 | |
| static const struct file_operations cpastats_fops = {
 | |
| 	.open		= cpastats_open,
 | |
| 	.read		= seq_read,
 | |
| 	.llseek		= seq_lseek,
 | |
| 	.release	= single_release,
 | |
| };
 | |
| 
 | |
| static int __init cpa_stats_init(void)
 | |
| {
 | |
| 	debugfs_create_file("cpa_stats", S_IRUSR, arch_debugfs_dir, NULL,
 | |
| 			    &cpastats_fops);
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(cpa_stats_init);
 | |
| #else
 | |
| static inline void cpa_inc_1g_checked(void) { }
 | |
| static inline void cpa_inc_2m_checked(void) { }
 | |
| static inline void cpa_inc_4k_install(void) { }
 | |
| static inline void cpa_inc_lp_sameprot(int level) { }
 | |
| static inline void cpa_inc_lp_preserved(int level) { }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static inline int
 | |
| within(unsigned long addr, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return addr >= start && addr < end;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	return addr >= start && addr <= end;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static inline unsigned long highmap_start_pfn(void)
 | |
| {
 | |
| 	return __pa_symbol(_text) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static inline unsigned long highmap_end_pfn(void)
 | |
| {
 | |
| 	/* Do not reference physical address outside the kernel. */
 | |
| 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static bool __cpa_pfn_in_highmap(unsigned long pfn)
 | |
| {
 | |
| 	/*
 | |
| 	 * Kernel text has an alias mapping at a high address, known
 | |
| 	 * here as "highmap".
 | |
| 	 */
 | |
| 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static bool __cpa_pfn_in_highmap(unsigned long pfn)
 | |
| {
 | |
| 	/* There is no highmap on 32-bit */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * See set_mce_nospec().
 | |
|  *
 | |
|  * Machine check recovery code needs to change cache mode of poisoned pages to
 | |
|  * UC to avoid speculative access logging another error. But passing the
 | |
|  * address of the 1:1 mapping to set_memory_uc() is a fine way to encourage a
 | |
|  * speculative access. So we cheat and flip the top bit of the address. This
 | |
|  * works fine for the code that updates the page tables. But at the end of the
 | |
|  * process we need to flush the TLB and cache and the non-canonical address
 | |
|  * causes a #GP fault when used by the INVLPG and CLFLUSH instructions.
 | |
|  *
 | |
|  * But in the common case we already have a canonical address. This code
 | |
|  * will fix the top bit if needed and is a no-op otherwise.
 | |
|  */
 | |
| static inline unsigned long fix_addr(unsigned long addr)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	return (long)(addr << 1) >> 1;
 | |
| #else
 | |
| 	return addr;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static unsigned long __cpa_addr(struct cpa_data *cpa, unsigned long idx)
 | |
| {
 | |
| 	if (cpa->flags & CPA_PAGES_ARRAY) {
 | |
| 		struct page *page = cpa->pages[idx];
 | |
| 
 | |
| 		if (unlikely(PageHighMem(page)))
 | |
| 			return 0;
 | |
| 
 | |
| 		return (unsigned long)page_address(page);
 | |
| 	}
 | |
| 
 | |
| 	if (cpa->flags & CPA_ARRAY)
 | |
| 		return cpa->vaddr[idx];
 | |
| 
 | |
| 	return *cpa->vaddr + idx * PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flushing functions
 | |
|  */
 | |
| 
 | |
| static void clflush_cache_range_opt(void *vaddr, unsigned int size)
 | |
| {
 | |
| 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
 | |
| 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
 | |
| 	void *vend = vaddr + size;
 | |
| 
 | |
| 	if (p >= vend)
 | |
| 		return;
 | |
| 
 | |
| 	for (; p < vend; p += clflush_size)
 | |
| 		clflushopt(p);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * clflush_cache_range - flush a cache range with clflush
 | |
|  * @vaddr:	virtual start address
 | |
|  * @size:	number of bytes to flush
 | |
|  *
 | |
|  * CLFLUSHOPT is an unordered instruction which needs fencing with MFENCE or
 | |
|  * SFENCE to avoid ordering issues.
 | |
|  */
 | |
| void clflush_cache_range(void *vaddr, unsigned int size)
 | |
| {
 | |
| 	mb();
 | |
| 	clflush_cache_range_opt(vaddr, size);
 | |
| 	mb();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(clflush_cache_range);
 | |
| 
 | |
| void arch_invalidate_pmem(void *addr, size_t size)
 | |
| {
 | |
| 	clflush_cache_range(addr, size);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
 | |
| 
 | |
| static void __cpa_flush_all(void *arg)
 | |
| {
 | |
| 	unsigned long cache = (unsigned long)arg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all to work around Errata in early athlons regarding
 | |
| 	 * large page flushing.
 | |
| 	 */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	if (cache && boot_cpu_data.x86 >= 4)
 | |
| 		wbinvd();
 | |
| }
 | |
| 
 | |
| static void cpa_flush_all(unsigned long cache)
 | |
| {
 | |
| 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 | |
| 
 | |
| 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
 | |
| }
 | |
| 
 | |
| void __cpa_flush_tlb(void *data)
 | |
| {
 | |
| 	struct cpa_data *cpa = data;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < cpa->numpages; i++)
 | |
| 		__flush_tlb_one_kernel(fix_addr(__cpa_addr(cpa, i)));
 | |
| }
 | |
| 
 | |
| static void cpa_flush(struct cpa_data *data, int cache)
 | |
| {
 | |
| 	struct cpa_data *cpa = data;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
 | |
| 
 | |
| 	if (cache && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
 | |
| 		cpa_flush_all(cache);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cpa->force_flush_all || cpa->numpages > tlb_single_page_flush_ceiling)
 | |
| 		flush_tlb_all();
 | |
| 	else
 | |
| 		on_each_cpu(__cpa_flush_tlb, cpa, 1);
 | |
| 
 | |
| 	if (!cache)
 | |
| 		return;
 | |
| 
 | |
| 	mb();
 | |
| 	for (i = 0; i < cpa->numpages; i++) {
 | |
| 		unsigned long addr = __cpa_addr(cpa, i);
 | |
| 		unsigned int level;
 | |
| 
 | |
| 		pte_t *pte = lookup_address(addr, &level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Only flush present addresses:
 | |
| 		 */
 | |
| 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
 | |
| 			clflush_cache_range_opt((void *)fix_addr(addr), PAGE_SIZE);
 | |
| 	}
 | |
| 	mb();
 | |
| }
 | |
| 
 | |
| static bool overlaps(unsigned long r1_start, unsigned long r1_end,
 | |
| 		     unsigned long r2_start, unsigned long r2_end)
 | |
| {
 | |
| 	return (r1_start <= r2_end && r1_end >= r2_start) ||
 | |
| 		(r2_start <= r1_end && r2_end >= r1_start);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PCI_BIOS
 | |
| /*
 | |
|  * The BIOS area between 640k and 1Mb needs to be executable for PCI BIOS
 | |
|  * based config access (CONFIG_PCI_GOBIOS) support.
 | |
|  */
 | |
| #define BIOS_PFN	PFN_DOWN(BIOS_BEGIN)
 | |
| #define BIOS_PFN_END	PFN_DOWN(BIOS_END - 1)
 | |
| 
 | |
| static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 | |
| {
 | |
| 	if (pcibios_enabled && overlaps(spfn, epfn, BIOS_PFN, BIOS_PFN_END))
 | |
| 		return _PAGE_NX;
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static pgprotval_t protect_pci_bios(unsigned long spfn, unsigned long epfn)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The .rodata section needs to be read-only. Using the pfn catches all
 | |
|  * aliases.  This also includes __ro_after_init, so do not enforce until
 | |
|  * kernel_set_to_readonly is true.
 | |
|  */
 | |
| static pgprotval_t protect_rodata(unsigned long spfn, unsigned long epfn)
 | |
| {
 | |
| 	unsigned long epfn_ro, spfn_ro = PFN_DOWN(__pa_symbol(__start_rodata));
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: __end_rodata is at page aligned and not inclusive, so
 | |
| 	 * subtract 1 to get the last enforced PFN in the rodata area.
 | |
| 	 */
 | |
| 	epfn_ro = PFN_DOWN(__pa_symbol(__end_rodata)) - 1;
 | |
| 
 | |
| 	if (kernel_set_to_readonly && overlaps(spfn, epfn, spfn_ro, epfn_ro))
 | |
| 		return _PAGE_RW;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Protect kernel text against becoming non executable by forbidding
 | |
|  * _PAGE_NX.  This protects only the high kernel mapping (_text -> _etext)
 | |
|  * out of which the kernel actually executes.  Do not protect the low
 | |
|  * mapping.
 | |
|  *
 | |
|  * This does not cover __inittext since that is gone after boot.
 | |
|  */
 | |
| static pgprotval_t protect_kernel_text(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long t_end = (unsigned long)_etext - 1;
 | |
| 	unsigned long t_start = (unsigned long)_text;
 | |
| 
 | |
| 	if (overlaps(start, end, t_start, t_end))
 | |
| 		return _PAGE_NX;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_X86_64)
 | |
| /*
 | |
|  * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
 | |
|  * kernel text mappings for the large page aligned text, rodata sections
 | |
|  * will be always read-only. For the kernel identity mappings covering the
 | |
|  * holes caused by this alignment can be anything that user asks.
 | |
|  *
 | |
|  * This will preserve the large page mappings for kernel text/data at no
 | |
|  * extra cost.
 | |
|  */
 | |
| static pgprotval_t protect_kernel_text_ro(unsigned long start,
 | |
| 					  unsigned long end)
 | |
| {
 | |
| 	unsigned long t_end = (unsigned long)__end_rodata_hpage_align - 1;
 | |
| 	unsigned long t_start = (unsigned long)_text;
 | |
| 	unsigned int level;
 | |
| 
 | |
| 	if (!kernel_set_to_readonly || !overlaps(start, end, t_start, t_end))
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * Don't enforce the !RW mapping for the kernel text mapping, if
 | |
| 	 * the current mapping is already using small page mapping.  No
 | |
| 	 * need to work hard to preserve large page mappings in this case.
 | |
| 	 *
 | |
| 	 * This also fixes the Linux Xen paravirt guest boot failure caused
 | |
| 	 * by unexpected read-only mappings for kernel identity
 | |
| 	 * mappings. In this paravirt guest case, the kernel text mapping
 | |
| 	 * and the kernel identity mapping share the same page-table pages,
 | |
| 	 * so the protections for kernel text and identity mappings have to
 | |
| 	 * be the same.
 | |
| 	 */
 | |
| 	if (lookup_address(start, &level) && (level != PG_LEVEL_4K))
 | |
| 		return _PAGE_RW;
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| static pgprotval_t protect_kernel_text_ro(unsigned long start,
 | |
| 					  unsigned long end)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline bool conflicts(pgprot_t prot, pgprotval_t val)
 | |
| {
 | |
| 	return (pgprot_val(prot) & ~val) != pgprot_val(prot);
 | |
| }
 | |
| 
 | |
| static inline void check_conflict(int warnlvl, pgprot_t prot, pgprotval_t val,
 | |
| 				  unsigned long start, unsigned long end,
 | |
| 				  unsigned long pfn, const char *txt)
 | |
| {
 | |
| 	static const char *lvltxt[] = {
 | |
| 		[CPA_CONFLICT]	= "conflict",
 | |
| 		[CPA_PROTECT]	= "protect",
 | |
| 		[CPA_DETECT]	= "detect",
 | |
| 	};
 | |
| 
 | |
| 	if (warnlvl > cpa_warn_level || !conflicts(prot, val))
 | |
| 		return;
 | |
| 
 | |
| 	pr_warn("CPA %8s %10s: 0x%016lx - 0x%016lx PFN %lx req %016llx prevent %016llx\n",
 | |
| 		lvltxt[warnlvl], txt, start, end, pfn, (unsigned long long)pgprot_val(prot),
 | |
| 		(unsigned long long)val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Certain areas of memory on x86 require very specific protection flags,
 | |
|  * for example the BIOS area or kernel text. Callers don't always get this
 | |
|  * right (again, ioremap() on BIOS memory is not uncommon) so this function
 | |
|  * checks and fixes these known static required protection bits.
 | |
|  */
 | |
| static inline pgprot_t static_protections(pgprot_t prot, unsigned long start,
 | |
| 					  unsigned long pfn, unsigned long npg,
 | |
| 					  unsigned long lpsize, int warnlvl)
 | |
| {
 | |
| 	pgprotval_t forbidden, res;
 | |
| 	unsigned long end;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no point in checking RW/NX conflicts when the requested
 | |
| 	 * mapping is setting the page !PRESENT.
 | |
| 	 */
 | |
| 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
 | |
| 		return prot;
 | |
| 
 | |
| 	/* Operate on the virtual address */
 | |
| 	end = start + npg * PAGE_SIZE - 1;
 | |
| 
 | |
| 	res = protect_kernel_text(start, end);
 | |
| 	check_conflict(warnlvl, prot, res, start, end, pfn, "Text NX");
 | |
| 	forbidden = res;
 | |
| 
 | |
| 	/*
 | |
| 	 * Special case to preserve a large page. If the change spawns the
 | |
| 	 * full large page mapping then there is no point to split it
 | |
| 	 * up. Happens with ftrace and is going to be removed once ftrace
 | |
| 	 * switched to text_poke().
 | |
| 	 */
 | |
| 	if (lpsize != (npg * PAGE_SIZE) || (start & (lpsize - 1))) {
 | |
| 		res = protect_kernel_text_ro(start, end);
 | |
| 		check_conflict(warnlvl, prot, res, start, end, pfn, "Text RO");
 | |
| 		forbidden |= res;
 | |
| 	}
 | |
| 
 | |
| 	/* Check the PFN directly */
 | |
| 	res = protect_pci_bios(pfn, pfn + npg - 1);
 | |
| 	check_conflict(warnlvl, prot, res, start, end, pfn, "PCIBIOS NX");
 | |
| 	forbidden |= res;
 | |
| 
 | |
| 	res = protect_rodata(pfn, pfn + npg - 1);
 | |
| 	check_conflict(warnlvl, prot, res, start, end, pfn, "Rodata RO");
 | |
| 	forbidden |= res;
 | |
| 
 | |
| 	return __pgprot(pgprot_val(prot) & ~forbidden);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the page table entry for a virtual address in a specific pgd.
 | |
|  * Return a pointer to the entry and the level of the mapping.
 | |
|  */
 | |
| pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
 | |
| 			     unsigned int *level)
 | |
| {
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	*level = PG_LEVEL_NONE;
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (p4d_none(*p4d))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_512G;
 | |
| 	if (p4d_large(*p4d) || !p4d_present(*p4d))
 | |
| 		return (pte_t *)p4d;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (pud_none(*pud))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_1G;
 | |
| 	if (pud_large(*pud) || !pud_present(*pud))
 | |
| 		return (pte_t *)pud;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	*level = PG_LEVEL_2M;
 | |
| 	if (pmd_large(*pmd) || !pmd_present(*pmd))
 | |
| 		return (pte_t *)pmd;
 | |
| 
 | |
| 	*level = PG_LEVEL_4K;
 | |
| 
 | |
| 	return pte_offset_kernel(pmd, address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the page table entry for a virtual address. Return a pointer
 | |
|  * to the entry and the level of the mapping.
 | |
|  *
 | |
|  * Note: We return pud and pmd either when the entry is marked large
 | |
|  * or when the present bit is not set. Otherwise we would return a
 | |
|  * pointer to a nonexisting mapping.
 | |
|  */
 | |
| pte_t *lookup_address(unsigned long address, unsigned int *level)
 | |
| {
 | |
| 	return lookup_address_in_pgd(pgd_offset_k(address), address, level);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(lookup_address);
 | |
| 
 | |
| static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
 | |
| 				  unsigned int *level)
 | |
| {
 | |
| 	if (cpa->pgd)
 | |
| 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
 | |
| 					       address, level);
 | |
| 
 | |
| 	return lookup_address(address, level);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
 | |
|  * or NULL if not present.
 | |
|  */
 | |
| pmd_t *lookup_pmd_address(unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 
 | |
| 	pgd = pgd_offset_k(address);
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return NULL;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, address);
 | |
| 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pud = pud_offset(p4d, address);
 | |
| 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return pmd_offset(pud, address);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is necessary because __pa() does not work on some
 | |
|  * kinds of memory, like vmalloc() or the alloc_remap()
 | |
|  * areas on 32-bit NUMA systems.  The percpu areas can
 | |
|  * end up in this kind of memory, for instance.
 | |
|  *
 | |
|  * This could be optimized, but it is only intended to be
 | |
|  * used at inititalization time, and keeping it
 | |
|  * unoptimized should increase the testing coverage for
 | |
|  * the more obscure platforms.
 | |
|  */
 | |
| phys_addr_t slow_virt_to_phys(void *__virt_addr)
 | |
| {
 | |
| 	unsigned long virt_addr = (unsigned long)__virt_addr;
 | |
| 	phys_addr_t phys_addr;
 | |
| 	unsigned long offset;
 | |
| 	enum pg_level level;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = lookup_address(virt_addr, &level);
 | |
| 	BUG_ON(!pte);
 | |
| 
 | |
| 	/*
 | |
| 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
 | |
| 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
 | |
| 	 * make 32-PAE kernel work correctly.
 | |
| 	 */
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_1G:
 | |
| 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
 | |
| 		offset = virt_addr & ~PUD_PAGE_MASK;
 | |
| 		break;
 | |
| 	case PG_LEVEL_2M:
 | |
| 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
 | |
| 		offset = virt_addr & ~PMD_PAGE_MASK;
 | |
| 		break;
 | |
| 	default:
 | |
| 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
 | |
| 		offset = virt_addr & ~PAGE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	return (phys_addr_t)(phys_addr | offset);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(slow_virt_to_phys);
 | |
| 
 | |
| /*
 | |
|  * Set the new pmd in all the pgds we know about:
 | |
|  */
 | |
| static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
 | |
| {
 | |
| 	/* change init_mm */
 | |
| 	set_pte_atomic(kpte, pte);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (!SHARED_KERNEL_PMD) {
 | |
| 		struct page *page;
 | |
| 
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			pgd_t *pgd;
 | |
| 			p4d_t *p4d;
 | |
| 			pud_t *pud;
 | |
| 			pmd_t *pmd;
 | |
| 
 | |
| 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 | |
| 			p4d = p4d_offset(pgd, address);
 | |
| 			pud = pud_offset(p4d, address);
 | |
| 			pmd = pmd_offset(pud, address);
 | |
| 			set_pte_atomic((pte_t *)pmd, pte);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
 | |
| {
 | |
| 	/*
 | |
| 	 * _PAGE_GLOBAL means "global page" for present PTEs.
 | |
| 	 * But, it is also used to indicate _PAGE_PROTNONE
 | |
| 	 * for non-present PTEs.
 | |
| 	 *
 | |
| 	 * This ensures that a _PAGE_GLOBAL PTE going from
 | |
| 	 * present to non-present is not confused as
 | |
| 	 * _PAGE_PROTNONE.
 | |
| 	 */
 | |
| 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
 | |
| 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
 | |
| 
 | |
| 	return prot;
 | |
| }
 | |
| 
 | |
| static int __should_split_large_page(pte_t *kpte, unsigned long address,
 | |
| 				     struct cpa_data *cpa)
 | |
| {
 | |
| 	unsigned long numpages, pmask, psize, lpaddr, pfn, old_pfn;
 | |
| 	pgprot_t old_prot, new_prot, req_prot, chk_prot;
 | |
| 	pte_t new_pte, *tmp;
 | |
| 	enum pg_level level;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for races, another CPU might have split this page
 | |
| 	 * up already:
 | |
| 	 */
 | |
| 	tmp = _lookup_address_cpa(cpa, address, &level);
 | |
| 	if (tmp != kpte)
 | |
| 		return 1;
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_2M:
 | |
| 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
 | |
| 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
 | |
| 		cpa_inc_2m_checked();
 | |
| 		break;
 | |
| 	case PG_LEVEL_1G:
 | |
| 		old_prot = pud_pgprot(*(pud_t *)kpte);
 | |
| 		old_pfn = pud_pfn(*(pud_t *)kpte);
 | |
| 		cpa_inc_1g_checked();
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	psize = page_level_size(level);
 | |
| 	pmask = page_level_mask(level);
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the number of pages, which fit into this large
 | |
| 	 * page starting at address:
 | |
| 	 */
 | |
| 	lpaddr = (address + psize) & pmask;
 | |
| 	numpages = (lpaddr - address) >> PAGE_SHIFT;
 | |
| 	if (numpages < cpa->numpages)
 | |
| 		cpa->numpages = numpages;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are safe now. Check whether the new pgprot is the same:
 | |
| 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
 | |
| 	 * up accordingly.
 | |
| 	 */
 | |
| 
 | |
| 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
 | |
| 	req_prot = pgprot_large_2_4k(old_prot);
 | |
| 
 | |
| 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * req_prot is in format of 4k pages. It must be converted to large
 | |
| 	 * page format: the caching mode includes the PAT bit located at
 | |
| 	 * different bit positions in the two formats.
 | |
| 	 */
 | |
| 	req_prot = pgprot_4k_2_large(req_prot);
 | |
| 	req_prot = pgprot_clear_protnone_bits(req_prot);
 | |
| 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
 | |
| 		pgprot_val(req_prot) |= _PAGE_PSE;
 | |
| 
 | |
| 	/*
 | |
| 	 * old_pfn points to the large page base pfn. So we need to add the
 | |
| 	 * offset of the virtual address:
 | |
| 	 */
 | |
| 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
 | |
| 	cpa->pfn = pfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the large page base address and the number of 4K pages
 | |
| 	 * in the large page
 | |
| 	 */
 | |
| 	lpaddr = address & pmask;
 | |
| 	numpages = psize >> PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check that the existing mapping is correct versus the static
 | |
| 	 * protections. static_protections() guards against !PRESENT, so no
 | |
| 	 * extra conditional required here.
 | |
| 	 */
 | |
| 	chk_prot = static_protections(old_prot, lpaddr, old_pfn, numpages,
 | |
| 				      psize, CPA_CONFLICT);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(pgprot_val(chk_prot) != pgprot_val(old_prot))) {
 | |
| 		/*
 | |
| 		 * Split the large page and tell the split code to
 | |
| 		 * enforce static protections.
 | |
| 		 */
 | |
| 		cpa->force_static_prot = 1;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Optimization: If the requested pgprot is the same as the current
 | |
| 	 * pgprot, then the large page can be preserved and no updates are
 | |
| 	 * required independent of alignment and length of the requested
 | |
| 	 * range. The above already established that the current pgprot is
 | |
| 	 * correct, which in consequence makes the requested pgprot correct
 | |
| 	 * as well if it is the same. The static protection scan below will
 | |
| 	 * not come to a different conclusion.
 | |
| 	 */
 | |
| 	if (pgprot_val(req_prot) == pgprot_val(old_prot)) {
 | |
| 		cpa_inc_lp_sameprot(level);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the requested range does not cover the full page, split it up
 | |
| 	 */
 | |
| 	if (address != lpaddr || cpa->numpages != numpages)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether the requested pgprot is conflicting with a static
 | |
| 	 * protection requirement in the large page.
 | |
| 	 */
 | |
| 	new_prot = static_protections(req_prot, lpaddr, old_pfn, numpages,
 | |
| 				      psize, CPA_DETECT);
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is a conflict, split the large page.
 | |
| 	 *
 | |
| 	 * There used to be a 4k wise evaluation trying really hard to
 | |
| 	 * preserve the large pages, but experimentation has shown, that this
 | |
| 	 * does not help at all. There might be corner cases which would
 | |
| 	 * preserve one large page occasionally, but it's really not worth the
 | |
| 	 * extra code and cycles for the common case.
 | |
| 	 */
 | |
| 	if (pgprot_val(req_prot) != pgprot_val(new_prot))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* All checks passed. Update the large page mapping. */
 | |
| 	new_pte = pfn_pte(old_pfn, new_prot);
 | |
| 	__set_pmd_pte(kpte, address, new_pte);
 | |
| 	cpa->flags |= CPA_FLUSHTLB;
 | |
| 	cpa_inc_lp_preserved(level);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int should_split_large_page(pte_t *kpte, unsigned long address,
 | |
| 				   struct cpa_data *cpa)
 | |
| {
 | |
| 	int do_split;
 | |
| 
 | |
| 	if (cpa->force_split)
 | |
| 		return 1;
 | |
| 
 | |
| 	spin_lock(&pgd_lock);
 | |
| 	do_split = __should_split_large_page(kpte, address, cpa);
 | |
| 	spin_unlock(&pgd_lock);
 | |
| 
 | |
| 	return do_split;
 | |
| }
 | |
| 
 | |
| static void split_set_pte(struct cpa_data *cpa, pte_t *pte, unsigned long pfn,
 | |
| 			  pgprot_t ref_prot, unsigned long address,
 | |
| 			  unsigned long size)
 | |
| {
 | |
| 	unsigned int npg = PFN_DOWN(size);
 | |
| 	pgprot_t prot;
 | |
| 
 | |
| 	/*
 | |
| 	 * If should_split_large_page() discovered an inconsistent mapping,
 | |
| 	 * remove the invalid protection in the split mapping.
 | |
| 	 */
 | |
| 	if (!cpa->force_static_prot)
 | |
| 		goto set;
 | |
| 
 | |
| 	/* Hand in lpsize = 0 to enforce the protection mechanism */
 | |
| 	prot = static_protections(ref_prot, address, pfn, npg, 0, CPA_PROTECT);
 | |
| 
 | |
| 	if (pgprot_val(prot) == pgprot_val(ref_prot))
 | |
| 		goto set;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is splitting a PMD, fix it up. PUD splits cannot be
 | |
| 	 * fixed trivially as that would require to rescan the newly
 | |
| 	 * installed PMD mappings after returning from split_large_page()
 | |
| 	 * so an eventual further split can allocate the necessary PTE
 | |
| 	 * pages. Warn for now and revisit it in case this actually
 | |
| 	 * happens.
 | |
| 	 */
 | |
| 	if (size == PAGE_SIZE)
 | |
| 		ref_prot = prot;
 | |
| 	else
 | |
| 		pr_warn_once("CPA: Cannot fixup static protections for PUD split\n");
 | |
| set:
 | |
| 	set_pte(pte, pfn_pte(pfn, ref_prot));
 | |
| }
 | |
| 
 | |
| static int
 | |
| __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
 | |
| 		   struct page *base)
 | |
| {
 | |
| 	unsigned long lpaddr, lpinc, ref_pfn, pfn, pfninc = 1;
 | |
| 	pte_t *pbase = (pte_t *)page_address(base);
 | |
| 	unsigned int i, level;
 | |
| 	pgprot_t ref_prot;
 | |
| 	pte_t *tmp;
 | |
| 
 | |
| 	spin_lock(&pgd_lock);
 | |
| 	/*
 | |
| 	 * Check for races, another CPU might have split this page
 | |
| 	 * up for us already:
 | |
| 	 */
 | |
| 	tmp = _lookup_address_cpa(cpa, address, &level);
 | |
| 	if (tmp != kpte) {
 | |
| 		spin_unlock(&pgd_lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_2M:
 | |
| 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
 | |
| 		/*
 | |
| 		 * Clear PSE (aka _PAGE_PAT) and move
 | |
| 		 * PAT bit to correct position.
 | |
| 		 */
 | |
| 		ref_prot = pgprot_large_2_4k(ref_prot);
 | |
| 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
 | |
| 		lpaddr = address & PMD_MASK;
 | |
| 		lpinc = PAGE_SIZE;
 | |
| 		break;
 | |
| 
 | |
| 	case PG_LEVEL_1G:
 | |
| 		ref_prot = pud_pgprot(*(pud_t *)kpte);
 | |
| 		ref_pfn = pud_pfn(*(pud_t *)kpte);
 | |
| 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
 | |
| 		lpaddr = address & PUD_MASK;
 | |
| 		lpinc = PMD_SIZE;
 | |
| 		/*
 | |
| 		 * Clear the PSE flags if the PRESENT flag is not set
 | |
| 		 * otherwise pmd_present/pmd_huge will return true
 | |
| 		 * even on a non present pmd.
 | |
| 		 */
 | |
| 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
 | |
| 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		spin_unlock(&pgd_lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the target pfn from the original entry:
 | |
| 	 */
 | |
| 	pfn = ref_pfn;
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc, lpaddr += lpinc)
 | |
| 		split_set_pte(cpa, pbase + i, pfn, ref_prot, lpaddr, lpinc);
 | |
| 
 | |
| 	if (virt_addr_valid(address)) {
 | |
| 		unsigned long pfn = PFN_DOWN(__pa(address));
 | |
| 
 | |
| 		if (pfn_range_is_mapped(pfn, pfn + 1))
 | |
| 			split_page_count(level);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new, split up pagetable.
 | |
| 	 *
 | |
| 	 * We use the standard kernel pagetable protections for the new
 | |
| 	 * pagetable protections, the actual ptes set above control the
 | |
| 	 * primary protection behavior:
 | |
| 	 */
 | |
| 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Do a global flush tlb after splitting the large page
 | |
| 	 * and before we do the actual change page attribute in the PTE.
 | |
| 	 *
 | |
| 	 * Without this, we violate the TLB application note, that says:
 | |
| 	 * "The TLBs may contain both ordinary and large-page
 | |
| 	 *  translations for a 4-KByte range of linear addresses. This
 | |
| 	 *  may occur if software modifies the paging structures so that
 | |
| 	 *  the page size used for the address range changes. If the two
 | |
| 	 *  translations differ with respect to page frame or attributes
 | |
| 	 *  (e.g., permissions), processor behavior is undefined and may
 | |
| 	 *  be implementation-specific."
 | |
| 	 *
 | |
| 	 * We do this global tlb flush inside the cpa_lock, so that we
 | |
| 	 * don't allow any other cpu, with stale tlb entries change the
 | |
| 	 * page attribute in parallel, that also falls into the
 | |
| 	 * just split large page entry.
 | |
| 	 */
 | |
| 	flush_tlb_all();
 | |
| 	spin_unlock(&pgd_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
 | |
| 			    unsigned long address)
 | |
| {
 | |
| 	struct page *base;
 | |
| 
 | |
| 	if (!debug_pagealloc_enabled())
 | |
| 		spin_unlock(&cpa_lock);
 | |
| 	base = alloc_pages(GFP_KERNEL, 0);
 | |
| 	if (!debug_pagealloc_enabled())
 | |
| 		spin_lock(&cpa_lock);
 | |
| 	if (!base)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (__split_large_page(cpa, kpte, address, base))
 | |
| 		__free_page(base);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool try_to_free_pte_page(pte_t *pte)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++)
 | |
| 		if (!pte_none(pte[i]))
 | |
| 			return false;
 | |
| 
 | |
| 	free_page((unsigned long)pte);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool try_to_free_pmd_page(pmd_t *pmd)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PMD; i++)
 | |
| 		if (!pmd_none(pmd[i]))
 | |
| 			return false;
 | |
| 
 | |
| 	free_page((unsigned long)pmd);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	pte_t *pte = pte_offset_kernel(pmd, start);
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		set_pte(pte, __pte(0));
 | |
| 
 | |
| 		start += PAGE_SIZE;
 | |
| 		pte++;
 | |
| 	}
 | |
| 
 | |
| 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
 | |
| 		pmd_clear(pmd);
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
 | |
| 			      unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (unmap_pte_range(pmd, start, end))
 | |
| 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
 | |
| 			pud_clear(pud);
 | |
| }
 | |
| 
 | |
| static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_offset(pud, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Not on a 2MB page boundary?
 | |
| 	 */
 | |
| 	if (start & (PMD_SIZE - 1)) {
 | |
| 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
 | |
| 		unsigned long pre_end = min_t(unsigned long, end, next_page);
 | |
| 
 | |
| 		__unmap_pmd_range(pud, pmd, start, pre_end);
 | |
| 
 | |
| 		start = pre_end;
 | |
| 		pmd++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to unmap in 2M chunks.
 | |
| 	 */
 | |
| 	while (end - start >= PMD_SIZE) {
 | |
| 		if (pmd_large(*pmd))
 | |
| 			pmd_clear(pmd);
 | |
| 		else
 | |
| 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
 | |
| 
 | |
| 		start += PMD_SIZE;
 | |
| 		pmd++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 4K leftovers?
 | |
| 	 */
 | |
| 	if (start < end)
 | |
| 		return __unmap_pmd_range(pud, pmd, start, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try again to free the PMD page if haven't succeeded above.
 | |
| 	 */
 | |
| 	if (!pud_none(*pud))
 | |
| 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
 | |
| 			pud_clear(pud);
 | |
| }
 | |
| 
 | |
| static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
 | |
| {
 | |
| 	pud_t *pud = pud_offset(p4d, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Not on a GB page boundary?
 | |
| 	 */
 | |
| 	if (start & (PUD_SIZE - 1)) {
 | |
| 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
 | |
| 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
 | |
| 
 | |
| 		unmap_pmd_range(pud, start, pre_end);
 | |
| 
 | |
| 		start = pre_end;
 | |
| 		pud++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to unmap in 1G chunks?
 | |
| 	 */
 | |
| 	while (end - start >= PUD_SIZE) {
 | |
| 
 | |
| 		if (pud_large(*pud))
 | |
| 			pud_clear(pud);
 | |
| 		else
 | |
| 			unmap_pmd_range(pud, start, start + PUD_SIZE);
 | |
| 
 | |
| 		start += PUD_SIZE;
 | |
| 		pud++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 2M leftovers?
 | |
| 	 */
 | |
| 	if (start < end)
 | |
| 		unmap_pmd_range(pud, start, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to try to free the PUD page because we'll free it in
 | |
| 	 * populate_pgd's error path
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static int alloc_pte_page(pmd_t *pmd)
 | |
| {
 | |
| 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
 | |
| 	if (!pte)
 | |
| 		return -1;
 | |
| 
 | |
| 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int alloc_pmd_page(pud_t *pud)
 | |
| {
 | |
| 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 | |
| 	if (!pmd)
 | |
| 		return -1;
 | |
| 
 | |
| 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void populate_pte(struct cpa_data *cpa,
 | |
| 			 unsigned long start, unsigned long end,
 | |
| 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, start);
 | |
| 
 | |
| 	pgprot = pgprot_clear_protnone_bits(pgprot);
 | |
| 
 | |
| 	while (num_pages-- && start < end) {
 | |
| 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
 | |
| 
 | |
| 		start	 += PAGE_SIZE;
 | |
| 		cpa->pfn++;
 | |
| 		pte++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static long populate_pmd(struct cpa_data *cpa,
 | |
| 			 unsigned long start, unsigned long end,
 | |
| 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
 | |
| {
 | |
| 	long cur_pages = 0;
 | |
| 	pmd_t *pmd;
 | |
| 	pgprot_t pmd_pgprot;
 | |
| 
 | |
| 	/*
 | |
| 	 * Not on a 2M boundary?
 | |
| 	 */
 | |
| 	if (start & (PMD_SIZE - 1)) {
 | |
| 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
 | |
| 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
 | |
| 
 | |
| 		pre_end   = min_t(unsigned long, pre_end, next_page);
 | |
| 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
 | |
| 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
 | |
| 
 | |
| 		/*
 | |
| 		 * Need a PTE page?
 | |
| 		 */
 | |
| 		pmd = pmd_offset(pud, start);
 | |
| 		if (pmd_none(*pmd))
 | |
| 			if (alloc_pte_page(pmd))
 | |
| 				return -1;
 | |
| 
 | |
| 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
 | |
| 
 | |
| 		start = pre_end;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We mapped them all?
 | |
| 	 */
 | |
| 	if (num_pages == cur_pages)
 | |
| 		return cur_pages;
 | |
| 
 | |
| 	pmd_pgprot = pgprot_4k_2_large(pgprot);
 | |
| 
 | |
| 	while (end - start >= PMD_SIZE) {
 | |
| 
 | |
| 		/*
 | |
| 		 * We cannot use a 1G page so allocate a PMD page if needed.
 | |
| 		 */
 | |
| 		if (pud_none(*pud))
 | |
| 			if (alloc_pmd_page(pud))
 | |
| 				return -1;
 | |
| 
 | |
| 		pmd = pmd_offset(pud, start);
 | |
| 
 | |
| 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
 | |
| 					canon_pgprot(pmd_pgprot))));
 | |
| 
 | |
| 		start	  += PMD_SIZE;
 | |
| 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
 | |
| 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Map trailing 4K pages.
 | |
| 	 */
 | |
| 	if (start < end) {
 | |
| 		pmd = pmd_offset(pud, start);
 | |
| 		if (pmd_none(*pmd))
 | |
| 			if (alloc_pte_page(pmd))
 | |
| 				return -1;
 | |
| 
 | |
| 		populate_pte(cpa, start, end, num_pages - cur_pages,
 | |
| 			     pmd, pgprot);
 | |
| 	}
 | |
| 	return num_pages;
 | |
| }
 | |
| 
 | |
| static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
 | |
| 			pgprot_t pgprot)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long end;
 | |
| 	long cur_pages = 0;
 | |
| 	pgprot_t pud_pgprot;
 | |
| 
 | |
| 	end = start + (cpa->numpages << PAGE_SHIFT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Not on a Gb page boundary? => map everything up to it with
 | |
| 	 * smaller pages.
 | |
| 	 */
 | |
| 	if (start & (PUD_SIZE - 1)) {
 | |
| 		unsigned long pre_end;
 | |
| 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
 | |
| 
 | |
| 		pre_end   = min_t(unsigned long, end, next_page);
 | |
| 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
 | |
| 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
 | |
| 
 | |
| 		pud = pud_offset(p4d, start);
 | |
| 
 | |
| 		/*
 | |
| 		 * Need a PMD page?
 | |
| 		 */
 | |
| 		if (pud_none(*pud))
 | |
| 			if (alloc_pmd_page(pud))
 | |
| 				return -1;
 | |
| 
 | |
| 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
 | |
| 					 pud, pgprot);
 | |
| 		if (cur_pages < 0)
 | |
| 			return cur_pages;
 | |
| 
 | |
| 		start = pre_end;
 | |
| 	}
 | |
| 
 | |
| 	/* We mapped them all? */
 | |
| 	if (cpa->numpages == cur_pages)
 | |
| 		return cur_pages;
 | |
| 
 | |
| 	pud = pud_offset(p4d, start);
 | |
| 	pud_pgprot = pgprot_4k_2_large(pgprot);
 | |
| 
 | |
| 	/*
 | |
| 	 * Map everything starting from the Gb boundary, possibly with 1G pages
 | |
| 	 */
 | |
| 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
 | |
| 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
 | |
| 				   canon_pgprot(pud_pgprot))));
 | |
| 
 | |
| 		start	  += PUD_SIZE;
 | |
| 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
 | |
| 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
 | |
| 		pud++;
 | |
| 	}
 | |
| 
 | |
| 	/* Map trailing leftover */
 | |
| 	if (start < end) {
 | |
| 		long tmp;
 | |
| 
 | |
| 		pud = pud_offset(p4d, start);
 | |
| 		if (pud_none(*pud))
 | |
| 			if (alloc_pmd_page(pud))
 | |
| 				return -1;
 | |
| 
 | |
| 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
 | |
| 				   pud, pgprot);
 | |
| 		if (tmp < 0)
 | |
| 			return cur_pages;
 | |
| 
 | |
| 		cur_pages += tmp;
 | |
| 	}
 | |
| 	return cur_pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restrictions for kernel page table do not necessarily apply when mapping in
 | |
|  * an alternate PGD.
 | |
|  */
 | |
| static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
 | |
| {
 | |
| 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
 | |
| 	pud_t *pud = NULL;	/* shut up gcc */
 | |
| 	p4d_t *p4d;
 | |
| 	pgd_t *pgd_entry;
 | |
| 	long ret;
 | |
| 
 | |
| 	pgd_entry = cpa->pgd + pgd_index(addr);
 | |
| 
 | |
| 	if (pgd_none(*pgd_entry)) {
 | |
| 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
 | |
| 		if (!p4d)
 | |
| 			return -1;
 | |
| 
 | |
| 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate a PUD page and hand it down for mapping.
 | |
| 	 */
 | |
| 	p4d = p4d_offset(pgd_entry, addr);
 | |
| 	if (p4d_none(*p4d)) {
 | |
| 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
 | |
| 		if (!pud)
 | |
| 			return -1;
 | |
| 
 | |
| 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
 | |
| 	}
 | |
| 
 | |
| 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 	ret = populate_pud(cpa, addr, p4d, pgprot);
 | |
| 	if (ret < 0) {
 | |
| 		/*
 | |
| 		 * Leave the PUD page in place in case some other CPU or thread
 | |
| 		 * already found it, but remove any useless entries we just
 | |
| 		 * added to it.
 | |
| 		 */
 | |
| 		unmap_pud_range(p4d, addr,
 | |
| 				addr + (cpa->numpages << PAGE_SHIFT));
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	cpa->numpages = ret;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
 | |
| 			       int primary)
 | |
| {
 | |
| 	if (cpa->pgd) {
 | |
| 		/*
 | |
| 		 * Right now, we only execute this code path when mapping
 | |
| 		 * the EFI virtual memory map regions, no other users
 | |
| 		 * provide a ->pgd value. This may change in the future.
 | |
| 		 */
 | |
| 		return populate_pgd(cpa, vaddr);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore all non primary paths.
 | |
| 	 */
 | |
| 	if (!primary) {
 | |
| 		cpa->numpages = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
 | |
| 	 * to have holes.
 | |
| 	 * Also set numpages to '1' indicating that we processed cpa req for
 | |
| 	 * one virtual address page and its pfn. TBD: numpages can be set based
 | |
| 	 * on the initial value and the level returned by lookup_address().
 | |
| 	 */
 | |
| 	if (within(vaddr, PAGE_OFFSET,
 | |
| 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
 | |
| 		cpa->numpages = 1;
 | |
| 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
 | |
| 		return 0;
 | |
| 
 | |
| 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
 | |
| 		/* Faults in the highmap are OK, so do not warn: */
 | |
| 		return -EFAULT;
 | |
| 	} else {
 | |
| 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
 | |
| 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
 | |
| 			*cpa->vaddr);
 | |
| 
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __change_page_attr(struct cpa_data *cpa, int primary)
 | |
| {
 | |
| 	unsigned long address;
 | |
| 	int do_split, err;
 | |
| 	unsigned int level;
 | |
| 	pte_t *kpte, old_pte;
 | |
| 
 | |
| 	address = __cpa_addr(cpa, cpa->curpage);
 | |
| repeat:
 | |
| 	kpte = _lookup_address_cpa(cpa, address, &level);
 | |
| 	if (!kpte)
 | |
| 		return __cpa_process_fault(cpa, address, primary);
 | |
| 
 | |
| 	old_pte = *kpte;
 | |
| 	if (pte_none(old_pte))
 | |
| 		return __cpa_process_fault(cpa, address, primary);
 | |
| 
 | |
| 	if (level == PG_LEVEL_4K) {
 | |
| 		pte_t new_pte;
 | |
| 		pgprot_t new_prot = pte_pgprot(old_pte);
 | |
| 		unsigned long pfn = pte_pfn(old_pte);
 | |
| 
 | |
| 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
 | |
| 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
 | |
| 
 | |
| 		cpa_inc_4k_install();
 | |
| 		/* Hand in lpsize = 0 to enforce the protection mechanism */
 | |
| 		new_prot = static_protections(new_prot, address, pfn, 1, 0,
 | |
| 					      CPA_PROTECT);
 | |
| 
 | |
| 		new_prot = pgprot_clear_protnone_bits(new_prot);
 | |
| 
 | |
| 		/*
 | |
| 		 * We need to keep the pfn from the existing PTE,
 | |
| 		 * after all we're only going to change it's attributes
 | |
| 		 * not the memory it points to
 | |
| 		 */
 | |
| 		new_pte = pfn_pte(pfn, new_prot);
 | |
| 		cpa->pfn = pfn;
 | |
| 		/*
 | |
| 		 * Do we really change anything ?
 | |
| 		 */
 | |
| 		if (pte_val(old_pte) != pte_val(new_pte)) {
 | |
| 			set_pte_atomic(kpte, new_pte);
 | |
| 			cpa->flags |= CPA_FLUSHTLB;
 | |
| 		}
 | |
| 		cpa->numpages = 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, whether we can keep the large page intact
 | |
| 	 * and just change the pte:
 | |
| 	 */
 | |
| 	do_split = should_split_large_page(kpte, address, cpa);
 | |
| 	/*
 | |
| 	 * When the range fits into the existing large page,
 | |
| 	 * return. cp->numpages and cpa->tlbflush have been updated in
 | |
| 	 * try_large_page:
 | |
| 	 */
 | |
| 	if (do_split <= 0)
 | |
| 		return do_split;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to split the large page:
 | |
| 	 */
 | |
| 	err = split_large_page(cpa, kpte, address);
 | |
| 	if (!err)
 | |
| 		goto repeat;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
 | |
| 
 | |
| static int cpa_process_alias(struct cpa_data *cpa)
 | |
| {
 | |
| 	struct cpa_data alias_cpa;
 | |
| 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
 | |
| 	unsigned long vaddr;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to redo, when the primary call touched the direct
 | |
| 	 * mapping already:
 | |
| 	 */
 | |
| 	vaddr = __cpa_addr(cpa, cpa->curpage);
 | |
| 	if (!(within(vaddr, PAGE_OFFSET,
 | |
| 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
 | |
| 
 | |
| 		alias_cpa = *cpa;
 | |
| 		alias_cpa.vaddr = &laddr;
 | |
| 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 | |
| 		alias_cpa.curpage = 0;
 | |
| 
 | |
| 		cpa->force_flush_all = 1;
 | |
| 
 | |
| 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * If the primary call didn't touch the high mapping already
 | |
| 	 * and the physical address is inside the kernel map, we need
 | |
| 	 * to touch the high mapped kernel as well:
 | |
| 	 */
 | |
| 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
 | |
| 	    __cpa_pfn_in_highmap(cpa->pfn)) {
 | |
| 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
 | |
| 					       __START_KERNEL_map - phys_base;
 | |
| 		alias_cpa = *cpa;
 | |
| 		alias_cpa.vaddr = &temp_cpa_vaddr;
 | |
| 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
 | |
| 		alias_cpa.curpage = 0;
 | |
| 
 | |
| 		cpa->force_flush_all = 1;
 | |
| 		/*
 | |
| 		 * The high mapping range is imprecise, so ignore the
 | |
| 		 * return value.
 | |
| 		 */
 | |
| 		__change_page_attr_set_clr(&alias_cpa, 0);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
 | |
| {
 | |
| 	unsigned long numpages = cpa->numpages;
 | |
| 	unsigned long rempages = numpages;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (rempages) {
 | |
| 		/*
 | |
| 		 * Store the remaining nr of pages for the large page
 | |
| 		 * preservation check.
 | |
| 		 */
 | |
| 		cpa->numpages = rempages;
 | |
| 		/* for array changes, we can't use large page */
 | |
| 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
 | |
| 			cpa->numpages = 1;
 | |
| 
 | |
| 		if (!debug_pagealloc_enabled())
 | |
| 			spin_lock(&cpa_lock);
 | |
| 		ret = __change_page_attr(cpa, checkalias);
 | |
| 		if (!debug_pagealloc_enabled())
 | |
| 			spin_unlock(&cpa_lock);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (checkalias) {
 | |
| 			ret = cpa_process_alias(cpa);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Adjust the number of pages with the result of the
 | |
| 		 * CPA operation. Either a large page has been
 | |
| 		 * preserved or a single page update happened.
 | |
| 		 */
 | |
| 		BUG_ON(cpa->numpages > rempages || !cpa->numpages);
 | |
| 		rempages -= cpa->numpages;
 | |
| 		cpa->curpage += cpa->numpages;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* Restore the original numpages */
 | |
| 	cpa->numpages = numpages;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int change_page_attr_set_clr(unsigned long *addr, int numpages,
 | |
| 				    pgprot_t mask_set, pgprot_t mask_clr,
 | |
| 				    int force_split, int in_flag,
 | |
| 				    struct page **pages)
 | |
| {
 | |
| 	struct cpa_data cpa;
 | |
| 	int ret, cache, checkalias;
 | |
| 
 | |
| 	memset(&cpa, 0, sizeof(cpa));
 | |
| 
 | |
| 	/*
 | |
| 	 * Check, if we are requested to set a not supported
 | |
| 	 * feature.  Clearing non-supported features is OK.
 | |
| 	 */
 | |
| 	mask_set = canon_pgprot(mask_set);
 | |
| 
 | |
| 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Ensure we are PAGE_SIZE aligned */
 | |
| 	if (in_flag & CPA_ARRAY) {
 | |
| 		int i;
 | |
| 		for (i = 0; i < numpages; i++) {
 | |
| 			if (addr[i] & ~PAGE_MASK) {
 | |
| 				addr[i] &= PAGE_MASK;
 | |
| 				WARN_ON_ONCE(1);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
 | |
| 		/*
 | |
| 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
 | |
| 		 * No need to check in that case
 | |
| 		 */
 | |
| 		if (*addr & ~PAGE_MASK) {
 | |
| 			*addr &= PAGE_MASK;
 | |
| 			/*
 | |
| 			 * People should not be passing in unaligned addresses:
 | |
| 			 */
 | |
| 			WARN_ON_ONCE(1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Must avoid aliasing mappings in the highmem code */
 | |
| 	kmap_flush_unused();
 | |
| 
 | |
| 	vm_unmap_aliases();
 | |
| 
 | |
| 	cpa.vaddr = addr;
 | |
| 	cpa.pages = pages;
 | |
| 	cpa.numpages = numpages;
 | |
| 	cpa.mask_set = mask_set;
 | |
| 	cpa.mask_clr = mask_clr;
 | |
| 	cpa.flags = 0;
 | |
| 	cpa.curpage = 0;
 | |
| 	cpa.force_split = force_split;
 | |
| 
 | |
| 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
 | |
| 		cpa.flags |= in_flag;
 | |
| 
 | |
| 	/* No alias checking for _NX bit modifications */
 | |
| 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
 | |
| 	/* Has caller explicitly disabled alias checking? */
 | |
| 	if (in_flag & CPA_NO_CHECK_ALIAS)
 | |
| 		checkalias = 0;
 | |
| 
 | |
| 	ret = __change_page_attr_set_clr(&cpa, checkalias);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we really changed something:
 | |
| 	 */
 | |
| 	if (!(cpa.flags & CPA_FLUSHTLB))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to flush, when we did not set any of the caching
 | |
| 	 * attributes:
 | |
| 	 */
 | |
| 	cache = !!pgprot2cachemode(mask_set);
 | |
| 
 | |
| 	/*
 | |
| 	 * On error; flush everything to be sure.
 | |
| 	 */
 | |
| 	if (ret) {
 | |
| 		cpa_flush_all(cache);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	cpa_flush(&cpa, cache);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int change_page_attr_set(unsigned long *addr, int numpages,
 | |
| 				       pgprot_t mask, int array)
 | |
| {
 | |
| 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
 | |
| 		(array ? CPA_ARRAY : 0), NULL);
 | |
| }
 | |
| 
 | |
| static inline int change_page_attr_clear(unsigned long *addr, int numpages,
 | |
| 					 pgprot_t mask, int array)
 | |
| {
 | |
| 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
 | |
| 		(array ? CPA_ARRAY : 0), NULL);
 | |
| }
 | |
| 
 | |
| static inline int cpa_set_pages_array(struct page **pages, int numpages,
 | |
| 				       pgprot_t mask)
 | |
| {
 | |
| 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
 | |
| 		CPA_PAGES_ARRAY, pages);
 | |
| }
 | |
| 
 | |
| static inline int cpa_clear_pages_array(struct page **pages, int numpages,
 | |
| 					 pgprot_t mask)
 | |
| {
 | |
| 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
 | |
| 		CPA_PAGES_ARRAY, pages);
 | |
| }
 | |
| 
 | |
| int _set_memory_uc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	/*
 | |
| 	 * for now UC MINUS. see comments in ioremap_nocache()
 | |
| 	 * If you really need strong UC use ioremap_uc(), but note
 | |
| 	 * that you cannot override IO areas with set_memory_*() as
 | |
| 	 * these helpers cannot work with IO memory.
 | |
| 	 */
 | |
| 	return change_page_attr_set(&addr, numpages,
 | |
| 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
 | |
| 				    0);
 | |
| }
 | |
| 
 | |
| int set_memory_uc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * for now UC MINUS. see comments in ioremap_nocache()
 | |
| 	 */
 | |
| 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 | |
| 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
 | |
| 	if (ret)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	ret = _set_memory_uc(addr, numpages);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| out_err:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_uc);
 | |
| 
 | |
| int _set_memory_wc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = change_page_attr_set(&addr, numpages,
 | |
| 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
 | |
| 				   0);
 | |
| 	if (!ret) {
 | |
| 		ret = change_page_attr_set_clr(&addr, numpages,
 | |
| 					       cachemode2pgprot(_PAGE_CACHE_MODE_WC),
 | |
| 					       __pgprot(_PAGE_CACHE_MASK),
 | |
| 					       0, 0, NULL);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int set_memory_wc(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = memtype_reserve(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
 | |
| 		_PAGE_CACHE_MODE_WC, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = _set_memory_wc(addr, numpages);
 | |
| 	if (ret)
 | |
| 		memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_wc);
 | |
| 
 | |
| int _set_memory_wt(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set(&addr, numpages,
 | |
| 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
 | |
| }
 | |
| 
 | |
| int _set_memory_wb(unsigned long addr, int numpages)
 | |
| {
 | |
| 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
 | |
| 	return change_page_attr_clear(&addr, numpages,
 | |
| 				      __pgprot(_PAGE_CACHE_MASK), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_wb(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = _set_memory_wb(addr, numpages);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	memtype_free(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_memory_wb);
 | |
| 
 | |
| int set_memory_x(unsigned long addr, int numpages)
 | |
| {
 | |
| 	if (!(__supported_pte_mask & _PAGE_NX))
 | |
| 		return 0;
 | |
| 
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_nx(unsigned long addr, int numpages)
 | |
| {
 | |
| 	if (!(__supported_pte_mask & _PAGE_NX))
 | |
| 		return 0;
 | |
| 
 | |
| 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_ro(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_rw(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_np(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_np_noalias(unsigned long addr, int numpages)
 | |
| {
 | |
| 	int cpa_flags = CPA_NO_CHECK_ALIAS;
 | |
| 
 | |
| 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
 | |
| 					__pgprot(_PAGE_PRESENT), 0,
 | |
| 					cpa_flags, NULL);
 | |
| }
 | |
| 
 | |
| int set_memory_4k(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
 | |
| 					__pgprot(0), 1, 0, NULL);
 | |
| }
 | |
| 
 | |
| int set_memory_nonglobal(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_clear(&addr, numpages,
 | |
| 				      __pgprot(_PAGE_GLOBAL), 0);
 | |
| }
 | |
| 
 | |
| int set_memory_global(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return change_page_attr_set(&addr, numpages,
 | |
| 				    __pgprot(_PAGE_GLOBAL), 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __set_memory_enc_pgtable() is used for the hypervisors that get
 | |
|  * informed about "encryption" status via page tables.
 | |
|  */
 | |
| static int __set_memory_enc_pgtable(unsigned long addr, int numpages, bool enc)
 | |
| {
 | |
| 	pgprot_t empty = __pgprot(0);
 | |
| 	struct cpa_data cpa;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Nothing to do if memory encryption is not active */
 | |
| 	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Should not be working on unaligned addresses */
 | |
| 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
 | |
| 		addr &= PAGE_MASK;
 | |
| 
 | |
| 	memset(&cpa, 0, sizeof(cpa));
 | |
| 	cpa.vaddr = &addr;
 | |
| 	cpa.numpages = numpages;
 | |
| 	cpa.mask_set = enc ? pgprot_encrypted(empty) : pgprot_decrypted(empty);
 | |
| 	cpa.mask_clr = enc ? pgprot_decrypted(empty) : pgprot_encrypted(empty);
 | |
| 	cpa.pgd = init_mm.pgd;
 | |
| 
 | |
| 	/* Must avoid aliasing mappings in the highmem code */
 | |
| 	kmap_flush_unused();
 | |
| 	vm_unmap_aliases();
 | |
| 
 | |
| 	/* Flush the caches as needed before changing the encryption attribute. */
 | |
| 	if (x86_platform.guest.enc_tlb_flush_required(enc))
 | |
| 		cpa_flush(&cpa, x86_platform.guest.enc_cache_flush_required());
 | |
| 
 | |
| 	/* Notify hypervisor that we are about to set/clr encryption attribute. */
 | |
| 	x86_platform.guest.enc_status_change_prepare(addr, numpages, enc);
 | |
| 
 | |
| 	ret = __change_page_attr_set_clr(&cpa, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * After changing the encryption attribute, we need to flush TLBs again
 | |
| 	 * in case any speculative TLB caching occurred (but no need to flush
 | |
| 	 * caches again).  We could just use cpa_flush_all(), but in case TLB
 | |
| 	 * flushing gets optimized in the cpa_flush() path use the same logic
 | |
| 	 * as above.
 | |
| 	 */
 | |
| 	cpa_flush(&cpa, 0);
 | |
| 
 | |
| 	/* Notify hypervisor that we have successfully set/clr encryption attribute. */
 | |
| 	if (!ret) {
 | |
| 		if (!x86_platform.guest.enc_status_change_finish(addr, numpages, enc))
 | |
| 			ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
 | |
| {
 | |
| 	if (cc_platform_has(CC_ATTR_MEM_ENCRYPT))
 | |
| 		return __set_memory_enc_pgtable(addr, numpages, enc);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int set_memory_encrypted(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return __set_memory_enc_dec(addr, numpages, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_memory_encrypted);
 | |
| 
 | |
| int set_memory_decrypted(unsigned long addr, int numpages)
 | |
| {
 | |
| 	return __set_memory_enc_dec(addr, numpages, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_memory_decrypted);
 | |
| 
 | |
| int set_pages_uc(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_uc(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_uc);
 | |
| 
 | |
| static int _set_pages_array(struct page **pages, int numpages,
 | |
| 		enum page_cache_mode new_type)
 | |
| {
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	enum page_cache_mode set_type;
 | |
| 	int i;
 | |
| 	int free_idx;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = 0; i < numpages; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		if (memtype_reserve(start, end, new_type, NULL))
 | |
| 			goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	/* If WC, set to UC- first and then WC */
 | |
| 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
 | |
| 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
 | |
| 
 | |
| 	ret = cpa_set_pages_array(pages, numpages,
 | |
| 				  cachemode2pgprot(set_type));
 | |
| 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
 | |
| 		ret = change_page_attr_set_clr(NULL, numpages,
 | |
| 					       cachemode2pgprot(
 | |
| 						_PAGE_CACHE_MODE_WC),
 | |
| 					       __pgprot(_PAGE_CACHE_MASK),
 | |
| 					       0, CPA_PAGES_ARRAY, pages);
 | |
| 	if (ret)
 | |
| 		goto err_out;
 | |
| 	return 0; /* Success */
 | |
| err_out:
 | |
| 	free_idx = i;
 | |
| 	for (i = 0; i < free_idx; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		memtype_free(start, end);
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| int set_pages_array_uc(struct page **pages, int numpages)
 | |
| {
 | |
| 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_UC_MINUS);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_uc);
 | |
| 
 | |
| int set_pages_array_wc(struct page **pages, int numpages)
 | |
| {
 | |
| 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WC);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_wc);
 | |
| 
 | |
| int set_pages_array_wt(struct page **pages, int numpages)
 | |
| {
 | |
| 	return _set_pages_array(pages, numpages, _PAGE_CACHE_MODE_WT);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(set_pages_array_wt);
 | |
| 
 | |
| int set_pages_wb(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_wb(addr, numpages);
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_wb);
 | |
| 
 | |
| int set_pages_array_wb(struct page **pages, int numpages)
 | |
| {
 | |
| 	int retval;
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	int i;
 | |
| 
 | |
| 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
 | |
| 	retval = cpa_clear_pages_array(pages, numpages,
 | |
| 			__pgprot(_PAGE_CACHE_MASK));
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	for (i = 0; i < numpages; i++) {
 | |
| 		if (PageHighMem(pages[i]))
 | |
| 			continue;
 | |
| 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
 | |
| 		end = start + PAGE_SIZE;
 | |
| 		memtype_free(start, end);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(set_pages_array_wb);
 | |
| 
 | |
| int set_pages_ro(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_ro(addr, numpages);
 | |
| }
 | |
| 
 | |
| int set_pages_rw(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)page_address(page);
 | |
| 
 | |
| 	return set_memory_rw(addr, numpages);
 | |
| }
 | |
| 
 | |
| static int __set_pages_p(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long tempaddr = (unsigned long) page_address(page);
 | |
| 	struct cpa_data cpa = { .vaddr = &tempaddr,
 | |
| 				.pgd = NULL,
 | |
| 				.numpages = numpages,
 | |
| 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
 | |
| 				.mask_clr = __pgprot(0),
 | |
| 				.flags = 0};
 | |
| 
 | |
| 	/*
 | |
| 	 * No alias checking needed for setting present flag. otherwise,
 | |
| 	 * we may need to break large pages for 64-bit kernel text
 | |
| 	 * mappings (this adds to complexity if we want to do this from
 | |
| 	 * atomic context especially). Let's keep it simple!
 | |
| 	 */
 | |
| 	return __change_page_attr_set_clr(&cpa, 0);
 | |
| }
 | |
| 
 | |
| static int __set_pages_np(struct page *page, int numpages)
 | |
| {
 | |
| 	unsigned long tempaddr = (unsigned long) page_address(page);
 | |
| 	struct cpa_data cpa = { .vaddr = &tempaddr,
 | |
| 				.pgd = NULL,
 | |
| 				.numpages = numpages,
 | |
| 				.mask_set = __pgprot(0),
 | |
| 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
 | |
| 				.flags = 0};
 | |
| 
 | |
| 	/*
 | |
| 	 * No alias checking needed for setting not present flag. otherwise,
 | |
| 	 * we may need to break large pages for 64-bit kernel text
 | |
| 	 * mappings (this adds to complexity if we want to do this from
 | |
| 	 * atomic context especially). Let's keep it simple!
 | |
| 	 */
 | |
| 	return __change_page_attr_set_clr(&cpa, 0);
 | |
| }
 | |
| 
 | |
| int set_direct_map_invalid_noflush(struct page *page)
 | |
| {
 | |
| 	return __set_pages_np(page, 1);
 | |
| }
 | |
| 
 | |
| int set_direct_map_default_noflush(struct page *page)
 | |
| {
 | |
| 	return __set_pages_p(page, 1);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PAGEALLOC
 | |
| void __kernel_map_pages(struct page *page, int numpages, int enable)
 | |
| {
 | |
| 	if (PageHighMem(page))
 | |
| 		return;
 | |
| 	if (!enable) {
 | |
| 		debug_check_no_locks_freed(page_address(page),
 | |
| 					   numpages * PAGE_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The return value is ignored as the calls cannot fail.
 | |
| 	 * Large pages for identity mappings are not used at boot time
 | |
| 	 * and hence no memory allocations during large page split.
 | |
| 	 */
 | |
| 	if (enable)
 | |
| 		__set_pages_p(page, numpages);
 | |
| 	else
 | |
| 		__set_pages_np(page, numpages);
 | |
| 
 | |
| 	/*
 | |
| 	 * We should perform an IPI and flush all tlbs,
 | |
| 	 * but that can deadlock->flush only current cpu.
 | |
| 	 * Preemption needs to be disabled around __flush_tlb_all() due to
 | |
| 	 * CR3 reload in __native_flush_tlb().
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	__flush_tlb_all();
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	arch_flush_lazy_mmu_mode();
 | |
| }
 | |
| #endif /* CONFIG_DEBUG_PAGEALLOC */
 | |
| 
 | |
| bool kernel_page_present(struct page *page)
 | |
| {
 | |
| 	unsigned int level;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (PageHighMem(page))
 | |
| 		return false;
 | |
| 
 | |
| 	pte = lookup_address((unsigned long)page_address(page), &level);
 | |
| 	return (pte_val(*pte) & _PAGE_PRESENT);
 | |
| }
 | |
| 
 | |
| int __init kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
 | |
| 				   unsigned numpages, unsigned long page_flags)
 | |
| {
 | |
| 	int retval = -EINVAL;
 | |
| 
 | |
| 	struct cpa_data cpa = {
 | |
| 		.vaddr = &address,
 | |
| 		.pfn = pfn,
 | |
| 		.pgd = pgd,
 | |
| 		.numpages = numpages,
 | |
| 		.mask_set = __pgprot(0),
 | |
| 		.mask_clr = __pgprot(~page_flags & (_PAGE_NX|_PAGE_RW)),
 | |
| 		.flags = 0,
 | |
| 	};
 | |
| 
 | |
| 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
 | |
| 
 | |
| 	if (!(__supported_pte_mask & _PAGE_NX))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!(page_flags & _PAGE_ENC))
 | |
| 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
 | |
| 
 | |
| 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
 | |
| 
 | |
| 	retval = __change_page_attr_set_clr(&cpa, 0);
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| out:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __flush_tlb_all() flushes mappings only on current CPU and hence this
 | |
|  * function shouldn't be used in an SMP environment. Presently, it's used only
 | |
|  * during boot (way before smp_init()) by EFI subsystem and hence is ok.
 | |
|  */
 | |
| int __init kernel_unmap_pages_in_pgd(pgd_t *pgd, unsigned long address,
 | |
| 				     unsigned long numpages)
 | |
| {
 | |
| 	int retval;
 | |
| 
 | |
| 	/*
 | |
| 	 * The typical sequence for unmapping is to find a pte through
 | |
| 	 * lookup_address_in_pgd() (ideally, it should never return NULL because
 | |
| 	 * the address is already mapped) and change it's protections. As pfn is
 | |
| 	 * the *target* of a mapping, it's not useful while unmapping.
 | |
| 	 */
 | |
| 	struct cpa_data cpa = {
 | |
| 		.vaddr		= &address,
 | |
| 		.pfn		= 0,
 | |
| 		.pgd		= pgd,
 | |
| 		.numpages	= numpages,
 | |
| 		.mask_set	= __pgprot(0),
 | |
| 		.mask_clr	= __pgprot(_PAGE_PRESENT | _PAGE_RW),
 | |
| 		.flags		= 0,
 | |
| 	};
 | |
| 
 | |
| 	WARN_ONCE(num_online_cpus() > 1, "Don't call after initializing SMP");
 | |
| 
 | |
| 	retval = __change_page_attr_set_clr(&cpa, 0);
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The testcases use internal knowledge of the implementation that shouldn't
 | |
|  * be exposed to the rest of the kernel. Include these directly here.
 | |
|  */
 | |
| #ifdef CONFIG_CPA_DEBUG
 | |
| #include "cpa-test.c"
 | |
| #endif
 |