944 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			944 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Common code for 32 and 64-bit NUMA */
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/ctype.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/topology.h>
 | |
| 
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/amd_nb.h>
 | |
| 
 | |
| #include "numa_internal.h"
 | |
| 
 | |
| int numa_off;
 | |
| nodemask_t numa_nodes_parsed __initdata;
 | |
| 
 | |
| struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| static struct numa_meminfo numa_meminfo __initdata_or_meminfo;
 | |
| static struct numa_meminfo numa_reserved_meminfo __initdata_or_meminfo;
 | |
| 
 | |
| static int numa_distance_cnt;
 | |
| static u8 *numa_distance;
 | |
| 
 | |
| static __init int numa_setup(char *opt)
 | |
| {
 | |
| 	if (!opt)
 | |
| 		return -EINVAL;
 | |
| 	if (!strncmp(opt, "off", 3))
 | |
| 		numa_off = 1;
 | |
| #ifdef CONFIG_NUMA_EMU
 | |
| 	if (!strncmp(opt, "fake=", 5))
 | |
| 		numa_emu_cmdline(opt + 5);
 | |
| #endif
 | |
| #ifdef CONFIG_ACPI_NUMA
 | |
| 	if (!strncmp(opt, "noacpi", 6))
 | |
| 		acpi_numa = -1;
 | |
| #endif
 | |
| 	if (!strncmp(opt, "nohmat", 6))
 | |
| 		disable_hmat();
 | |
| 	return 0;
 | |
| }
 | |
| early_param("numa", numa_setup);
 | |
| 
 | |
| /*
 | |
|  * apicid, cpu, node mappings
 | |
|  */
 | |
| s16 __apicid_to_node[MAX_LOCAL_APIC] = {
 | |
| 	[0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 | |
| };
 | |
| 
 | |
| int numa_cpu_node(int cpu)
 | |
| {
 | |
| 	int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
 | |
| 
 | |
| 	if (apicid != BAD_APICID)
 | |
| 		return __apicid_to_node[apicid];
 | |
| 	return NUMA_NO_NODE;
 | |
| }
 | |
| 
 | |
| cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
 | |
| EXPORT_SYMBOL(node_to_cpumask_map);
 | |
| 
 | |
| /*
 | |
|  * Map cpu index to node index
 | |
|  */
 | |
| DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
 | |
| EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 | |
| 
 | |
| void numa_set_node(int cpu, int node)
 | |
| {
 | |
| 	int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
 | |
| 
 | |
| 	/* early setting, no percpu area yet */
 | |
| 	if (cpu_to_node_map) {
 | |
| 		cpu_to_node_map[cpu] = node;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_PER_CPU_MAPS
 | |
| 	if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 | |
| 		printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
 | |
| 		dump_stack();
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	per_cpu(x86_cpu_to_node_map, cpu) = node;
 | |
| 
 | |
| 	set_cpu_numa_node(cpu, node);
 | |
| }
 | |
| 
 | |
| void numa_clear_node(int cpu)
 | |
| {
 | |
| 	numa_set_node(cpu, NUMA_NO_NODE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate node_to_cpumask_map based on number of available nodes
 | |
|  * Requires node_possible_map to be valid.
 | |
|  *
 | |
|  * Note: cpumask_of_node() is not valid until after this is done.
 | |
|  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
 | |
|  */
 | |
| void __init setup_node_to_cpumask_map(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 
 | |
| 	/* setup nr_node_ids if not done yet */
 | |
| 	if (nr_node_ids == MAX_NUMNODES)
 | |
| 		setup_nr_node_ids();
 | |
| 
 | |
| 	/* allocate the map */
 | |
| 	for (node = 0; node < nr_node_ids; node++)
 | |
| 		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
 | |
| 
 | |
| 	/* cpumask_of_node() will now work */
 | |
| 	pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
 | |
| }
 | |
| 
 | |
| static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
 | |
| 				     struct numa_meminfo *mi)
 | |
| {
 | |
| 	/* ignore zero length blks */
 | |
| 	if (start == end)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* whine about and ignore invalid blks */
 | |
| 	if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
 | |
| 		pr_warn("Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
 | |
| 			nid, start, end - 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (mi->nr_blks >= NR_NODE_MEMBLKS) {
 | |
| 		pr_err("too many memblk ranges\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	mi->blk[mi->nr_blks].start = start;
 | |
| 	mi->blk[mi->nr_blks].end = end;
 | |
| 	mi->blk[mi->nr_blks].nid = nid;
 | |
| 	mi->nr_blks++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
 | |
|  * @idx: Index of memblk to remove
 | |
|  * @mi: numa_meminfo to remove memblk from
 | |
|  *
 | |
|  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
 | |
|  * decrementing @mi->nr_blks.
 | |
|  */
 | |
| void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
 | |
| {
 | |
| 	mi->nr_blks--;
 | |
| 	memmove(&mi->blk[idx], &mi->blk[idx + 1],
 | |
| 		(mi->nr_blks - idx) * sizeof(mi->blk[0]));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_move_tail_memblk - Move a numa_memblk from one numa_meminfo to another
 | |
|  * @dst: numa_meminfo to append block to
 | |
|  * @idx: Index of memblk to remove
 | |
|  * @src: numa_meminfo to remove memblk from
 | |
|  */
 | |
| static void __init numa_move_tail_memblk(struct numa_meminfo *dst, int idx,
 | |
| 					 struct numa_meminfo *src)
 | |
| {
 | |
| 	dst->blk[dst->nr_blks++] = src->blk[idx];
 | |
| 	numa_remove_memblk_from(idx, src);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_add_memblk - Add one numa_memblk to numa_meminfo
 | |
|  * @nid: NUMA node ID of the new memblk
 | |
|  * @start: Start address of the new memblk
 | |
|  * @end: End address of the new memblk
 | |
|  *
 | |
|  * Add a new memblk to the default numa_meminfo.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init numa_add_memblk(int nid, u64 start, u64 end)
 | |
| {
 | |
| 	return numa_add_memblk_to(nid, start, end, &numa_meminfo);
 | |
| }
 | |
| 
 | |
| /* Allocate NODE_DATA for a node on the local memory */
 | |
| static void __init alloc_node_data(int nid)
 | |
| {
 | |
| 	const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
 | |
| 	u64 nd_pa;
 | |
| 	void *nd;
 | |
| 	int tnid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate node data.  Try node-local memory and then any node.
 | |
| 	 * Never allocate in DMA zone.
 | |
| 	 */
 | |
| 	nd_pa = memblock_phys_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
 | |
| 	if (!nd_pa) {
 | |
| 		nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
 | |
| 					      MEMBLOCK_ALLOC_ACCESSIBLE);
 | |
| 		if (!nd_pa) {
 | |
| 			pr_err("Cannot find %zu bytes in any node (initial node: %d)\n",
 | |
| 			       nd_size, nid);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	nd = __va(nd_pa);
 | |
| 
 | |
| 	/* report and initialize */
 | |
| 	printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
 | |
| 	       nd_pa, nd_pa + nd_size - 1);
 | |
| 	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 | |
| 	if (tnid != nid)
 | |
| 		printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
 | |
| 
 | |
| 	node_data[nid] = nd;
 | |
| 	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 | |
| 
 | |
| 	node_set_online(nid);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_cleanup_meminfo - Cleanup a numa_meminfo
 | |
|  * @mi: numa_meminfo to clean up
 | |
|  *
 | |
|  * Sanitize @mi by merging and removing unnecessary memblks.  Also check for
 | |
|  * conflicts and clear unused memblks.
 | |
|  *
 | |
|  * RETURNS:
 | |
|  * 0 on success, -errno on failure.
 | |
|  */
 | |
| int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
 | |
| {
 | |
| 	const u64 low = 0;
 | |
| 	const u64 high = PFN_PHYS(max_pfn);
 | |
| 	int i, j, k;
 | |
| 
 | |
| 	/* first, trim all entries */
 | |
| 	for (i = 0; i < mi->nr_blks; i++) {
 | |
| 		struct numa_memblk *bi = &mi->blk[i];
 | |
| 
 | |
| 		/* move / save reserved memory ranges */
 | |
| 		if (!memblock_overlaps_region(&memblock.memory,
 | |
| 					bi->start, bi->end - bi->start)) {
 | |
| 			numa_move_tail_memblk(&numa_reserved_meminfo, i--, mi);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure all non-reserved blocks are inside the limits */
 | |
| 		bi->start = max(bi->start, low);
 | |
| 
 | |
| 		/* preserve info for non-RAM areas above 'max_pfn': */
 | |
| 		if (bi->end > high) {
 | |
| 			numa_add_memblk_to(bi->nid, high, bi->end,
 | |
| 					   &numa_reserved_meminfo);
 | |
| 			bi->end = high;
 | |
| 		}
 | |
| 
 | |
| 		/* and there's no empty block */
 | |
| 		if (bi->start >= bi->end)
 | |
| 			numa_remove_memblk_from(i--, mi);
 | |
| 	}
 | |
| 
 | |
| 	/* merge neighboring / overlapping entries */
 | |
| 	for (i = 0; i < mi->nr_blks; i++) {
 | |
| 		struct numa_memblk *bi = &mi->blk[i];
 | |
| 
 | |
| 		for (j = i + 1; j < mi->nr_blks; j++) {
 | |
| 			struct numa_memblk *bj = &mi->blk[j];
 | |
| 			u64 start, end;
 | |
| 
 | |
| 			/*
 | |
| 			 * See whether there are overlapping blocks.  Whine
 | |
| 			 * about but allow overlaps of the same nid.  They
 | |
| 			 * will be merged below.
 | |
| 			 */
 | |
| 			if (bi->end > bj->start && bi->start < bj->end) {
 | |
| 				if (bi->nid != bj->nid) {
 | |
| 					pr_err("node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
 | |
| 					       bi->nid, bi->start, bi->end - 1,
 | |
| 					       bj->nid, bj->start, bj->end - 1);
 | |
| 					return -EINVAL;
 | |
| 				}
 | |
| 				pr_warn("Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
 | |
| 					bi->nid, bi->start, bi->end - 1,
 | |
| 					bj->start, bj->end - 1);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Join together blocks on the same node, holes
 | |
| 			 * between which don't overlap with memory on other
 | |
| 			 * nodes.
 | |
| 			 */
 | |
| 			if (bi->nid != bj->nid)
 | |
| 				continue;
 | |
| 			start = min(bi->start, bj->start);
 | |
| 			end = max(bi->end, bj->end);
 | |
| 			for (k = 0; k < mi->nr_blks; k++) {
 | |
| 				struct numa_memblk *bk = &mi->blk[k];
 | |
| 
 | |
| 				if (bi->nid == bk->nid)
 | |
| 					continue;
 | |
| 				if (start < bk->end && end > bk->start)
 | |
| 					break;
 | |
| 			}
 | |
| 			if (k < mi->nr_blks)
 | |
| 				continue;
 | |
| 			printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
 | |
| 			       bi->nid, bi->start, bi->end - 1, bj->start,
 | |
| 			       bj->end - 1, start, end - 1);
 | |
| 			bi->start = start;
 | |
| 			bi->end = end;
 | |
| 			numa_remove_memblk_from(j--, mi);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* clear unused ones */
 | |
| 	for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
 | |
| 		mi->blk[i].start = mi->blk[i].end = 0;
 | |
| 		mi->blk[i].nid = NUMA_NO_NODE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set nodes, which have memory in @mi, in *@nodemask.
 | |
|  */
 | |
| static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
 | |
| 					      const struct numa_meminfo *mi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
 | |
| 		if (mi->blk[i].start != mi->blk[i].end &&
 | |
| 		    mi->blk[i].nid != NUMA_NO_NODE)
 | |
| 			node_set(mi->blk[i].nid, *nodemask);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_reset_distance - Reset NUMA distance table
 | |
|  *
 | |
|  * The current table is freed.  The next numa_set_distance() call will
 | |
|  * create a new one.
 | |
|  */
 | |
| void __init numa_reset_distance(void)
 | |
| {
 | |
| 	size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
 | |
| 
 | |
| 	/* numa_distance could be 1LU marking allocation failure, test cnt */
 | |
| 	if (numa_distance_cnt)
 | |
| 		memblock_free(__pa(numa_distance), size);
 | |
| 	numa_distance_cnt = 0;
 | |
| 	numa_distance = NULL;	/* enable table creation */
 | |
| }
 | |
| 
 | |
| static int __init numa_alloc_distance(void)
 | |
| {
 | |
| 	nodemask_t nodes_parsed;
 | |
| 	size_t size;
 | |
| 	int i, j, cnt = 0;
 | |
| 	u64 phys;
 | |
| 
 | |
| 	/* size the new table and allocate it */
 | |
| 	nodes_parsed = numa_nodes_parsed;
 | |
| 	numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
 | |
| 
 | |
| 	for_each_node_mask(i, nodes_parsed)
 | |
| 		cnt = i;
 | |
| 	cnt++;
 | |
| 	size = cnt * cnt * sizeof(numa_distance[0]);
 | |
| 
 | |
| 	phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 | |
| 				      size, PAGE_SIZE);
 | |
| 	if (!phys) {
 | |
| 		pr_warn("Warning: can't allocate distance table!\n");
 | |
| 		/* don't retry until explicitly reset */
 | |
| 		numa_distance = (void *)1LU;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	memblock_reserve(phys, size);
 | |
| 
 | |
| 	numa_distance = __va(phys);
 | |
| 	numa_distance_cnt = cnt;
 | |
| 
 | |
| 	/* fill with the default distances */
 | |
| 	for (i = 0; i < cnt; i++)
 | |
| 		for (j = 0; j < cnt; j++)
 | |
| 			numa_distance[i * cnt + j] = i == j ?
 | |
| 				LOCAL_DISTANCE : REMOTE_DISTANCE;
 | |
| 	printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * numa_set_distance - Set NUMA distance from one NUMA to another
 | |
|  * @from: the 'from' node to set distance
 | |
|  * @to: the 'to'  node to set distance
 | |
|  * @distance: NUMA distance
 | |
|  *
 | |
|  * Set the distance from node @from to @to to @distance.  If distance table
 | |
|  * doesn't exist, one which is large enough to accommodate all the currently
 | |
|  * known nodes will be created.
 | |
|  *
 | |
|  * If such table cannot be allocated, a warning is printed and further
 | |
|  * calls are ignored until the distance table is reset with
 | |
|  * numa_reset_distance().
 | |
|  *
 | |
|  * If @from or @to is higher than the highest known node or lower than zero
 | |
|  * at the time of table creation or @distance doesn't make sense, the call
 | |
|  * is ignored.
 | |
|  * This is to allow simplification of specific NUMA config implementations.
 | |
|  */
 | |
| void __init numa_set_distance(int from, int to, int distance)
 | |
| {
 | |
| 	if (!numa_distance && numa_alloc_distance() < 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
 | |
| 			from < 0 || to < 0) {
 | |
| 		pr_warn_once("Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
 | |
| 			     from, to, distance);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((u8)distance != distance ||
 | |
| 	    (from == to && distance != LOCAL_DISTANCE)) {
 | |
| 		pr_warn_once("Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
 | |
| 			     from, to, distance);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	numa_distance[from * numa_distance_cnt + to] = distance;
 | |
| }
 | |
| 
 | |
| int __node_distance(int from, int to)
 | |
| {
 | |
| 	if (from >= numa_distance_cnt || to >= numa_distance_cnt)
 | |
| 		return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
 | |
| 	return numa_distance[from * numa_distance_cnt + to];
 | |
| }
 | |
| EXPORT_SYMBOL(__node_distance);
 | |
| 
 | |
| /*
 | |
|  * Sanity check to catch more bad NUMA configurations (they are amazingly
 | |
|  * common).  Make sure the nodes cover all memory.
 | |
|  */
 | |
| static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
 | |
| {
 | |
| 	u64 numaram, e820ram;
 | |
| 	int i;
 | |
| 
 | |
| 	numaram = 0;
 | |
| 	for (i = 0; i < mi->nr_blks; i++) {
 | |
| 		u64 s = mi->blk[i].start >> PAGE_SHIFT;
 | |
| 		u64 e = mi->blk[i].end >> PAGE_SHIFT;
 | |
| 		numaram += e - s;
 | |
| 		numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
 | |
| 		if ((s64)numaram < 0)
 | |
| 			numaram = 0;
 | |
| 	}
 | |
| 
 | |
| 	e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
 | |
| 
 | |
| 	/* We seem to lose 3 pages somewhere. Allow 1M of slack. */
 | |
| 	if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
 | |
| 		printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
 | |
| 		       (numaram << PAGE_SHIFT) >> 20,
 | |
| 		       (e820ram << PAGE_SHIFT) >> 20);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark all currently memblock-reserved physical memory (which covers the
 | |
|  * kernel's own memory ranges) as hot-unswappable.
 | |
|  */
 | |
| static void __init numa_clear_kernel_node_hotplug(void)
 | |
| {
 | |
| 	nodemask_t reserved_nodemask = NODE_MASK_NONE;
 | |
| 	struct memblock_region *mb_region;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to do some preprocessing of memblock regions, to
 | |
| 	 * make them suitable for reservation.
 | |
| 	 *
 | |
| 	 * At this time, all memory regions reserved by memblock are
 | |
| 	 * used by the kernel, but those regions are not split up
 | |
| 	 * along node boundaries yet, and don't necessarily have their
 | |
| 	 * node ID set yet either.
 | |
| 	 *
 | |
| 	 * So iterate over all memory known to the x86 architecture,
 | |
| 	 * and use those ranges to set the nid in memblock.reserved.
 | |
| 	 * This will split up the memblock regions along node
 | |
| 	 * boundaries and will set the node IDs as well.
 | |
| 	 */
 | |
| 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
 | |
| 		struct numa_memblk *mb = numa_meminfo.blk + i;
 | |
| 		int ret;
 | |
| 
 | |
| 		ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
 | |
| 		WARN_ON_ONCE(ret);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now go over all reserved memblock regions, to construct a
 | |
| 	 * node mask of all kernel reserved memory areas.
 | |
| 	 *
 | |
| 	 * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
 | |
| 	 *   numa_meminfo might not include all memblock.reserved
 | |
| 	 *   memory ranges, because quirks such as trim_snb_memory()
 | |
| 	 *   reserve specific pages for Sandy Bridge graphics. ]
 | |
| 	 */
 | |
| 	for_each_memblock(reserved, mb_region) {
 | |
| 		int nid = memblock_get_region_node(mb_region);
 | |
| 
 | |
| 		if (nid != MAX_NUMNODES)
 | |
| 			node_set(nid, reserved_nodemask);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
 | |
| 	 * belonging to the reserved node mask.
 | |
| 	 *
 | |
| 	 * Note that this will include memory regions that reside
 | |
| 	 * on nodes that contain kernel memory - entire nodes
 | |
| 	 * become hot-unpluggable:
 | |
| 	 */
 | |
| 	for (i = 0; i < numa_meminfo.nr_blks; i++) {
 | |
| 		struct numa_memblk *mb = numa_meminfo.blk + i;
 | |
| 
 | |
| 		if (!node_isset(mb->nid, reserved_nodemask))
 | |
| 			continue;
 | |
| 
 | |
| 		memblock_clear_hotplug(mb->start, mb->end - mb->start);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init numa_register_memblks(struct numa_meminfo *mi)
 | |
| {
 | |
| 	int i, nid;
 | |
| 
 | |
| 	/* Account for nodes with cpus and no memory */
 | |
| 	node_possible_map = numa_nodes_parsed;
 | |
| 	numa_nodemask_from_meminfo(&node_possible_map, mi);
 | |
| 	if (WARN_ON(nodes_empty(node_possible_map)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < mi->nr_blks; i++) {
 | |
| 		struct numa_memblk *mb = &mi->blk[i];
 | |
| 		memblock_set_node(mb->start, mb->end - mb->start,
 | |
| 				  &memblock.memory, mb->nid);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At very early time, the kernel have to use some memory such as
 | |
| 	 * loading the kernel image. We cannot prevent this anyway. So any
 | |
| 	 * node the kernel resides in should be un-hotpluggable.
 | |
| 	 *
 | |
| 	 * And when we come here, alloc node data won't fail.
 | |
| 	 */
 | |
| 	numa_clear_kernel_node_hotplug();
 | |
| 
 | |
| 	/*
 | |
| 	 * If sections array is gonna be used for pfn -> nid mapping, check
 | |
| 	 * whether its granularity is fine enough.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(NODE_NOT_IN_PAGE_FLAGS)) {
 | |
| 		unsigned long pfn_align = node_map_pfn_alignment();
 | |
| 
 | |
| 		if (pfn_align && pfn_align < PAGES_PER_SECTION) {
 | |
| 			pr_warn("Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
 | |
| 				PFN_PHYS(pfn_align) >> 20,
 | |
| 				PFN_PHYS(PAGES_PER_SECTION) >> 20);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!numa_meminfo_cover_memory(mi))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Finally register nodes. */
 | |
| 	for_each_node_mask(nid, node_possible_map) {
 | |
| 		u64 start = PFN_PHYS(max_pfn);
 | |
| 		u64 end = 0;
 | |
| 
 | |
| 		for (i = 0; i < mi->nr_blks; i++) {
 | |
| 			if (nid != mi->blk[i].nid)
 | |
| 				continue;
 | |
| 			start = min(mi->blk[i].start, start);
 | |
| 			end = max(mi->blk[i].end, end);
 | |
| 		}
 | |
| 
 | |
| 		if (start >= end)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't confuse VM with a node that doesn't have the
 | |
| 		 * minimum amount of memory:
 | |
| 		 */
 | |
| 		if (end && (end - start) < NODE_MIN_SIZE)
 | |
| 			continue;
 | |
| 
 | |
| 		alloc_node_data(nid);
 | |
| 	}
 | |
| 
 | |
| 	/* Dump memblock with node info and return. */
 | |
| 	memblock_dump_all();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are unfortunately some poorly designed mainboards around that
 | |
|  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
 | |
|  * mapping. To avoid this fill in the mapping for all possible CPUs,
 | |
|  * as the number of CPUs is not known yet. We round robin the existing
 | |
|  * nodes.
 | |
|  */
 | |
| static void __init numa_init_array(void)
 | |
| {
 | |
| 	int rr, i;
 | |
| 
 | |
| 	rr = first_node(node_online_map);
 | |
| 	for (i = 0; i < nr_cpu_ids; i++) {
 | |
| 		if (early_cpu_to_node(i) != NUMA_NO_NODE)
 | |
| 			continue;
 | |
| 		numa_set_node(i, rr);
 | |
| 		rr = next_node_in(rr, node_online_map);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init numa_init(int (*init_func)(void))
 | |
| {
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (i = 0; i < MAX_LOCAL_APIC; i++)
 | |
| 		set_apicid_to_node(i, NUMA_NO_NODE);
 | |
| 
 | |
| 	nodes_clear(numa_nodes_parsed);
 | |
| 	nodes_clear(node_possible_map);
 | |
| 	nodes_clear(node_online_map);
 | |
| 	memset(&numa_meminfo, 0, sizeof(numa_meminfo));
 | |
| 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
 | |
| 				  MAX_NUMNODES));
 | |
| 	WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
 | |
| 				  MAX_NUMNODES));
 | |
| 	/* In case that parsing SRAT failed. */
 | |
| 	WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
 | |
| 	numa_reset_distance();
 | |
| 
 | |
| 	ret = init_func();
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * We reset memblock back to the top-down direction
 | |
| 	 * here because if we configured ACPI_NUMA, we have
 | |
| 	 * parsed SRAT in init_func(). It is ok to have the
 | |
| 	 * reset here even if we did't configure ACPI_NUMA
 | |
| 	 * or acpi numa init fails and fallbacks to dummy
 | |
| 	 * numa init.
 | |
| 	 */
 | |
| 	memblock_set_bottom_up(false);
 | |
| 
 | |
| 	ret = numa_cleanup_meminfo(&numa_meminfo);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	numa_emulation(&numa_meminfo, numa_distance_cnt);
 | |
| 
 | |
| 	ret = numa_register_memblks(&numa_meminfo);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < nr_cpu_ids; i++) {
 | |
| 		int nid = early_cpu_to_node(i);
 | |
| 
 | |
| 		if (nid == NUMA_NO_NODE)
 | |
| 			continue;
 | |
| 		if (!node_online(nid))
 | |
| 			numa_clear_node(i);
 | |
| 	}
 | |
| 	numa_init_array();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dummy_numa_init - Fallback dummy NUMA init
 | |
|  *
 | |
|  * Used if there's no underlying NUMA architecture, NUMA initialization
 | |
|  * fails, or NUMA is disabled on the command line.
 | |
|  *
 | |
|  * Must online at least one node and add memory blocks that cover all
 | |
|  * allowed memory.  This function must not fail.
 | |
|  */
 | |
| static int __init dummy_numa_init(void)
 | |
| {
 | |
| 	printk(KERN_INFO "%s\n",
 | |
| 	       numa_off ? "NUMA turned off" : "No NUMA configuration found");
 | |
| 	printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
 | |
| 	       0LLU, PFN_PHYS(max_pfn) - 1);
 | |
| 
 | |
| 	node_set(0, numa_nodes_parsed);
 | |
| 	numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * x86_numa_init - Initialize NUMA
 | |
|  *
 | |
|  * Try each configured NUMA initialization method until one succeeds.  The
 | |
|  * last fallback is dummy single node config encomapssing whole memory and
 | |
|  * never fails.
 | |
|  */
 | |
| void __init x86_numa_init(void)
 | |
| {
 | |
| 	if (!numa_off) {
 | |
| #ifdef CONFIG_ACPI_NUMA
 | |
| 		if (!numa_init(x86_acpi_numa_init))
 | |
| 			return;
 | |
| #endif
 | |
| #ifdef CONFIG_AMD_NUMA
 | |
| 		if (!numa_init(amd_numa_init))
 | |
| 			return;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	numa_init(dummy_numa_init);
 | |
| }
 | |
| 
 | |
| static void __init init_memory_less_node(int nid)
 | |
| {
 | |
| 	/* Allocate and initialize node data. Memory-less node is now online.*/
 | |
| 	alloc_node_data(nid);
 | |
| 	free_area_init_memoryless_node(nid);
 | |
| 
 | |
| 	/*
 | |
| 	 * All zonelists will be built later in start_kernel() after per cpu
 | |
| 	 * areas are initialized.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup early cpu_to_node.
 | |
|  *
 | |
|  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 | |
|  * and apicid_to_node[] tables have valid entries for a CPU.
 | |
|  * This means we skip cpu_to_node[] initialisation for NUMA
 | |
|  * emulation and faking node case (when running a kernel compiled
 | |
|  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 | |
|  * is already initialized in a round robin manner at numa_init_array,
 | |
|  * prior to this call, and this initialization is good enough
 | |
|  * for the fake NUMA cases.
 | |
|  *
 | |
|  * Called before the per_cpu areas are setup.
 | |
|  */
 | |
| void __init init_cpu_to_node(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
 | |
| 
 | |
| 	BUG_ON(cpu_to_apicid == NULL);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		int node = numa_cpu_node(cpu);
 | |
| 
 | |
| 		if (node == NUMA_NO_NODE)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!node_online(node))
 | |
| 			init_memory_less_node(node);
 | |
| 
 | |
| 		numa_set_node(cpu, node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_DEBUG_PER_CPU_MAPS
 | |
| 
 | |
| # ifndef CONFIG_NUMA_EMU
 | |
| void numa_add_cpu(int cpu)
 | |
| {
 | |
| 	cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
 | |
| }
 | |
| 
 | |
| void numa_remove_cpu(int cpu)
 | |
| {
 | |
| 	cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
 | |
| }
 | |
| # endif	/* !CONFIG_NUMA_EMU */
 | |
| 
 | |
| #else	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 | |
| 
 | |
| int __cpu_to_node(int cpu)
 | |
| {
 | |
| 	if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"cpu_to_node(%d): usage too early!\n", cpu);
 | |
| 		dump_stack();
 | |
| 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
 | |
| 	}
 | |
| 	return per_cpu(x86_cpu_to_node_map, cpu);
 | |
| }
 | |
| EXPORT_SYMBOL(__cpu_to_node);
 | |
| 
 | |
| /*
 | |
|  * Same function as cpu_to_node() but used if called before the
 | |
|  * per_cpu areas are setup.
 | |
|  */
 | |
| int early_cpu_to_node(int cpu)
 | |
| {
 | |
| 	if (early_per_cpu_ptr(x86_cpu_to_node_map))
 | |
| 		return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
 | |
| 
 | |
| 	if (!cpu_possible(cpu)) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"early_cpu_to_node(%d): no per_cpu area!\n", cpu);
 | |
| 		dump_stack();
 | |
| 		return NUMA_NO_NODE;
 | |
| 	}
 | |
| 	return per_cpu(x86_cpu_to_node_map, cpu);
 | |
| }
 | |
| 
 | |
| void debug_cpumask_set_cpu(int cpu, int node, bool enable)
 | |
| {
 | |
| 	struct cpumask *mask;
 | |
| 
 | |
| 	if (node == NUMA_NO_NODE) {
 | |
| 		/* early_cpu_to_node() already emits a warning and trace */
 | |
| 		return;
 | |
| 	}
 | |
| 	mask = node_to_cpumask_map[node];
 | |
| 	if (!mask) {
 | |
| 		pr_err("node_to_cpumask_map[%i] NULL\n", node);
 | |
| 		dump_stack();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (enable)
 | |
| 		cpumask_set_cpu(cpu, mask);
 | |
| 	else
 | |
| 		cpumask_clear_cpu(cpu, mask);
 | |
| 
 | |
| 	printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
 | |
| 		enable ? "numa_add_cpu" : "numa_remove_cpu",
 | |
| 		cpu, node, cpumask_pr_args(mask));
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| # ifndef CONFIG_NUMA_EMU
 | |
| static void numa_set_cpumask(int cpu, bool enable)
 | |
| {
 | |
| 	debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
 | |
| }
 | |
| 
 | |
| void numa_add_cpu(int cpu)
 | |
| {
 | |
| 	numa_set_cpumask(cpu, true);
 | |
| }
 | |
| 
 | |
| void numa_remove_cpu(int cpu)
 | |
| {
 | |
| 	numa_set_cpumask(cpu, false);
 | |
| }
 | |
| # endif	/* !CONFIG_NUMA_EMU */
 | |
| 
 | |
| /*
 | |
|  * Returns a pointer to the bitmask of CPUs on Node 'node'.
 | |
|  */
 | |
| const struct cpumask *cpumask_of_node(int node)
 | |
| {
 | |
| 	if (node >= nr_node_ids) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"cpumask_of_node(%d): node > nr_node_ids(%u)\n",
 | |
| 			node, nr_node_ids);
 | |
| 		dump_stack();
 | |
| 		return cpu_none_mask;
 | |
| 	}
 | |
| 	if (node_to_cpumask_map[node] == NULL) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"cpumask_of_node(%d): no node_to_cpumask_map!\n",
 | |
| 			node);
 | |
| 		dump_stack();
 | |
| 		return cpu_online_mask;
 | |
| 	}
 | |
| 	return node_to_cpumask_map[node];
 | |
| }
 | |
| EXPORT_SYMBOL(cpumask_of_node);
 | |
| 
 | |
| #endif	/* !CONFIG_DEBUG_PER_CPU_MAPS */
 | |
| 
 | |
| #ifdef CONFIG_NUMA_KEEP_MEMINFO
 | |
| static int meminfo_to_nid(struct numa_meminfo *mi, u64 start)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < mi->nr_blks; i++)
 | |
| 		if (mi->blk[i].start <= start && mi->blk[i].end > start)
 | |
| 			return mi->blk[i].nid;
 | |
| 	return NUMA_NO_NODE;
 | |
| }
 | |
| 
 | |
| int phys_to_target_node(phys_addr_t start)
 | |
| {
 | |
| 	int nid = meminfo_to_nid(&numa_meminfo, start);
 | |
| 
 | |
| 	/*
 | |
| 	 * Prefer online nodes, but if reserved memory might be
 | |
| 	 * hot-added continue the search with reserved ranges.
 | |
| 	 */
 | |
| 	if (nid != NUMA_NO_NODE)
 | |
| 		return nid;
 | |
| 
 | |
| 	return meminfo_to_nid(&numa_reserved_meminfo, start);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(phys_to_target_node);
 | |
| 
 | |
| int memory_add_physaddr_to_nid(u64 start)
 | |
| {
 | |
| 	int nid = meminfo_to_nid(&numa_meminfo, start);
 | |
| 
 | |
| 	if (nid == NUMA_NO_NODE)
 | |
| 		nid = numa_meminfo.blk[0].nid;
 | |
| 	return nid;
 | |
| }
 | |
| #endif
 |