564 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			564 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * AMD Memory Encryption Support
 | |
|  *
 | |
|  * Copyright (C) 2016 Advanced Micro Devices, Inc.
 | |
|  *
 | |
|  * Author: Tom Lendacky <thomas.lendacky@amd.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| 
 | |
| #define DISABLE_BRANCH_PROFILING
 | |
| 
 | |
| #include <linux/linkage.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/dma-direct.h>
 | |
| #include <linux/swiotlb.h>
 | |
| #include <linux/mem_encrypt.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/cc_platform.h>
 | |
| #include <linux/virtio_config.h>
 | |
| 
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/bootparam.h>
 | |
| #include <asm/set_memory.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/processor-flags.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/cmdline.h>
 | |
| #include <asm/sev.h>
 | |
| #include <asm/ia32.h>
 | |
| 
 | |
| #include "mm_internal.h"
 | |
| 
 | |
| /*
 | |
|  * Since SME related variables are set early in the boot process they must
 | |
|  * reside in the .data section so as not to be zeroed out when the .bss
 | |
|  * section is later cleared.
 | |
|  */
 | |
| u64 sme_me_mask __section(.data) = 0;
 | |
| u64 sev_status __section(.data) = 0;
 | |
| u64 sev_check_data __section(.data) = 0;
 | |
| EXPORT_SYMBOL(sme_me_mask);
 | |
| 
 | |
| /* Buffer used for early in-place encryption by BSP, no locking needed */
 | |
| static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE);
 | |
| 
 | |
| /*
 | |
|  * SNP-specific routine which needs to additionally change the page state from
 | |
|  * private to shared before copying the data from the source to destination and
 | |
|  * restore after the copy.
 | |
|  */
 | |
| static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
 | |
| 				     unsigned long paddr, bool decrypt)
 | |
| {
 | |
| 	unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (decrypt) {
 | |
| 		/*
 | |
| 		 * @paddr needs to be accessed decrypted, mark the page shared in
 | |
| 		 * the RMP table before copying it.
 | |
| 		 */
 | |
| 		early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
 | |
| 
 | |
| 		memcpy(dst, src, sz);
 | |
| 
 | |
| 		/* Restore the page state after the memcpy. */
 | |
| 		early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * @paddr need to be accessed encrypted, no need for the page state
 | |
| 		 * change.
 | |
| 		 */
 | |
| 		memcpy(dst, src, sz);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine does not change the underlying encryption setting of the
 | |
|  * page(s) that map this memory. It assumes that eventually the memory is
 | |
|  * meant to be accessed as either encrypted or decrypted but the contents
 | |
|  * are currently not in the desired state.
 | |
|  *
 | |
|  * This routine follows the steps outlined in the AMD64 Architecture
 | |
|  * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
 | |
|  */
 | |
| static void __init __sme_early_enc_dec(resource_size_t paddr,
 | |
| 				       unsigned long size, bool enc)
 | |
| {
 | |
| 	void *src, *dst;
 | |
| 	size_t len;
 | |
| 
 | |
| 	if (!sme_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	wbinvd();
 | |
| 
 | |
| 	/*
 | |
| 	 * There are limited number of early mapping slots, so map (at most)
 | |
| 	 * one page at time.
 | |
| 	 */
 | |
| 	while (size) {
 | |
| 		len = min_t(size_t, sizeof(sme_early_buffer), size);
 | |
| 
 | |
| 		/*
 | |
| 		 * Create mappings for the current and desired format of
 | |
| 		 * the memory. Use a write-protected mapping for the source.
 | |
| 		 */
 | |
| 		src = enc ? early_memremap_decrypted_wp(paddr, len) :
 | |
| 			    early_memremap_encrypted_wp(paddr, len);
 | |
| 
 | |
| 		dst = enc ? early_memremap_encrypted(paddr, len) :
 | |
| 			    early_memremap_decrypted(paddr, len);
 | |
| 
 | |
| 		/*
 | |
| 		 * If a mapping can't be obtained to perform the operation,
 | |
| 		 * then eventual access of that area in the desired mode
 | |
| 		 * will cause a crash.
 | |
| 		 */
 | |
| 		BUG_ON(!src || !dst);
 | |
| 
 | |
| 		/*
 | |
| 		 * Use a temporary buffer, of cache-line multiple size, to
 | |
| 		 * avoid data corruption as documented in the APM.
 | |
| 		 */
 | |
| 		if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
 | |
| 			snp_memcpy(sme_early_buffer, src, len, paddr, enc);
 | |
| 			snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
 | |
| 		} else {
 | |
| 			memcpy(sme_early_buffer, src, len);
 | |
| 			memcpy(dst, sme_early_buffer, len);
 | |
| 		}
 | |
| 
 | |
| 		early_memunmap(dst, len);
 | |
| 		early_memunmap(src, len);
 | |
| 
 | |
| 		paddr += len;
 | |
| 		size -= len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
 | |
| {
 | |
| 	__sme_early_enc_dec(paddr, size, true);
 | |
| }
 | |
| 
 | |
| void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
 | |
| {
 | |
| 	__sme_early_enc_dec(paddr, size, false);
 | |
| }
 | |
| 
 | |
| static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
 | |
| 					     bool map)
 | |
| {
 | |
| 	unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
 | |
| 	pmdval_t pmd_flags, pmd;
 | |
| 
 | |
| 	/* Use early_pmd_flags but remove the encryption mask */
 | |
| 	pmd_flags = __sme_clr(early_pmd_flags);
 | |
| 
 | |
| 	do {
 | |
| 		pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
 | |
| 		__early_make_pgtable((unsigned long)vaddr, pmd);
 | |
| 
 | |
| 		vaddr += PMD_SIZE;
 | |
| 		paddr += PMD_SIZE;
 | |
| 		size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
 | |
| 	} while (size);
 | |
| 
 | |
| 	__native_flush_tlb();
 | |
| }
 | |
| 
 | |
| void __init sme_unmap_bootdata(char *real_mode_data)
 | |
| {
 | |
| 	struct boot_params *boot_data;
 | |
| 	unsigned long cmdline_paddr;
 | |
| 
 | |
| 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
 | |
| 		return;
 | |
| 
 | |
| 	/* Get the command line address before unmapping the real_mode_data */
 | |
| 	boot_data = (struct boot_params *)real_mode_data;
 | |
| 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
 | |
| 
 | |
| 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
 | |
| 
 | |
| 	if (!cmdline_paddr)
 | |
| 		return;
 | |
| 
 | |
| 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
 | |
| }
 | |
| 
 | |
| void __init sme_map_bootdata(char *real_mode_data)
 | |
| {
 | |
| 	struct boot_params *boot_data;
 | |
| 	unsigned long cmdline_paddr;
 | |
| 
 | |
| 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
 | |
| 		return;
 | |
| 
 | |
| 	__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
 | |
| 
 | |
| 	/* Get the command line address after mapping the real_mode_data */
 | |
| 	boot_data = (struct boot_params *)real_mode_data;
 | |
| 	cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
 | |
| 
 | |
| 	if (!cmdline_paddr)
 | |
| 		return;
 | |
| 
 | |
| 	__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
 | |
| }
 | |
| 
 | |
| void __init sev_setup_arch(void)
 | |
| {
 | |
| 	phys_addr_t total_mem = memblock_phys_mem_size();
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * For SEV, all DMA has to occur via shared/unencrypted pages.
 | |
| 	 * SEV uses SWIOTLB to make this happen without changing device
 | |
| 	 * drivers. However, depending on the workload being run, the
 | |
| 	 * default 64MB of SWIOTLB may not be enough and SWIOTLB may
 | |
| 	 * run out of buffers for DMA, resulting in I/O errors and/or
 | |
| 	 * performance degradation especially with high I/O workloads.
 | |
| 	 *
 | |
| 	 * Adjust the default size of SWIOTLB for SEV guests using
 | |
| 	 * a percentage of guest memory for SWIOTLB buffers.
 | |
| 	 * Also, as the SWIOTLB bounce buffer memory is allocated
 | |
| 	 * from low memory, ensure that the adjusted size is within
 | |
| 	 * the limits of low available memory.
 | |
| 	 *
 | |
| 	 * The percentage of guest memory used here for SWIOTLB buffers
 | |
| 	 * is more of an approximation of the static adjustment which
 | |
| 	 * 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
 | |
| 	 */
 | |
| 	size = total_mem * 6 / 100;
 | |
| 	size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
 | |
| 	swiotlb_adjust_size(size);
 | |
| }
 | |
| 
 | |
| static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
 | |
| {
 | |
| 	unsigned long pfn = 0;
 | |
| 	pgprot_t prot;
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_4K:
 | |
| 		pfn = pte_pfn(*kpte);
 | |
| 		prot = pte_pgprot(*kpte);
 | |
| 		break;
 | |
| 	case PG_LEVEL_2M:
 | |
| 		pfn = pmd_pfn(*(pmd_t *)kpte);
 | |
| 		prot = pmd_pgprot(*(pmd_t *)kpte);
 | |
| 		break;
 | |
| 	case PG_LEVEL_1G:
 | |
| 		pfn = pud_pfn(*(pud_t *)kpte);
 | |
| 		prot = pud_pgprot(*(pud_t *)kpte);
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ONCE(1, "Invalid level for kpte\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (ret_prot)
 | |
| 		*ret_prot = prot;
 | |
| 
 | |
| 	return pfn;
 | |
| }
 | |
| 
 | |
| static bool amd_enc_tlb_flush_required(bool enc)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool amd_enc_cache_flush_required(void)
 | |
| {
 | |
| 	return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
 | |
| }
 | |
| 
 | |
| static void enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
 | |
| {
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| 	unsigned long vaddr_end = vaddr + size;
 | |
| 
 | |
| 	while (vaddr < vaddr_end) {
 | |
| 		int psize, pmask, level;
 | |
| 		unsigned long pfn;
 | |
| 		pte_t *kpte;
 | |
| 
 | |
| 		kpte = lookup_address(vaddr, &level);
 | |
| 		if (!kpte || pte_none(*kpte)) {
 | |
| 			WARN_ONCE(1, "kpte lookup for vaddr\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		pfn = pg_level_to_pfn(level, kpte, NULL);
 | |
| 		if (!pfn)
 | |
| 			continue;
 | |
| 
 | |
| 		psize = page_level_size(level);
 | |
| 		pmask = page_level_mask(level);
 | |
| 
 | |
| 		notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
 | |
| 
 | |
| 		vaddr = (vaddr & pmask) + psize;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
 | |
| {
 | |
| 	/*
 | |
| 	 * To maintain the security guarantees of SEV-SNP guests, make sure
 | |
| 	 * to invalidate the memory before encryption attribute is cleared.
 | |
| 	 */
 | |
| 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
 | |
| 		snp_set_memory_shared(vaddr, npages);
 | |
| }
 | |
| 
 | |
| /* Return true unconditionally: return value doesn't matter for the SEV side */
 | |
| static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
 | |
| {
 | |
| 	/*
 | |
| 	 * After memory is mapped encrypted in the page table, validate it
 | |
| 	 * so that it is consistent with the page table updates.
 | |
| 	 */
 | |
| 	if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
 | |
| 		snp_set_memory_private(vaddr, npages);
 | |
| 
 | |
| 	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
 | |
| 		enc_dec_hypercall(vaddr, npages << PAGE_SHIFT, enc);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
 | |
| {
 | |
| 	pgprot_t old_prot, new_prot;
 | |
| 	unsigned long pfn, pa, size;
 | |
| 	pte_t new_pte;
 | |
| 
 | |
| 	pfn = pg_level_to_pfn(level, kpte, &old_prot);
 | |
| 	if (!pfn)
 | |
| 		return;
 | |
| 
 | |
| 	new_prot = old_prot;
 | |
| 	if (enc)
 | |
| 		pgprot_val(new_prot) |= _PAGE_ENC;
 | |
| 	else
 | |
| 		pgprot_val(new_prot) &= ~_PAGE_ENC;
 | |
| 
 | |
| 	/* If prot is same then do nothing. */
 | |
| 	if (pgprot_val(old_prot) == pgprot_val(new_prot))
 | |
| 		return;
 | |
| 
 | |
| 	pa = pfn << PAGE_SHIFT;
 | |
| 	size = page_level_size(level);
 | |
| 
 | |
| 	/*
 | |
| 	 * We are going to perform in-place en-/decryption and change the
 | |
| 	 * physical page attribute from C=1 to C=0 or vice versa. Flush the
 | |
| 	 * caches to ensure that data gets accessed with the correct C-bit.
 | |
| 	 */
 | |
| 	clflush_cache_range(__va(pa), size);
 | |
| 
 | |
| 	/* Encrypt/decrypt the contents in-place */
 | |
| 	if (enc) {
 | |
| 		sme_early_encrypt(pa, size);
 | |
| 	} else {
 | |
| 		sme_early_decrypt(pa, size);
 | |
| 
 | |
| 		/*
 | |
| 		 * ON SNP, the page state in the RMP table must happen
 | |
| 		 * before the page table updates.
 | |
| 		 */
 | |
| 		early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
 | |
| 	}
 | |
| 
 | |
| 	/* Change the page encryption mask. */
 | |
| 	new_pte = pfn_pte(pfn, new_prot);
 | |
| 	set_pte_atomic(kpte, new_pte);
 | |
| 
 | |
| 	/*
 | |
| 	 * If page is set encrypted in the page table, then update the RMP table to
 | |
| 	 * add this page as private.
 | |
| 	 */
 | |
| 	if (enc)
 | |
| 		early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
 | |
| }
 | |
| 
 | |
| static int __init early_set_memory_enc_dec(unsigned long vaddr,
 | |
| 					   unsigned long size, bool enc)
 | |
| {
 | |
| 	unsigned long vaddr_end, vaddr_next, start;
 | |
| 	unsigned long psize, pmask;
 | |
| 	int split_page_size_mask;
 | |
| 	int level, ret;
 | |
| 	pte_t *kpte;
 | |
| 
 | |
| 	start = vaddr;
 | |
| 	vaddr_next = vaddr;
 | |
| 	vaddr_end = vaddr + size;
 | |
| 
 | |
| 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 | |
| 		kpte = lookup_address(vaddr, &level);
 | |
| 		if (!kpte || pte_none(*kpte)) {
 | |
| 			ret = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (level == PG_LEVEL_4K) {
 | |
| 			__set_clr_pte_enc(kpte, level, enc);
 | |
| 			vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		psize = page_level_size(level);
 | |
| 		pmask = page_level_mask(level);
 | |
| 
 | |
| 		/*
 | |
| 		 * Check whether we can change the large page in one go.
 | |
| 		 * We request a split when the address is not aligned and
 | |
| 		 * the number of pages to set/clear encryption bit is smaller
 | |
| 		 * than the number of pages in the large page.
 | |
| 		 */
 | |
| 		if (vaddr == (vaddr & pmask) &&
 | |
| 		    ((vaddr_end - vaddr) >= psize)) {
 | |
| 			__set_clr_pte_enc(kpte, level, enc);
 | |
| 			vaddr_next = (vaddr & pmask) + psize;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The virtual address is part of a larger page, create the next
 | |
| 		 * level page table mapping (4K or 2M). If it is part of a 2M
 | |
| 		 * page then we request a split of the large page into 4K
 | |
| 		 * chunks. A 1GB large page is split into 2M pages, resp.
 | |
| 		 */
 | |
| 		if (level == PG_LEVEL_2M)
 | |
| 			split_page_size_mask = 0;
 | |
| 		else
 | |
| 			split_page_size_mask = 1 << PG_LEVEL_2M;
 | |
| 
 | |
| 		/*
 | |
| 		 * kernel_physical_mapping_change() does not flush the TLBs, so
 | |
| 		 * a TLB flush is required after we exit from the for loop.
 | |
| 		 */
 | |
| 		kernel_physical_mapping_change(__pa(vaddr & pmask),
 | |
| 					       __pa((vaddr_end & pmask) + psize),
 | |
| 					       split_page_size_mask);
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	early_set_mem_enc_dec_hypercall(start, size, enc);
 | |
| out:
 | |
| 	__flush_tlb_all();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
 | |
| {
 | |
| 	return early_set_memory_enc_dec(vaddr, size, false);
 | |
| }
 | |
| 
 | |
| int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
 | |
| {
 | |
| 	return early_set_memory_enc_dec(vaddr, size, true);
 | |
| }
 | |
| 
 | |
| void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, unsigned long size, bool enc)
 | |
| {
 | |
| 	enc_dec_hypercall(vaddr, size, enc);
 | |
| }
 | |
| 
 | |
| void __init sme_early_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!sme_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	early_pmd_flags = __sme_set(early_pmd_flags);
 | |
| 
 | |
| 	__supported_pte_mask = __sme_set(__supported_pte_mask);
 | |
| 
 | |
| 	/* Update the protection map with memory encryption mask */
 | |
| 	for (i = 0; i < ARRAY_SIZE(protection_map); i++)
 | |
| 		protection_map[i] = pgprot_encrypted(protection_map[i]);
 | |
| 
 | |
| 	x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
 | |
| 	x86_platform.guest.enc_status_change_finish  = amd_enc_status_change_finish;
 | |
| 	x86_platform.guest.enc_tlb_flush_required    = amd_enc_tlb_flush_required;
 | |
| 	x86_platform.guest.enc_cache_flush_required  = amd_enc_cache_flush_required;
 | |
| 
 | |
| 	/*
 | |
| 	 * The VMM is capable of injecting interrupt 0x80 and triggering the
 | |
| 	 * compatibility syscall path.
 | |
| 	 *
 | |
| 	 * By default, the 32-bit emulation is disabled in order to ensure
 | |
| 	 * the safety of the VM.
 | |
| 	 */
 | |
| 	if (sev_status & MSR_AMD64_SEV_ENABLED)
 | |
| 		ia32_disable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SME and SEV are very similar but they are not the same, so there are
 | |
|  * times that the kernel will need to distinguish between SME and SEV. The
 | |
|  * cc_platform_has() function is used for this.  When a distinction isn't
 | |
|  * needed, the CC_ATTR_MEM_ENCRYPT attribute can be used.
 | |
|  *
 | |
|  * The trampoline code is a good example for this requirement.  Before
 | |
|  * paging is activated, SME will access all memory as decrypted, but SEV
 | |
|  * will access all memory as encrypted.  So, when APs are being brought
 | |
|  * up under SME the trampoline area cannot be encrypted, whereas under SEV
 | |
|  * the trampoline area must be encrypted.
 | |
|  */
 | |
| 
 | |
| /* Keep sme_active in order to break Red Hat kABI */
 | |
| bool sme_active(void)
 | |
| {
 | |
|        return sme_me_mask && !cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT);
 | |
| }
 | |
| EXPORT_SYMBOL(sme_active);
 | |
| 
 | |
| void __init mem_encrypt_free_decrypted_mem(void)
 | |
| {
 | |
| 	unsigned long vaddr, vaddr_end, npages;
 | |
| 	int r;
 | |
| 
 | |
| 	vaddr = (unsigned long)__start_bss_decrypted_unused;
 | |
| 	vaddr_end = (unsigned long)__end_bss_decrypted;
 | |
| 	npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the unused memory range was mapped decrypted, change the encryption
 | |
| 	 * attribute from decrypted to encrypted before freeing it. Base the
 | |
| 	 * re-encryption on the same condition used for the decryption in
 | |
| 	 * sme_postprocess_startup(). Higher level abstractions, such as
 | |
| 	 * CC_ATTR_MEM_ENCRYPT, aren't necessarily equivalent in a Hyper-V VM
 | |
| 	 * using vTOM, where sme_me_mask is always zero.
 | |
| 	 */
 | |
| 	if (sme_me_mask) {
 | |
| 		r = set_memory_encrypted(vaddr, npages);
 | |
| 		if (r) {
 | |
| 			pr_warn("failed to free unused decrypted pages\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free_init_pages("unused decrypted", vaddr, vaddr_end);
 | |
| }
 |