214 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			214 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * This file implements KASLR memory randomization for x86_64. It randomizes
 | |
|  * the virtual address space of kernel memory regions (physical memory
 | |
|  * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
 | |
|  * exploits relying on predictable kernel addresses.
 | |
|  *
 | |
|  * Entropy is generated using the KASLR early boot functions now shared in
 | |
|  * the lib directory (originally written by Kees Cook). Randomization is
 | |
|  * done on PGD & P4D/PUD page table levels to increase possible addresses.
 | |
|  * The physical memory mapping code was adapted to support P4D/PUD level
 | |
|  * virtual addresses. This implementation on the best configuration provides
 | |
|  * 30,000 possible virtual addresses in average for each memory region.
 | |
|  * An additional low memory page is used to ensure each CPU can start with
 | |
|  * a PGD aligned virtual address (for realmode).
 | |
|  *
 | |
|  * The order of each memory region is not changed. The feature looks at
 | |
|  * the available space for the regions based on different configuration
 | |
|  * options and randomizes the base and space between each. The size of the
 | |
|  * physical memory mapping is the available physical memory.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/memblock.h>
 | |
| 
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/kaslr.h>
 | |
| 
 | |
| #include "mm_internal.h"
 | |
| 
 | |
| #define TB_SHIFT 40
 | |
| 
 | |
| /*
 | |
|  * The end address could depend on more configuration options to make the
 | |
|  * highest amount of space for randomization available, but that's too hard
 | |
|  * to keep straight and caused issues already.
 | |
|  */
 | |
| static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
 | |
| 
 | |
| /*
 | |
|  * Memory regions randomized by KASLR (except modules that use a separate logic
 | |
|  * earlier during boot). The list is ordered based on virtual addresses. This
 | |
|  * order is kept after randomization.
 | |
|  */
 | |
| static __initdata struct kaslr_memory_region {
 | |
| 	unsigned long *base;
 | |
| 	unsigned long size_tb;
 | |
| } kaslr_regions[] = {
 | |
| 	{ &page_offset_base, 0 },
 | |
| 	{ &vmalloc_base, 0 },
 | |
| 	{ &vmemmap_base, 0 },
 | |
| };
 | |
| 
 | |
| /* Get size in bytes used by the memory region */
 | |
| static inline unsigned long get_padding(struct kaslr_memory_region *region)
 | |
| {
 | |
| 	return (region->size_tb << TB_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Apply no randomization if KASLR was disabled at boot or if KASAN
 | |
|  * is enabled. KASAN shadow mappings rely on regions being PGD aligned.
 | |
|  */
 | |
| static inline bool kaslr_memory_enabled(void)
 | |
| {
 | |
| 	return kaslr_enabled() && !IS_ENABLED(CONFIG_KASAN);
 | |
| }
 | |
| 
 | |
| /* Initialize base and padding for each memory region randomized with KASLR */
 | |
| void __init kernel_randomize_memory(void)
 | |
| {
 | |
| 	size_t i;
 | |
| 	unsigned long vaddr_start, vaddr;
 | |
| 	unsigned long rand, memory_tb;
 | |
| 	struct rnd_state rand_state;
 | |
| 	unsigned long remain_entropy;
 | |
| 	unsigned long vmemmap_size;
 | |
| 
 | |
| 	vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
 | |
| 	vaddr = vaddr_start;
 | |
| 
 | |
| 	/*
 | |
| 	 * These BUILD_BUG_ON checks ensure the memory layout is consistent
 | |
| 	 * with the vaddr_start/vaddr_end variables. These checks are very
 | |
| 	 * limited....
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(vaddr_start >= vaddr_end);
 | |
| 	BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
 | |
| 	BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
 | |
| 
 | |
| 	if (!kaslr_memory_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
 | |
| 	kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update Physical memory mapping to available and
 | |
| 	 * add padding if needed (especially for memory hotplug support).
 | |
| 	 */
 | |
| 	BUG_ON(kaslr_regions[0].base != &page_offset_base);
 | |
| 	memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
 | |
| 		CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
 | |
| 
 | |
| 	/* Adapt phyiscal memory region size based on available memory */
 | |
| 	if (memory_tb < kaslr_regions[0].size_tb)
 | |
| 		kaslr_regions[0].size_tb = memory_tb;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the vmemmap region size in TBs, aligned to a TB
 | |
| 	 * boundary.
 | |
| 	 */
 | |
| 	vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
 | |
| 			sizeof(struct page);
 | |
| 	kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
 | |
| 
 | |
| 	/* Calculate entropy available between regions */
 | |
| 	remain_entropy = vaddr_end - vaddr_start;
 | |
| 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
 | |
| 		remain_entropy -= get_padding(&kaslr_regions[i]);
 | |
| 
 | |
| 	prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
 | |
| 		unsigned long entropy;
 | |
| 
 | |
| 		/*
 | |
| 		 * Select a random virtual address using the extra entropy
 | |
| 		 * available.
 | |
| 		 */
 | |
| 		entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
 | |
| 		prandom_bytes_state(&rand_state, &rand, sizeof(rand));
 | |
| 		entropy = (rand % (entropy + 1)) & PUD_MASK;
 | |
| 		vaddr += entropy;
 | |
| 		*kaslr_regions[i].base = vaddr;
 | |
| 
 | |
| 		/*
 | |
| 		 * Jump the region and add a minimum padding based on
 | |
| 		 * randomization alignment.
 | |
| 		 */
 | |
| 		vaddr += get_padding(&kaslr_regions[i]);
 | |
| 		vaddr = round_up(vaddr + 1, PUD_SIZE);
 | |
| 		remain_entropy -= entropy;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __meminit init_trampoline_pud(void)
 | |
| {
 | |
| 	pud_t *pud_page_tramp, *pud, *pud_tramp;
 | |
| 	p4d_t *p4d_page_tramp, *p4d, *p4d_tramp;
 | |
| 	unsigned long paddr, vaddr;
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	pud_page_tramp = alloc_low_page();
 | |
| 
 | |
| 	/*
 | |
| 	 * There are two mappings for the low 1MB area, the direct mapping
 | |
| 	 * and the 1:1 mapping for the real mode trampoline:
 | |
| 	 *
 | |
| 	 * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
 | |
| 	 * 1:1 mapping:    virt_addr = phys_addr
 | |
| 	 */
 | |
| 	paddr = 0;
 | |
| 	vaddr = (unsigned long)__va(paddr);
 | |
| 	pgd = pgd_offset_k(vaddr);
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, vaddr);
 | |
| 	pud = pud_offset(p4d, vaddr);
 | |
| 
 | |
| 	pud_tramp = pud_page_tramp + pud_index(paddr);
 | |
| 	*pud_tramp = *pud;
 | |
| 
 | |
| 	if (pgtable_l5_enabled()) {
 | |
| 		p4d_page_tramp = alloc_low_page();
 | |
| 
 | |
| 		p4d_tramp = p4d_page_tramp + p4d_index(paddr);
 | |
| 
 | |
| 		set_p4d(p4d_tramp,
 | |
| 			__p4d(_KERNPG_TABLE | __pa(pud_page_tramp)));
 | |
| 
 | |
| 		set_pgd(&trampoline_pgd_entry,
 | |
| 			__pgd(_KERNPG_TABLE | __pa(p4d_page_tramp)));
 | |
| 	} else {
 | |
| 		set_pgd(&trampoline_pgd_entry,
 | |
| 			__pgd(_KERNPG_TABLE | __pa(pud_page_tramp)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The real mode trampoline, which is required for bootstrapping CPUs
 | |
|  * occupies only a small area under the low 1MB.  See reserve_real_mode()
 | |
|  * for details.
 | |
|  *
 | |
|  * If KASLR is disabled the first PGD entry of the direct mapping is copied
 | |
|  * to map the real mode trampoline.
 | |
|  *
 | |
|  * If KASLR is enabled, copy only the PUD which covers the low 1MB
 | |
|  * area. This limits the randomization granularity to 1GB for both 4-level
 | |
|  * and 5-level paging.
 | |
|  */
 | |
| void __meminit init_trampoline(void)
 | |
| {
 | |
| 	if (!kaslr_memory_enabled()) {
 | |
| 		init_trampoline_default();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	init_trampoline_pud();
 | |
| }
 |