1648 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1648 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/x86_64/mm/init.c
 | |
|  *
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
 | |
|  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
 | |
|  */
 | |
| 
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/kcore.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <asm/bios_ebda.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/kdebug.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/set_memory.h>
 | |
| #include <asm/init.h>
 | |
| #include <asm/uv/uv.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/ftrace.h>
 | |
| 
 | |
| #include "mm_internal.h"
 | |
| 
 | |
| #include "ident_map.c"
 | |
| 
 | |
| #define DEFINE_POPULATE(fname, type1, type2, init)		\
 | |
| static inline void fname##_init(struct mm_struct *mm,		\
 | |
| 		type1##_t *arg1, type2##_t *arg2, bool init)	\
 | |
| {								\
 | |
| 	if (init)						\
 | |
| 		fname##_safe(mm, arg1, arg2);			\
 | |
| 	else							\
 | |
| 		fname(mm, arg1, arg2);				\
 | |
| }
 | |
| 
 | |
| DEFINE_POPULATE(p4d_populate, p4d, pud, init)
 | |
| DEFINE_POPULATE(pgd_populate, pgd, p4d, init)
 | |
| DEFINE_POPULATE(pud_populate, pud, pmd, init)
 | |
| DEFINE_POPULATE(pmd_populate_kernel, pmd, pte, init)
 | |
| 
 | |
| #define DEFINE_ENTRY(type1, type2, init)			\
 | |
| static inline void set_##type1##_init(type1##_t *arg1,		\
 | |
| 			type2##_t arg2, bool init)		\
 | |
| {								\
 | |
| 	if (init)						\
 | |
| 		set_##type1##_safe(arg1, arg2);			\
 | |
| 	else							\
 | |
| 		set_##type1(arg1, arg2);			\
 | |
| }
 | |
| 
 | |
| DEFINE_ENTRY(p4d, p4d, init)
 | |
| DEFINE_ENTRY(pud, pud, init)
 | |
| DEFINE_ENTRY(pmd, pmd, init)
 | |
| DEFINE_ENTRY(pte, pte, init)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 | |
|  * physical space so we can cache the place of the first one and move
 | |
|  * around without checking the pgd every time.
 | |
|  */
 | |
| 
 | |
| /* Bits supported by the hardware: */
 | |
| pteval_t __supported_pte_mask __read_mostly = ~0;
 | |
| /* Bits allowed in normal kernel mappings: */
 | |
| pteval_t __default_kernel_pte_mask __read_mostly = ~0;
 | |
| EXPORT_SYMBOL_GPL(__supported_pte_mask);
 | |
| /* Used in PAGE_KERNEL_* macros which are reasonably used out-of-tree: */
 | |
| EXPORT_SYMBOL(__default_kernel_pte_mask);
 | |
| 
 | |
| int force_personality32;
 | |
| 
 | |
| /*
 | |
|  * noexec32=on|off
 | |
|  * Control non executable heap for 32bit processes.
 | |
|  * To control the stack too use noexec=off
 | |
|  *
 | |
|  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 | |
|  * off	PROT_READ implies PROT_EXEC
 | |
|  */
 | |
| static int __init nonx32_setup(char *str)
 | |
| {
 | |
| 	if (!strcmp(str, "on"))
 | |
| 		force_personality32 &= ~READ_IMPLIES_EXEC;
 | |
| 	else if (!strcmp(str, "off"))
 | |
| 		force_personality32 |= READ_IMPLIES_EXEC;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noexec32=", nonx32_setup);
 | |
| 
 | |
| static void sync_global_pgds_l5(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 | |
| 		const pgd_t *pgd_ref = pgd_offset_k(addr);
 | |
| 		struct page *page;
 | |
| 
 | |
| 		/* Check for overflow */
 | |
| 		if (addr < start)
 | |
| 			break;
 | |
| 
 | |
| 		if (pgd_none(*pgd_ref))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&pgd_lock);
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			pgd_t *pgd;
 | |
| 			spinlock_t *pgt_lock;
 | |
| 
 | |
| 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 | |
| 			/* the pgt_lock only for Xen */
 | |
| 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 | |
| 			spin_lock(pgt_lock);
 | |
| 
 | |
| 			if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
 | |
| 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 | |
| 
 | |
| 			if (pgd_none(*pgd))
 | |
| 				set_pgd(pgd, *pgd_ref);
 | |
| 
 | |
| 			spin_unlock(pgt_lock);
 | |
| 		}
 | |
| 		spin_unlock(&pgd_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sync_global_pgds_l4(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	for (addr = start; addr <= end; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
 | |
| 		pgd_t *pgd_ref = pgd_offset_k(addr);
 | |
| 		const p4d_t *p4d_ref;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		/*
 | |
| 		 * With folded p4d, pgd_none() is always false, we need to
 | |
| 		 * handle synchonization on p4d level.
 | |
| 		 */
 | |
| 		MAYBE_BUILD_BUG_ON(pgd_none(*pgd_ref));
 | |
| 		p4d_ref = p4d_offset(pgd_ref, addr);
 | |
| 
 | |
| 		if (p4d_none(*p4d_ref))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock(&pgd_lock);
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			pgd_t *pgd;
 | |
| 			p4d_t *p4d;
 | |
| 			spinlock_t *pgt_lock;
 | |
| 
 | |
| 			pgd = (pgd_t *)page_address(page) + pgd_index(addr);
 | |
| 			p4d = p4d_offset(pgd, addr);
 | |
| 			/* the pgt_lock only for Xen */
 | |
| 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 | |
| 			spin_lock(pgt_lock);
 | |
| 
 | |
| 			if (!p4d_none(*p4d_ref) && !p4d_none(*p4d))
 | |
| 				BUG_ON(p4d_page_vaddr(*p4d)
 | |
| 				       != p4d_page_vaddr(*p4d_ref));
 | |
| 
 | |
| 			if (p4d_none(*p4d))
 | |
| 				set_p4d(p4d, *p4d_ref);
 | |
| 
 | |
| 			spin_unlock(pgt_lock);
 | |
| 		}
 | |
| 		spin_unlock(&pgd_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When memory was added make sure all the processes MM have
 | |
|  * suitable PGD entries in the local PGD level page.
 | |
|  */
 | |
| void sync_global_pgds(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (pgtable_l5_enabled())
 | |
| 		sync_global_pgds_l5(start, end);
 | |
| 	else
 | |
| 		sync_global_pgds_l4(start, end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * NOTE: This function is marked __ref because it calls __init function
 | |
|  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 | |
|  */
 | |
| static __ref void *spp_getpage(void)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (after_bootmem)
 | |
| 		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
 | |
| 	else
 | |
| 		ptr = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
 | |
| 
 | |
| 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 | |
| 		panic("set_pte_phys: cannot allocate page data %s\n",
 | |
| 			after_bootmem ? "after bootmem" : "");
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("spp_getpage %p\n", ptr);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static p4d_t *fill_p4d(pgd_t *pgd, unsigned long vaddr)
 | |
| {
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		p4d_t *p4d = (p4d_t *)spp_getpage();
 | |
| 		pgd_populate(&init_mm, pgd, p4d);
 | |
| 		if (p4d != p4d_offset(pgd, 0))
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 | |
| 			       p4d, p4d_offset(pgd, 0));
 | |
| 	}
 | |
| 	return p4d_offset(pgd, vaddr);
 | |
| }
 | |
| 
 | |
| static pud_t *fill_pud(p4d_t *p4d, unsigned long vaddr)
 | |
| {
 | |
| 	if (p4d_none(*p4d)) {
 | |
| 		pud_t *pud = (pud_t *)spp_getpage();
 | |
| 		p4d_populate(&init_mm, p4d, pud);
 | |
| 		if (pud != pud_offset(p4d, 0))
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 | |
| 			       pud, pud_offset(p4d, 0));
 | |
| 	}
 | |
| 	return pud_offset(p4d, vaddr);
 | |
| }
 | |
| 
 | |
| static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 | |
| {
 | |
| 	if (pud_none(*pud)) {
 | |
| 		pmd_t *pmd = (pmd_t *) spp_getpage();
 | |
| 		pud_populate(&init_mm, pud, pmd);
 | |
| 		if (pmd != pmd_offset(pud, 0))
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #02! %p <-> %p\n",
 | |
| 			       pmd, pmd_offset(pud, 0));
 | |
| 	}
 | |
| 	return pmd_offset(pud, vaddr);
 | |
| }
 | |
| 
 | |
| static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 | |
| {
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		pte_t *pte = (pte_t *) spp_getpage();
 | |
| 		pmd_populate_kernel(&init_mm, pmd, pte);
 | |
| 		if (pte != pte_offset_kernel(pmd, 0))
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #03!\n");
 | |
| 	}
 | |
| 	return pte_offset_kernel(pmd, vaddr);
 | |
| }
 | |
| 
 | |
| static void __set_pte_vaddr(pud_t *pud, unsigned long vaddr, pte_t new_pte)
 | |
| {
 | |
| 	pmd_t *pmd = fill_pmd(pud, vaddr);
 | |
| 	pte_t *pte = fill_pte(pmd, vaddr);
 | |
| 
 | |
| 	set_pte(pte, new_pte);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's enough to flush this one mapping.
 | |
| 	 * (PGE mappings get flushed as well)
 | |
| 	 */
 | |
| 	__flush_tlb_one_kernel(vaddr);
 | |
| }
 | |
| 
 | |
| void set_pte_vaddr_p4d(p4d_t *p4d_page, unsigned long vaddr, pte_t new_pte)
 | |
| {
 | |
| 	p4d_t *p4d = p4d_page + p4d_index(vaddr);
 | |
| 	pud_t *pud = fill_pud(p4d, vaddr);
 | |
| 
 | |
| 	__set_pte_vaddr(pud, vaddr, new_pte);
 | |
| }
 | |
| 
 | |
| void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 | |
| {
 | |
| 	pud_t *pud = pud_page + pud_index(vaddr);
 | |
| 
 | |
| 	__set_pte_vaddr(pud, vaddr, new_pte);
 | |
| }
 | |
| 
 | |
| void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d_page;
 | |
| 
 | |
| 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 | |
| 
 | |
| 	pgd = pgd_offset_k(vaddr);
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		printk(KERN_ERR
 | |
| 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	p4d_page = p4d_offset(pgd, 0);
 | |
| 	set_pte_vaddr_p4d(p4d_page, vaddr, pteval);
 | |
| }
 | |
| 
 | |
| pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 
 | |
| 	pgd = pgd_offset_k(vaddr);
 | |
| 	p4d = fill_p4d(pgd, vaddr);
 | |
| 	pud = fill_pud(p4d, vaddr);
 | |
| 	return fill_pmd(pud, vaddr);
 | |
| }
 | |
| 
 | |
| pte_t * __init populate_extra_pte(unsigned long vaddr)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	pmd = populate_extra_pmd(vaddr);
 | |
| 	return fill_pte(pmd, vaddr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create large page table mappings for a range of physical addresses.
 | |
|  */
 | |
| static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 | |
| 					enum page_cache_mode cache)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pgprot_t prot;
 | |
| 
 | |
| 	pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
 | |
| 		pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
 | |
| 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 | |
| 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 | |
| 		pgd = pgd_offset_k((unsigned long)__va(phys));
 | |
| 		if (pgd_none(*pgd)) {
 | |
| 			p4d = (p4d_t *) spp_getpage();
 | |
| 			set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE |
 | |
| 						_PAGE_USER));
 | |
| 		}
 | |
| 		p4d = p4d_offset(pgd, (unsigned long)__va(phys));
 | |
| 		if (p4d_none(*p4d)) {
 | |
| 			pud = (pud_t *) spp_getpage();
 | |
| 			set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE |
 | |
| 						_PAGE_USER));
 | |
| 		}
 | |
| 		pud = pud_offset(p4d, (unsigned long)__va(phys));
 | |
| 		if (pud_none(*pud)) {
 | |
| 			pmd = (pmd_t *) spp_getpage();
 | |
| 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 | |
| 						_PAGE_USER));
 | |
| 		}
 | |
| 		pmd = pmd_offset(pud, phys);
 | |
| 		BUG_ON(!pmd_none(*pmd));
 | |
| 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 | |
| {
 | |
| 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
 | |
| }
 | |
| 
 | |
| void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 | |
| {
 | |
| 	__init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The head.S code sets up the kernel high mapping:
 | |
|  *
 | |
|  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 | |
|  *
 | |
|  * phys_base holds the negative offset to the kernel, which is added
 | |
|  * to the compile time generated pmds. This results in invalid pmds up
 | |
|  * to the point where we hit the physaddr 0 mapping.
 | |
|  *
 | |
|  * We limit the mappings to the region from _text to _brk_end.  _brk_end
 | |
|  * is rounded up to the 2MB boundary. This catches the invalid pmds as
 | |
|  * well, as they are located before _text:
 | |
|  */
 | |
| void __init cleanup_highmap(void)
 | |
| {
 | |
| 	unsigned long vaddr = __START_KERNEL_map;
 | |
| 	unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
 | |
| 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
 | |
| 	pmd_t *pmd = level2_kernel_pgt;
 | |
| 
 | |
| 	/*
 | |
| 	 * Native path, max_pfn_mapped is not set yet.
 | |
| 	 * Xen has valid max_pfn_mapped set in
 | |
| 	 *	arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
 | |
| 	 */
 | |
| 	if (max_pfn_mapped)
 | |
| 		vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
 | |
| 
 | |
| 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
 | |
| 		if (pmd_none(*pmd))
 | |
| 			continue;
 | |
| 		if (vaddr < (unsigned long) _text || vaddr > end)
 | |
| 			set_pmd(pmd, __pmd(0));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create PTE level page table mapping for physical addresses.
 | |
|  * It returns the last physical address mapped.
 | |
|  */
 | |
| static unsigned long __meminit
 | |
| phys_pte_init(pte_t *pte_page, unsigned long paddr, unsigned long paddr_end,
 | |
| 	      pgprot_t prot, bool init)
 | |
| {
 | |
| 	unsigned long pages = 0, paddr_next;
 | |
| 	unsigned long paddr_last = paddr_end;
 | |
| 	pte_t *pte;
 | |
| 	int i;
 | |
| 
 | |
| 	pte = pte_page + pte_index(paddr);
 | |
| 	i = pte_index(paddr);
 | |
| 
 | |
| 	for (; i < PTRS_PER_PTE; i++, paddr = paddr_next, pte++) {
 | |
| 		paddr_next = (paddr & PAGE_MASK) + PAGE_SIZE;
 | |
| 		if (paddr >= paddr_end) {
 | |
| 			if (!after_bootmem &&
 | |
| 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 | |
| 					     E820_TYPE_RAM) &&
 | |
| 			    !e820__mapped_any(paddr & PAGE_MASK, paddr_next,
 | |
| 					     E820_TYPE_RESERVED_KERN))
 | |
| 				set_pte_init(pte, __pte(0), init);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We will re-use the existing mapping.
 | |
| 		 * Xen for example has some special requirements, like mapping
 | |
| 		 * pagetable pages as RO. So assume someone who pre-setup
 | |
| 		 * these mappings are more intelligent.
 | |
| 		 */
 | |
| 		if (!pte_none(*pte)) {
 | |
| 			if (!after_bootmem)
 | |
| 				pages++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (0)
 | |
| 			pr_info("   pte=%p addr=%lx pte=%016lx\n", pte, paddr,
 | |
| 				pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 | |
| 		pages++;
 | |
| 		set_pte_init(pte, pfn_pte(paddr >> PAGE_SHIFT, prot), init);
 | |
| 		paddr_last = (paddr & PAGE_MASK) + PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	update_page_count(PG_LEVEL_4K, pages);
 | |
| 
 | |
| 	return paddr_last;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create PMD level page table mapping for physical addresses. The virtual
 | |
|  * and physical address have to be aligned at this level.
 | |
|  * It returns the last physical address mapped.
 | |
|  */
 | |
| static unsigned long __meminit
 | |
| phys_pmd_init(pmd_t *pmd_page, unsigned long paddr, unsigned long paddr_end,
 | |
| 	      unsigned long page_size_mask, pgprot_t prot, bool init)
 | |
| {
 | |
| 	unsigned long pages = 0, paddr_next;
 | |
| 	unsigned long paddr_last = paddr_end;
 | |
| 
 | |
| 	int i = pmd_index(paddr);
 | |
| 
 | |
| 	for (; i < PTRS_PER_PMD; i++, paddr = paddr_next) {
 | |
| 		pmd_t *pmd = pmd_page + pmd_index(paddr);
 | |
| 		pte_t *pte;
 | |
| 		pgprot_t new_prot = prot;
 | |
| 
 | |
| 		paddr_next = (paddr & PMD_MASK) + PMD_SIZE;
 | |
| 		if (paddr >= paddr_end) {
 | |
| 			if (!after_bootmem &&
 | |
| 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 | |
| 					     E820_TYPE_RAM) &&
 | |
| 			    !e820__mapped_any(paddr & PMD_MASK, paddr_next,
 | |
| 					     E820_TYPE_RESERVED_KERN))
 | |
| 				set_pmd_init(pmd, __pmd(0), init);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!pmd_none(*pmd)) {
 | |
| 			if (!pmd_large(*pmd)) {
 | |
| 				spin_lock(&init_mm.page_table_lock);
 | |
| 				pte = (pte_t *)pmd_page_vaddr(*pmd);
 | |
| 				paddr_last = phys_pte_init(pte, paddr,
 | |
| 							   paddr_end, prot,
 | |
| 							   init);
 | |
| 				spin_unlock(&init_mm.page_table_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * If we are ok with PG_LEVEL_2M mapping, then we will
 | |
| 			 * use the existing mapping,
 | |
| 			 *
 | |
| 			 * Otherwise, we will split the large page mapping but
 | |
| 			 * use the same existing protection bits except for
 | |
| 			 * large page, so that we don't violate Intel's TLB
 | |
| 			 * Application note (317080) which says, while changing
 | |
| 			 * the page sizes, new and old translations should
 | |
| 			 * not differ with respect to page frame and
 | |
| 			 * attributes.
 | |
| 			 */
 | |
| 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
 | |
| 				if (!after_bootmem)
 | |
| 					pages++;
 | |
| 				paddr_last = paddr_next;
 | |
| 				continue;
 | |
| 			}
 | |
| 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 | |
| 		}
 | |
| 
 | |
| 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
 | |
| 			pages++;
 | |
| 			spin_lock(&init_mm.page_table_lock);
 | |
| 			set_pte_init((pte_t *)pmd,
 | |
| 				     pfn_pte((paddr & PMD_MASK) >> PAGE_SHIFT,
 | |
| 					     __pgprot(pgprot_val(prot) | _PAGE_PSE)),
 | |
| 				     init);
 | |
| 			spin_unlock(&init_mm.page_table_lock);
 | |
| 			paddr_last = paddr_next;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pte = alloc_low_page();
 | |
| 		paddr_last = phys_pte_init(pte, paddr, paddr_end, new_prot, init);
 | |
| 
 | |
| 		spin_lock(&init_mm.page_table_lock);
 | |
| 		pmd_populate_kernel_init(&init_mm, pmd, pte, init);
 | |
| 		spin_unlock(&init_mm.page_table_lock);
 | |
| 	}
 | |
| 	update_page_count(PG_LEVEL_2M, pages);
 | |
| 	return paddr_last;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create PUD level page table mapping for physical addresses. The virtual
 | |
|  * and physical address do not have to be aligned at this level. KASLR can
 | |
|  * randomize virtual addresses up to this level.
 | |
|  * It returns the last physical address mapped.
 | |
|  */
 | |
| static unsigned long __meminit
 | |
| phys_pud_init(pud_t *pud_page, unsigned long paddr, unsigned long paddr_end,
 | |
| 	      unsigned long page_size_mask, pgprot_t _prot, bool init)
 | |
| {
 | |
| 	unsigned long pages = 0, paddr_next;
 | |
| 	unsigned long paddr_last = paddr_end;
 | |
| 	unsigned long vaddr = (unsigned long)__va(paddr);
 | |
| 	int i = pud_index(vaddr);
 | |
| 
 | |
| 	for (; i < PTRS_PER_PUD; i++, paddr = paddr_next) {
 | |
| 		pud_t *pud;
 | |
| 		pmd_t *pmd;
 | |
| 		pgprot_t prot = _prot;
 | |
| 
 | |
| 		vaddr = (unsigned long)__va(paddr);
 | |
| 		pud = pud_page + pud_index(vaddr);
 | |
| 		paddr_next = (paddr & PUD_MASK) + PUD_SIZE;
 | |
| 
 | |
| 		if (paddr >= paddr_end) {
 | |
| 			if (!after_bootmem &&
 | |
| 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 | |
| 					     E820_TYPE_RAM) &&
 | |
| 			    !e820__mapped_any(paddr & PUD_MASK, paddr_next,
 | |
| 					     E820_TYPE_RESERVED_KERN))
 | |
| 				set_pud_init(pud, __pud(0), init);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!pud_none(*pud)) {
 | |
| 			if (!pud_large(*pud)) {
 | |
| 				pmd = pmd_offset(pud, 0);
 | |
| 				paddr_last = phys_pmd_init(pmd, paddr,
 | |
| 							   paddr_end,
 | |
| 							   page_size_mask,
 | |
| 							   prot, init);
 | |
| 				continue;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * If we are ok with PG_LEVEL_1G mapping, then we will
 | |
| 			 * use the existing mapping.
 | |
| 			 *
 | |
| 			 * Otherwise, we will split the gbpage mapping but use
 | |
| 			 * the same existing protection  bits except for large
 | |
| 			 * page, so that we don't violate Intel's TLB
 | |
| 			 * Application note (317080) which says, while changing
 | |
| 			 * the page sizes, new and old translations should
 | |
| 			 * not differ with respect to page frame and
 | |
| 			 * attributes.
 | |
| 			 */
 | |
| 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
 | |
| 				if (!after_bootmem)
 | |
| 					pages++;
 | |
| 				paddr_last = paddr_next;
 | |
| 				continue;
 | |
| 			}
 | |
| 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 | |
| 		}
 | |
| 
 | |
| 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
 | |
| 			pages++;
 | |
| 			spin_lock(&init_mm.page_table_lock);
 | |
| 
 | |
| 			prot = __pgprot(pgprot_val(prot) | _PAGE_PSE);
 | |
| 
 | |
| 			set_pte_init((pte_t *)pud,
 | |
| 				     pfn_pte((paddr & PUD_MASK) >> PAGE_SHIFT,
 | |
| 					     prot),
 | |
| 				     init);
 | |
| 			spin_unlock(&init_mm.page_table_lock);
 | |
| 			paddr_last = paddr_next;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pmd = alloc_low_page();
 | |
| 		paddr_last = phys_pmd_init(pmd, paddr, paddr_end,
 | |
| 					   page_size_mask, prot, init);
 | |
| 
 | |
| 		spin_lock(&init_mm.page_table_lock);
 | |
| 		pud_populate_init(&init_mm, pud, pmd, init);
 | |
| 		spin_unlock(&init_mm.page_table_lock);
 | |
| 	}
 | |
| 
 | |
| 	update_page_count(PG_LEVEL_1G, pages);
 | |
| 
 | |
| 	return paddr_last;
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit
 | |
| phys_p4d_init(p4d_t *p4d_page, unsigned long paddr, unsigned long paddr_end,
 | |
| 	      unsigned long page_size_mask, pgprot_t prot, bool init)
 | |
| {
 | |
| 	unsigned long vaddr, vaddr_end, vaddr_next, paddr_next, paddr_last;
 | |
| 
 | |
| 	paddr_last = paddr_end;
 | |
| 	vaddr = (unsigned long)__va(paddr);
 | |
| 	vaddr_end = (unsigned long)__va(paddr_end);
 | |
| 
 | |
| 	if (!pgtable_l5_enabled())
 | |
| 		return phys_pud_init((pud_t *) p4d_page, paddr, paddr_end,
 | |
| 				     page_size_mask, prot, init);
 | |
| 
 | |
| 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 | |
| 		p4d_t *p4d = p4d_page + p4d_index(vaddr);
 | |
| 		pud_t *pud;
 | |
| 
 | |
| 		vaddr_next = (vaddr & P4D_MASK) + P4D_SIZE;
 | |
| 		paddr = __pa(vaddr);
 | |
| 
 | |
| 		if (paddr >= paddr_end) {
 | |
| 			paddr_next = __pa(vaddr_next);
 | |
| 			if (!after_bootmem &&
 | |
| 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 | |
| 					     E820_TYPE_RAM) &&
 | |
| 			    !e820__mapped_any(paddr & P4D_MASK, paddr_next,
 | |
| 					     E820_TYPE_RESERVED_KERN))
 | |
| 				set_p4d_init(p4d, __p4d(0), init);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (!p4d_none(*p4d)) {
 | |
| 			pud = pud_offset(p4d, 0);
 | |
| 			paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 | |
| 					page_size_mask, prot, init);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pud = alloc_low_page();
 | |
| 		paddr_last = phys_pud_init(pud, paddr, __pa(vaddr_end),
 | |
| 					   page_size_mask, prot, init);
 | |
| 
 | |
| 		spin_lock(&init_mm.page_table_lock);
 | |
| 		p4d_populate_init(&init_mm, p4d, pud, init);
 | |
| 		spin_unlock(&init_mm.page_table_lock);
 | |
| 	}
 | |
| 
 | |
| 	return paddr_last;
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit
 | |
| __kernel_physical_mapping_init(unsigned long paddr_start,
 | |
| 			       unsigned long paddr_end,
 | |
| 			       unsigned long page_size_mask,
 | |
| 			       pgprot_t prot, bool init)
 | |
| {
 | |
| 	bool pgd_changed = false;
 | |
| 	unsigned long vaddr, vaddr_start, vaddr_end, vaddr_next, paddr_last;
 | |
| 
 | |
| 	paddr_last = paddr_end;
 | |
| 	vaddr = (unsigned long)__va(paddr_start);
 | |
| 	vaddr_end = (unsigned long)__va(paddr_end);
 | |
| 	vaddr_start = vaddr;
 | |
| 
 | |
| 	for (; vaddr < vaddr_end; vaddr = vaddr_next) {
 | |
| 		pgd_t *pgd = pgd_offset_k(vaddr);
 | |
| 		p4d_t *p4d;
 | |
| 
 | |
| 		vaddr_next = (vaddr & PGDIR_MASK) + PGDIR_SIZE;
 | |
| 
 | |
| 		if (pgd_val(*pgd)) {
 | |
| 			p4d = (p4d_t *)pgd_page_vaddr(*pgd);
 | |
| 			paddr_last = phys_p4d_init(p4d, __pa(vaddr),
 | |
| 						   __pa(vaddr_end),
 | |
| 						   page_size_mask,
 | |
| 						   prot, init);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		p4d = alloc_low_page();
 | |
| 		paddr_last = phys_p4d_init(p4d, __pa(vaddr), __pa(vaddr_end),
 | |
| 					   page_size_mask, prot, init);
 | |
| 
 | |
| 		spin_lock(&init_mm.page_table_lock);
 | |
| 		if (pgtable_l5_enabled())
 | |
| 			pgd_populate_init(&init_mm, pgd, p4d, init);
 | |
| 		else
 | |
| 			p4d_populate_init(&init_mm, p4d_offset(pgd, vaddr),
 | |
| 					  (pud_t *) p4d, init);
 | |
| 
 | |
| 		spin_unlock(&init_mm.page_table_lock);
 | |
| 		pgd_changed = true;
 | |
| 	}
 | |
| 
 | |
| 	if (pgd_changed)
 | |
| 		sync_global_pgds(vaddr_start, vaddr_end - 1);
 | |
| 
 | |
| 	return paddr_last;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Create page table mapping for the physical memory for specific physical
 | |
|  * addresses. Note that it can only be used to populate non-present entries.
 | |
|  * The virtual and physical addresses have to be aligned on PMD level
 | |
|  * down. It returns the last physical address mapped.
 | |
|  */
 | |
| unsigned long __meminit
 | |
| kernel_physical_mapping_init(unsigned long paddr_start,
 | |
| 			     unsigned long paddr_end,
 | |
| 			     unsigned long page_size_mask, pgprot_t prot)
 | |
| {
 | |
| 	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 | |
| 					      page_size_mask, prot, true);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is similar to kernel_physical_mapping_init() above with the
 | |
|  * exception that it uses set_{pud,pmd}() instead of the set_{pud,pte}_safe()
 | |
|  * when updating the mapping. The caller is responsible to flush the TLBs after
 | |
|  * the function returns.
 | |
|  */
 | |
| unsigned long __meminit
 | |
| kernel_physical_mapping_change(unsigned long paddr_start,
 | |
| 			       unsigned long paddr_end,
 | |
| 			       unsigned long page_size_mask)
 | |
| {
 | |
| 	return __kernel_physical_mapping_init(paddr_start, paddr_end,
 | |
| 					      page_size_mask, PAGE_KERNEL,
 | |
| 					      false);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| void __init initmem_init(void)
 | |
| {
 | |
| 	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
 | |
| 	sparse_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * clear the default setting with node 0
 | |
| 	 * note: don't use nodes_clear here, that is really clearing when
 | |
| 	 *	 numa support is not compiled in, and later node_set_state
 | |
| 	 *	 will not set it back.
 | |
| 	 */
 | |
| 	node_clear_state(0, N_MEMORY);
 | |
| 	if (N_MEMORY != N_NORMAL_MEMORY)
 | |
| 		node_clear_state(0, N_NORMAL_MEMORY);
 | |
| 
 | |
| 	zone_sizes_init();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memory hotplug specific functions
 | |
|  */
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| /*
 | |
|  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
 | |
|  * updating.
 | |
|  */
 | |
| static void update_end_of_memory_vars(u64 start, u64 size)
 | |
| {
 | |
| 	unsigned long end_pfn = PFN_UP(start + size);
 | |
| 
 | |
| 	if (end_pfn > max_pfn) {
 | |
| 		max_pfn = end_pfn;
 | |
| 		max_low_pfn = end_pfn;
 | |
| 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int add_pages(int nid, unsigned long start_pfn, unsigned long nr_pages,
 | |
| 	      struct mhp_params *params)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = __add_pages(nid, start_pfn, nr_pages, params);
 | |
| 	WARN_ON_ONCE(ret);
 | |
| 
 | |
| 	/* update max_pfn, max_low_pfn and high_memory */
 | |
| 	update_end_of_memory_vars(start_pfn << PAGE_SHIFT,
 | |
| 				  nr_pages << PAGE_SHIFT);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int arch_add_memory(int nid, u64 start, u64 size,
 | |
| 		    struct mhp_params *params)
 | |
| {
 | |
| 	unsigned long start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long nr_pages = size >> PAGE_SHIFT;
 | |
| 
 | |
| 	init_memory_mapping(start, start + size, params->pgprot);
 | |
| 
 | |
| 	return add_pages(nid, start_pfn, nr_pages, params);
 | |
| }
 | |
| 
 | |
| #define PAGE_INUSE 0xFD
 | |
| 
 | |
| static void __meminit free_pagetable(struct page *page, int order)
 | |
| {
 | |
| 	unsigned long magic;
 | |
| 	unsigned int nr_pages = 1 << order;
 | |
| 
 | |
| 	/* bootmem page has reserved flag */
 | |
| 	if (PageReserved(page)) {
 | |
| 		__ClearPageReserved(page);
 | |
| 
 | |
| 		magic = (unsigned long)page->freelist;
 | |
| 		if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
 | |
| 			while (nr_pages--)
 | |
| 				put_page_bootmem(page++);
 | |
| 		} else
 | |
| 			while (nr_pages--)
 | |
| 				free_reserved_page(page++);
 | |
| 	} else
 | |
| 		free_pages((unsigned long)page_address(page), order);
 | |
| }
 | |
| 
 | |
| static void __meminit free_hugepage_table(struct page *page,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	if (altmap)
 | |
| 		vmem_altmap_free(altmap, PMD_SIZE / PAGE_SIZE);
 | |
| 	else
 | |
| 		free_pagetable(page, get_order(PMD_SIZE));
 | |
| }
 | |
| 
 | |
| static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PTE; i++) {
 | |
| 		pte = pte_start + i;
 | |
| 		if (!pte_none(*pte))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* free a pte talbe */
 | |
| 	free_pagetable(pmd_page(*pmd), 0);
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	pmd_clear(pmd);
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| }
 | |
| 
 | |
| static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PMD; i++) {
 | |
| 		pmd = pmd_start + i;
 | |
| 		if (!pmd_none(*pmd))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* free a pmd talbe */
 | |
| 	free_pagetable(pud_page(*pud), 0);
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	pud_clear(pud);
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| }
 | |
| 
 | |
| static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PTRS_PER_PUD; i++) {
 | |
| 		pud = pud_start + i;
 | |
| 		if (!pud_none(*pud))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* free a pud talbe */
 | |
| 	free_pagetable(p4d_page(*p4d), 0);
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	p4d_clear(p4d);
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| }
 | |
| 
 | |
| static void __meminit
 | |
| remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
 | |
| 		 bool direct)
 | |
| {
 | |
| 	unsigned long next, pages = 0;
 | |
| 	pte_t *pte;
 | |
| 	void *page_addr;
 | |
| 	phys_addr_t phys_addr;
 | |
| 
 | |
| 	pte = pte_start + pte_index(addr);
 | |
| 	for (; addr < end; addr = next, pte++) {
 | |
| 		next = (addr + PAGE_SIZE) & PAGE_MASK;
 | |
| 		if (next > end)
 | |
| 			next = end;
 | |
| 
 | |
| 		if (!pte_present(*pte))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * We mapped [0,1G) memory as identity mapping when
 | |
| 		 * initializing, in arch/x86/kernel/head_64.S. These
 | |
| 		 * pagetables cannot be removed.
 | |
| 		 */
 | |
| 		phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
 | |
| 		if (phys_addr < (phys_addr_t)0x40000000)
 | |
| 			return;
 | |
| 
 | |
| 		if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
 | |
| 			/*
 | |
| 			 * Do not free direct mapping pages since they were
 | |
| 			 * freed when offlining, or simplely not in use.
 | |
| 			 */
 | |
| 			if (!direct)
 | |
| 				free_pagetable(pte_page(*pte), 0);
 | |
| 
 | |
| 			spin_lock(&init_mm.page_table_lock);
 | |
| 			pte_clear(&init_mm, addr, pte);
 | |
| 			spin_unlock(&init_mm.page_table_lock);
 | |
| 
 | |
| 			/* For non-direct mapping, pages means nothing. */
 | |
| 			pages++;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * If we are here, we are freeing vmemmap pages since
 | |
| 			 * direct mapped memory ranges to be freed are aligned.
 | |
| 			 *
 | |
| 			 * If we are not removing the whole page, it means
 | |
| 			 * other page structs in this page are being used and
 | |
| 			 * we canot remove them. So fill the unused page_structs
 | |
| 			 * with 0xFD, and remove the page when it is wholly
 | |
| 			 * filled with 0xFD.
 | |
| 			 */
 | |
| 			memset((void *)addr, PAGE_INUSE, next - addr);
 | |
| 
 | |
| 			page_addr = page_address(pte_page(*pte));
 | |
| 			if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
 | |
| 				free_pagetable(pte_page(*pte), 0);
 | |
| 
 | |
| 				spin_lock(&init_mm.page_table_lock);
 | |
| 				pte_clear(&init_mm, addr, pte);
 | |
| 				spin_unlock(&init_mm.page_table_lock);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Call free_pte_table() in remove_pmd_table(). */
 | |
| 	flush_tlb_all();
 | |
| 	if (direct)
 | |
| 		update_page_count(PG_LEVEL_4K, -pages);
 | |
| }
 | |
| 
 | |
| static void __meminit
 | |
| remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
 | |
| 		 bool direct, struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long next, pages = 0;
 | |
| 	pte_t *pte_base;
 | |
| 	pmd_t *pmd;
 | |
| 	void *page_addr;
 | |
| 
 | |
| 	pmd = pmd_start + pmd_index(addr);
 | |
| 	for (; addr < end; addr = next, pmd++) {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 		if (!pmd_present(*pmd))
 | |
| 			continue;
 | |
| 
 | |
| 		if (pmd_large(*pmd)) {
 | |
| 			if (IS_ALIGNED(addr, PMD_SIZE) &&
 | |
| 			    IS_ALIGNED(next, PMD_SIZE)) {
 | |
| 				if (!direct)
 | |
| 					free_hugepage_table(pmd_page(*pmd),
 | |
| 							    altmap);
 | |
| 
 | |
| 				spin_lock(&init_mm.page_table_lock);
 | |
| 				pmd_clear(pmd);
 | |
| 				spin_unlock(&init_mm.page_table_lock);
 | |
| 				pages++;
 | |
| 			} else {
 | |
| 				/* If here, we are freeing vmemmap pages. */
 | |
| 				memset((void *)addr, PAGE_INUSE, next - addr);
 | |
| 
 | |
| 				page_addr = page_address(pmd_page(*pmd));
 | |
| 				if (!memchr_inv(page_addr, PAGE_INUSE,
 | |
| 						PMD_SIZE)) {
 | |
| 					free_hugepage_table(pmd_page(*pmd),
 | |
| 							    altmap);
 | |
| 
 | |
| 					spin_lock(&init_mm.page_table_lock);
 | |
| 					pmd_clear(pmd);
 | |
| 					spin_unlock(&init_mm.page_table_lock);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pte_base = (pte_t *)pmd_page_vaddr(*pmd);
 | |
| 		remove_pte_table(pte_base, addr, next, direct);
 | |
| 		free_pte_table(pte_base, pmd);
 | |
| 	}
 | |
| 
 | |
| 	/* Call free_pmd_table() in remove_pud_table(). */
 | |
| 	if (direct)
 | |
| 		update_page_count(PG_LEVEL_2M, -pages);
 | |
| }
 | |
| 
 | |
| static void __meminit
 | |
| remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
 | |
| 		 struct vmem_altmap *altmap, bool direct)
 | |
| {
 | |
| 	unsigned long next, pages = 0;
 | |
| 	pmd_t *pmd_base;
 | |
| 	pud_t *pud;
 | |
| 	void *page_addr;
 | |
| 
 | |
| 	pud = pud_start + pud_index(addr);
 | |
| 	for (; addr < end; addr = next, pud++) {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 
 | |
| 		if (!pud_present(*pud))
 | |
| 			continue;
 | |
| 
 | |
| 		if (pud_large(*pud)) {
 | |
| 			if (IS_ALIGNED(addr, PUD_SIZE) &&
 | |
| 			    IS_ALIGNED(next, PUD_SIZE)) {
 | |
| 				if (!direct)
 | |
| 					free_pagetable(pud_page(*pud),
 | |
| 						       get_order(PUD_SIZE));
 | |
| 
 | |
| 				spin_lock(&init_mm.page_table_lock);
 | |
| 				pud_clear(pud);
 | |
| 				spin_unlock(&init_mm.page_table_lock);
 | |
| 				pages++;
 | |
| 			} else {
 | |
| 				/* If here, we are freeing vmemmap pages. */
 | |
| 				memset((void *)addr, PAGE_INUSE, next - addr);
 | |
| 
 | |
| 				page_addr = page_address(pud_page(*pud));
 | |
| 				if (!memchr_inv(page_addr, PAGE_INUSE,
 | |
| 						PUD_SIZE)) {
 | |
| 					free_pagetable(pud_page(*pud),
 | |
| 						       get_order(PUD_SIZE));
 | |
| 
 | |
| 					spin_lock(&init_mm.page_table_lock);
 | |
| 					pud_clear(pud);
 | |
| 					spin_unlock(&init_mm.page_table_lock);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pmd_base = pmd_offset(pud, 0);
 | |
| 		remove_pmd_table(pmd_base, addr, next, direct, altmap);
 | |
| 		free_pmd_table(pmd_base, pud);
 | |
| 	}
 | |
| 
 | |
| 	if (direct)
 | |
| 		update_page_count(PG_LEVEL_1G, -pages);
 | |
| }
 | |
| 
 | |
| static void __meminit
 | |
| remove_p4d_table(p4d_t *p4d_start, unsigned long addr, unsigned long end,
 | |
| 		 struct vmem_altmap *altmap, bool direct)
 | |
| {
 | |
| 	unsigned long next, pages = 0;
 | |
| 	pud_t *pud_base;
 | |
| 	p4d_t *p4d;
 | |
| 
 | |
| 	p4d = p4d_start + p4d_index(addr);
 | |
| 	for (; addr < end; addr = next, p4d++) {
 | |
| 		next = p4d_addr_end(addr, end);
 | |
| 
 | |
| 		if (!p4d_present(*p4d))
 | |
| 			continue;
 | |
| 
 | |
| 		BUILD_BUG_ON(p4d_large(*p4d));
 | |
| 
 | |
| 		pud_base = pud_offset(p4d, 0);
 | |
| 		remove_pud_table(pud_base, addr, next, altmap, direct);
 | |
| 		/*
 | |
| 		 * For 4-level page tables we do not want to free PUDs, but in the
 | |
| 		 * 5-level case we should free them. This code will have to change
 | |
| 		 * to adapt for boot-time switching between 4 and 5 level page tables.
 | |
| 		 */
 | |
| 		if (pgtable_l5_enabled())
 | |
| 			free_pud_table(pud_base, p4d);
 | |
| 	}
 | |
| 
 | |
| 	if (direct)
 | |
| 		update_page_count(PG_LEVEL_512G, -pages);
 | |
| }
 | |
| 
 | |
| /* start and end are both virtual address. */
 | |
| static void __meminit
 | |
| remove_pagetable(unsigned long start, unsigned long end, bool direct,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 	unsigned long addr;
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 
 | |
| 	for (addr = start; addr < end; addr = next) {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 
 | |
| 		pgd = pgd_offset_k(addr);
 | |
| 		if (!pgd_present(*pgd))
 | |
| 			continue;
 | |
| 
 | |
| 		p4d = p4d_offset(pgd, 0);
 | |
| 		remove_p4d_table(p4d, addr, next, altmap, direct);
 | |
| 	}
 | |
| 
 | |
| 	flush_tlb_all();
 | |
| }
 | |
| 
 | |
| void __ref vmemmap_free(unsigned long start, unsigned long end,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	remove_pagetable(start, end, false, altmap);
 | |
| }
 | |
| 
 | |
| static void __meminit
 | |
| kernel_physical_mapping_remove(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	start = (unsigned long)__va(start);
 | |
| 	end = (unsigned long)__va(end);
 | |
| 
 | |
| 	remove_pagetable(start, end, true, NULL);
 | |
| }
 | |
| 
 | |
| void __ref arch_remove_memory(int nid, u64 start, u64 size,
 | |
| 			      struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long nr_pages = size >> PAGE_SHIFT;
 | |
| 
 | |
| 	__remove_pages(start_pfn, nr_pages, altmap);
 | |
| 	kernel_physical_mapping_remove(start, start + size);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| static struct kcore_list kcore_vsyscall;
 | |
| 
 | |
| static void __init register_page_bootmem_info(void)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_node(i)
 | |
| 		register_page_bootmem_info_node(NODE_DATA(i));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __init mem_init(void)
 | |
| {
 | |
| 	pci_iommu_alloc();
 | |
| 
 | |
| 	/* clear_bss() already clear the empty_zero_page */
 | |
| 
 | |
| 	/* this will put all memory onto the freelists */
 | |
| 	memblock_free_all();
 | |
| 	after_bootmem = 1;
 | |
| 	x86_init.hyper.init_after_bootmem();
 | |
| 
 | |
| 	/*
 | |
| 	 * Must be done after boot memory is put on freelist, because here we
 | |
| 	 * might set fields in deferred struct pages that have not yet been
 | |
| 	 * initialized, and memblock_free_all() initializes all the reserved
 | |
| 	 * deferred pages for us.
 | |
| 	 */
 | |
| 	register_page_bootmem_info();
 | |
| 
 | |
| 	/* Register memory areas for /proc/kcore */
 | |
| 	if (get_gate_vma(&init_mm))
 | |
| 		kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR, PAGE_SIZE, KCORE_USER);
 | |
| 
 | |
| 	mem_init_print_info(NULL);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 | |
| int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask)
 | |
| {
 | |
| 	/*
 | |
| 	 * More CPUs always led to greater speedups on tested systems, up to
 | |
| 	 * all the nodes' CPUs.  Use all since the system is otherwise idle
 | |
| 	 * now.
 | |
| 	 */
 | |
| 	return max_t(int, cpumask_weight(node_cpumask), 1);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int kernel_set_to_readonly;
 | |
| 
 | |
| void set_kernel_text_rw(void)
 | |
| {
 | |
| 	unsigned long start = PFN_ALIGN(_text);
 | |
| 	unsigned long end = PFN_ALIGN(__stop___ex_table);
 | |
| 
 | |
| 	if (!kernel_set_to_readonly)
 | |
| 		return;
 | |
| 
 | |
| 	pr_debug("Set kernel text: %lx - %lx for read write\n",
 | |
| 		 start, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make the kernel identity mapping for text RW. Kernel text
 | |
| 	 * mapping will always be RO. Refer to the comment in
 | |
| 	 * static_protections() in pageattr.c
 | |
| 	 */
 | |
| 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| void set_kernel_text_ro(void)
 | |
| {
 | |
| 	unsigned long start = PFN_ALIGN(_text);
 | |
| 	unsigned long end = PFN_ALIGN(__stop___ex_table);
 | |
| 
 | |
| 	if (!kernel_set_to_readonly)
 | |
| 		return;
 | |
| 
 | |
| 	pr_debug("Set kernel text: %lx - %lx for read only\n",
 | |
| 		 start, end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the kernel identity mapping for text RO.
 | |
| 	 */
 | |
| 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| void mark_rodata_ro(void)
 | |
| {
 | |
| 	unsigned long start = PFN_ALIGN(_text);
 | |
| 	unsigned long rodata_start = PFN_ALIGN(__start_rodata);
 | |
| 	unsigned long end = (unsigned long) &__end_rodata_hpage_align;
 | |
| 	unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
 | |
| 	unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
 | |
| 	unsigned long all_end;
 | |
| 
 | |
| 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 | |
| 	       (end - start) >> 10);
 | |
| 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	kernel_set_to_readonly = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The rodata/data/bss/brk section (but not the kernel text!)
 | |
| 	 * should also be not-executable.
 | |
| 	 *
 | |
| 	 * We align all_end to PMD_SIZE because the existing mapping
 | |
| 	 * is a full PMD. If we would align _brk_end to PAGE_SIZE we
 | |
| 	 * split the PMD and the reminder between _brk_end and the end
 | |
| 	 * of the PMD will remain mapped executable.
 | |
| 	 *
 | |
| 	 * Any PMD which was setup after the one which covers _brk_end
 | |
| 	 * has been zapped already via cleanup_highmem().
 | |
| 	 */
 | |
| 	all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
 | |
| 	set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
 | |
| 
 | |
| 	set_ftrace_ops_ro();
 | |
| 
 | |
| #ifdef CONFIG_CPA_DEBUG
 | |
| 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
 | |
| 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	printk(KERN_INFO "Testing CPA: again\n");
 | |
| 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
 | |
| #endif
 | |
| 
 | |
| 	free_kernel_image_pages("unused kernel image (text/rodata gap)",
 | |
| 				(void *)text_end, (void *)rodata_start);
 | |
| 	free_kernel_image_pages("unused kernel image (rodata/data gap)",
 | |
| 				(void *)rodata_end, (void *)_sdata);
 | |
| 
 | |
| 	debug_checkwx();
 | |
| 
 | |
| 	/*
 | |
| 	 * Do this after all of the manipulation of the
 | |
| 	 * kernel text page tables are complete.
 | |
| 	 */
 | |
| 	pti_clone_kernel_text();
 | |
| }
 | |
| 
 | |
| int kern_addr_valid(unsigned long addr)
 | |
| {
 | |
| 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (above != 0 && above != -1UL)
 | |
| 		return 0;
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return 0;
 | |
| 
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	if (!p4d_present(*p4d))
 | |
| 		return 0;
 | |
| 
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pud_large(*pud))
 | |
| 		return pfn_valid(pud_pfn(*pud));
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_large(*pmd))
 | |
| 		return pfn_valid(pmd_pfn(*pmd));
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	if (pte_none(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pfn_valid(pte_pfn(*pte));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Block size is the minimum amount of memory which can be hotplugged or
 | |
|  * hotremoved. It must be power of two and must be equal or larger than
 | |
|  * MIN_MEMORY_BLOCK_SIZE.
 | |
|  */
 | |
| #define MAX_BLOCK_SIZE (2UL << 30)
 | |
| 
 | |
| /* Amount of ram needed to start using large blocks */
 | |
| #define MEM_SIZE_FOR_LARGE_BLOCK (64UL << 30)
 | |
| 
 | |
| /* Adjustable memory block size */
 | |
| static unsigned long set_memory_block_size;
 | |
| int __init set_memory_block_size_order(unsigned int order)
 | |
| {
 | |
| 	unsigned long size = 1UL << order;
 | |
| 
 | |
| 	if (size > MEM_SIZE_FOR_LARGE_BLOCK || size < MIN_MEMORY_BLOCK_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	set_memory_block_size = size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long probe_memory_block_size(void)
 | |
| {
 | |
| 	unsigned long boot_mem_end = max_pfn << PAGE_SHIFT;
 | |
| 	unsigned long bz;
 | |
| 
 | |
| 	/* If memory block size has been set, then use it */
 | |
| 	bz = set_memory_block_size;
 | |
| 	if (bz)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Use regular block if RAM is smaller than MEM_SIZE_FOR_LARGE_BLOCK */
 | |
| 	if (boot_mem_end < MEM_SIZE_FOR_LARGE_BLOCK) {
 | |
| 		bz = MIN_MEMORY_BLOCK_SIZE;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use max block size to minimize overhead on bare metal, where
 | |
| 	 * alignment for memory hotplug isn't a concern.
 | |
| 	 */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
 | |
| 		bz = MAX_BLOCK_SIZE;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Find the largest allowed block size that aligns to memory end */
 | |
| 	for (bz = MAX_BLOCK_SIZE; bz > MIN_MEMORY_BLOCK_SIZE; bz >>= 1) {
 | |
| 		if (IS_ALIGNED(boot_mem_end, bz))
 | |
| 			break;
 | |
| 	}
 | |
| done:
 | |
| 	pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
 | |
| 
 | |
| 	return bz;
 | |
| }
 | |
| 
 | |
| static unsigned long memory_block_size_probed;
 | |
| unsigned long memory_block_size_bytes(void)
 | |
| {
 | |
| 	if (!memory_block_size_probed)
 | |
| 		memory_block_size_probed = probe_memory_block_size();
 | |
| 
 | |
| 	return memory_block_size_probed;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| /*
 | |
|  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
 | |
|  */
 | |
| static long __meminitdata addr_start, addr_end;
 | |
| static void __meminitdata *p_start, *p_end;
 | |
| static int __meminitdata node_start;
 | |
| 
 | |
| static int __meminit vmemmap_populate_hugepages(unsigned long start,
 | |
| 		unsigned long end, int node, struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	for (addr = start; addr < end; addr = next) {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 		pgd = vmemmap_pgd_populate(addr, node);
 | |
| 		if (!pgd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		p4d = vmemmap_p4d_populate(pgd, addr, node);
 | |
| 		if (!p4d)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pud = vmemmap_pud_populate(p4d, addr, node);
 | |
| 		if (!pud)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pmd = pmd_offset(pud, addr);
 | |
| 		if (pmd_none(*pmd)) {
 | |
| 			void *p;
 | |
| 
 | |
| 			if (altmap)
 | |
| 				p = altmap_alloc_block_buf(PMD_SIZE, altmap);
 | |
| 			else
 | |
| 				p = vmemmap_alloc_block_buf(PMD_SIZE, node);
 | |
| 			if (p) {
 | |
| 				pte_t entry;
 | |
| 
 | |
| 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
 | |
| 						PAGE_KERNEL_LARGE);
 | |
| 				set_pmd(pmd, __pmd(pte_val(entry)));
 | |
| 
 | |
| 				/* check to see if we have contiguous blocks */
 | |
| 				if (p_end != p || node_start != node) {
 | |
| 					if (p_start)
 | |
| 						pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
 | |
| 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
 | |
| 					addr_start = addr;
 | |
| 					node_start = node;
 | |
| 					p_start = p;
 | |
| 				}
 | |
| 
 | |
| 				addr_end = addr + PMD_SIZE;
 | |
| 				p_end = p + PMD_SIZE;
 | |
| 				continue;
 | |
| 			} else if (altmap)
 | |
| 				return -ENOMEM; /* no fallback */
 | |
| 		} else if (pmd_large(*pmd)) {
 | |
| 			vmemmap_verify((pte_t *)pmd, node, addr, next);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (vmemmap_populate_basepages(addr, next, node))
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (end - start < PAGES_PER_SECTION * sizeof(struct page))
 | |
| 		err = vmemmap_populate_basepages(start, end, node);
 | |
| 	else if (boot_cpu_has(X86_FEATURE_PSE))
 | |
| 		err = vmemmap_populate_hugepages(start, end, node, altmap);
 | |
| 	else if (altmap) {
 | |
| 		pr_err_once("%s: no cpu support for altmap allocations\n",
 | |
| 				__func__);
 | |
| 		err = -ENOMEM;
 | |
| 	} else
 | |
| 		err = vmemmap_populate_basepages(start, end, node);
 | |
| 	if (!err)
 | |
| 		sync_global_pgds(start, end - 1);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_MEMORY_HOTPLUG) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
 | |
| void register_page_bootmem_memmap(unsigned long section_nr,
 | |
| 				  struct page *start_page, unsigned long nr_pages)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)start_page;
 | |
| 	unsigned long end = (unsigned long)(start_page + nr_pages);
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgd;
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned int nr_pmd_pages;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	for (; addr < end; addr = next) {
 | |
| 		pte_t *pte = NULL;
 | |
| 
 | |
| 		pgd = pgd_offset_k(addr);
 | |
| 		if (pgd_none(*pgd)) {
 | |
| 			next = (addr + PAGE_SIZE) & PAGE_MASK;
 | |
| 			continue;
 | |
| 		}
 | |
| 		get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
 | |
| 
 | |
| 		p4d = p4d_offset(pgd, addr);
 | |
| 		if (p4d_none(*p4d)) {
 | |
| 			next = (addr + PAGE_SIZE) & PAGE_MASK;
 | |
| 			continue;
 | |
| 		}
 | |
| 		get_page_bootmem(section_nr, p4d_page(*p4d), MIX_SECTION_INFO);
 | |
| 
 | |
| 		pud = pud_offset(p4d, addr);
 | |
| 		if (pud_none(*pud)) {
 | |
| 			next = (addr + PAGE_SIZE) & PAGE_MASK;
 | |
| 			continue;
 | |
| 		}
 | |
| 		get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
 | |
| 
 | |
| 		if (!boot_cpu_has(X86_FEATURE_PSE)) {
 | |
| 			next = (addr + PAGE_SIZE) & PAGE_MASK;
 | |
| 			pmd = pmd_offset(pud, addr);
 | |
| 			if (pmd_none(*pmd))
 | |
| 				continue;
 | |
| 			get_page_bootmem(section_nr, pmd_page(*pmd),
 | |
| 					 MIX_SECTION_INFO);
 | |
| 
 | |
| 			pte = pte_offset_kernel(pmd, addr);
 | |
| 			if (pte_none(*pte))
 | |
| 				continue;
 | |
| 			get_page_bootmem(section_nr, pte_page(*pte),
 | |
| 					 SECTION_INFO);
 | |
| 		} else {
 | |
| 			next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 			pmd = pmd_offset(pud, addr);
 | |
| 			if (pmd_none(*pmd))
 | |
| 				continue;
 | |
| 
 | |
| 			nr_pmd_pages = 1 << get_order(PMD_SIZE);
 | |
| 			page = pmd_page(*pmd);
 | |
| 			while (nr_pmd_pages--)
 | |
| 				get_page_bootmem(section_nr, page++,
 | |
| 						 SECTION_INFO);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __meminit vmemmap_populate_print_last(void)
 | |
| {
 | |
| 	if (p_start) {
 | |
| 		pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
 | |
| 			addr_start, addr_end-1, p_start, p_end-1, node_start);
 | |
| 		p_start = NULL;
 | |
| 		p_end = NULL;
 | |
| 		node_start = 0;
 | |
| 	}
 | |
| }
 | |
| #endif
 |