1011 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1011 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <linux/gfp.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/swapfile.h>
 | |
| #include <linux/swapops.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/sched/task.h>
 | |
| 
 | |
| #include <asm/set_memory.h>
 | |
| #include <asm/cpu_device_id.h>
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/init.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/page_types.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/dma.h>		/* for MAX_DMA_PFN */
 | |
| #include <asm/microcode.h>
 | |
| #include <asm/kaslr.h>
 | |
| #include <asm/hypervisor.h>
 | |
| #include <asm/cpufeature.h>
 | |
| #include <asm/pti.h>
 | |
| #include <asm/text-patching.h>
 | |
| 
 | |
| /*
 | |
|  * We need to define the tracepoints somewhere, and tlb.c
 | |
|  * is only compied when SMP=y.
 | |
|  */
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include <trace/events/tlb.h>
 | |
| 
 | |
| #include "mm_internal.h"
 | |
| 
 | |
| /*
 | |
|  * Tables translating between page_cache_type_t and pte encoding.
 | |
|  *
 | |
|  * The default values are defined statically as minimal supported mode;
 | |
|  * WC and WT fall back to UC-.  pat_init() updates these values to support
 | |
|  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 | |
|  * for the details.  Note, __early_ioremap() used during early boot-time
 | |
|  * takes pgprot_t (pte encoding) and does not use these tables.
 | |
|  *
 | |
|  *   Index into __cachemode2pte_tbl[] is the cachemode.
 | |
|  *
 | |
|  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 | |
|  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 | |
|  */
 | |
| uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 | |
| 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 | |
| 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 | |
| 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 | |
| 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 | |
| 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 | |
| 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 | |
| };
 | |
| EXPORT_SYMBOL(__cachemode2pte_tbl);
 | |
| 
 | |
| uint8_t __pte2cachemode_tbl[8] = {
 | |
| 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 | |
| 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 | |
| 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 | |
| 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 | |
| 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 | |
| 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 | |
| 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 | |
| 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 | |
| };
 | |
| EXPORT_SYMBOL(__pte2cachemode_tbl);
 | |
| 
 | |
| static unsigned long __initdata pgt_buf_start;
 | |
| static unsigned long __initdata pgt_buf_end;
 | |
| static unsigned long __initdata pgt_buf_top;
 | |
| 
 | |
| static unsigned long min_pfn_mapped;
 | |
| 
 | |
| static bool __initdata can_use_brk_pgt = true;
 | |
| 
 | |
| /*
 | |
|  * Pages returned are already directly mapped.
 | |
|  *
 | |
|  * Changing that is likely to break Xen, see commit:
 | |
|  *
 | |
|  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 | |
|  *
 | |
|  * for detailed information.
 | |
|  */
 | |
| __ref void *alloc_low_pages(unsigned int num)
 | |
| {
 | |
| 	unsigned long pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	if (after_bootmem) {
 | |
| 		unsigned int order;
 | |
| 
 | |
| 		order = get_order((unsigned long)num << PAGE_SHIFT);
 | |
| 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 | |
| 	}
 | |
| 
 | |
| 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
 | |
| 		unsigned long ret;
 | |
| 		if (min_pfn_mapped >= max_pfn_mapped)
 | |
| 			panic("alloc_low_pages: ran out of memory");
 | |
| 		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
 | |
| 					max_pfn_mapped << PAGE_SHIFT,
 | |
| 					PAGE_SIZE * num , PAGE_SIZE);
 | |
| 		if (!ret)
 | |
| 			panic("alloc_low_pages: can not alloc memory");
 | |
| 		memblock_reserve(ret, PAGE_SIZE * num);
 | |
| 		pfn = ret >> PAGE_SHIFT;
 | |
| 	} else {
 | |
| 		pfn = pgt_buf_end;
 | |
| 		pgt_buf_end += num;
 | |
| 		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
 | |
| 			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		void *adr;
 | |
| 
 | |
| 		adr = __va((pfn + i) << PAGE_SHIFT);
 | |
| 		clear_page(adr);
 | |
| 	}
 | |
| 
 | |
| 	return __va(pfn << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
 | |
|  * With KASLR memory randomization, depending on the machine e820 memory
 | |
|  * and the PUD alignment. We may need twice more pages when KASLR memory
 | |
|  * randomization is enabled.
 | |
|  */
 | |
| #ifndef CONFIG_RANDOMIZE_MEMORY
 | |
| #define INIT_PGD_PAGE_COUNT      6
 | |
| #else
 | |
| #define INIT_PGD_PAGE_COUNT      12
 | |
| #endif
 | |
| #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
 | |
| RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
 | |
| void  __init early_alloc_pgt_buf(void)
 | |
| {
 | |
| 	unsigned long tables = INIT_PGT_BUF_SIZE;
 | |
| 	phys_addr_t base;
 | |
| 
 | |
| 	base = __pa(extend_brk(tables, PAGE_SIZE));
 | |
| 
 | |
| 	pgt_buf_start = base >> PAGE_SHIFT;
 | |
| 	pgt_buf_end = pgt_buf_start;
 | |
| 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| int after_bootmem;
 | |
| 
 | |
| early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 | |
| 
 | |
| struct map_range {
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	unsigned page_size_mask;
 | |
| };
 | |
| 
 | |
| static int page_size_mask;
 | |
| 
 | |
| static void __init probe_page_size_mask(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * For pagealloc debugging, identity mapping will use small pages.
 | |
| 	 * This will simplify cpa(), which otherwise needs to support splitting
 | |
| 	 * large pages into small in interrupt context, etc.
 | |
| 	 */
 | |
| 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
 | |
| 		page_size_mask |= 1 << PG_LEVEL_2M;
 | |
| 	else
 | |
| 		direct_gbpages = 0;
 | |
| 
 | |
| 	/* Enable PSE if available */
 | |
| 	if (boot_cpu_has(X86_FEATURE_PSE))
 | |
| 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
 | |
| 
 | |
| 	/* Enable PGE if available */
 | |
| 	__supported_pte_mask &= ~_PAGE_GLOBAL;
 | |
| 	if (boot_cpu_has(X86_FEATURE_PGE)) {
 | |
| 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
 | |
| 		__supported_pte_mask |= _PAGE_GLOBAL;
 | |
| 	}
 | |
| 
 | |
| 	/* By the default is everything supported: */
 | |
| 	__default_kernel_pte_mask = __supported_pte_mask;
 | |
| 	/* Except when with PTI where the kernel is mostly non-Global: */
 | |
| 	if (cpu_feature_enabled(X86_FEATURE_PTI))
 | |
| 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
 | |
| 
 | |
| 	/* Enable 1 GB linear kernel mappings if available: */
 | |
| 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
 | |
| 		printk(KERN_INFO "Using GB pages for direct mapping\n");
 | |
| 		page_size_mask |= 1 << PG_LEVEL_1G;
 | |
| 	} else {
 | |
| 		direct_gbpages = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define INTEL_MATCH(_model) { .vendor  = X86_VENDOR_INTEL,	\
 | |
| 			      .family  = 6,			\
 | |
| 			      .model = _model,			\
 | |
| 			    }
 | |
| /*
 | |
|  * INVLPG may not properly flush Global entries
 | |
|  * on these CPUs when PCIDs are enabled.
 | |
|  */
 | |
| static const struct x86_cpu_id invlpg_miss_ids[] = {
 | |
| 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE   ),
 | |
| 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
 | |
| 	INTEL_MATCH(INTEL_FAM6_ATOM_GRACEMONT ),
 | |
| 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE  ),
 | |
| 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
 | |
| 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static void setup_pcid(void)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_X86_64))
 | |
| 		return;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_PCID))
 | |
| 		return;
 | |
| 
 | |
| 	if (x86_match_cpu(invlpg_miss_ids)) {
 | |
| 		pr_info("Incomplete global flushes, disabling PCID");
 | |
| 		setup_clear_cpu_cap(X86_FEATURE_PCID);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_PGE)) {
 | |
| 		/*
 | |
| 		 * This can't be cr4_set_bits_and_update_boot() -- the
 | |
| 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
 | |
| 		 * do any good anyway.  Despite the name,
 | |
| 		 * cr4_set_bits_and_update_boot() doesn't actually cause
 | |
| 		 * the bits in question to remain set all the way through
 | |
| 		 * the secondary boot asm.
 | |
| 		 *
 | |
| 		 * Instead, we brute-force it and set CR4.PCIDE manually in
 | |
| 		 * start_secondary().
 | |
| 		 */
 | |
| 		cr4_set_bits(X86_CR4_PCIDE);
 | |
| 
 | |
| 		/*
 | |
| 		 * INVPCID's single-context modes (2/3) only work if we set
 | |
| 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
 | |
| 		 * on systems that have X86_CR4_PCIDE clear, or that have
 | |
| 		 * no INVPCID support at all.
 | |
| 		 */
 | |
| 		if (boot_cpu_has(X86_FEATURE_INVPCID))
 | |
| 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * flush_tlb_all(), as currently implemented, won't work if
 | |
| 		 * PCID is on but PGE is not.  Since that combination
 | |
| 		 * doesn't exist on real hardware, there's no reason to try
 | |
| 		 * to fully support it, but it's polite to avoid corrupting
 | |
| 		 * data if we're on an improperly configured VM.
 | |
| 		 */
 | |
| 		setup_clear_cpu_cap(X86_FEATURE_PCID);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| #define NR_RANGE_MR 3
 | |
| #else /* CONFIG_X86_64 */
 | |
| #define NR_RANGE_MR 5
 | |
| #endif
 | |
| 
 | |
| static int __meminit save_mr(struct map_range *mr, int nr_range,
 | |
| 			     unsigned long start_pfn, unsigned long end_pfn,
 | |
| 			     unsigned long page_size_mask)
 | |
| {
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		if (nr_range >= NR_RANGE_MR)
 | |
| 			panic("run out of range for init_memory_mapping\n");
 | |
| 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
 | |
| 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
 | |
| 		mr[nr_range].page_size_mask = page_size_mask;
 | |
| 		nr_range++;
 | |
| 	}
 | |
| 
 | |
| 	return nr_range;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * adjust the page_size_mask for small range to go with
 | |
|  *	big page size instead small one if nearby are ram too.
 | |
|  */
 | |
| static void __ref adjust_range_page_size_mask(struct map_range *mr,
 | |
| 							 int nr_range)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_range; i++) {
 | |
| 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
 | |
| 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
 | |
| 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
 | |
| 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| 			if ((end >> PAGE_SHIFT) > max_low_pfn)
 | |
| 				continue;
 | |
| #endif
 | |
| 
 | |
| 			if (memblock_is_region_memory(start, end - start))
 | |
| 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
 | |
| 		}
 | |
| 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
 | |
| 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
 | |
| 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
 | |
| 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
 | |
| 
 | |
| 			if (memblock_is_region_memory(start, end - start))
 | |
| 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const char *page_size_string(struct map_range *mr)
 | |
| {
 | |
| 	static const char str_1g[] = "1G";
 | |
| 	static const char str_2m[] = "2M";
 | |
| 	static const char str_4m[] = "4M";
 | |
| 	static const char str_4k[] = "4k";
 | |
| 
 | |
| 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
 | |
| 		return str_1g;
 | |
| 	/*
 | |
| 	 * 32-bit without PAE has a 4M large page size.
 | |
| 	 * PG_LEVEL_2M is misnamed, but we can at least
 | |
| 	 * print out the right size in the string.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_X86_32) &&
 | |
| 	    !IS_ENABLED(CONFIG_X86_PAE) &&
 | |
| 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
 | |
| 		return str_4m;
 | |
| 
 | |
| 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
 | |
| 		return str_2m;
 | |
| 
 | |
| 	return str_4k;
 | |
| }
 | |
| 
 | |
| static int __meminit split_mem_range(struct map_range *mr, int nr_range,
 | |
| 				     unsigned long start,
 | |
| 				     unsigned long end)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn, limit_pfn;
 | |
| 	unsigned long pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	limit_pfn = PFN_DOWN(end);
 | |
| 
 | |
| 	/* head if not big page alignment ? */
 | |
| 	pfn = start_pfn = PFN_DOWN(start);
 | |
| #ifdef CONFIG_X86_32
 | |
| 	/*
 | |
| 	 * Don't use a large page for the first 2/4MB of memory
 | |
| 	 * because there are often fixed size MTRRs in there
 | |
| 	 * and overlapping MTRRs into large pages can cause
 | |
| 	 * slowdowns.
 | |
| 	 */
 | |
| 	if (pfn == 0)
 | |
| 		end_pfn = PFN_DOWN(PMD_SIZE);
 | |
| 	else
 | |
| 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 | |
| #else /* CONFIG_X86_64 */
 | |
| 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 | |
| #endif
 | |
| 	if (end_pfn > limit_pfn)
 | |
| 		end_pfn = limit_pfn;
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 | |
| 		pfn = end_pfn;
 | |
| 	}
 | |
| 
 | |
| 	/* big page (2M) range */
 | |
| 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 | |
| #ifdef CONFIG_X86_32
 | |
| 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 | |
| #else /* CONFIG_X86_64 */
 | |
| 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 | |
| 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
 | |
| 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 | |
| #endif
 | |
| 
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 | |
| 				page_size_mask & (1<<PG_LEVEL_2M));
 | |
| 		pfn = end_pfn;
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/* big page (1G) range */
 | |
| 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
 | |
| 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 | |
| 				page_size_mask &
 | |
| 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
 | |
| 		pfn = end_pfn;
 | |
| 	}
 | |
| 
 | |
| 	/* tail is not big page (1G) alignment */
 | |
| 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 | |
| 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 | |
| 	if (start_pfn < end_pfn) {
 | |
| 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
 | |
| 				page_size_mask & (1<<PG_LEVEL_2M));
 | |
| 		pfn = end_pfn;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* tail is not big page (2M) alignment */
 | |
| 	start_pfn = pfn;
 | |
| 	end_pfn = limit_pfn;
 | |
| 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
 | |
| 
 | |
| 	if (!after_bootmem)
 | |
| 		adjust_range_page_size_mask(mr, nr_range);
 | |
| 
 | |
| 	/* try to merge same page size and continuous */
 | |
| 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
 | |
| 		unsigned long old_start;
 | |
| 		if (mr[i].end != mr[i+1].start ||
 | |
| 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
 | |
| 			continue;
 | |
| 		/* move it */
 | |
| 		old_start = mr[i].start;
 | |
| 		memmove(&mr[i], &mr[i+1],
 | |
| 			(nr_range - 1 - i) * sizeof(struct map_range));
 | |
| 		mr[i--].start = old_start;
 | |
| 		nr_range--;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < nr_range; i++)
 | |
| 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
 | |
| 				mr[i].start, mr[i].end - 1,
 | |
| 				page_size_string(&mr[i]));
 | |
| 
 | |
| 	return nr_range;
 | |
| }
 | |
| 
 | |
| struct range pfn_mapped[E820_MAX_ENTRIES];
 | |
| int nr_pfn_mapped;
 | |
| 
 | |
| static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
 | |
| 					     nr_pfn_mapped, start_pfn, end_pfn);
 | |
| 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
 | |
| 
 | |
| 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
 | |
| 
 | |
| 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
 | |
| 		max_low_pfn_mapped = max(max_low_pfn_mapped,
 | |
| 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
 | |
| }
 | |
| 
 | |
| bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nr_pfn_mapped; i++)
 | |
| 		if ((start_pfn >= pfn_mapped[i].start) &&
 | |
| 		    (end_pfn <= pfn_mapped[i].end))
 | |
| 			return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 | |
|  * This runs before bootmem is initialized and gets pages directly from
 | |
|  * the physical memory. To access them they are temporarily mapped.
 | |
|  */
 | |
| unsigned long __ref init_memory_mapping(unsigned long start,
 | |
| 					unsigned long end, pgprot_t prot)
 | |
| {
 | |
| 	struct map_range mr[NR_RANGE_MR];
 | |
| 	unsigned long ret = 0;
 | |
| 	int nr_range, i;
 | |
| 
 | |
| 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
 | |
| 	       start, end - 1);
 | |
| 
 | |
| 	memset(mr, 0, sizeof(mr));
 | |
| 	nr_range = split_mem_range(mr, 0, start, end);
 | |
| 
 | |
| 	for (i = 0; i < nr_range; i++)
 | |
| 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
 | |
| 						   mr[i].page_size_mask,
 | |
| 						   prot);
 | |
| 
 | |
| 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 | |
| 
 | |
| 	return ret >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to iterate through the E820 memory map and create direct mappings
 | |
|  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
 | |
|  * create direct mappings for all pfns from [0 to max_low_pfn) and
 | |
|  * [4GB to max_pfn) because of possible memory holes in high addresses
 | |
|  * that cannot be marked as UC by fixed/variable range MTRRs.
 | |
|  * Depending on the alignment of E820 ranges, this may possibly result
 | |
|  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
 | |
|  *
 | |
|  * init_mem_mapping() calls init_range_memory_mapping() with big range.
 | |
|  * That range would have hole in the middle or ends, and only ram parts
 | |
|  * will be mapped in init_range_memory_mapping().
 | |
|  */
 | |
| static unsigned long __init init_range_memory_mapping(
 | |
| 					   unsigned long r_start,
 | |
| 					   unsigned long r_end)
 | |
| {
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	unsigned long mapped_ram_size = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 | |
| 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
 | |
| 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
 | |
| 		if (start >= end)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * if it is overlapping with brk pgt, we need to
 | |
| 		 * alloc pgt buf from memblock instead.
 | |
| 		 */
 | |
| 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
 | |
| 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
 | |
| 		init_memory_mapping(start, end, PAGE_KERNEL);
 | |
| 		mapped_ram_size += end - start;
 | |
| 		can_use_brk_pgt = true;
 | |
| 	}
 | |
| 
 | |
| 	return mapped_ram_size;
 | |
| }
 | |
| 
 | |
| static unsigned long __init get_new_step_size(unsigned long step_size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Initial mapped size is PMD_SIZE (2M).
 | |
| 	 * We can not set step_size to be PUD_SIZE (1G) yet.
 | |
| 	 * In worse case, when we cross the 1G boundary, and
 | |
| 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
 | |
| 	 * to map 1G range with PTE. Hence we use one less than the
 | |
| 	 * difference of page table level shifts.
 | |
| 	 *
 | |
| 	 * Don't need to worry about overflow in the top-down case, on 32bit,
 | |
| 	 * when step_size is 0, round_down() returns 0 for start, and that
 | |
| 	 * turns it into 0x100000000ULL.
 | |
| 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
 | |
| 	 * needs to be taken into consideration by the code below.
 | |
| 	 */
 | |
| 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memory_map_top_down - Map [map_start, map_end) top down
 | |
|  * @map_start: start address of the target memory range
 | |
|  * @map_end: end address of the target memory range
 | |
|  *
 | |
|  * This function will setup direct mapping for memory range
 | |
|  * [map_start, map_end) in top-down. That said, the page tables
 | |
|  * will be allocated at the end of the memory, and we map the
 | |
|  * memory in top-down.
 | |
|  */
 | |
| static void __init memory_map_top_down(unsigned long map_start,
 | |
| 				       unsigned long map_end)
 | |
| {
 | |
| 	unsigned long real_end, start, last_start;
 | |
| 	unsigned long step_size;
 | |
| 	unsigned long addr;
 | |
| 	unsigned long mapped_ram_size = 0;
 | |
| 
 | |
| 	/* xen has big range in reserved near end of ram, skip it at first.*/
 | |
| 	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
 | |
| 	real_end = addr + PMD_SIZE;
 | |
| 
 | |
| 	/* step_size need to be small so pgt_buf from BRK could cover it */
 | |
| 	step_size = PMD_SIZE;
 | |
| 	max_pfn_mapped = 0; /* will get exact value next */
 | |
| 	min_pfn_mapped = real_end >> PAGE_SHIFT;
 | |
| 	last_start = start = real_end;
 | |
| 
 | |
| 	/*
 | |
| 	 * We start from the top (end of memory) and go to the bottom.
 | |
| 	 * The memblock_find_in_range() gets us a block of RAM from the
 | |
| 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 | |
| 	 * for page table.
 | |
| 	 */
 | |
| 	while (last_start > map_start) {
 | |
| 		if (last_start > step_size) {
 | |
| 			start = round_down(last_start - 1, step_size);
 | |
| 			if (start < map_start)
 | |
| 				start = map_start;
 | |
| 		} else
 | |
| 			start = map_start;
 | |
| 		mapped_ram_size += init_range_memory_mapping(start,
 | |
| 							last_start);
 | |
| 		last_start = start;
 | |
| 		min_pfn_mapped = last_start >> PAGE_SHIFT;
 | |
| 		if (mapped_ram_size >= step_size)
 | |
| 			step_size = get_new_step_size(step_size);
 | |
| 	}
 | |
| 
 | |
| 	if (real_end < map_end)
 | |
| 		init_range_memory_mapping(real_end, map_end);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memory_map_bottom_up - Map [map_start, map_end) bottom up
 | |
|  * @map_start: start address of the target memory range
 | |
|  * @map_end: end address of the target memory range
 | |
|  *
 | |
|  * This function will setup direct mapping for memory range
 | |
|  * [map_start, map_end) in bottom-up. Since we have limited the
 | |
|  * bottom-up allocation above the kernel, the page tables will
 | |
|  * be allocated just above the kernel and we map the memory
 | |
|  * in [map_start, map_end) in bottom-up.
 | |
|  */
 | |
| static void __init memory_map_bottom_up(unsigned long map_start,
 | |
| 					unsigned long map_end)
 | |
| {
 | |
| 	unsigned long next, start;
 | |
| 	unsigned long mapped_ram_size = 0;
 | |
| 	/* step_size need to be small so pgt_buf from BRK could cover it */
 | |
| 	unsigned long step_size = PMD_SIZE;
 | |
| 
 | |
| 	start = map_start;
 | |
| 	min_pfn_mapped = start >> PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * We start from the bottom (@map_start) and go to the top (@map_end).
 | |
| 	 * The memblock_find_in_range() gets us a block of RAM from the
 | |
| 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
 | |
| 	 * for page table.
 | |
| 	 */
 | |
| 	while (start < map_end) {
 | |
| 		if (step_size && map_end - start > step_size) {
 | |
| 			next = round_up(start + 1, step_size);
 | |
| 			if (next > map_end)
 | |
| 				next = map_end;
 | |
| 		} else {
 | |
| 			next = map_end;
 | |
| 		}
 | |
| 
 | |
| 		mapped_ram_size += init_range_memory_mapping(start, next);
 | |
| 		start = next;
 | |
| 
 | |
| 		if (mapped_ram_size >= step_size)
 | |
| 			step_size = get_new_step_size(step_size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init init_mem_mapping(void)
 | |
| {
 | |
| 	unsigned long end;
 | |
| 
 | |
| 	pti_check_boottime_disable();
 | |
| 	probe_page_size_mask();
 | |
| 	setup_pcid();
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	end = max_pfn << PAGE_SHIFT;
 | |
| #else
 | |
| 	end = max_low_pfn << PAGE_SHIFT;
 | |
| #endif
 | |
| 
 | |
| 	/* the ISA range is always mapped regardless of memory holes */
 | |
| 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
 | |
| 
 | |
| 	/* Init the trampoline, possibly with KASLR memory offset */
 | |
| 	init_trampoline();
 | |
| 
 | |
| 	/*
 | |
| 	 * If the allocation is in bottom-up direction, we setup direct mapping
 | |
| 	 * in bottom-up, otherwise we setup direct mapping in top-down.
 | |
| 	 */
 | |
| 	if (memblock_bottom_up()) {
 | |
| 		unsigned long kernel_end = __pa_symbol(_end);
 | |
| 
 | |
| 		/*
 | |
| 		 * we need two separate calls here. This is because we want to
 | |
| 		 * allocate page tables above the kernel. So we first map
 | |
| 		 * [kernel_end, end) to make memory above the kernel be mapped
 | |
| 		 * as soon as possible. And then use page tables allocated above
 | |
| 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
 | |
| 		 */
 | |
| 		memory_map_bottom_up(kernel_end, end);
 | |
| 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
 | |
| 	} else {
 | |
| 		memory_map_top_down(ISA_END_ADDRESS, end);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (max_pfn > max_low_pfn) {
 | |
| 		/* can we preseve max_low_pfn ?*/
 | |
| 		max_low_pfn = max_pfn;
 | |
| 	}
 | |
| #else
 | |
| 	early_ioremap_page_table_range_init();
 | |
| #endif
 | |
| 
 | |
| 	load_cr3(swapper_pg_dir);
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	x86_init.hyper.init_mem_mapping();
 | |
| 
 | |
| 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize an mm_struct to be used during poking and a pointer to be used
 | |
|  * during patching.
 | |
|  */
 | |
| void __init poking_init(void)
 | |
| {
 | |
| 	spinlock_t *ptl;
 | |
| 	pte_t *ptep;
 | |
| 
 | |
| 	poking_mm = copy_init_mm();
 | |
| 	BUG_ON(!poking_mm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Randomize the poking address, but make sure that the following page
 | |
| 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
 | |
| 	 * and adjust the address if the PMD ends after the first one.
 | |
| 	 */
 | |
| 	poking_addr = TASK_UNMAPPED_BASE;
 | |
| 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
 | |
| 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
 | |
| 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
 | |
| 
 | |
| 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
 | |
| 		poking_addr += PAGE_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to trigger the allocation of the page-tables that will be
 | |
| 	 * needed for poking now. Later, poking may be performed in an atomic
 | |
| 	 * section, which might cause allocation to fail.
 | |
| 	 */
 | |
| 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
 | |
| 	BUG_ON(!ptep);
 | |
| 	pte_unmap_unlock(ptep, ptl);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 | |
|  * is valid. The argument is a physical page number.
 | |
|  *
 | |
|  * On x86, access has to be given to the first megabyte of RAM because that
 | |
|  * area traditionally contains BIOS code and data regions used by X, dosemu,
 | |
|  * and similar apps. Since they map the entire memory range, the whole range
 | |
|  * must be allowed (for mapping), but any areas that would otherwise be
 | |
|  * disallowed are flagged as being "zero filled" instead of rejected.
 | |
|  * Access has to be given to non-kernel-ram areas as well, these contain the
 | |
|  * PCI mmio resources as well as potential bios/acpi data regions.
 | |
|  */
 | |
| int devmem_is_allowed(unsigned long pagenr)
 | |
| {
 | |
| 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
 | |
| 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
 | |
| 			!= REGION_DISJOINT) {
 | |
| 		/*
 | |
| 		 * For disallowed memory regions in the low 1MB range,
 | |
| 		 * request that the page be shown as all zeros.
 | |
| 		 */
 | |
| 		if (pagenr < 256)
 | |
| 			return 2;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This must follow RAM test, since System RAM is considered a
 | |
| 	 * restricted resource under CONFIG_STRICT_IOMEM.
 | |
| 	 */
 | |
| 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
 | |
| 		/* Low 1MB bypasses iomem restrictions. */
 | |
| 		if (pagenr < 256)
 | |
| 			return 1;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void free_init_pages(const char *what, unsigned long begin, unsigned long end)
 | |
| {
 | |
| 	unsigned long begin_aligned, end_aligned;
 | |
| 
 | |
| 	/* Make sure boundaries are page aligned */
 | |
| 	begin_aligned = PAGE_ALIGN(begin);
 | |
| 	end_aligned   = end & PAGE_MASK;
 | |
| 
 | |
| 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
 | |
| 		begin = begin_aligned;
 | |
| 		end   = end_aligned;
 | |
| 	}
 | |
| 
 | |
| 	if (begin >= end)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If debugging page accesses then do not free this memory but
 | |
| 	 * mark them not present - any buggy init-section access will
 | |
| 	 * create a kernel page fault:
 | |
| 	 */
 | |
| 	if (debug_pagealloc_enabled()) {
 | |
| 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
 | |
| 			begin, end - 1);
 | |
| 		/*
 | |
| 		 * Inform kmemleak about the hole in the memory since the
 | |
| 		 * corresponding pages will be unmapped.
 | |
| 		 */
 | |
| 		kmemleak_free_part((void *)begin, end - begin);
 | |
| 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We just marked the kernel text read only above, now that
 | |
| 		 * we are going to free part of that, we need to make that
 | |
| 		 * writeable and non-executable first.
 | |
| 		 */
 | |
| 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
 | |
| 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
 | |
| 
 | |
| 		free_reserved_area((void *)begin, (void *)end,
 | |
| 				   POISON_FREE_INITMEM, what);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __weak mem_encrypt_free_decrypted_mem(void) { }
 | |
| 
 | |
| /*
 | |
|  * begin/end can be in the direct map or the "high kernel mapping"
 | |
|  * used for the kernel image only.  free_init_pages() will do the
 | |
|  * right thing for either kind of address.
 | |
|  */
 | |
| void free_kernel_image_pages(const char *what, void *begin, void *end)
 | |
| {
 | |
| 	unsigned long begin_ul = (unsigned long)begin;
 | |
| 	unsigned long end_ul = (unsigned long)end;
 | |
| 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
 | |
| 
 | |
| 	free_init_pages(what, begin_ul, end_ul);
 | |
| 
 | |
| 	/*
 | |
| 	 * PTI maps some of the kernel into userspace.  For performance,
 | |
| 	 * this includes some kernel areas that do not contain secrets.
 | |
| 	 * Those areas might be adjacent to the parts of the kernel image
 | |
| 	 * being freed, which may contain secrets.  Remove the "high kernel
 | |
| 	 * image mapping" for these freed areas, ensuring they are not even
 | |
| 	 * potentially vulnerable to Meltdown regardless of the specific
 | |
| 	 * optimizations PTI is currently using.
 | |
| 	 *
 | |
| 	 * The "noalias" prevents unmapping the direct map alias which is
 | |
| 	 * needed to access the freed pages.
 | |
| 	 *
 | |
| 	 * This is only valid for 64bit kernels. 32bit has only one mapping
 | |
| 	 * which can't be treated in this way for obvious reasons.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
 | |
| 		set_memory_np_noalias(begin_ul, len_pages);
 | |
| }
 | |
| 
 | |
| void __ref free_initmem(void)
 | |
| {
 | |
| 	e820__reallocate_tables();
 | |
| 
 | |
| 	mem_encrypt_free_decrypted_mem();
 | |
| 
 | |
| 	free_kernel_image_pages("unused kernel image (initmem)",
 | |
| 				&__init_begin, &__init_end);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| void __init free_initrd_mem(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/*
 | |
| 	 * end could be not aligned, and We can not align that,
 | |
| 	 * decompresser could be confused by aligned initrd_end
 | |
| 	 * We already reserve the end partial page before in
 | |
| 	 *   - i386_start_kernel()
 | |
| 	 *   - x86_64_start_kernel()
 | |
| 	 *   - relocate_initrd()
 | |
| 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
 | |
| 	 */
 | |
| 	free_init_pages("initrd", start, PAGE_ALIGN(end));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
 | |
|  * and pass it to the MM layer - to help it set zone watermarks more
 | |
|  * accurately.
 | |
|  *
 | |
|  * Done on 64-bit systems only for the time being, although 32-bit systems
 | |
|  * might benefit from this as well.
 | |
|  */
 | |
| void __init memblock_find_dma_reserve(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	u64 nr_pages = 0, nr_free_pages = 0;
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	phys_addr_t start_addr, end_addr;
 | |
| 	int i;
 | |
| 	u64 u;
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate over all memory ranges (free and reserved ones alike),
 | |
| 	 * to calculate the total number of pages in the first 16 MB of RAM:
 | |
| 	 */
 | |
| 	nr_pages = 0;
 | |
| 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 | |
| 		start_pfn = min(start_pfn, MAX_DMA_PFN);
 | |
| 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
 | |
| 
 | |
| 		nr_pages += end_pfn - start_pfn;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate over free memory ranges to calculate the number of free
 | |
| 	 * pages in the DMA zone, while not counting potential partial
 | |
| 	 * pages at the beginning or the end of the range:
 | |
| 	 */
 | |
| 	nr_free_pages = 0;
 | |
| 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
 | |
| 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
 | |
| 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
 | |
| 
 | |
| 		if (start_pfn < end_pfn)
 | |
| 			nr_free_pages += end_pfn - start_pfn;
 | |
| 	}
 | |
| 
 | |
| 	set_dma_reserve(nr_pages - nr_free_pages);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void __init zone_sizes_init(void)
 | |
| {
 | |
| 	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 
 | |
| 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
 | |
| #endif
 | |
| 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
 | |
| #endif
 | |
| 
 | |
| 	free_area_init(max_zone_pfns);
 | |
| }
 | |
| 
 | |
| __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
 | |
| 	.loaded_mm = &init_mm,
 | |
| 	.next_asid = 1,
 | |
| 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
 | |
| };
 | |
| EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
 | |
| 
 | |
| void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
 | |
| {
 | |
| 	/* entry 0 MUST be WB (hardwired to speed up translations) */
 | |
| 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
 | |
| 
 | |
| 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
 | |
| 	__pte2cachemode_tbl[entry] = cache;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SWAP
 | |
| unsigned long max_swapfile_size(void)
 | |
| {
 | |
| 	unsigned long pages;
 | |
| 
 | |
| 	pages = generic_max_swapfile_size();
 | |
| 
 | |
| 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
 | |
| 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
 | |
| 		unsigned long long l1tf_limit = l1tf_pfn_limit();
 | |
| 		/*
 | |
| 		 * We encode swap offsets also with 3 bits below those for pfn
 | |
| 		 * which makes the usable limit higher.
 | |
| 		 */
 | |
| #if CONFIG_PGTABLE_LEVELS > 2
 | |
| 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
 | |
| #endif
 | |
| 		pages = min_t(unsigned long long, l1tf_limit, pages);
 | |
| 	}
 | |
| 	return pages;
 | |
| }
 | |
| #endif
 |