1476 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1476 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  * cpuid support routines
 | |
|  *
 | |
|  * derived from arch/x86/kvm/x86.c
 | |
|  *
 | |
|  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
 | |
|  * Copyright IBM Corporation, 2008
 | |
|  */
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/sched/stat.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <asm/user.h>
 | |
| #include <asm/fpu/xstate.h>
 | |
| #include <asm/sgx.h>
 | |
| #include <asm/cpuid.h>
 | |
| #include "cpuid.h"
 | |
| #include "lapic.h"
 | |
| #include "mmu.h"
 | |
| #include "trace.h"
 | |
| #include "pmu.h"
 | |
| 
 | |
| /*
 | |
|  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
 | |
|  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
 | |
|  */
 | |
| u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
 | |
| EXPORT_SYMBOL_GPL(kvm_cpu_caps);
 | |
| 
 | |
| u32 xstate_required_size(u64 xstate_bv, bool compacted)
 | |
| {
 | |
| 	int feature_bit = 0;
 | |
| 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
 | |
| 
 | |
| 	xstate_bv &= XFEATURE_MASK_EXTEND;
 | |
| 	while (xstate_bv) {
 | |
| 		if (xstate_bv & 0x1) {
 | |
| 		        u32 eax, ebx, ecx, edx, offset;
 | |
| 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
 | |
| 			/* ECX[1]: 64B alignment in compacted form */
 | |
| 			if (compacted)
 | |
| 				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
 | |
| 			else
 | |
| 				offset = ebx;
 | |
| 			ret = max(ret, offset + eax);
 | |
| 		}
 | |
| 
 | |
| 		xstate_bv >>= 1;
 | |
| 		feature_bit++;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This one is tied to SSB in the user API, and not
 | |
|  * visible in /proc/cpuinfo.
 | |
|  */
 | |
| #define KVM_X86_FEATURE_PSFD		(13*32+28) /* Predictive Store Forwarding Disable */
 | |
| 
 | |
| #define F feature_bit
 | |
| #define SF(name) (boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0)
 | |
| 
 | |
| 
 | |
| static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
 | |
| 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u32 index)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *e;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < nent; i++) {
 | |
| 		e = &entries[i];
 | |
| 
 | |
| 		if (e->function == function &&
 | |
| 		    (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index))
 | |
| 			return e;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
 | |
| 			   struct kvm_cpuid_entry2 *entries,
 | |
| 			   int nent)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 	u64 xfeatures;
 | |
| 
 | |
| 	/*
 | |
| 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
 | |
| 	 * canonical address checks; exit if it is ever changed.
 | |
| 	 */
 | |
| 	best = cpuid_entry2_find(entries, nent, 0x80000008, 0);
 | |
| 	if (best) {
 | |
| 		int vaddr_bits = (best->eax & 0xff00) >> 8;
 | |
| 
 | |
| 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Exposing dynamic xfeatures to the guest requires additional
 | |
| 	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
 | |
| 	 */
 | |
| 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 | |
| 	if (!best)
 | |
| 		return 0;
 | |
| 
 | |
| 	xfeatures = best->eax | ((u64)best->edx << 32);
 | |
| 	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
 | |
| 	if (!xfeatures)
 | |
| 		return 0;
 | |
| 
 | |
| 	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
 | |
| }
 | |
| 
 | |
| /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
 | |
| static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 | |
| 				 int nent)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *orig;
 | |
| 	int i;
 | |
| 
 | |
| 	if (nent != vcpu->arch.cpuid_nent)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < nent; i++) {
 | |
| 		orig = &vcpu->arch.cpuid_entries[i];
 | |
| 		if (e2[i].function != orig->function ||
 | |
| 		    e2[i].index != orig->index ||
 | |
| 		    e2[i].flags != orig->flags ||
 | |
| 		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
 | |
| 		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_update_kvm_cpuid_base(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 function;
 | |
| 	struct kvm_cpuid_entry2 *entry;
 | |
| 
 | |
| 	vcpu->arch.kvm_cpuid_base = 0;
 | |
| 
 | |
| 	for_each_possible_hypervisor_cpuid_base(function) {
 | |
| 		entry = kvm_find_cpuid_entry(vcpu, function, 0);
 | |
| 
 | |
| 		if (entry) {
 | |
| 			u32 signature[3];
 | |
| 
 | |
| 			signature[0] = entry->ebx;
 | |
| 			signature[1] = entry->ecx;
 | |
| 			signature[2] = entry->edx;
 | |
| 
 | |
| 			BUILD_BUG_ON(sizeof(signature) > sizeof(KVM_SIGNATURE));
 | |
| 			if (!memcmp(signature, KVM_SIGNATURE, sizeof(signature))) {
 | |
| 				vcpu->arch.kvm_cpuid_base = function;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
 | |
| 					      struct kvm_cpuid_entry2 *entries, int nent)
 | |
| {
 | |
| 	u32 base = vcpu->arch.kvm_cpuid_base;
 | |
| 
 | |
| 	if (!base)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES, 0);
 | |
| }
 | |
| 
 | |
| static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
 | |
| 					     vcpu->arch.cpuid_nent);
 | |
| }
 | |
| 
 | |
| void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * save the feature bitmap to avoid cpuid lookup for every PV
 | |
| 	 * operation
 | |
| 	 */
 | |
| 	if (best)
 | |
| 		vcpu->arch.pv_cpuid.features = best->eax;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate guest's supported XCR0 taking into account guest CPUID data and
 | |
|  * supported_xcr0 (comprised of host configuration and KVM_SUPPORTED_XCR0).
 | |
|  */
 | |
| static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	best = cpuid_entry2_find(entries, nent, 0xd, 0);
 | |
| 	if (!best)
 | |
| 		return 0;
 | |
| 
 | |
| 	return (best->eax | ((u64)best->edx << 32)) & supported_xcr0;
 | |
| }
 | |
| 
 | |
| static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
 | |
| 				       int nent)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 	u64 guest_supported_xcr0 = cpuid_get_supported_xcr0(entries, nent);
 | |
| 
 | |
| 	best = cpuid_entry2_find(entries, nent, 1, 0);
 | |
| 	if (best) {
 | |
| 		/* Update OSXSAVE bit */
 | |
| 		if (boot_cpu_has(X86_FEATURE_XSAVE))
 | |
| 			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
 | |
| 				   kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE));
 | |
| 
 | |
| 		cpuid_entry_change(best, X86_FEATURE_APIC,
 | |
| 			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
 | |
| 	}
 | |
| 
 | |
| 	best = cpuid_entry2_find(entries, nent, 7, 0);
 | |
| 	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
 | |
| 		cpuid_entry_change(best, X86_FEATURE_OSPKE,
 | |
| 				   kvm_read_cr4_bits(vcpu, X86_CR4_PKE));
 | |
| 
 | |
| 	best = cpuid_entry2_find(entries, nent, 0xD, 0);
 | |
| 	if (best)
 | |
| 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
 | |
| 
 | |
| 	best = cpuid_entry2_find(entries, nent, 0xD, 1);
 | |
| 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
 | |
| 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
 | |
| 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
 | |
| 
 | |
| 	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
 | |
| 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
 | |
| 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
 | |
| 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
 | |
| 
 | |
| 	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
 | |
| 		best = cpuid_entry2_find(entries, nent, 0x1, 0);
 | |
| 		if (best)
 | |
| 			cpuid_entry_change(best, X86_FEATURE_MWAIT,
 | |
| 					   vcpu->arch.ia32_misc_enable_msr &
 | |
| 					   MSR_IA32_MISC_ENABLE_MWAIT);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Bits 127:0 of the allowed SECS.ATTRIBUTES (CPUID.0x12.0x1) enumerate
 | |
| 	 * the supported XSAVE Feature Request Mask (XFRM), i.e. the enclave's
 | |
| 	 * requested XCR0 value.  The enclave's XFRM must be a subset of XCRO
 | |
| 	 * at the time of EENTER, thus adjust the allowed XFRM by the guest's
 | |
| 	 * supported XCR0.  Similar to XCR0 handling, FP and SSE are forced to
 | |
| 	 * '1' even on CPUs that don't support XSAVE.
 | |
| 	 */
 | |
| 	best = cpuid_entry2_find(entries, nent, 0x12, 0x1);
 | |
| 	if (best) {
 | |
| 		best->ecx &= guest_supported_xcr0 & 0xffffffff;
 | |
| 		best->edx &= guest_supported_xcr0 >> 32;
 | |
| 		best->ecx |= XFEATURE_MASK_FPSSE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
 | |
| 
 | |
| static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_lapic *apic = vcpu->arch.apic;
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
 | |
| 	if (best && apic) {
 | |
| 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
 | |
| 			apic->lapic_timer.timer_mode_mask = 3 << 17;
 | |
| 		else
 | |
| 			apic->lapic_timer.timer_mode_mask = 1 << 17;
 | |
| 
 | |
| 		kvm_apic_set_version(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.guest_supported_xcr0 =
 | |
| 		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
 | |
| 
 | |
| 	kvm_update_pv_runtime(vcpu);
 | |
| 
 | |
| 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 | |
| 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 | |
| 
 | |
| 	kvm_pmu_refresh(vcpu);
 | |
| 	vcpu->arch.cr4_guest_rsvd_bits =
 | |
| 	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
 | |
| 
 | |
| 	kvm_hv_set_cpuid(vcpu);
 | |
| 
 | |
| 	/* Invoke the vendor callback only after the above state is updated. */
 | |
| 	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Except for the MMU, which needs to do its thing any vendor specific
 | |
| 	 * adjustments to the reserved GPA bits.
 | |
| 	 */
 | |
| 	kvm_mmu_after_set_cpuid(vcpu);
 | |
| }
 | |
| 
 | |
| int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
 | |
| 	if (!best || best->eax < 0x80000008)
 | |
| 		goto not_found;
 | |
| 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 | |
| 	if (best)
 | |
| 		return best->eax & 0xff;
 | |
| not_found:
 | |
| 	return 36;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This "raw" version returns the reserved GPA bits without any adjustments for
 | |
|  * encryption technologies that usurp bits.  The raw mask should be used if and
 | |
|  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
 | |
|  */
 | |
| u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
 | |
| }
 | |
| 
 | |
| static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
 | |
|                         int nent)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	__kvm_update_cpuid_runtime(vcpu, e2, nent);
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
 | |
| 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
 | |
| 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
 | |
| 	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
 | |
| 	 * the core vCPU model on the fly. It would've been better to forbid any
 | |
| 	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
 | |
| 	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
 | |
| 	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
 | |
| 	 * whether the supplied CPUID data is equal to what's already set.
 | |
| 	 */
 | |
| 	if (vcpu->arch.last_vmentry_cpu != -1) {
 | |
| 		r = kvm_cpuid_check_equal(vcpu, e2, nent);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 
 | |
| 		kvfree(e2);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_check_cpuid(vcpu, e2, nent);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	kvfree(vcpu->arch.cpuid_entries);
 | |
| 	vcpu->arch.cpuid_entries = e2;
 | |
| 	vcpu->arch.cpuid_nent = nent;
 | |
| 
 | |
| 	kvm_update_kvm_cpuid_base(vcpu);
 | |
| 	kvm_vcpu_after_set_cpuid(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* when an old userspace process fills a new kernel module */
 | |
| int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 | |
| 			     struct kvm_cpuid *cpuid,
 | |
| 			     struct kvm_cpuid_entry __user *entries)
 | |
| {
 | |
| 	int r, i;
 | |
| 	struct kvm_cpuid_entry *e = NULL;
 | |
| 	struct kvm_cpuid_entry2 *e2 = NULL;
 | |
| 
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	if (cpuid->nent) {
 | |
| 		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
 | |
| 		if (IS_ERR(e))
 | |
| 			return PTR_ERR(e);
 | |
| 
 | |
| 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
 | |
| 		if (!e2) {
 | |
| 			r = -ENOMEM;
 | |
| 			goto out_free_cpuid;
 | |
| 		}
 | |
| 	}
 | |
| 	for (i = 0; i < cpuid->nent; i++) {
 | |
| 		e2[i].function = e[i].function;
 | |
| 		e2[i].eax = e[i].eax;
 | |
| 		e2[i].ebx = e[i].ebx;
 | |
| 		e2[i].ecx = e[i].ecx;
 | |
| 		e2[i].edx = e[i].edx;
 | |
| 		e2[i].index = 0;
 | |
| 		e2[i].flags = 0;
 | |
| 		e2[i].padding[0] = 0;
 | |
| 		e2[i].padding[1] = 0;
 | |
| 		e2[i].padding[2] = 0;
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 | |
| 	if (r)
 | |
| 		kvfree(e2);
 | |
| 
 | |
| out_free_cpuid:
 | |
| 	kvfree(e);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 | |
| 			      struct kvm_cpuid2 *cpuid,
 | |
| 			      struct kvm_cpuid_entry2 __user *entries)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *e2 = NULL;
 | |
| 	int r;
 | |
| 
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	if (cpuid->nent) {
 | |
| 		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
 | |
| 		if (IS_ERR(e2))
 | |
| 			return PTR_ERR(e2);
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
 | |
| 	if (r)
 | |
| 		kvfree(e2);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 | |
| 			      struct kvm_cpuid2 *cpuid,
 | |
| 			      struct kvm_cpuid_entry2 __user *entries)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (cpuid->nent < vcpu->arch.cpuid_nent)
 | |
| 		goto out;
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
 | |
| 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 | |
| 		goto out;
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	cpuid->nent = vcpu->arch.cpuid_nent;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
 | |
| static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
 | |
| {
 | |
| 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
 | |
| 	struct kvm_cpuid_entry2 entry;
 | |
| 
 | |
| 	reverse_cpuid_check(leaf);
 | |
| 
 | |
| 	cpuid_count(cpuid.function, cpuid.index,
 | |
| 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
 | |
| 
 | |
| 	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
 | |
| }
 | |
| 
 | |
| static __always_inline
 | |
| void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
 | |
| {
 | |
| 	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
 | |
| 	BUILD_BUG_ON(leaf < NCAPINTS);
 | |
| 
 | |
| 	kvm_cpu_caps[leaf] = mask;
 | |
| 
 | |
| 	__kvm_cpu_cap_mask(leaf);
 | |
| }
 | |
| 
 | |
| static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
 | |
| {
 | |
| 	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
 | |
| 	BUILD_BUG_ON(leaf >= NCAPINTS);
 | |
| 
 | |
| 	kvm_cpu_caps[leaf] &= mask;
 | |
| 
 | |
| 	__kvm_cpu_cap_mask(leaf);
 | |
| }
 | |
| 
 | |
| void kvm_set_cpu_caps(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	unsigned int f_gbpages = F(GBPAGES);
 | |
| 	unsigned int f_lm = F(LM);
 | |
| 	unsigned int f_xfd = F(XFD);
 | |
| #else
 | |
| 	unsigned int f_gbpages = 0;
 | |
| 	unsigned int f_lm = 0;
 | |
| 	unsigned int f_xfd = 0;
 | |
| #endif
 | |
| 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
 | |
| 		     sizeof(boot_cpu_data.x86_capability));
 | |
| 
 | |
| 	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
 | |
| 	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_1_ECX,
 | |
| 		/*
 | |
| 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
 | |
| 		 * advertised to guests via CPUID!
 | |
| 		 */
 | |
| 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
 | |
| 		0 /* DS-CPL, VMX, SMX, EST */ |
 | |
| 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 | |
| 		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
 | |
| 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
 | |
| 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 | |
| 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
 | |
| 		F(F16C) | F(RDRAND)
 | |
| 	);
 | |
| 	/* KVM emulates x2apic in software irrespective of host support. */
 | |
| 	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_1_EDX,
 | |
| 		F(FPU) | F(VME) | F(DE) | F(PSE) |
 | |
| 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 | |
| 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 | |
| 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 | |
| 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
 | |
| 		0 /* Reserved, DS, ACPI */ | F(MMX) |
 | |
| 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 | |
| 		0 /* HTT, TM, Reserved, PBE */
 | |
| 	);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_7_0_EBX,
 | |
| 		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
 | |
| 		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
 | |
| 		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
 | |
| 		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
 | |
| 		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
 | |
| 		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
 | |
| 		F(AVX512VL));
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_7_ECX,
 | |
| 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
 | |
| 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
 | |
| 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
 | |
| 		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
 | |
| 		F(SGX_LC) | F(BUS_LOCK_DETECT)
 | |
| 	);
 | |
| 	/* Set LA57 based on hardware capability. */
 | |
| 	if (cpuid_ecx(7) & F(LA57))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_LA57);
 | |
| 
 | |
| 	/*
 | |
| 	 * PKU not yet implemented for shadow paging and requires OSPKE
 | |
| 	 * to be set on the host. Clear it if that is not the case
 | |
| 	 */
 | |
| 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
 | |
| 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_7_EDX,
 | |
| 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
 | |
| 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
 | |
| 		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
 | |
| 		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
 | |
| 		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
 | |
| 	);
 | |
| 
 | |
| 	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
 | |
| 	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
 | |
| 	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
 | |
| 	if (boot_cpu_has(X86_FEATURE_STIBP))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
 | |
| 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_7_1_EAX,
 | |
| 		F(AVX_VNNI) | F(AVX512_BF16)
 | |
| 	);
 | |
| 
 | |
| 	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
 | |
| 		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
 | |
| 		F(BHI_CTRL) | F(MCDT_NO)
 | |
| 	);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_D_1_EAX,
 | |
| 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
 | |
| 	);
 | |
| 
 | |
| 	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
 | |
| 		SF(SGX1) | SF(SGX2)
 | |
| 	);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
 | |
| 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
 | |
| 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 | |
| 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
 | |
| 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
 | |
| 		F(TOPOEXT) | 0 /* PERFCTR_CORE */
 | |
| 	);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
 | |
| 		F(FPU) | F(VME) | F(DE) | F(PSE) |
 | |
| 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 | |
| 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 | |
| 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 | |
| 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 | |
| 		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 | |
| 		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
 | |
| 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
 | |
| 	);
 | |
| 
 | |
| 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
 | |
| 		F(CLZERO) | F(XSAVEERPTR) |
 | |
| 		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
 | |
| 		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
 | |
| 		__feature_bit(KVM_X86_FEATURE_PSFD)
 | |
| 	);
 | |
| 
 | |
| 	/*
 | |
| 	 * AMD has separate bits for each SPEC_CTRL bit.
 | |
| 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
 | |
| 	 * record that in cpufeatures so use them.
 | |
| 	 */
 | |
| 	if (boot_cpu_has(X86_FEATURE_IBPB))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
 | |
| 	if (boot_cpu_has(X86_FEATURE_IBRS))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
 | |
| 	if (boot_cpu_has(X86_FEATURE_STIBP))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
 | |
| 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
 | |
| 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
 | |
| 	/*
 | |
| 	 * The preference is to use SPEC CTRL MSR instead of the
 | |
| 	 * VIRT_SPEC MSR.
 | |
| 	 */
 | |
| 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
 | |
| 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 | |
| 
 | |
| 	/*
 | |
| 	 * Hide all SVM features by default, SVM will set the cap bits for
 | |
| 	 * features it emulates and/or exposes for L1.
 | |
| 	 */
 | |
| 	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
 | |
| 		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
 | |
| 		F(SME_COHERENT));
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
 | |
| 		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
 | |
| 		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */
 | |
| 	);
 | |
| 
 | |
| 	kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB);
 | |
| 	kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE);
 | |
| 	kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO);
 | |
| 
 | |
| 	/*
 | |
| 	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
 | |
| 	 * KVM's supported CPUID if the feature is reported as supported by the
 | |
| 	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
 | |
| 	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
 | |
| 	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
 | |
| 	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
 | |
| 	 * the mask with the raw host CPUID, and reporting support in AMD's
 | |
| 	 * leaf can make it easier for userspace to detect the feature.
 | |
| 	 */
 | |
| 	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
 | |
| 	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
 | |
| 	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
 | |
| 
 | |
| 	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
 | |
| 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
 | |
| 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
 | |
| 		F(PMM) | F(PMM_EN)
 | |
| 	);
 | |
| 
 | |
| 	/*
 | |
| 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
 | |
| 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
 | |
| 	 * should never happen, but the guest will likely crash if RDTSCP or
 | |
| 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
 | |
| 	 * the past.  For example, the sanity check may fire if this instance of
 | |
| 	 * KVM is running as L1 on top of an older, broken KVM.
 | |
| 	 */
 | |
| 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
 | |
| 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
 | |
| 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
 | |
| 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
 | |
| 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
 | |
| 
 | |
| struct kvm_cpuid_array {
 | |
| 	struct kvm_cpuid_entry2 *entries;
 | |
| 	int maxnent;
 | |
| 	int nent;
 | |
| };
 | |
| 
 | |
| static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
 | |
| 					      u32 function, u32 index)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *entry;
 | |
| 
 | |
| 	if (array->nent >= array->maxnent)
 | |
| 		return NULL;
 | |
| 
 | |
| 	entry = &array->entries[array->nent++];
 | |
| 
 | |
| 	memset(entry, 0, sizeof(*entry));
 | |
| 	entry->function = function;
 | |
| 	entry->index = index;
 | |
| 	switch (function & 0xC0000000) {
 | |
| 	case 0x40000000:
 | |
| 		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
 | |
| 		return entry;
 | |
| 
 | |
| 	case 0x80000000:
 | |
| 		/*
 | |
| 		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
 | |
| 		 * would result in out-of-bounds calls to do_host_cpuid.
 | |
| 		 */
 | |
| 		{
 | |
| 			static int max_cpuid_80000000;
 | |
| 			if (!READ_ONCE(max_cpuid_80000000))
 | |
| 				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
 | |
| 			if (function > READ_ONCE(max_cpuid_80000000))
 | |
| 				return entry;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	cpuid_count(entry->function, entry->index,
 | |
| 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 | |
| 
 | |
| 	if (cpuid_function_is_indexed(function))
 | |
| 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *entry;
 | |
| 
 | |
| 	if (array->nent >= array->maxnent)
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	entry = &array->entries[array->nent];
 | |
| 	entry->function = func;
 | |
| 	entry->index = 0;
 | |
| 	entry->flags = 0;
 | |
| 
 | |
| 	switch (func) {
 | |
| 	case 0:
 | |
| 		entry->eax = 7;
 | |
| 		++array->nent;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		entry->ecx = F(MOVBE);
 | |
| 		++array->nent;
 | |
| 		break;
 | |
| 	case 7:
 | |
| 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 		entry->eax = 0;
 | |
| 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
 | |
| 			entry->ecx = F(RDPID);
 | |
| 		++array->nent;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *entry;
 | |
| 	int r, i, max_idx;
 | |
| 
 | |
| 	/* all calls to cpuid_count() should be made on the same cpu */
 | |
| 	get_cpu();
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 
 | |
| 	entry = do_host_cpuid(array, function, 0);
 | |
| 	if (!entry)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (function) {
 | |
| 	case 0:
 | |
| 		/* Limited to the highest leaf implemented in KVM. */
 | |
| 		entry->eax = min(entry->eax, 0x1fU);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		cpuid_entry_override(entry, CPUID_1_EDX);
 | |
| 		cpuid_entry_override(entry, CPUID_1_ECX);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		/*
 | |
| 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
 | |
| 		 * CPUID(function=2, index=0) may return different results each
 | |
| 		 * time, with the least-significant byte in EAX enumerating the
 | |
| 		 * number of times software should do CPUID(2, 0).
 | |
| 		 *
 | |
| 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
 | |
| 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
 | |
| 		 * return 01H. Software should ignore this value and not
 | |
| 		 * interpret it as an informational descriptor", while AMD's
 | |
| 		 * APM states that CPUID(2) is reserved.
 | |
| 		 *
 | |
| 		 * WARN if a frankenstein CPU that supports virtualization and
 | |
| 		 * a stateful CPUID.0x2 is encountered.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
 | |
| 		break;
 | |
| 	/* functions 4 and 0x8000001d have additional index. */
 | |
| 	case 4:
 | |
| 	case 0x8000001d:
 | |
| 		/*
 | |
| 		 * Read entries until the cache type in the previous entry is
 | |
| 		 * zero, i.e. indicates an invalid entry.
 | |
| 		 */
 | |
| 		for (i = 1; entry->eax & 0x1f; ++i) {
 | |
| 			entry = do_host_cpuid(array, function, i);
 | |
| 			if (!entry)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 6: /* Thermal management */
 | |
| 		entry->eax = 0x4; /* allow ARAT */
 | |
| 		entry->ebx = 0;
 | |
| 		entry->ecx = 0;
 | |
| 		entry->edx = 0;
 | |
| 		break;
 | |
| 	/* function 7 has additional index. */
 | |
| 	case 7:
 | |
| 		max_idx = entry->eax = min(entry->eax, 2u);
 | |
| 		cpuid_entry_override(entry, CPUID_7_0_EBX);
 | |
| 		cpuid_entry_override(entry, CPUID_7_ECX);
 | |
| 		cpuid_entry_override(entry, CPUID_7_EDX);
 | |
| 
 | |
| 		/* KVM only supports up to 0x7.2, capped above via min(). */
 | |
| 		if (max_idx >= 1) {
 | |
| 			entry = do_host_cpuid(array, function, 1);
 | |
| 			if (!entry)
 | |
| 				goto out;
 | |
| 
 | |
| 			cpuid_entry_override(entry, CPUID_7_1_EAX);
 | |
| 			entry->ebx = 0;
 | |
| 			entry->ecx = 0;
 | |
| 			entry->edx = 0;
 | |
| 		}
 | |
| 		if (max_idx >= 2) {
 | |
| 			entry = do_host_cpuid(array, function, 2);
 | |
| 			if (!entry)
 | |
| 				goto out;
 | |
| 
 | |
| 			cpuid_entry_override(entry, CPUID_7_2_EDX);
 | |
| 			entry->ecx = 0;
 | |
| 			entry->ebx = 0;
 | |
| 			entry->eax = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0xa: { /* Architectural Performance Monitoring */
 | |
| 		struct x86_pmu_capability cap;
 | |
| 		union cpuid10_eax eax;
 | |
| 		union cpuid10_edx edx;
 | |
| 
 | |
| 		if (!static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
 | |
| 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		perf_get_x86_pmu_capability(&cap);
 | |
| 
 | |
| 		/*
 | |
| 		 * The guest architecture pmu is only supported if the architecture
 | |
| 		 * pmu exists on the host and the module parameters allow it.
 | |
| 		 */
 | |
| 		if (!cap.version || !enable_pmu)
 | |
| 			memset(&cap, 0, sizeof(cap));
 | |
| 
 | |
| 		eax.split.version_id = min(cap.version, 2);
 | |
| 		eax.split.num_counters = cap.num_counters_gp;
 | |
| 		eax.split.bit_width = cap.bit_width_gp;
 | |
| 		eax.split.mask_length = cap.events_mask_len;
 | |
| 
 | |
| 		edx.split.num_counters_fixed =
 | |
| 			min(cap.num_counters_fixed, KVM_PMC_MAX_FIXED);
 | |
| 		edx.split.bit_width_fixed = cap.bit_width_fixed;
 | |
| 		if (cap.version)
 | |
| 			edx.split.anythread_deprecated = 1;
 | |
| 		edx.split.reserved1 = 0;
 | |
| 		edx.split.reserved2 = 0;
 | |
| 
 | |
| 		entry->eax = eax.full;
 | |
| 		entry->ebx = cap.events_mask;
 | |
| 		entry->ecx = 0;
 | |
| 		entry->edx = edx.full;
 | |
| 		break;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Per Intel's SDM, the 0x1f is a superset of 0xb,
 | |
| 	 * thus they can be handled by common code.
 | |
| 	 */
 | |
| 	case 0x1f:
 | |
| 	case 0xb:
 | |
| 		/*
 | |
| 		 * Populate entries until the level type (ECX[15:8]) of the
 | |
| 		 * previous entry is zero.  Note, CPUID EAX.{0x1f,0xb}.0 is
 | |
| 		 * the starting entry, filled by the primary do_host_cpuid().
 | |
| 		 */
 | |
| 		for (i = 1; entry->ecx & 0xff00; ++i) {
 | |
| 			entry = do_host_cpuid(array, function, i);
 | |
| 			if (!entry)
 | |
| 				goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0xd: {
 | |
| 		u64 permitted_xcr0 = supported_xcr0 & xstate_get_guest_group_perm();
 | |
| 		u64 permitted_xss = supported_xss;
 | |
| 
 | |
| 		entry->eax &= permitted_xcr0;
 | |
| 		entry->ebx = xstate_required_size(permitted_xcr0, false);
 | |
| 		entry->ecx = entry->ebx;
 | |
| 		entry->edx &= permitted_xcr0 >> 32;
 | |
| 		if (!permitted_xcr0)
 | |
| 			break;
 | |
| 
 | |
| 		entry = do_host_cpuid(array, function, 1);
 | |
| 		if (!entry)
 | |
| 			goto out;
 | |
| 
 | |
| 		cpuid_entry_override(entry, CPUID_D_1_EAX);
 | |
| 		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
 | |
| 			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
 | |
| 							  true);
 | |
| 		else {
 | |
| 			WARN_ON_ONCE(permitted_xss != 0);
 | |
| 			entry->ebx = 0;
 | |
| 		}
 | |
| 		entry->ecx &= permitted_xss;
 | |
| 		entry->edx &= permitted_xss >> 32;
 | |
| 
 | |
| 		for (i = 2; i < 64; ++i) {
 | |
| 			bool s_state;
 | |
| 			if (permitted_xcr0 & BIT_ULL(i))
 | |
| 				s_state = false;
 | |
| 			else if (permitted_xss & BIT_ULL(i))
 | |
| 				s_state = true;
 | |
| 			else
 | |
| 				continue;
 | |
| 
 | |
| 			entry = do_host_cpuid(array, function, i);
 | |
| 			if (!entry)
 | |
| 				goto out;
 | |
| 
 | |
| 			/*
 | |
| 			 * The supported check above should have filtered out
 | |
| 			 * invalid sub-leafs.  Only valid sub-leafs should
 | |
| 			 * reach this point, and they should have a non-zero
 | |
| 			 * save state size.  Furthermore, check whether the
 | |
| 			 * processor agrees with permitted_xcr0/permitted_xss
 | |
| 			 * on whether this is an XCR0- or IA32_XSS-managed area.
 | |
| 			 */
 | |
| 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
 | |
| 				--array->nent;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
 | |
| 				entry->ecx &= ~BIT_ULL(2);
 | |
| 			entry->edx = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case 0x12:
 | |
| 		/* Intel SGX */
 | |
| 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
 | |
| 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
 | |
| 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
 | |
| 		 * are restricted by kernel and KVM capabilities (like most
 | |
| 		 * feature flags), while enclave size is unrestricted.
 | |
| 		 */
 | |
| 		cpuid_entry_override(entry, CPUID_12_EAX);
 | |
| 		entry->ebx &= SGX_MISC_EXINFO;
 | |
| 
 | |
| 		entry = do_host_cpuid(array, function, 1);
 | |
| 		if (!entry)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
 | |
| 		 * feature flags.  Advertise all supported flags, including
 | |
| 		 * privileged attributes that require explicit opt-in from
 | |
| 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
 | |
| 		 * expected to derive it from supported XCR0.
 | |
| 		 */
 | |
| 		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
 | |
| 		entry->ebx &= 0;
 | |
| 		break;
 | |
| 	/* Intel PT */
 | |
| 	case 0x14:
 | |
| 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
 | |
| 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
 | |
| 			if (!do_host_cpuid(array, function, i))
 | |
| 				goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	/* Intel AMX TILE */
 | |
| 	case 0x1d:
 | |
| 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
 | |
| 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
 | |
| 			if (!do_host_cpuid(array, function, i))
 | |
| 				goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0x1e: /* TMUL information */
 | |
| 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
 | |
| 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_CPUID_SIGNATURE: {
 | |
| 		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
 | |
| 		entry->eax = KVM_CPUID_FEATURES;
 | |
| 		entry->ebx = sigptr[0];
 | |
| 		entry->ecx = sigptr[1];
 | |
| 		entry->edx = sigptr[2];
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_CPUID_FEATURES:
 | |
| 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
 | |
| 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
 | |
| 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
 | |
| 			     (1 << KVM_FEATURE_ASYNC_PF) |
 | |
| 			     (1 << KVM_FEATURE_PV_EOI) |
 | |
| 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
 | |
| 			     (1 << KVM_FEATURE_PV_UNHALT) |
 | |
| 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
 | |
| 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
 | |
| 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
 | |
| 			     (1 << KVM_FEATURE_POLL_CONTROL) |
 | |
| 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
 | |
| 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
 | |
| 
 | |
| 		if (sched_info_on())
 | |
| 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
 | |
| 
 | |
| 		entry->ebx = 0;
 | |
| 		entry->ecx = 0;
 | |
| 		entry->edx = 0;
 | |
| 		break;
 | |
| 	case 0x80000000:
 | |
| 		entry->eax = min(entry->eax, 0x80000021);
 | |
| 		/*
 | |
| 		 * Serializing LFENCE is reported in a multitude of ways, and
 | |
| 		 * NullSegClearsBase is not reported in CPUID on Zen2; help
 | |
| 		 * userspace by providing the CPUID leaf ourselves.
 | |
| 		 *
 | |
| 		 * However, only do it if the host has CPUID leaf 0x8000001d.
 | |
| 		 * QEMU thinks that it can query the host blindly for that
 | |
| 		 * CPUID leaf if KVM reports that it supports 0x8000001d or
 | |
| 		 * above.  The processor merrily returns values from the
 | |
| 		 * highest Intel leaf which QEMU tries to use as the guest's
 | |
| 		 * 0x8000001d.  Even worse, this can result in an infinite
 | |
| 		 * loop if said highest leaf has no subleaves indexed by ECX.
 | |
| 		 */
 | |
| 		if (entry->eax >= 0x8000001d &&
 | |
| 		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
 | |
| 		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
 | |
| 			entry->eax = max(entry->eax, 0x80000021);
 | |
| 		break;
 | |
| 	case 0x80000001:
 | |
| 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
 | |
| 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
 | |
| 		break;
 | |
| 	case 0x80000006:
 | |
| 		/* L2 cache and TLB: pass through host info. */
 | |
| 		break;
 | |
| 	case 0x80000007: /* Advanced power management */
 | |
| 		/* invariant TSC is CPUID.80000007H:EDX[8] */
 | |
| 		entry->edx &= (1 << 8);
 | |
| 		/* mask against host */
 | |
| 		entry->edx &= boot_cpu_data.x86_power;
 | |
| 		entry->eax = entry->ebx = entry->ecx = 0;
 | |
| 		break;
 | |
| 	case 0x80000008: {
 | |
| 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
 | |
| 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
 | |
| 		unsigned phys_as = entry->eax & 0xff;
 | |
| 
 | |
| 		/*
 | |
| 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
 | |
| 		 * the guest operates in the same PA space as the host, i.e.
 | |
| 		 * reductions in MAXPHYADDR for memory encryption affect shadow
 | |
| 		 * paging, too.
 | |
| 		 *
 | |
| 		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
 | |
| 		 * provided, use the raw bare metal MAXPHYADDR as reductions to
 | |
| 		 * the HPAs do not affect GPAs.
 | |
| 		 */
 | |
| 		if (!tdp_enabled)
 | |
| 			g_phys_as = boot_cpu_data.x86_phys_bits;
 | |
| 		else if (!g_phys_as)
 | |
| 			g_phys_as = phys_as;
 | |
| 
 | |
| 		entry->eax = g_phys_as | (virt_as << 8);
 | |
| 		entry->edx = 0;
 | |
| 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
 | |
| 		break;
 | |
| 	}
 | |
| 	case 0x8000000A:
 | |
| 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
 | |
| 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		entry->eax = 1; /* SVM revision 1 */
 | |
| 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
 | |
| 				   ASID emulation to nested SVM */
 | |
| 		entry->ecx = 0; /* Reserved */
 | |
| 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
 | |
| 		break;
 | |
| 	case 0x80000019:
 | |
| 		entry->ecx = entry->edx = 0;
 | |
| 		break;
 | |
| 	case 0x8000001a:
 | |
| 	case 0x8000001e:
 | |
| 		break;
 | |
| 	case 0x8000001F:
 | |
| 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
 | |
| 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 		} else {
 | |
| 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
 | |
| 
 | |
| 			/*
 | |
| 			 * Enumerate '0' for "PA bits reduction", the adjusted
 | |
| 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
 | |
| 			 */
 | |
| 			entry->ebx &= ~GENMASK(11, 6);
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0x80000020:
 | |
| 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 		break;
 | |
| 	case 0x80000021:
 | |
| 		entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
 | |
| 		break;
 | |
| 	/*Add support for Centaur's CPUID instruction*/
 | |
| 	case 0xC0000000:
 | |
| 		/*Just support up to 0xC0000004 now*/
 | |
| 		entry->eax = min(entry->eax, 0xC0000004);
 | |
| 		break;
 | |
| 	case 0xC0000001:
 | |
| 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
 | |
| 		break;
 | |
| 	case 3: /* Processor serial number */
 | |
| 	case 5: /* MONITOR/MWAIT */
 | |
| 	case 0xC0000002:
 | |
| 	case 0xC0000003:
 | |
| 	case 0xC0000004:
 | |
| 	default:
 | |
| 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	r = 0;
 | |
| 
 | |
| out:
 | |
| 	put_cpu();
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 | |
| 			 unsigned int type)
 | |
| {
 | |
| 	if (type == KVM_GET_EMULATED_CPUID)
 | |
| 		return __do_cpuid_func_emulated(array, func);
 | |
| 
 | |
| 	return __do_cpuid_func(array, func);
 | |
| }
 | |
| 
 | |
| #define CENTAUR_CPUID_SIGNATURE 0xC0000000
 | |
| 
 | |
| static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
 | |
| 			  unsigned int type)
 | |
| {
 | |
| 	u32 limit;
 | |
| 	int r;
 | |
| 
 | |
| 	if (func == CENTAUR_CPUID_SIGNATURE &&
 | |
| 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
 | |
| 		return 0;
 | |
| 
 | |
| 	r = do_cpuid_func(array, func, type);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	limit = array->entries[array->nent - 1].eax;
 | |
| 	for (func = func + 1; func <= limit; ++func) {
 | |
| 		r = do_cpuid_func(array, func, type);
 | |
| 		if (r)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
 | |
| 				 __u32 num_entries, unsigned int ioctl_type)
 | |
| {
 | |
| 	int i;
 | |
| 	__u32 pad[3];
 | |
| 
 | |
| 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to make sure that ->padding is being passed clean from
 | |
| 	 * userspace in case we want to use it for something in the future.
 | |
| 	 *
 | |
| 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
 | |
| 	 * have to give ourselves satisfied only with the emulated side. /me
 | |
| 	 * sheds a tear.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_entries; i++) {
 | |
| 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
 | |
| 			return true;
 | |
| 
 | |
| 		if (pad[0] || pad[1] || pad[2])
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
 | |
| 			    struct kvm_cpuid_entry2 __user *entries,
 | |
| 			    unsigned int type)
 | |
| {
 | |
| 	static const u32 funcs[] = {
 | |
| 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
 | |
| 	};
 | |
| 
 | |
| 	struct kvm_cpuid_array array = {
 | |
| 		.nent = 0,
 | |
| 	};
 | |
| 	int r, i;
 | |
| 
 | |
| 	if (cpuid->nent < 1)
 | |
| 		return -E2BIG;
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 | |
| 
 | |
| 	if (sanity_check_entries(entries, cpuid->nent, type))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	array.entries = kvcalloc(sizeof(struct kvm_cpuid_entry2), cpuid->nent, GFP_KERNEL);
 | |
| 	if (!array.entries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	array.maxnent = cpuid->nent;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
 | |
| 		r = get_cpuid_func(&array, funcs[i], type);
 | |
| 		if (r)
 | |
| 			goto out_free;
 | |
| 	}
 | |
| 	cpuid->nent = array.nent;
 | |
| 
 | |
| 	if (copy_to_user(entries, array.entries,
 | |
| 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
 | |
| 		r = -EFAULT;
 | |
| 
 | |
| out_free:
 | |
| 	kvfree(array.entries);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 | |
| 					      u32 function, u32 index)
 | |
| {
 | |
| 	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
 | |
| 				 function, index);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
 | |
| 
 | |
| /*
 | |
|  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
 | |
|  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
 | |
|  * returns all zeroes for any undefined leaf, whether or not the leaf is in
 | |
|  * range.  Centaur/VIA follows Intel semantics.
 | |
|  *
 | |
|  * A leaf is considered out-of-range if its function is higher than the maximum
 | |
|  * supported leaf of its associated class or if its associated class does not
 | |
|  * exist.
 | |
|  *
 | |
|  * There are three primary classes to be considered, with their respective
 | |
|  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
 | |
|  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
 | |
|  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
 | |
|  *
 | |
|  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
 | |
|  *  - Hypervisor: 0x40000000 - 0x4fffffff
 | |
|  *  - Extended:   0x80000000 - 0xbfffffff
 | |
|  *  - Centaur:    0xc0000000 - 0xcfffffff
 | |
|  *
 | |
|  * The Hypervisor class is further subdivided into sub-classes that each act as
 | |
|  * their own indepdent class associated with a 0x100 byte range.  E.g. if Qemu
 | |
|  * is advertising support for both HyperV and KVM, the resulting Hypervisor
 | |
|  * CPUID sub-classes are:
 | |
|  *
 | |
|  *  - HyperV:     0x40000000 - 0x400000ff
 | |
|  *  - KVM:        0x40000100 - 0x400001ff
 | |
|  */
 | |
| static struct kvm_cpuid_entry2 *
 | |
| get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *basic, *class;
 | |
| 	u32 function = *fn_ptr;
 | |
| 
 | |
| 	basic = kvm_find_cpuid_entry(vcpu, 0, 0);
 | |
| 	if (!basic)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (function >= 0x40000000 && function <= 0x4fffffff)
 | |
| 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00, 0);
 | |
| 	else if (function >= 0xc0000000)
 | |
| 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000, 0);
 | |
| 	else
 | |
| 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
 | |
| 
 | |
| 	if (class && function <= class->eax)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Leaf specific adjustments are also applied when redirecting to the
 | |
| 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
 | |
| 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
 | |
| 	 * needs to be pulled from CPUID.0xb.1.
 | |
| 	 */
 | |
| 	*fn_ptr = basic->eax;
 | |
| 
 | |
| 	/*
 | |
| 	 * The class does not exist or the requested function is out of range;
 | |
| 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
 | |
| 	 * the original requested leaf is observed!
 | |
| 	 */
 | |
| 	return kvm_find_cpuid_entry(vcpu, basic->eax, index);
 | |
| }
 | |
| 
 | |
| bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
 | |
| 	       u32 *ecx, u32 *edx, bool exact_only)
 | |
| {
 | |
| 	u32 orig_function = *eax, function = *eax, index = *ecx;
 | |
| 	struct kvm_cpuid_entry2 *entry;
 | |
| 	bool exact, used_max_basic = false;
 | |
| 
 | |
| 	entry = kvm_find_cpuid_entry(vcpu, function, index);
 | |
| 	exact = !!entry;
 | |
| 
 | |
| 	if (!entry && !exact_only) {
 | |
| 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
 | |
| 		used_max_basic = !!entry;
 | |
| 	}
 | |
| 
 | |
| 	if (entry) {
 | |
| 		*eax = entry->eax;
 | |
| 		*ebx = entry->ebx;
 | |
| 		*ecx = entry->ecx;
 | |
| 		*edx = entry->edx;
 | |
| 		if (function == 7 && index == 0) {
 | |
| 			u64 data;
 | |
| 		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
 | |
| 			    (data & TSX_CTRL_CPUID_CLEAR))
 | |
| 				*ebx &= ~(F(RTM) | F(HLE));
 | |
| 		}
 | |
| 	} else {
 | |
| 		*eax = *ebx = *ecx = *edx = 0;
 | |
| 		/*
 | |
| 		 * When leaf 0BH or 1FH is defined, CL is pass-through
 | |
| 		 * and EDX is always the x2APIC ID, even for undefined
 | |
| 		 * subleaves. Index 1 will exist iff the leaf is
 | |
| 		 * implemented, so we pass through CL iff leaf 1
 | |
| 		 * exists. EDX can be copied from any existing index.
 | |
| 		 */
 | |
| 		if (function == 0xb || function == 0x1f) {
 | |
| 			entry = kvm_find_cpuid_entry(vcpu, function, 1);
 | |
| 			if (entry) {
 | |
| 				*ecx = index & 0xff;
 | |
| 				*edx = entry->edx;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
 | |
| 			used_max_basic);
 | |
| 	return exact;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_cpuid);
 | |
| 
 | |
| int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 eax, ebx, ecx, edx;
 | |
| 
 | |
| 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
 | |
| 		return 1;
 | |
| 
 | |
| 	eax = kvm_rax_read(vcpu);
 | |
| 	ecx = kvm_rcx_read(vcpu);
 | |
| 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
 | |
| 	kvm_rax_write(vcpu, eax);
 | |
| 	kvm_rbx_write(vcpu, ebx);
 | |
| 	kvm_rcx_write(vcpu, ecx);
 | |
| 	kvm_rdx_write(vcpu, edx);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
 |