1690 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			1690 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| /*
 | |
|  *  Copyright (C) 1991,1992  Linus Torvalds
 | |
|  *
 | |
|  * entry_32.S contains the system-call and low-level fault and trap handling routines.
 | |
|  *
 | |
|  * Stack layout while running C code:
 | |
|  *	ptrace needs to have all registers on the stack.
 | |
|  *	If the order here is changed, it needs to be
 | |
|  *	updated in fork.c:copy_process(), signal.c:do_signal(),
 | |
|  *	ptrace.c and ptrace.h
 | |
|  *
 | |
|  *	 0(%esp) - %ebx
 | |
|  *	 4(%esp) - %ecx
 | |
|  *	 8(%esp) - %edx
 | |
|  *	 C(%esp) - %esi
 | |
|  *	10(%esp) - %edi
 | |
|  *	14(%esp) - %ebp
 | |
|  *	18(%esp) - %eax
 | |
|  *	1C(%esp) - %ds
 | |
|  *	20(%esp) - %es
 | |
|  *	24(%esp) - %fs
 | |
|  *	28(%esp) - %gs		saved iff !CONFIG_X86_32_LAZY_GS
 | |
|  *	2C(%esp) - orig_eax
 | |
|  *	30(%esp) - %eip
 | |
|  *	34(%esp) - %cs
 | |
|  *	38(%esp) - %eflags
 | |
|  *	3C(%esp) - %oldesp
 | |
|  *	40(%esp) - %oldss
 | |
|  */
 | |
| 
 | |
| #include <linux/linkage.h>
 | |
| #include <linux/err.h>
 | |
| #include <asm/thread_info.h>
 | |
| #include <asm/irqflags.h>
 | |
| #include <asm/errno.h>
 | |
| #include <asm/segment.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/percpu.h>
 | |
| #include <asm/processor-flags.h>
 | |
| #include <asm/irq_vectors.h>
 | |
| #include <asm/cpufeatures.h>
 | |
| #include <asm/alternative.h>
 | |
| #include <asm/asm.h>
 | |
| #include <asm/smap.h>
 | |
| #include <asm/frame.h>
 | |
| #include <asm/nospec-branch.h>
 | |
| 
 | |
| 	.section .entry.text, "ax"
 | |
| 
 | |
| /*
 | |
|  * We use macros for low-level operations which need to be overridden
 | |
|  * for paravirtualization.  The following will never clobber any registers:
 | |
|  *   INTERRUPT_RETURN (aka. "iret")
 | |
|  *   GET_CR0_INTO_EAX (aka. "movl %cr0, %eax")
 | |
|  *   ENABLE_INTERRUPTS_SYSEXIT (aka "sti; sysexit").
 | |
|  *
 | |
|  * For DISABLE_INTERRUPTS/ENABLE_INTERRUPTS (aka "cli"/"sti"), you must
 | |
|  * specify what registers can be overwritten (CLBR_NONE, CLBR_EAX/EDX/ECX/ANY).
 | |
|  * Allowing a register to be clobbered can shrink the paravirt replacement
 | |
|  * enough to patch inline, increasing performance.
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_PREEMPTION
 | |
| # define preempt_stop(clobbers)	DISABLE_INTERRUPTS(clobbers); TRACE_IRQS_OFF
 | |
| #else
 | |
| # define preempt_stop(clobbers)
 | |
| #endif
 | |
| 
 | |
| .macro TRACE_IRQS_IRET
 | |
| #ifdef CONFIG_TRACE_IRQFLAGS
 | |
| 	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)     # interrupts off?
 | |
| 	jz	1f
 | |
| 	TRACE_IRQS_ON
 | |
| 1:
 | |
| #endif
 | |
| .endm
 | |
| 
 | |
| #define PTI_SWITCH_MASK         (1 << PAGE_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * User gs save/restore
 | |
|  *
 | |
|  * %gs is used for userland TLS and kernel only uses it for stack
 | |
|  * canary which is required to be at %gs:20 by gcc.  Read the comment
 | |
|  * at the top of stackprotector.h for more info.
 | |
|  *
 | |
|  * Local labels 98 and 99 are used.
 | |
|  */
 | |
| #ifdef CONFIG_X86_32_LAZY_GS
 | |
| 
 | |
|  /* unfortunately push/pop can't be no-op */
 | |
| .macro PUSH_GS
 | |
| 	pushl	$0
 | |
| .endm
 | |
| .macro POP_GS pop=0
 | |
| 	addl	$(4 + \pop), %esp
 | |
| .endm
 | |
| .macro POP_GS_EX
 | |
| .endm
 | |
| 
 | |
|  /* all the rest are no-op */
 | |
| .macro PTGS_TO_GS
 | |
| .endm
 | |
| .macro PTGS_TO_GS_EX
 | |
| .endm
 | |
| .macro GS_TO_REG reg
 | |
| .endm
 | |
| .macro REG_TO_PTGS reg
 | |
| .endm
 | |
| .macro SET_KERNEL_GS reg
 | |
| .endm
 | |
| 
 | |
| #else	/* CONFIG_X86_32_LAZY_GS */
 | |
| 
 | |
| .macro PUSH_GS
 | |
| 	pushl	%gs
 | |
| .endm
 | |
| 
 | |
| .macro POP_GS pop=0
 | |
| 98:	popl	%gs
 | |
|   .if \pop <> 0
 | |
| 	add	$\pop, %esp
 | |
|   .endif
 | |
| .endm
 | |
| .macro POP_GS_EX
 | |
| .pushsection .fixup, "ax"
 | |
| 99:	movl	$0, (%esp)
 | |
| 	jmp	98b
 | |
| .popsection
 | |
| 	_ASM_EXTABLE(98b, 99b)
 | |
| .endm
 | |
| 
 | |
| .macro PTGS_TO_GS
 | |
| 98:	mov	PT_GS(%esp), %gs
 | |
| .endm
 | |
| .macro PTGS_TO_GS_EX
 | |
| .pushsection .fixup, "ax"
 | |
| 99:	movl	$0, PT_GS(%esp)
 | |
| 	jmp	98b
 | |
| .popsection
 | |
| 	_ASM_EXTABLE(98b, 99b)
 | |
| .endm
 | |
| 
 | |
| .macro GS_TO_REG reg
 | |
| 	movl	%gs, \reg
 | |
| .endm
 | |
| .macro REG_TO_PTGS reg
 | |
| 	movl	\reg, PT_GS(%esp)
 | |
| .endm
 | |
| .macro SET_KERNEL_GS reg
 | |
| 	movl	$(__KERNEL_STACK_CANARY), \reg
 | |
| 	movl	\reg, %gs
 | |
| .endm
 | |
| 
 | |
| #endif /* CONFIG_X86_32_LAZY_GS */
 | |
| 
 | |
| /* Unconditionally switch to user cr3 */
 | |
| .macro SWITCH_TO_USER_CR3 scratch_reg:req
 | |
| 	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 | |
| 
 | |
| 	movl	%cr3, \scratch_reg
 | |
| 	orl	$PTI_SWITCH_MASK, \scratch_reg
 | |
| 	movl	\scratch_reg, %cr3
 | |
| .Lend_\@:
 | |
| .endm
 | |
| 
 | |
| .macro BUG_IF_WRONG_CR3 no_user_check=0
 | |
| #ifdef CONFIG_DEBUG_ENTRY
 | |
| 	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 | |
| 	.if \no_user_check == 0
 | |
| 	/* coming from usermode? */
 | |
| 	testl	$USER_SEGMENT_RPL_MASK, PT_CS(%esp)
 | |
| 	jz	.Lend_\@
 | |
| 	.endif
 | |
| 	/* On user-cr3? */
 | |
| 	movl	%cr3, %eax
 | |
| 	testl	$PTI_SWITCH_MASK, %eax
 | |
| 	jnz	.Lend_\@
 | |
| 	/* From userspace with kernel cr3 - BUG */
 | |
| 	ud2
 | |
| .Lend_\@:
 | |
| #endif
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Switch to kernel cr3 if not already loaded and return current cr3 in
 | |
|  * \scratch_reg
 | |
|  */
 | |
| .macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
 | |
| 	ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
 | |
| 	movl	%cr3, \scratch_reg
 | |
| 	/* Test if we are already on kernel CR3 */
 | |
| 	testl	$PTI_SWITCH_MASK, \scratch_reg
 | |
| 	jz	.Lend_\@
 | |
| 	andl	$(~PTI_SWITCH_MASK), \scratch_reg
 | |
| 	movl	\scratch_reg, %cr3
 | |
| 	/* Return original CR3 in \scratch_reg */
 | |
| 	orl	$PTI_SWITCH_MASK, \scratch_reg
 | |
| .Lend_\@:
 | |
| .endm
 | |
| 
 | |
| #define CS_FROM_ENTRY_STACK	(1 << 31)
 | |
| #define CS_FROM_USER_CR3	(1 << 30)
 | |
| #define CS_FROM_KERNEL		(1 << 29)
 | |
| #define CS_FROM_ESPFIX		(1 << 28)
 | |
| 
 | |
| .macro FIXUP_FRAME
 | |
| 	/*
 | |
| 	 * The high bits of the CS dword (__csh) are used for CS_FROM_*.
 | |
| 	 * Clear them in case hardware didn't do this for us.
 | |
| 	 */
 | |
| 	andl	$0x0000ffff, 4*4(%esp)
 | |
| 
 | |
| #ifdef CONFIG_VM86
 | |
| 	testl	$X86_EFLAGS_VM, 5*4(%esp)
 | |
| 	jnz	.Lfrom_usermode_no_fixup_\@
 | |
| #endif
 | |
| 	testl	$USER_SEGMENT_RPL_MASK, 4*4(%esp)
 | |
| 	jnz	.Lfrom_usermode_no_fixup_\@
 | |
| 
 | |
| 	orl	$CS_FROM_KERNEL, 4*4(%esp)
 | |
| 
 | |
| 	/*
 | |
| 	 * When we're here from kernel mode; the (exception) stack looks like:
 | |
| 	 *
 | |
| 	 *  6*4(%esp) - <previous context>
 | |
| 	 *  5*4(%esp) - flags
 | |
| 	 *  4*4(%esp) - cs
 | |
| 	 *  3*4(%esp) - ip
 | |
| 	 *  2*4(%esp) - orig_eax
 | |
| 	 *  1*4(%esp) - gs / function
 | |
| 	 *  0*4(%esp) - fs
 | |
| 	 *
 | |
| 	 * Lets build a 5 entry IRET frame after that, such that struct pt_regs
 | |
| 	 * is complete and in particular regs->sp is correct. This gives us
 | |
| 	 * the original 6 enties as gap:
 | |
| 	 *
 | |
| 	 * 14*4(%esp) - <previous context>
 | |
| 	 * 13*4(%esp) - gap / flags
 | |
| 	 * 12*4(%esp) - gap / cs
 | |
| 	 * 11*4(%esp) - gap / ip
 | |
| 	 * 10*4(%esp) - gap / orig_eax
 | |
| 	 *  9*4(%esp) - gap / gs / function
 | |
| 	 *  8*4(%esp) - gap / fs
 | |
| 	 *  7*4(%esp) - ss
 | |
| 	 *  6*4(%esp) - sp
 | |
| 	 *  5*4(%esp) - flags
 | |
| 	 *  4*4(%esp) - cs
 | |
| 	 *  3*4(%esp) - ip
 | |
| 	 *  2*4(%esp) - orig_eax
 | |
| 	 *  1*4(%esp) - gs / function
 | |
| 	 *  0*4(%esp) - fs
 | |
| 	 */
 | |
| 
 | |
| 	pushl	%ss		# ss
 | |
| 	pushl	%esp		# sp (points at ss)
 | |
| 	addl	$7*4, (%esp)	# point sp back at the previous context
 | |
| 	pushl	7*4(%esp)	# flags
 | |
| 	pushl	7*4(%esp)	# cs
 | |
| 	pushl	7*4(%esp)	# ip
 | |
| 	pushl	7*4(%esp)	# orig_eax
 | |
| 	pushl	7*4(%esp)	# gs / function
 | |
| 	pushl	7*4(%esp)	# fs
 | |
| .Lfrom_usermode_no_fixup_\@:
 | |
| .endm
 | |
| 
 | |
| .macro IRET_FRAME
 | |
| 	/*
 | |
| 	 * We're called with %ds, %es, %fs, and %gs from the interrupted
 | |
| 	 * frame, so we shouldn't use them.  Also, we may be in ESPFIX
 | |
| 	 * mode and therefore have a nonzero SS base and an offset ESP,
 | |
| 	 * so any attempt to access the stack needs to use SS.  (except for
 | |
| 	 * accesses through %esp, which automatically use SS.)
 | |
| 	 */
 | |
| 	testl $CS_FROM_KERNEL, 1*4(%esp)
 | |
| 	jz .Lfinished_frame_\@
 | |
| 
 | |
| 	/*
 | |
| 	 * Reconstruct the 3 entry IRET frame right after the (modified)
 | |
| 	 * regs->sp without lowering %esp in between, such that an NMI in the
 | |
| 	 * middle doesn't scribble our stack.
 | |
| 	 */
 | |
| 	pushl	%eax
 | |
| 	pushl	%ecx
 | |
| 	movl	5*4(%esp), %eax		# (modified) regs->sp
 | |
| 
 | |
| 	movl	4*4(%esp), %ecx		# flags
 | |
| 	movl	%ecx, %ss:-1*4(%eax)
 | |
| 
 | |
| 	movl	3*4(%esp), %ecx		# cs
 | |
| 	andl	$0x0000ffff, %ecx
 | |
| 	movl	%ecx, %ss:-2*4(%eax)
 | |
| 
 | |
| 	movl	2*4(%esp), %ecx		# ip
 | |
| 	movl	%ecx, %ss:-3*4(%eax)
 | |
| 
 | |
| 	movl	1*4(%esp), %ecx		# eax
 | |
| 	movl	%ecx, %ss:-4*4(%eax)
 | |
| 
 | |
| 	popl	%ecx
 | |
| 	lea	-4*4(%eax), %esp
 | |
| 	popl	%eax
 | |
| .Lfinished_frame_\@:
 | |
| .endm
 | |
| 
 | |
| .macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
 | |
| 	cld
 | |
| .if \skip_gs == 0
 | |
| 	PUSH_GS
 | |
| .endif
 | |
| 	pushl	%fs
 | |
| 
 | |
| 	pushl	%eax
 | |
| 	movl	$(__KERNEL_PERCPU), %eax
 | |
| 	movl	%eax, %fs
 | |
| .if \unwind_espfix > 0
 | |
| 	UNWIND_ESPFIX_STACK
 | |
| .endif
 | |
| 	popl	%eax
 | |
| 
 | |
| 	FIXUP_FRAME
 | |
| 	pushl	%es
 | |
| 	pushl	%ds
 | |
| 	pushl	\pt_regs_ax
 | |
| 	pushl	%ebp
 | |
| 	pushl	%edi
 | |
| 	pushl	%esi
 | |
| 	pushl	%edx
 | |
| 	pushl	%ecx
 | |
| 	pushl	%ebx
 | |
| 	movl	$(__USER_DS), %edx
 | |
| 	movl	%edx, %ds
 | |
| 	movl	%edx, %es
 | |
| .if \skip_gs == 0
 | |
| 	SET_KERNEL_GS %edx
 | |
| .endif
 | |
| 	/* Switch to kernel stack if necessary */
 | |
| .if \switch_stacks > 0
 | |
| 	SWITCH_TO_KERNEL_STACK
 | |
| .endif
 | |
| .endm
 | |
| 
 | |
| .macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
 | |
| 	SAVE_ALL unwind_espfix=\unwind_espfix
 | |
| 
 | |
| 	BUG_IF_WRONG_CR3
 | |
| 
 | |
| 	/*
 | |
| 	 * Now switch the CR3 when PTI is enabled.
 | |
| 	 *
 | |
| 	 * We can enter with either user or kernel cr3, the code will
 | |
| 	 * store the old cr3 in \cr3_reg and switches to the kernel cr3
 | |
| 	 * if necessary.
 | |
| 	 */
 | |
| 	SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
 | |
| 
 | |
| .Lend_\@:
 | |
| .endm
 | |
| 
 | |
| .macro RESTORE_INT_REGS
 | |
| 	popl	%ebx
 | |
| 	popl	%ecx
 | |
| 	popl	%edx
 | |
| 	popl	%esi
 | |
| 	popl	%edi
 | |
| 	popl	%ebp
 | |
| 	popl	%eax
 | |
| .endm
 | |
| 
 | |
| .macro RESTORE_REGS pop=0
 | |
| 	RESTORE_INT_REGS
 | |
| 1:	popl	%ds
 | |
| 2:	popl	%es
 | |
| 3:	popl	%fs
 | |
| 	POP_GS \pop
 | |
| 	IRET_FRAME
 | |
| .pushsection .fixup, "ax"
 | |
| 4:	movl	$0, (%esp)
 | |
| 	jmp	1b
 | |
| 5:	movl	$0, (%esp)
 | |
| 	jmp	2b
 | |
| 6:	movl	$0, (%esp)
 | |
| 	jmp	3b
 | |
| .popsection
 | |
| 	_ASM_EXTABLE(1b, 4b)
 | |
| 	_ASM_EXTABLE(2b, 5b)
 | |
| 	_ASM_EXTABLE(3b, 6b)
 | |
| 	POP_GS_EX
 | |
| .endm
 | |
| 
 | |
| .macro RESTORE_ALL_NMI cr3_reg:req pop=0
 | |
| 	/*
 | |
| 	 * Now switch the CR3 when PTI is enabled.
 | |
| 	 *
 | |
| 	 * We enter with kernel cr3 and switch the cr3 to the value
 | |
| 	 * stored on \cr3_reg, which is either a user or a kernel cr3.
 | |
| 	 */
 | |
| 	ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
 | |
| 
 | |
| 	testl	$PTI_SWITCH_MASK, \cr3_reg
 | |
| 	jz	.Lswitched_\@
 | |
| 
 | |
| 	/* User cr3 in \cr3_reg - write it to hardware cr3 */
 | |
| 	movl	\cr3_reg, %cr3
 | |
| 
 | |
| .Lswitched_\@:
 | |
| 
 | |
| 	BUG_IF_WRONG_CR3
 | |
| 
 | |
| 	RESTORE_REGS pop=\pop
 | |
| .endm
 | |
| 
 | |
| .macro CHECK_AND_APPLY_ESPFIX
 | |
| #ifdef CONFIG_X86_ESPFIX32
 | |
| #define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + (GDT_ENTRY_ESPFIX_SS * 8)
 | |
| 
 | |
| 	ALTERNATIVE	"jmp .Lend_\@", "", X86_BUG_ESPFIX
 | |
| 
 | |
| 	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS, SS and CS
 | |
| 	/*
 | |
| 	 * Warning: PT_OLDSS(%esp) contains the wrong/random values if we
 | |
| 	 * are returning to the kernel.
 | |
| 	 * See comments in process.c:copy_thread() for details.
 | |
| 	 */
 | |
| 	movb	PT_OLDSS(%esp), %ah
 | |
| 	movb	PT_CS(%esp), %al
 | |
| 	andl	$(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
 | |
| 	cmpl	$((SEGMENT_LDT << 8) | USER_RPL), %eax
 | |
| 	jne	.Lend_\@	# returning to user-space with LDT SS
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup and switch to ESPFIX stack
 | |
| 	 *
 | |
| 	 * We're returning to userspace with a 16 bit stack. The CPU will not
 | |
| 	 * restore the high word of ESP for us on executing iret... This is an
 | |
| 	 * "official" bug of all the x86-compatible CPUs, which we can work
 | |
| 	 * around to make dosemu and wine happy. We do this by preloading the
 | |
| 	 * high word of ESP with the high word of the userspace ESP while
 | |
| 	 * compensating for the offset by changing to the ESPFIX segment with
 | |
| 	 * a base address that matches for the difference.
 | |
| 	 */
 | |
| 	mov	%esp, %edx			/* load kernel esp */
 | |
| 	mov	PT_OLDESP(%esp), %eax		/* load userspace esp */
 | |
| 	mov	%dx, %ax			/* eax: new kernel esp */
 | |
| 	sub	%eax, %edx			/* offset (low word is 0) */
 | |
| 	shr	$16, %edx
 | |
| 	mov	%dl, GDT_ESPFIX_SS + 4		/* bits 16..23 */
 | |
| 	mov	%dh, GDT_ESPFIX_SS + 7		/* bits 24..31 */
 | |
| 	pushl	$__ESPFIX_SS
 | |
| 	pushl	%eax				/* new kernel esp */
 | |
| 	/*
 | |
| 	 * Disable interrupts, but do not irqtrace this section: we
 | |
| 	 * will soon execute iret and the tracer was already set to
 | |
| 	 * the irqstate after the IRET:
 | |
| 	 */
 | |
| 	DISABLE_INTERRUPTS(CLBR_ANY)
 | |
| 	lss	(%esp), %esp			/* switch to espfix segment */
 | |
| .Lend_\@:
 | |
| #endif /* CONFIG_X86_ESPFIX32 */
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Called with pt_regs fully populated and kernel segments loaded,
 | |
|  * so we can access PER_CPU and use the integer registers.
 | |
|  *
 | |
|  * We need to be very careful here with the %esp switch, because an NMI
 | |
|  * can happen everywhere. If the NMI handler finds itself on the
 | |
|  * entry-stack, it will overwrite the task-stack and everything we
 | |
|  * copied there. So allocate the stack-frame on the task-stack and
 | |
|  * switch to it before we do any copying.
 | |
|  */
 | |
| 
 | |
| .macro SWITCH_TO_KERNEL_STACK
 | |
| 
 | |
| 	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV
 | |
| 
 | |
| 	BUG_IF_WRONG_CR3
 | |
| 
 | |
| 	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
 | |
| 
 | |
| 	/*
 | |
| 	 * %eax now contains the entry cr3 and we carry it forward in
 | |
| 	 * that register for the time this macro runs
 | |
| 	 */
 | |
| 
 | |
| 	/* Are we on the entry stack? Bail out if not! */
 | |
| 	movl	PER_CPU_VAR(cpu_entry_area), %ecx
 | |
| 	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
 | |
| 	subl	%esp, %ecx	/* ecx = (end of entry_stack) - esp */
 | |
| 	cmpl	$SIZEOF_entry_stack, %ecx
 | |
| 	jae	.Lend_\@
 | |
| 
 | |
| 	/* Load stack pointer into %esi and %edi */
 | |
| 	movl	%esp, %esi
 | |
| 	movl	%esi, %edi
 | |
| 
 | |
| 	/* Move %edi to the top of the entry stack */
 | |
| 	andl	$(MASK_entry_stack), %edi
 | |
| 	addl	$(SIZEOF_entry_stack), %edi
 | |
| 
 | |
| 	/* Load top of task-stack into %edi */
 | |
| 	movl	TSS_entry2task_stack(%edi), %edi
 | |
| 
 | |
| 	/* Special case - entry from kernel mode via entry stack */
 | |
| 	testl	$SEGMENT_RPL_MASK, PT_CS(%esp)
 | |
| 	jz	.Lentry_from_kernel_\@
 | |
| 
 | |
| 	/* Bytes to copy */
 | |
| 	movl	$PTREGS_SIZE, %ecx
 | |
| 
 | |
| #ifdef CONFIG_VM86
 | |
| 	testl	$X86_EFLAGS_VM, PT_EFLAGS(%esi)
 | |
| 	jz	.Lcopy_pt_regs_\@
 | |
| 
 | |
| 	/*
 | |
| 	 * Stack-frame contains 4 additional segment registers when
 | |
| 	 * coming from VM86 mode
 | |
| 	 */
 | |
| 	addl	$(4 * 4), %ecx
 | |
| 
 | |
| #endif
 | |
| .Lcopy_pt_regs_\@:
 | |
| 
 | |
| 	/* Allocate frame on task-stack */
 | |
| 	subl	%ecx, %edi
 | |
| 
 | |
| 	/* Switch to task-stack */
 | |
| 	movl	%edi, %esp
 | |
| 
 | |
| 	/*
 | |
| 	 * We are now on the task-stack and can safely copy over the
 | |
| 	 * stack-frame
 | |
| 	 */
 | |
| 	shrl	$2, %ecx
 | |
| 	cld
 | |
| 	rep movsl
 | |
| 
 | |
| 	jmp .Lend_\@
 | |
| 
 | |
| .Lentry_from_kernel_\@:
 | |
| 
 | |
| 	/*
 | |
| 	 * This handles the case when we enter the kernel from
 | |
| 	 * kernel-mode and %esp points to the entry-stack. When this
 | |
| 	 * happens we need to switch to the task-stack to run C code,
 | |
| 	 * but switch back to the entry-stack again when we approach
 | |
| 	 * iret and return to the interrupted code-path. This usually
 | |
| 	 * happens when we hit an exception while restoring user-space
 | |
| 	 * segment registers on the way back to user-space or when the
 | |
| 	 * sysenter handler runs with eflags.tf set.
 | |
| 	 *
 | |
| 	 * When we switch to the task-stack here, we can't trust the
 | |
| 	 * contents of the entry-stack anymore, as the exception handler
 | |
| 	 * might be scheduled out or moved to another CPU. Therefore we
 | |
| 	 * copy the complete entry-stack to the task-stack and set a
 | |
| 	 * marker in the iret-frame (bit 31 of the CS dword) to detect
 | |
| 	 * what we've done on the iret path.
 | |
| 	 *
 | |
| 	 * On the iret path we copy everything back and switch to the
 | |
| 	 * entry-stack, so that the interrupted kernel code-path
 | |
| 	 * continues on the same stack it was interrupted with.
 | |
| 	 *
 | |
| 	 * Be aware that an NMI can happen anytime in this code.
 | |
| 	 *
 | |
| 	 * %esi: Entry-Stack pointer (same as %esp)
 | |
| 	 * %edi: Top of the task stack
 | |
| 	 * %eax: CR3 on kernel entry
 | |
| 	 */
 | |
| 
 | |
| 	/* Calculate number of bytes on the entry stack in %ecx */
 | |
| 	movl	%esi, %ecx
 | |
| 
 | |
| 	/* %ecx to the top of entry-stack */
 | |
| 	andl	$(MASK_entry_stack), %ecx
 | |
| 	addl	$(SIZEOF_entry_stack), %ecx
 | |
| 
 | |
| 	/* Number of bytes on the entry stack to %ecx */
 | |
| 	sub	%esi, %ecx
 | |
| 
 | |
| 	/* Mark stackframe as coming from entry stack */
 | |
| 	orl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
 | |
| 
 | |
| 	/*
 | |
| 	 * Test the cr3 used to enter the kernel and add a marker
 | |
| 	 * so that we can switch back to it before iret.
 | |
| 	 */
 | |
| 	testl	$PTI_SWITCH_MASK, %eax
 | |
| 	jz	.Lcopy_pt_regs_\@
 | |
| 	orl	$CS_FROM_USER_CR3, PT_CS(%esp)
 | |
| 
 | |
| 	/*
 | |
| 	 * %esi and %edi are unchanged, %ecx contains the number of
 | |
| 	 * bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
 | |
| 	 * the stack-frame on task-stack and copy everything over
 | |
| 	 */
 | |
| 	jmp .Lcopy_pt_regs_\@
 | |
| 
 | |
| .Lend_\@:
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Switch back from the kernel stack to the entry stack.
 | |
|  *
 | |
|  * The %esp register must point to pt_regs on the task stack. It will
 | |
|  * first calculate the size of the stack-frame to copy, depending on
 | |
|  * whether we return to VM86 mode or not. With that it uses 'rep movsl'
 | |
|  * to copy the contents of the stack over to the entry stack.
 | |
|  *
 | |
|  * We must be very careful here, as we can't trust the contents of the
 | |
|  * task-stack once we switched to the entry-stack. When an NMI happens
 | |
|  * while on the entry-stack, the NMI handler will switch back to the top
 | |
|  * of the task stack, overwriting our stack-frame we are about to copy.
 | |
|  * Therefore we switch the stack only after everything is copied over.
 | |
|  */
 | |
| .macro SWITCH_TO_ENTRY_STACK
 | |
| 
 | |
| 	ALTERNATIVE     "", "jmp .Lend_\@", X86_FEATURE_XENPV
 | |
| 
 | |
| 	/* Bytes to copy */
 | |
| 	movl	$PTREGS_SIZE, %ecx
 | |
| 
 | |
| #ifdef CONFIG_VM86
 | |
| 	testl	$(X86_EFLAGS_VM), PT_EFLAGS(%esp)
 | |
| 	jz	.Lcopy_pt_regs_\@
 | |
| 
 | |
| 	/* Additional 4 registers to copy when returning to VM86 mode */
 | |
| 	addl    $(4 * 4), %ecx
 | |
| 
 | |
| .Lcopy_pt_regs_\@:
 | |
| #endif
 | |
| 
 | |
| 	/* Initialize source and destination for movsl */
 | |
| 	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
 | |
| 	subl	%ecx, %edi
 | |
| 	movl	%esp, %esi
 | |
| 
 | |
| 	/* Save future stack pointer in %ebx */
 | |
| 	movl	%edi, %ebx
 | |
| 
 | |
| 	/* Copy over the stack-frame */
 | |
| 	shrl	$2, %ecx
 | |
| 	cld
 | |
| 	rep movsl
 | |
| 
 | |
| 	/*
 | |
| 	 * Switch to entry-stack - needs to happen after everything is
 | |
| 	 * copied because the NMI handler will overwrite the task-stack
 | |
| 	 * when on entry-stack
 | |
| 	 */
 | |
| 	movl	%ebx, %esp
 | |
| 
 | |
| .Lend_\@:
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * This macro handles the case when we return to kernel-mode on the iret
 | |
|  * path and have to switch back to the entry stack and/or user-cr3
 | |
|  *
 | |
|  * See the comments below the .Lentry_from_kernel_\@ label in the
 | |
|  * SWITCH_TO_KERNEL_STACK macro for more details.
 | |
|  */
 | |
| .macro PARANOID_EXIT_TO_KERNEL_MODE
 | |
| 
 | |
| 	/*
 | |
| 	 * Test if we entered the kernel with the entry-stack. Most
 | |
| 	 * likely we did not, because this code only runs on the
 | |
| 	 * return-to-kernel path.
 | |
| 	 */
 | |
| 	testl	$CS_FROM_ENTRY_STACK, PT_CS(%esp)
 | |
| 	jz	.Lend_\@
 | |
| 
 | |
| 	/* Unlikely slow-path */
 | |
| 
 | |
| 	/* Clear marker from stack-frame */
 | |
| 	andl	$(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
 | |
| 
 | |
| 	/* Copy the remaining task-stack contents to entry-stack */
 | |
| 	movl	%esp, %esi
 | |
| 	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
 | |
| 
 | |
| 	/* Bytes on the task-stack to ecx */
 | |
| 	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
 | |
| 	subl	%esi, %ecx
 | |
| 
 | |
| 	/* Allocate stack-frame on entry-stack */
 | |
| 	subl	%ecx, %edi
 | |
| 
 | |
| 	/*
 | |
| 	 * Save future stack-pointer, we must not switch until the
 | |
| 	 * copy is done, otherwise the NMI handler could destroy the
 | |
| 	 * contents of the task-stack we are about to copy.
 | |
| 	 */
 | |
| 	movl	%edi, %ebx
 | |
| 
 | |
| 	/* Do the copy */
 | |
| 	shrl	$2, %ecx
 | |
| 	cld
 | |
| 	rep movsl
 | |
| 
 | |
| 	/* Safe to switch to entry-stack now */
 | |
| 	movl	%ebx, %esp
 | |
| 
 | |
| 	/*
 | |
| 	 * We came from entry-stack and need to check if we also need to
 | |
| 	 * switch back to user cr3.
 | |
| 	 */
 | |
| 	testl	$CS_FROM_USER_CR3, PT_CS(%esp)
 | |
| 	jz	.Lend_\@
 | |
| 
 | |
| 	/* Clear marker from stack-frame */
 | |
| 	andl	$(~CS_FROM_USER_CR3), PT_CS(%esp)
 | |
| 
 | |
| 	SWITCH_TO_USER_CR3 scratch_reg=%eax
 | |
| 
 | |
| .Lend_\@:
 | |
| .endm
 | |
| /*
 | |
|  * %eax: prev task
 | |
|  * %edx: next task
 | |
|  */
 | |
| ENTRY(__switch_to_asm)
 | |
| 	/*
 | |
| 	 * Save callee-saved registers
 | |
| 	 * This must match the order in struct inactive_task_frame
 | |
| 	 */
 | |
| 	pushl	%ebp
 | |
| 	pushl	%ebx
 | |
| 	pushl	%edi
 | |
| 	pushl	%esi
 | |
| 	pushfl
 | |
| 
 | |
| 	/* switch stack */
 | |
| 	movl	%esp, TASK_threadsp(%eax)
 | |
| 	movl	TASK_threadsp(%edx), %esp
 | |
| 
 | |
| #ifdef CONFIG_STACKPROTECTOR
 | |
| 	movl	TASK_stack_canary(%edx), %ebx
 | |
| 	movl	%ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * When switching from a shallower to a deeper call stack
 | |
| 	 * the RSB may either underflow or use entries populated
 | |
| 	 * with userspace addresses. On CPUs where those concerns
 | |
| 	 * exist, overwrite the RSB with entries which capture
 | |
| 	 * speculative execution to prevent attack.
 | |
| 	 */
 | |
| 	FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
 | |
| 
 | |
| 	/* restore callee-saved registers */
 | |
| 	popfl
 | |
| 	popl	%esi
 | |
| 	popl	%edi
 | |
| 	popl	%ebx
 | |
| 	popl	%ebp
 | |
| 
 | |
| 	jmp	__switch_to
 | |
| END(__switch_to_asm)
 | |
| 
 | |
| /*
 | |
|  * The unwinder expects the last frame on the stack to always be at the same
 | |
|  * offset from the end of the page, which allows it to validate the stack.
 | |
|  * Calling schedule_tail() directly would break that convention because its an
 | |
|  * asmlinkage function so its argument has to be pushed on the stack.  This
 | |
|  * wrapper creates a proper "end of stack" frame header before the call.
 | |
|  */
 | |
| ENTRY(schedule_tail_wrapper)
 | |
| 	FRAME_BEGIN
 | |
| 
 | |
| 	pushl	%eax
 | |
| 	call	schedule_tail
 | |
| 	popl	%eax
 | |
| 
 | |
| 	FRAME_END
 | |
| 	RET
 | |
| ENDPROC(schedule_tail_wrapper)
 | |
| /*
 | |
|  * A newly forked process directly context switches into this address.
 | |
|  *
 | |
|  * eax: prev task we switched from
 | |
|  * ebx: kernel thread func (NULL for user thread)
 | |
|  * edi: kernel thread arg
 | |
|  */
 | |
| ENTRY(ret_from_fork)
 | |
| 	call	schedule_tail_wrapper
 | |
| 
 | |
| 	testl	%ebx, %ebx
 | |
| 	jnz	1f		/* kernel threads are uncommon */
 | |
| 
 | |
| 2:
 | |
| 	/* When we fork, we trace the syscall return in the child, too. */
 | |
| 	movl    %esp, %eax
 | |
| 	call    syscall_return_slowpath
 | |
| 	jmp     restore_all
 | |
| 
 | |
| 	/* kernel thread */
 | |
| 1:	movl	%edi, %eax
 | |
| 	CALL_NOSPEC %ebx
 | |
| 	/*
 | |
| 	 * A kernel thread is allowed to return here after successfully
 | |
| 	 * calling do_execve().  Exit to userspace to complete the execve()
 | |
| 	 * syscall.
 | |
| 	 */
 | |
| 	movl	$0, PT_EAX(%esp)
 | |
| 	jmp	2b
 | |
| END(ret_from_fork)
 | |
| 
 | |
| /*
 | |
|  * Return to user mode is not as complex as all this looks,
 | |
|  * but we want the default path for a system call return to
 | |
|  * go as quickly as possible which is why some of this is
 | |
|  * less clear than it otherwise should be.
 | |
|  */
 | |
| 
 | |
| 	# userspace resumption stub bypassing syscall exit tracing
 | |
| 	ALIGN
 | |
| ret_from_exception:
 | |
| 	preempt_stop(CLBR_ANY)
 | |
| ret_from_intr:
 | |
| #ifdef CONFIG_VM86
 | |
| 	movl	PT_EFLAGS(%esp), %eax		# mix EFLAGS and CS
 | |
| 	movb	PT_CS(%esp), %al
 | |
| 	andl	$(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
 | |
| #else
 | |
| 	/*
 | |
| 	 * We can be coming here from child spawned by kernel_thread().
 | |
| 	 */
 | |
| 	movl	PT_CS(%esp), %eax
 | |
| 	andl	$SEGMENT_RPL_MASK, %eax
 | |
| #endif
 | |
| 	cmpl	$USER_RPL, %eax
 | |
| 	jb	restore_all_kernel		# not returning to v8086 or userspace
 | |
| 
 | |
| ENTRY(resume_userspace)
 | |
| 	DISABLE_INTERRUPTS(CLBR_ANY)
 | |
| 	TRACE_IRQS_OFF
 | |
| 	movl	%esp, %eax
 | |
| 	call	prepare_exit_to_usermode
 | |
| 	jmp	restore_all
 | |
| END(ret_from_exception)
 | |
| 
 | |
| #ifdef CONFIG_PREEMPTION
 | |
| ENTRY(resume_kernel)
 | |
| 	DISABLE_INTERRUPTS(CLBR_ANY)
 | |
| 	cmpl	$0, PER_CPU_VAR(__preempt_count)
 | |
| 	jnz	restore_all_kernel
 | |
| 	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
 | |
| 	jz	restore_all_kernel
 | |
| 	call	preempt_schedule_irq
 | |
| 	jmp	restore_all_kernel
 | |
| END(resume_kernel)
 | |
| #endif
 | |
| 
 | |
| GLOBAL(__begin_SYSENTER_singlestep_region)
 | |
| /*
 | |
|  * All code from here through __end_SYSENTER_singlestep_region is subject
 | |
|  * to being single-stepped if a user program sets TF and executes SYSENTER.
 | |
|  * There is absolutely nothing that we can do to prevent this from happening
 | |
|  * (thanks Intel!).  To keep our handling of this situation as simple as
 | |
|  * possible, we handle TF just like AC and NT, except that our #DB handler
 | |
|  * will ignore all of the single-step traps generated in this range.
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_XEN_PV
 | |
| /*
 | |
|  * Xen doesn't set %esp to be precisely what the normal SYSENTER
 | |
|  * entry point expects, so fix it up before using the normal path.
 | |
|  */
 | |
| ENTRY(xen_sysenter_target)
 | |
| 	addl	$5*4, %esp			/* remove xen-provided frame */
 | |
| 	jmp	.Lsysenter_past_esp
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * 32-bit SYSENTER entry.
 | |
|  *
 | |
|  * 32-bit system calls through the vDSO's __kernel_vsyscall enter here
 | |
|  * if X86_FEATURE_SEP is available.  This is the preferred system call
 | |
|  * entry on 32-bit systems.
 | |
|  *
 | |
|  * The SYSENTER instruction, in principle, should *only* occur in the
 | |
|  * vDSO.  In practice, a small number of Android devices were shipped
 | |
|  * with a copy of Bionic that inlined a SYSENTER instruction.  This
 | |
|  * never happened in any of Google's Bionic versions -- it only happened
 | |
|  * in a narrow range of Intel-provided versions.
 | |
|  *
 | |
|  * SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
 | |
|  * IF and VM in RFLAGS are cleared (IOW: interrupts are off).
 | |
|  * SYSENTER does not save anything on the stack,
 | |
|  * and does not save old EIP (!!!), ESP, or EFLAGS.
 | |
|  *
 | |
|  * To avoid losing track of EFLAGS.VM (and thus potentially corrupting
 | |
|  * user and/or vm86 state), we explicitly disable the SYSENTER
 | |
|  * instruction in vm86 mode by reprogramming the MSRs.
 | |
|  *
 | |
|  * Arguments:
 | |
|  * eax  system call number
 | |
|  * ebx  arg1
 | |
|  * ecx  arg2
 | |
|  * edx  arg3
 | |
|  * esi  arg4
 | |
|  * edi  arg5
 | |
|  * ebp  user stack
 | |
|  * 0(%ebp) arg6
 | |
|  */
 | |
| ENTRY(entry_SYSENTER_32)
 | |
| 	/*
 | |
| 	 * On entry-stack with all userspace-regs live - save and
 | |
| 	 * restore eflags and %eax to use it as scratch-reg for the cr3
 | |
| 	 * switch.
 | |
| 	 */
 | |
| 	pushfl
 | |
| 	pushl	%eax
 | |
| 	BUG_IF_WRONG_CR3 no_user_check=1
 | |
| 	SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
 | |
| 	popl	%eax
 | |
| 	popfl
 | |
| 
 | |
| 	/* Stack empty again, switch to task stack */
 | |
| 	movl	TSS_entry2task_stack(%esp), %esp
 | |
| 
 | |
| .Lsysenter_past_esp:
 | |
| 	pushl	$__USER_DS		/* pt_regs->ss */
 | |
| 	pushl	%ebp			/* pt_regs->sp (stashed in bp) */
 | |
| 	pushfl				/* pt_regs->flags (except IF = 0) */
 | |
| 	orl	$X86_EFLAGS_IF, (%esp)	/* Fix IF */
 | |
| 	pushl	$__USER_CS		/* pt_regs->cs */
 | |
| 	pushl	$0			/* pt_regs->ip = 0 (placeholder) */
 | |
| 	pushl	%eax			/* pt_regs->orig_ax */
 | |
| 	SAVE_ALL pt_regs_ax=$-ENOSYS	/* save rest, stack already switched */
 | |
| 
 | |
| 	/*
 | |
| 	 * SYSENTER doesn't filter flags, so we need to clear NT, AC
 | |
| 	 * and TF ourselves.  To save a few cycles, we can check whether
 | |
| 	 * either was set instead of doing an unconditional popfq.
 | |
| 	 * This needs to happen before enabling interrupts so that
 | |
| 	 * we don't get preempted with NT set.
 | |
| 	 *
 | |
| 	 * If TF is set, we will single-step all the way to here -- do_debug
 | |
| 	 * will ignore all the traps.  (Yes, this is slow, but so is
 | |
| 	 * single-stepping in general.  This allows us to avoid having
 | |
| 	 * a more complicated code to handle the case where a user program
 | |
| 	 * forces us to single-step through the SYSENTER entry code.)
 | |
| 	 *
 | |
| 	 * NB.: .Lsysenter_fix_flags is a label with the code under it moved
 | |
| 	 * out-of-line as an optimization: NT is unlikely to be set in the
 | |
| 	 * majority of the cases and instead of polluting the I$ unnecessarily,
 | |
| 	 * we're keeping that code behind a branch which will predict as
 | |
| 	 * not-taken and therefore its instructions won't be fetched.
 | |
| 	 */
 | |
| 	testl	$X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
 | |
| 	jnz	.Lsysenter_fix_flags
 | |
| .Lsysenter_flags_fixed:
 | |
| 
 | |
| 	/*
 | |
| 	 * User mode is traced as though IRQs are on, and SYSENTER
 | |
| 	 * turned them off.
 | |
| 	 */
 | |
| 	TRACE_IRQS_OFF
 | |
| 
 | |
| 	movl	%esp, %eax
 | |
| 	call	do_fast_syscall_32
 | |
| 	/* XEN PV guests always use IRET path */
 | |
| 	ALTERNATIVE "testl %eax, %eax; jz .Lsyscall_32_done", \
 | |
| 		    "jmp .Lsyscall_32_done", X86_FEATURE_XENPV
 | |
| 
 | |
| /* Opportunistic SYSEXIT */
 | |
| 	TRACE_IRQS_ON			/* User mode traces as IRQs on. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup entry stack - we keep the pointer in %eax and do the
 | |
| 	 * switch after almost all user-state is restored.
 | |
| 	 */
 | |
| 
 | |
| 	/* Load entry stack pointer and allocate frame for eflags/eax */
 | |
| 	movl	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
 | |
| 	subl	$(2*4), %eax
 | |
| 
 | |
| 	/* Copy eflags and eax to entry stack */
 | |
| 	movl	PT_EFLAGS(%esp), %edi
 | |
| 	movl	PT_EAX(%esp), %esi
 | |
| 	movl	%edi, (%eax)
 | |
| 	movl	%esi, 4(%eax)
 | |
| 
 | |
| 	/* Restore user registers and segments */
 | |
| 	movl	PT_EIP(%esp), %edx	/* pt_regs->ip */
 | |
| 	movl	PT_OLDESP(%esp), %ecx	/* pt_regs->sp */
 | |
| 1:	mov	PT_FS(%esp), %fs
 | |
| 	PTGS_TO_GS
 | |
| 
 | |
| 	popl	%ebx			/* pt_regs->bx */
 | |
| 	addl	$2*4, %esp		/* skip pt_regs->cx and pt_regs->dx */
 | |
| 	popl	%esi			/* pt_regs->si */
 | |
| 	popl	%edi			/* pt_regs->di */
 | |
| 	popl	%ebp			/* pt_regs->bp */
 | |
| 
 | |
| 	/* Switch to entry stack */
 | |
| 	movl	%eax, %esp
 | |
| 
 | |
| 	/* Now ready to switch the cr3 */
 | |
| 	SWITCH_TO_USER_CR3 scratch_reg=%eax
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore all flags except IF. (We restore IF separately because
 | |
| 	 * STI gives a one-instruction window in which we won't be interrupted,
 | |
| 	 * whereas POPF does not.)
 | |
| 	 */
 | |
| 	btrl	$X86_EFLAGS_IF_BIT, (%esp)
 | |
| 	BUG_IF_WRONG_CR3 no_user_check=1
 | |
| 	popfl
 | |
| 	popl	%eax
 | |
| 	CLEAR_CPU_BUFFERS
 | |
| 
 | |
| 	/*
 | |
| 	 * Return back to the vDSO, which will pop ecx and edx.
 | |
| 	 * Don't bother with DS and ES (they already contain __USER_DS).
 | |
| 	 */
 | |
| 	sti
 | |
| 	sysexit
 | |
| 
 | |
| .pushsection .fixup, "ax"
 | |
| 2:	movl	$0, PT_FS(%esp)
 | |
| 	jmp	1b
 | |
| .popsection
 | |
| 	_ASM_EXTABLE(1b, 2b)
 | |
| 	PTGS_TO_GS_EX
 | |
| 
 | |
| .Lsysenter_fix_flags:
 | |
| 	pushl	$X86_EFLAGS_FIXED
 | |
| 	popfl
 | |
| 	jmp	.Lsysenter_flags_fixed
 | |
| GLOBAL(__end_SYSENTER_singlestep_region)
 | |
| ENDPROC(entry_SYSENTER_32)
 | |
| 
 | |
| /*
 | |
|  * 32-bit legacy system call entry.
 | |
|  *
 | |
|  * 32-bit x86 Linux system calls traditionally used the INT $0x80
 | |
|  * instruction.  INT $0x80 lands here.
 | |
|  *
 | |
|  * This entry point can be used by any 32-bit perform system calls.
 | |
|  * Instances of INT $0x80 can be found inline in various programs and
 | |
|  * libraries.  It is also used by the vDSO's __kernel_vsyscall
 | |
|  * fallback for hardware that doesn't support a faster entry method.
 | |
|  * Restarted 32-bit system calls also fall back to INT $0x80
 | |
|  * regardless of what instruction was originally used to do the system
 | |
|  * call.  (64-bit programs can use INT $0x80 as well, but they can
 | |
|  * only run on 64-bit kernels and therefore land in
 | |
|  * entry_INT80_compat.)
 | |
|  *
 | |
|  * This is considered a slow path.  It is not used by most libc
 | |
|  * implementations on modern hardware except during process startup.
 | |
|  *
 | |
|  * Arguments:
 | |
|  * eax  system call number
 | |
|  * ebx  arg1
 | |
|  * ecx  arg2
 | |
|  * edx  arg3
 | |
|  * esi  arg4
 | |
|  * edi  arg5
 | |
|  * ebp  arg6
 | |
|  */
 | |
| ENTRY(entry_INT80_32)
 | |
| 	ASM_CLAC
 | |
| 	pushl	%eax			/* pt_regs->orig_ax */
 | |
| 
 | |
| 	SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1	/* save rest */
 | |
| 
 | |
| 	/*
 | |
| 	 * User mode is traced as though IRQs are on, and the interrupt gate
 | |
| 	 * turned them off.
 | |
| 	 */
 | |
| 	TRACE_IRQS_OFF
 | |
| 
 | |
| 	movl	%esp, %eax
 | |
| 	call	do_int80_syscall_32
 | |
| .Lsyscall_32_done:
 | |
| 
 | |
| restore_all:
 | |
| 	TRACE_IRQS_IRET
 | |
| 	SWITCH_TO_ENTRY_STACK
 | |
| .Lrestore_all_notrace:
 | |
| 	CHECK_AND_APPLY_ESPFIX
 | |
| .Lrestore_nocheck:
 | |
| 	/* Switch back to user CR3 */
 | |
| 	SWITCH_TO_USER_CR3 scratch_reg=%eax
 | |
| 
 | |
| 	BUG_IF_WRONG_CR3
 | |
| 
 | |
| 	/* Restore user state */
 | |
| 	RESTORE_REGS pop=4			# skip orig_eax/error_code
 | |
| 	CLEAR_CPU_BUFFERS
 | |
| .Lirq_return:
 | |
| 	/*
 | |
| 	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
 | |
| 	 * when returning from IPI handler and when returning from
 | |
| 	 * scheduler to user-space.
 | |
| 	 */
 | |
| 	INTERRUPT_RETURN
 | |
| 
 | |
| restore_all_kernel:
 | |
| #ifdef CONFIG_PREEMPT
 | |
| 	DISABLE_INTERRUPTS(CLBR_ANY)
 | |
| 	cmpl	$0, PER_CPU_VAR(__preempt_count)
 | |
| 	jnz	.Lno_preempt
 | |
| 	testl	$X86_EFLAGS_IF, PT_EFLAGS(%esp)	# interrupts off (exception path) ?
 | |
| 	jz	.Lno_preempt
 | |
| 	call	preempt_schedule_irq
 | |
| .Lno_preempt:
 | |
| #endif
 | |
| 	TRACE_IRQS_IRET
 | |
| 	PARANOID_EXIT_TO_KERNEL_MODE
 | |
| 	BUG_IF_WRONG_CR3
 | |
| 	RESTORE_REGS 4
 | |
| 	jmp	.Lirq_return
 | |
| 
 | |
| .section .fixup, "ax"
 | |
| ENTRY(iret_exc	)
 | |
| 	pushl	$0				# no error code
 | |
| 	pushl	$do_iret_error
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_ENTRY
 | |
| 	/*
 | |
| 	 * The stack-frame here is the one that iret faulted on, so its a
 | |
| 	 * return-to-user frame. We are on kernel-cr3 because we come here from
 | |
| 	 * the fixup code. This confuses the CR3 checker, so switch to user-cr3
 | |
| 	 * as the checker expects it.
 | |
| 	 */
 | |
| 	pushl	%eax
 | |
| 	SWITCH_TO_USER_CR3 scratch_reg=%eax
 | |
| 	popl	%eax
 | |
| #endif
 | |
| 
 | |
| 	jmp	common_exception
 | |
| .previous
 | |
| 	_ASM_EXTABLE(.Lirq_return, iret_exc)
 | |
| ENDPROC(entry_INT80_32)
 | |
| 
 | |
| .macro FIXUP_ESPFIX_STACK
 | |
| /*
 | |
|  * Switch back for ESPFIX stack to the normal zerobased stack
 | |
|  *
 | |
|  * We can't call C functions using the ESPFIX stack. This code reads
 | |
|  * the high word of the segment base from the GDT and swiches to the
 | |
|  * normal stack and adjusts ESP with the matching offset.
 | |
|  */
 | |
| #ifdef CONFIG_X86_ESPFIX32
 | |
| 	/* fixup the stack */
 | |
| 	mov	GDT_ESPFIX_SS + 4, %al /* bits 16..23 */
 | |
| 	mov	GDT_ESPFIX_SS + 7, %ah /* bits 24..31 */
 | |
| 	shl	$16, %eax
 | |
| 	addl	%esp, %eax			/* the adjusted stack pointer */
 | |
| 	pushl	$__KERNEL_DS
 | |
| 	pushl	%eax
 | |
| 	lss	(%esp), %esp			/* switch to the normal stack segment */
 | |
| #endif
 | |
| .endm
 | |
| 
 | |
| .macro UNWIND_ESPFIX_STACK
 | |
| 	/* It's safe to clobber %eax, all other regs need to be preserved */
 | |
| #ifdef CONFIG_X86_ESPFIX32
 | |
| 	movl	%ss, %eax
 | |
| 	/* see if on espfix stack */
 | |
| 	cmpw	$__ESPFIX_SS, %ax
 | |
| 	jne	.Lno_fixup_\@
 | |
| 	/* switch to normal stack */
 | |
| 	FIXUP_ESPFIX_STACK
 | |
| .Lno_fixup_\@:
 | |
| #endif
 | |
| .endm
 | |
| 
 | |
| /*
 | |
|  * Build the entry stubs with some assembler magic.
 | |
|  * We pack 1 stub into every 8-byte block.
 | |
|  */
 | |
| 	.align 8
 | |
| ENTRY(irq_entries_start)
 | |
|     vector=FIRST_EXTERNAL_VECTOR
 | |
|     .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
 | |
| 	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
 | |
|     vector=vector+1
 | |
| 	jmp	common_interrupt
 | |
| 	.align	8
 | |
|     .endr
 | |
| END(irq_entries_start)
 | |
| 
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| 	.align 8
 | |
| ENTRY(spurious_entries_start)
 | |
|     vector=FIRST_SYSTEM_VECTOR
 | |
|     .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
 | |
| 	pushl	$(~vector+0x80)			/* Note: always in signed byte range */
 | |
|     vector=vector+1
 | |
| 	jmp	common_spurious
 | |
| 	.align	8
 | |
|     .endr
 | |
| END(spurious_entries_start)
 | |
| 
 | |
| common_spurious:
 | |
| 	ASM_CLAC
 | |
| 	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
 | |
| 	SAVE_ALL switch_stacks=1
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 	TRACE_IRQS_OFF
 | |
| 	movl	%esp, %eax
 | |
| 	call	smp_spurious_interrupt
 | |
| 	jmp	ret_from_intr
 | |
| ENDPROC(common_spurious)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * the CPU automatically disables interrupts when executing an IRQ vector,
 | |
|  * so IRQ-flags tracing has to follow that:
 | |
|  */
 | |
| 	.p2align CONFIG_X86_L1_CACHE_SHIFT
 | |
| common_interrupt:
 | |
| 	ASM_CLAC
 | |
| 	addl	$-0x80, (%esp)			/* Adjust vector into the [-256, -1] range */
 | |
| 
 | |
| 	SAVE_ALL switch_stacks=1
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 	TRACE_IRQS_OFF
 | |
| 	movl	%esp, %eax
 | |
| 	call	do_IRQ
 | |
| 	jmp	ret_from_intr
 | |
| ENDPROC(common_interrupt)
 | |
| 
 | |
| #define BUILD_INTERRUPT3(name, nr, fn)			\
 | |
| ENTRY(name)						\
 | |
| 	ASM_CLAC;					\
 | |
| 	pushl	$~(nr);					\
 | |
| 	SAVE_ALL switch_stacks=1;			\
 | |
| 	ENCODE_FRAME_POINTER;				\
 | |
| 	TRACE_IRQS_OFF					\
 | |
| 	movl	%esp, %eax;				\
 | |
| 	call	fn;					\
 | |
| 	jmp	ret_from_intr;				\
 | |
| ENDPROC(name)
 | |
| 
 | |
| #define BUILD_INTERRUPT(name, nr)		\
 | |
| 	BUILD_INTERRUPT3(name, nr, smp_##name);	\
 | |
| 
 | |
| /* The include is where all of the SMP etc. interrupts come from */
 | |
| #include <asm/entry_arch.h>
 | |
| 
 | |
| ENTRY(coprocessor_error)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0
 | |
| 	pushl	$do_coprocessor_error
 | |
| 	jmp	common_exception
 | |
| END(coprocessor_error)
 | |
| 
 | |
| ENTRY(simd_coprocessor_error)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0
 | |
| #ifdef CONFIG_X86_INVD_BUG
 | |
| 	/* AMD 486 bug: invd from userspace calls exception 19 instead of #GP */
 | |
| 	ALTERNATIVE "pushl	$do_general_protection",	\
 | |
| 		    "pushl	$do_simd_coprocessor_error",	\
 | |
| 		    X86_FEATURE_XMM
 | |
| #else
 | |
| 	pushl	$do_simd_coprocessor_error
 | |
| #endif
 | |
| 	jmp	common_exception
 | |
| END(simd_coprocessor_error)
 | |
| 
 | |
| ENTRY(device_not_available)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$-1				# mark this as an int
 | |
| 	pushl	$do_device_not_available
 | |
| 	jmp	common_exception
 | |
| END(device_not_available)
 | |
| 
 | |
| #ifdef CONFIG_PARAVIRT
 | |
| ENTRY(native_iret)
 | |
| 	iret
 | |
| 	_ASM_EXTABLE(native_iret, iret_exc)
 | |
| END(native_iret)
 | |
| #endif
 | |
| 
 | |
| ENTRY(overflow)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0
 | |
| 	pushl	$do_overflow
 | |
| 	jmp	common_exception
 | |
| END(overflow)
 | |
| 
 | |
| ENTRY(bounds)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0
 | |
| 	pushl	$do_bounds
 | |
| 	jmp	common_exception
 | |
| END(bounds)
 | |
| 
 | |
| ENTRY(invalid_op)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0
 | |
| 	pushl	$do_invalid_op
 | |
| 	jmp	common_exception
 | |
| END(invalid_op)
 | |
| 
 | |
| ENTRY(coprocessor_segment_overrun)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0
 | |
| 	pushl	$do_coprocessor_segment_overrun
 | |
| 	jmp	common_exception
 | |
| END(coprocessor_segment_overrun)
 | |
| 
 | |
| ENTRY(invalid_TSS)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$do_invalid_TSS
 | |
| 	jmp	common_exception
 | |
| END(invalid_TSS)
 | |
| 
 | |
| ENTRY(segment_not_present)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$do_segment_not_present
 | |
| 	jmp	common_exception
 | |
| END(segment_not_present)
 | |
| 
 | |
| ENTRY(stack_segment)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$do_stack_segment
 | |
| 	jmp	common_exception
 | |
| END(stack_segment)
 | |
| 
 | |
| ENTRY(alignment_check)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$do_alignment_check
 | |
| 	jmp	common_exception
 | |
| END(alignment_check)
 | |
| 
 | |
| ENTRY(divide_error)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0				# no error code
 | |
| 	pushl	$do_divide_error
 | |
| 	jmp	common_exception
 | |
| END(divide_error)
 | |
| 
 | |
| #ifdef CONFIG_X86_MCE
 | |
| ENTRY(machine_check)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0
 | |
| 	pushl	machine_check_vector
 | |
| 	jmp	common_exception
 | |
| END(machine_check)
 | |
| #endif
 | |
| 
 | |
| ENTRY(spurious_interrupt_bug)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$0
 | |
| 	pushl	$do_spurious_interrupt_bug
 | |
| 	jmp	common_exception
 | |
| END(spurious_interrupt_bug)
 | |
| 
 | |
| #ifdef CONFIG_XEN_PV
 | |
| ENTRY(xen_hypervisor_callback)
 | |
| 	/*
 | |
| 	 * Check to see if we got the event in the critical
 | |
| 	 * region in xen_iret_direct, after we've reenabled
 | |
| 	 * events and checked for pending events.  This simulates
 | |
| 	 * iret instruction's behaviour where it delivers a
 | |
| 	 * pending interrupt when enabling interrupts:
 | |
| 	 */
 | |
| 	cmpl	$xen_iret_start_crit, (%esp)
 | |
| 	jb	1f
 | |
| 	cmpl	$xen_iret_end_crit, (%esp)
 | |
| 	jae	1f
 | |
| 	call	xen_iret_crit_fixup
 | |
| 1:
 | |
| 	pushl	$-1				/* orig_ax = -1 => not a system call */
 | |
| 	SAVE_ALL
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 	TRACE_IRQS_OFF
 | |
| 	mov	%esp, %eax
 | |
| 	call	xen_evtchn_do_upcall
 | |
| #ifndef CONFIG_PREEMPTION
 | |
| 	call	xen_maybe_preempt_hcall
 | |
| #endif
 | |
| 	jmp	ret_from_intr
 | |
| ENDPROC(xen_hypervisor_callback)
 | |
| 
 | |
| /*
 | |
|  * Hypervisor uses this for application faults while it executes.
 | |
|  * We get here for two reasons:
 | |
|  *  1. Fault while reloading DS, ES, FS or GS
 | |
|  *  2. Fault while executing IRET
 | |
|  * Category 1 we fix up by reattempting the load, and zeroing the segment
 | |
|  * register if the load fails.
 | |
|  * Category 2 we fix up by jumping to do_iret_error. We cannot use the
 | |
|  * normal Linux return path in this case because if we use the IRET hypercall
 | |
|  * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 | |
|  * We distinguish between categories by maintaining a status value in EAX.
 | |
|  */
 | |
| ENTRY(xen_failsafe_callback)
 | |
| 	pushl	%eax
 | |
| 	movl	$1, %eax
 | |
| 1:	mov	4(%esp), %ds
 | |
| 2:	mov	8(%esp), %es
 | |
| 3:	mov	12(%esp), %fs
 | |
| 4:	mov	16(%esp), %gs
 | |
| 	/* EAX == 0 => Category 1 (Bad segment)
 | |
| 	   EAX != 0 => Category 2 (Bad IRET) */
 | |
| 	testl	%eax, %eax
 | |
| 	popl	%eax
 | |
| 	lea	16(%esp), %esp
 | |
| 	jz	5f
 | |
| 	jmp	iret_exc
 | |
| 5:	pushl	$-1				/* orig_ax = -1 => not a system call */
 | |
| 	SAVE_ALL
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 	jmp	ret_from_exception
 | |
| 
 | |
| .section .fixup, "ax"
 | |
| 6:	xorl	%eax, %eax
 | |
| 	movl	%eax, 4(%esp)
 | |
| 	jmp	1b
 | |
| 7:	xorl	%eax, %eax
 | |
| 	movl	%eax, 8(%esp)
 | |
| 	jmp	2b
 | |
| 8:	xorl	%eax, %eax
 | |
| 	movl	%eax, 12(%esp)
 | |
| 	jmp	3b
 | |
| 9:	xorl	%eax, %eax
 | |
| 	movl	%eax, 16(%esp)
 | |
| 	jmp	4b
 | |
| .previous
 | |
| 	_ASM_EXTABLE(1b, 6b)
 | |
| 	_ASM_EXTABLE(2b, 7b)
 | |
| 	_ASM_EXTABLE(3b, 8b)
 | |
| 	_ASM_EXTABLE(4b, 9b)
 | |
| ENDPROC(xen_failsafe_callback)
 | |
| #endif /* CONFIG_XEN_PV */
 | |
| 
 | |
| #ifdef CONFIG_XEN_PVHVM
 | |
| BUILD_INTERRUPT3(xen_hvm_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
 | |
| 		 xen_evtchn_do_upcall)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HYPERV)
 | |
| 
 | |
| BUILD_INTERRUPT3(hyperv_callback_vector, HYPERVISOR_CALLBACK_VECTOR,
 | |
| 		 hyperv_vector_handler)
 | |
| 
 | |
| BUILD_INTERRUPT3(hyperv_reenlightenment_vector, HYPERV_REENLIGHTENMENT_VECTOR,
 | |
| 		 hyperv_reenlightenment_intr)
 | |
| 
 | |
| BUILD_INTERRUPT3(hv_stimer0_callback_vector, HYPERV_STIMER0_VECTOR,
 | |
| 		 hv_stimer0_vector_handler)
 | |
| 
 | |
| #endif /* CONFIG_HYPERV */
 | |
| 
 | |
| #ifdef CONFIG_KVM_GUEST
 | |
| BUILD_INTERRUPT3(kvm_async_pf_vector, HYPERVISOR_CALLBACK_VECTOR,
 | |
| 		 kvm_async_pf_intr)
 | |
| #endif
 | |
| 
 | |
| ENTRY(page_fault)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$do_page_fault
 | |
| 	ALIGN
 | |
| 	jmp common_exception
 | |
| END(page_fault)
 | |
| 
 | |
| common_exception_read_cr2:
 | |
| 	/* the function address is in %gs's slot on the stack */
 | |
| 	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
 | |
| 
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 
 | |
| 	/* fixup %gs */
 | |
| 	GS_TO_REG %ecx
 | |
| 	movl	PT_GS(%esp), %edi
 | |
| 	REG_TO_PTGS %ecx
 | |
| 	SET_KERNEL_GS %ecx
 | |
| 
 | |
| 	GET_CR2_INTO(%ecx)			# might clobber %eax
 | |
| 
 | |
| 	/* fixup orig %eax */
 | |
| 	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
 | |
| 	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
 | |
| 
 | |
| 	TRACE_IRQS_OFF
 | |
| 	movl	%esp, %eax			# pt_regs pointer
 | |
| 	CALL_NOSPEC %edi
 | |
| 	jmp	ret_from_exception
 | |
| END(common_exception_read_cr2)
 | |
| 
 | |
| common_exception:
 | |
| 	/* the function address is in %gs's slot on the stack */
 | |
| 	SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 
 | |
| 	/* fixup %gs */
 | |
| 	GS_TO_REG %ecx
 | |
| 	movl	PT_GS(%esp), %edi		# get the function address
 | |
| 	REG_TO_PTGS %ecx
 | |
| 	SET_KERNEL_GS %ecx
 | |
| 
 | |
| 	/* fixup orig %eax */
 | |
| 	movl	PT_ORIG_EAX(%esp), %edx		# get the error code
 | |
| 	movl	$-1, PT_ORIG_EAX(%esp)		# no syscall to restart
 | |
| 
 | |
| 	TRACE_IRQS_OFF
 | |
| 	movl	%esp, %eax			# pt_regs pointer
 | |
| 	CALL_NOSPEC %edi
 | |
| 	jmp	ret_from_exception
 | |
| END(common_exception)
 | |
| 
 | |
| ENTRY(debug)
 | |
| 	/*
 | |
| 	 * #DB can happen at the first instruction of
 | |
| 	 * entry_SYSENTER_32 or in Xen's SYSENTER prologue.  If this
 | |
| 	 * happens, then we will be running on a very small stack.  We
 | |
| 	 * need to detect this condition and switch to the thread
 | |
| 	 * stack before calling any C code at all.
 | |
| 	 *
 | |
| 	 * If you edit this code, keep in mind that NMIs can happen in here.
 | |
| 	 */
 | |
| 	ASM_CLAC
 | |
| 	pushl	$-1				# mark this as an int
 | |
| 
 | |
| 	SAVE_ALL
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 	xorl	%edx, %edx			# error code 0
 | |
| 	movl	%esp, %eax			# pt_regs pointer
 | |
| 
 | |
| 	/* Are we currently on the SYSENTER stack? */
 | |
| 	movl	PER_CPU_VAR(cpu_entry_area), %ecx
 | |
| 	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
 | |
| 	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
 | |
| 	cmpl	$SIZEOF_entry_stack, %ecx
 | |
| 	jb	.Ldebug_from_sysenter_stack
 | |
| 
 | |
| 	TRACE_IRQS_OFF
 | |
| 	call	do_debug
 | |
| 	jmp	ret_from_exception
 | |
| 
 | |
| .Ldebug_from_sysenter_stack:
 | |
| 	/* We're on the SYSENTER stack.  Switch off. */
 | |
| 	movl	%esp, %ebx
 | |
| 	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
 | |
| 	TRACE_IRQS_OFF
 | |
| 	call	do_debug
 | |
| 	movl	%ebx, %esp
 | |
| 	jmp	ret_from_exception
 | |
| END(debug)
 | |
| 
 | |
| /*
 | |
|  * NMI is doubly nasty.  It can happen on the first instruction of
 | |
|  * entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
 | |
|  * of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
 | |
|  * switched stacks.  We handle both conditions by simply checking whether we
 | |
|  * interrupted kernel code running on the SYSENTER stack.
 | |
|  */
 | |
| ENTRY(nmi)
 | |
| 	ASM_CLAC
 | |
| 
 | |
| #ifdef CONFIG_X86_ESPFIX32
 | |
| 	/*
 | |
| 	 * ESPFIX_SS is only ever set on the return to user path
 | |
| 	 * after we've switched to the entry stack.
 | |
| 	 */
 | |
| 	pushl	%eax
 | |
| 	movl	%ss, %eax
 | |
| 	cmpw	$__ESPFIX_SS, %ax
 | |
| 	popl	%eax
 | |
| 	je	.Lnmi_espfix_stack
 | |
| #endif
 | |
| 
 | |
| 	pushl	%eax				# pt_regs->orig_ax
 | |
| 	SAVE_ALL_NMI cr3_reg=%edi
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 	xorl	%edx, %edx			# zero error code
 | |
| 	movl	%esp, %eax			# pt_regs pointer
 | |
| 
 | |
| 	/* Are we currently on the SYSENTER stack? */
 | |
| 	movl	PER_CPU_VAR(cpu_entry_area), %ecx
 | |
| 	addl	$CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
 | |
| 	subl	%eax, %ecx	/* ecx = (end of entry_stack) - esp */
 | |
| 	cmpl	$SIZEOF_entry_stack, %ecx
 | |
| 	jb	.Lnmi_from_sysenter_stack
 | |
| 
 | |
| 	/* Not on SYSENTER stack. */
 | |
| 	call	do_nmi
 | |
| 	CLEAR_CPU_BUFFERS
 | |
| 	jmp	.Lnmi_return
 | |
| 
 | |
| .Lnmi_from_sysenter_stack:
 | |
| 	/*
 | |
| 	 * We're on the SYSENTER stack.  Switch off.  No one (not even debug)
 | |
| 	 * is using the thread stack right now, so it's safe for us to use it.
 | |
| 	 */
 | |
| 	movl	%esp, %ebx
 | |
| 	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esp
 | |
| 	call	do_nmi
 | |
| 	movl	%ebx, %esp
 | |
| 
 | |
| .Lnmi_return:
 | |
| #ifdef CONFIG_X86_ESPFIX32
 | |
| 	testl	$CS_FROM_ESPFIX, PT_CS(%esp)
 | |
| 	jnz	.Lnmi_from_espfix
 | |
| #endif
 | |
| 
 | |
| 	CHECK_AND_APPLY_ESPFIX
 | |
| 	RESTORE_ALL_NMI cr3_reg=%edi pop=4
 | |
| 	jmp	.Lirq_return
 | |
| 
 | |
| #ifdef CONFIG_X86_ESPFIX32
 | |
| .Lnmi_espfix_stack:
 | |
| 	/*
 | |
| 	 * Create the pointer to LSS back
 | |
| 	 */
 | |
| 	pushl	%ss
 | |
| 	pushl	%esp
 | |
| 	addl	$4, (%esp)
 | |
| 
 | |
| 	/* Copy the (short) IRET frame */
 | |
| 	pushl	4*4(%esp)	# flags
 | |
| 	pushl	4*4(%esp)	# cs
 | |
| 	pushl	4*4(%esp)	# ip
 | |
| 
 | |
| 	pushl	%eax		# orig_ax
 | |
| 
 | |
| 	SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 
 | |
| 	/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
 | |
| 	xorl	$(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
 | |
| 
 | |
| 	xorl	%edx, %edx			# zero error code
 | |
| 	movl	%esp, %eax			# pt_regs pointer
 | |
| 	jmp	.Lnmi_from_sysenter_stack
 | |
| 
 | |
| .Lnmi_from_espfix:
 | |
| 	RESTORE_ALL_NMI cr3_reg=%edi
 | |
| 	/*
 | |
| 	 * Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
 | |
| 	 * fix up the gap and long frame:
 | |
| 	 *
 | |
| 	 *  3 - original frame	(exception)
 | |
| 	 *  2 - ESPFIX block	(above)
 | |
| 	 *  6 - gap		(FIXUP_FRAME)
 | |
| 	 *  5 - long frame	(FIXUP_FRAME)
 | |
| 	 *  1 - orig_ax
 | |
| 	 */
 | |
| 	lss	(1+5+6)*4(%esp), %esp			# back to espfix stack
 | |
| 	jmp	.Lirq_return
 | |
| #endif
 | |
| END(nmi)
 | |
| 
 | |
| ENTRY(int3)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$-1				# mark this as an int
 | |
| 
 | |
| 	SAVE_ALL switch_stacks=1
 | |
| 	ENCODE_FRAME_POINTER
 | |
| 	TRACE_IRQS_OFF
 | |
| 	xorl	%edx, %edx			# zero error code
 | |
| 	movl	%esp, %eax			# pt_regs pointer
 | |
| 	call	do_int3
 | |
| 	jmp	ret_from_exception
 | |
| END(int3)
 | |
| 
 | |
| ENTRY(general_protection)
 | |
| 	pushl	$do_general_protection
 | |
| 	jmp	common_exception
 | |
| END(general_protection)
 | |
| 
 | |
| #ifdef CONFIG_AMD_MEM_ENCRYPT
 | |
| ENTRY(vmm_communication)
 | |
| 	ASM_CLAC
 | |
| 	pushl	$do_vmm_communication
 | |
| 	jmp	common_exception
 | |
| END(vmm_communication)
 | |
| #endif
 | |
| 
 | |
| ENTRY(rewind_stack_do_exit)
 | |
| 	/* Prevent any naive code from trying to unwind to our caller. */
 | |
| 	xorl	%ebp, %ebp
 | |
| 
 | |
| 	movl	PER_CPU_VAR(cpu_current_top_of_stack), %esi
 | |
| 	leal	-TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
 | |
| 
 | |
| 	call	do_exit
 | |
| 1:	jmp 1b
 | |
| END(rewind_stack_do_exit)
 |