563 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			563 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <misc/cxl-base.h>
 | |
| 
 | |
| #include <asm/debugfs.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/trace.h>
 | |
| #include <asm/powernv.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/ultravisor.h>
 | |
| 
 | |
| #include <mm/mmu_decl.h>
 | |
| #include <trace/events/thp.h>
 | |
| 
 | |
| unsigned long __pmd_frag_nr;
 | |
| EXPORT_SYMBOL(__pmd_frag_nr);
 | |
| unsigned long __pmd_frag_size_shift;
 | |
| EXPORT_SYMBOL(__pmd_frag_size_shift);
 | |
| 
 | |
| #ifdef CONFIG_TRANSPARENT_HUGEPAGE
 | |
| /*
 | |
|  * This is called when relaxing access to a hugepage. It's also called in the page
 | |
|  * fault path when we don't hit any of the major fault cases, ie, a minor
 | |
|  * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
 | |
|  * handled those two for us, we additionally deal with missing execute
 | |
|  * permission here on some processors
 | |
|  */
 | |
| int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
 | |
| 			  pmd_t *pmdp, pmd_t entry, int dirty)
 | |
| {
 | |
| 	int changed;
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
 | |
| 	assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
 | |
| #endif
 | |
| 	changed = !pmd_same(*(pmdp), entry);
 | |
| 	if (changed) {
 | |
| 		/*
 | |
| 		 * We can use MMU_PAGE_2M here, because only radix
 | |
| 		 * path look at the psize.
 | |
| 		 */
 | |
| 		__ptep_set_access_flags(vma, pmdp_ptep(pmdp),
 | |
| 					pmd_pte(entry), address, MMU_PAGE_2M);
 | |
| 	}
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 | |
| 			      unsigned long address, pmd_t *pmdp)
 | |
| {
 | |
| 	return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
 | |
| }
 | |
| /*
 | |
|  * set a new huge pmd. We should not be called for updating
 | |
|  * an existing pmd entry. That should go via pmd_hugepage_update.
 | |
|  */
 | |
| void set_pmd_at(struct mm_struct *mm, unsigned long addr,
 | |
| 		pmd_t *pmdp, pmd_t pmd)
 | |
| {
 | |
| #ifdef CONFIG_DEBUG_VM
 | |
| 	WARN_ON(pte_present(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
 | |
| 	assert_spin_locked(pmd_lockptr(mm, pmdp));
 | |
| 	WARN_ON(!(pmd_large(pmd) || pmd_devmap(pmd)));
 | |
| #endif
 | |
| 	trace_hugepage_set_pmd(addr, pmd_val(pmd));
 | |
| 	return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
 | |
| }
 | |
| 
 | |
| static void do_nothing(void *unused)
 | |
| {
 | |
| 
 | |
| }
 | |
| /*
 | |
|  * Serialize against find_current_mm_pte which does lock-less
 | |
|  * lookup in page tables with local interrupts disabled. For huge pages
 | |
|  * it casts pmd_t to pte_t. Since format of pte_t is different from
 | |
|  * pmd_t we want to prevent transit from pmd pointing to page table
 | |
|  * to pmd pointing to huge page (and back) while interrupts are disabled.
 | |
|  * We clear pmd to possibly replace it with page table pointer in
 | |
|  * different code paths. So make sure we wait for the parallel
 | |
|  * find_current_mm_pte to finish.
 | |
|  */
 | |
| void serialize_against_pte_lookup(struct mm_struct *mm)
 | |
| {
 | |
| 	smp_mb();
 | |
| 	smp_call_function_many(mm_cpumask(mm), do_nothing, NULL, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We use this to invalidate a pmdp entry before switching from a
 | |
|  * hugepte to regular pmd entry.
 | |
|  */
 | |
| pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
 | |
| 		     pmd_t *pmdp)
 | |
| {
 | |
| 	unsigned long old_pmd;
 | |
| 
 | |
| 	old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
 | |
| 	flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
 | |
| 	return __pmd(old_pmd);
 | |
| }
 | |
| 
 | |
| pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
 | |
| 				   unsigned long addr, pmd_t *pmdp, int full)
 | |
| {
 | |
| 	pmd_t pmd;
 | |
| 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
 | |
| 	VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
 | |
| 		   !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
 | |
| 	pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
 | |
| 	/*
 | |
| 	 * if it not a fullmm flush, then we can possibly end up converting
 | |
| 	 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
 | |
| 	 * Make sure we flush the tlb in this case.
 | |
| 	 */
 | |
| 	if (!full)
 | |
| 		flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
 | |
| 	return pmd;
 | |
| }
 | |
| 
 | |
| static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
 | |
| {
 | |
| 	return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
 | |
| }
 | |
| 
 | |
| pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
 | |
| {
 | |
| 	unsigned long pmdv;
 | |
| 
 | |
| 	pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
 | |
| 	return pmd_set_protbits(__pmd(pmdv), pgprot);
 | |
| }
 | |
| 
 | |
| pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
 | |
| {
 | |
| 	return pfn_pmd(page_to_pfn(page), pgprot);
 | |
| }
 | |
| 
 | |
| pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
 | |
| {
 | |
| 	unsigned long pmdv;
 | |
| 
 | |
| 	pmdv = pmd_val(pmd);
 | |
| 	pmdv &= _HPAGE_CHG_MASK;
 | |
| 	return pmd_set_protbits(__pmd(pmdv), newprot);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called at the end of handling a user page fault, when the
 | |
|  * fault has been handled by updating a HUGE PMD entry in the linux page tables.
 | |
|  * We use it to preload an HPTE into the hash table corresponding to
 | |
|  * the updated linux HUGE PMD entry.
 | |
|  */
 | |
| void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 | |
| 			  pmd_t *pmd)
 | |
| {
 | |
| 	if (radix_enabled())
 | |
| 		prefetch((void *)addr);
 | |
| }
 | |
| #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 | |
| 
 | |
| /* For use by kexec, called with MMU off */
 | |
| notrace void mmu_cleanup_all(void)
 | |
| {
 | |
| 	if (radix_enabled())
 | |
| 		radix__mmu_cleanup_all();
 | |
| 	else if (mmu_hash_ops.hpte_clear_all)
 | |
| 		mmu_hash_ops.hpte_clear_all();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| int __meminit create_section_mapping(unsigned long start, unsigned long end,
 | |
| 				     int nid, pgprot_t prot)
 | |
| {
 | |
| 	if (radix_enabled())
 | |
| 		return radix__create_section_mapping(start, end, nid, prot);
 | |
| 
 | |
| 	return hash__create_section_mapping(start, end, nid, prot);
 | |
| }
 | |
| 
 | |
| int __meminit remove_section_mapping(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (radix_enabled())
 | |
| 		return radix__remove_section_mapping(start, end);
 | |
| 
 | |
| 	return hash__remove_section_mapping(start, end);
 | |
| }
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| void __init mmu_partition_table_init(void)
 | |
| {
 | |
| 	unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
 | |
| 	unsigned long ptcr;
 | |
| 
 | |
| 	BUILD_BUG_ON_MSG((PATB_SIZE_SHIFT > 36), "Partition table size too large.");
 | |
| 	partition_tb = __va(memblock_alloc_base(patb_size, patb_size,
 | |
| 						MEMBLOCK_ALLOC_ANYWHERE));
 | |
| 
 | |
| 	/* Initialize the Partition Table with no entries */
 | |
| 	memset((void *)partition_tb, 0, patb_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * update partition table control register,
 | |
| 	 * 64 K size.
 | |
| 	 */
 | |
| 	ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
 | |
| 	set_ptcr_when_no_uv(ptcr);
 | |
| 	powernv_set_nmmu_ptcr(ptcr);
 | |
| }
 | |
| 
 | |
| static void flush_partition(unsigned int lpid, bool radix)
 | |
| {
 | |
| 	if (radix) {
 | |
| 		radix__flush_all_lpid(lpid);
 | |
| 		radix__flush_all_lpid_guest(lpid);
 | |
| 	} else {
 | |
| 		asm volatile("ptesync" : : : "memory");
 | |
| 		asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
 | |
| 			     "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
 | |
| 		/* do we need fixup here ?*/
 | |
| 		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
 | |
| 		trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
 | |
| 				  unsigned long dw1, bool flush)
 | |
| {
 | |
| 	unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
 | |
| 
 | |
| 	/*
 | |
| 	 * When ultravisor is enabled, the partition table is stored in secure
 | |
| 	 * memory and can only be accessed doing an ultravisor call. However, we
 | |
| 	 * maintain a copy of the partition table in normal memory to allow Nest
 | |
| 	 * MMU translations to occur (for normal VMs).
 | |
| 	 *
 | |
| 	 * Therefore, here we always update partition_tb, regardless of whether
 | |
| 	 * we are running under an ultravisor or not.
 | |
| 	 */
 | |
| 	partition_tb[lpid].patb0 = cpu_to_be64(dw0);
 | |
| 	partition_tb[lpid].patb1 = cpu_to_be64(dw1);
 | |
| 
 | |
| 	/*
 | |
| 	 * If ultravisor is enabled, we do an ultravisor call to register the
 | |
| 	 * partition table entry (PATE), which also do a global flush of TLBs
 | |
| 	 * and partition table caches for the lpid. Otherwise, just do the
 | |
| 	 * flush. The type of flush (hash or radix) depends on what the previous
 | |
| 	 * use of the partition ID was, not the new use.
 | |
| 	 */
 | |
| 	if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
 | |
| 		uv_register_pate(lpid, dw0, dw1);
 | |
| 		pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
 | |
| 			dw0, dw1);
 | |
| 	} else if (flush) {
 | |
| 		/*
 | |
| 		 * Boot does not need to flush, because MMU is off and each
 | |
| 		 * CPU does a tlbiel_all() before switching them on, which
 | |
| 		 * flushes everything.
 | |
| 		 */
 | |
| 		flush_partition(lpid, (old & PATB_HR));
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
 | |
| 
 | |
| static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
 | |
| {
 | |
| 	void *pmd_frag, *ret;
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	ret = mm->context.pmd_frag;
 | |
| 	if (ret) {
 | |
| 		pmd_frag = ret + PMD_FRAG_SIZE;
 | |
| 		/*
 | |
| 		 * If we have taken up all the fragments mark PTE page NULL
 | |
| 		 */
 | |
| 		if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
 | |
| 			pmd_frag = NULL;
 | |
| 		mm->context.pmd_frag = pmd_frag;
 | |
| 	}
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return (pmd_t *)ret;
 | |
| }
 | |
| 
 | |
| static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
 | |
| {
 | |
| 	void *ret = NULL;
 | |
| 	struct page *page;
 | |
| 	gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
 | |
| 
 | |
| 	if (mm == &init_mm)
 | |
| 		gfp &= ~__GFP_ACCOUNT;
 | |
| 	page = alloc_page(gfp);
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 	if (!pgtable_pmd_page_ctor(page)) {
 | |
| 		__free_pages(page, 0);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&page->pt_frag_refcount, 1);
 | |
| 
 | |
| 	ret = page_address(page);
 | |
| 	/*
 | |
| 	 * if we support only one fragment just return the
 | |
| 	 * allocated page.
 | |
| 	 */
 | |
| 	if (PMD_FRAG_NR == 1)
 | |
| 		return ret;
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	/*
 | |
| 	 * If we find pgtable_page set, we return
 | |
| 	 * the allocated page with single fragement
 | |
| 	 * count.
 | |
| 	 */
 | |
| 	if (likely(!mm->context.pmd_frag)) {
 | |
| 		atomic_set(&page->pt_frag_refcount, PMD_FRAG_NR);
 | |
| 		mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
 | |
| 	}
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	return (pmd_t *)ret;
 | |
| }
 | |
| 
 | |
| pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	pmd = get_pmd_from_cache(mm);
 | |
| 	if (pmd)
 | |
| 		return pmd;
 | |
| 
 | |
| 	return __alloc_for_pmdcache(mm);
 | |
| }
 | |
| 
 | |
| void pmd_fragment_free(unsigned long *pmd)
 | |
| {
 | |
| 	struct page *page = virt_to_page(pmd);
 | |
| 
 | |
| 	if (PageReserved(page))
 | |
| 		return free_reserved_page(page);
 | |
| 
 | |
| 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
 | |
| 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
 | |
| 		pgtable_pmd_page_dtor(page);
 | |
| 		__free_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static pte_t *get_pte_from_cache(struct mm_struct *mm)
 | |
| {
 | |
| 	void *pte_frag, *ret;
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	ret = mm->context.pte_frag;
 | |
| 	if (ret) {
 | |
| 		pte_frag = ret + PTE_FRAG_SIZE;
 | |
| 		/*
 | |
| 		 * If we have taken up all the fragments mark PTE page NULL
 | |
| 		 */
 | |
| 		if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
 | |
| 			pte_frag = NULL;
 | |
| 		mm->context.pte_frag = pte_frag;
 | |
| 	}
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return (pte_t *)ret;
 | |
| }
 | |
| 
 | |
| static pte_t *__alloc_for_ptecache(struct mm_struct *mm, int kernel)
 | |
| {
 | |
| 	void *ret = NULL;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!kernel) {
 | |
| 		page = alloc_page(PGALLOC_GFP | __GFP_ACCOUNT);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 		if (!pgtable_page_ctor(page)) {
 | |
| 			__free_page(page);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		page = alloc_page(PGALLOC_GFP);
 | |
| 		if (!page)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(&page->pt_frag_refcount, 1);
 | |
| 
 | |
| 	ret = page_address(page);
 | |
| 	/*
 | |
| 	 * if we support only one fragment just return the
 | |
| 	 * allocated page.
 | |
| 	 */
 | |
| 	if (PTE_FRAG_NR == 1)
 | |
| 		return ret;
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	/*
 | |
| 	 * If we find pgtable_page set, we return
 | |
| 	 * the allocated page with single fragement
 | |
| 	 * count.
 | |
| 	 */
 | |
| 	if (likely(!mm->context.pte_frag)) {
 | |
| 		atomic_set(&page->pt_frag_refcount, PTE_FRAG_NR);
 | |
| 		mm->context.pte_frag = ret + PTE_FRAG_SIZE;
 | |
| 	}
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 
 | |
| 	return (pte_t *)ret;
 | |
| }
 | |
| 
 | |
| pte_t *pte_fragment_alloc(struct mm_struct *mm, int kernel)
 | |
| {
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = get_pte_from_cache(mm);
 | |
| 	if (pte)
 | |
| 		return pte;
 | |
| 
 | |
| 	return __alloc_for_ptecache(mm, kernel);
 | |
| }
 | |
| 
 | |
| void pte_fragment_free(unsigned long *table, int kernel)
 | |
| {
 | |
| 	struct page *page = virt_to_page(table);
 | |
| 
 | |
| 	if (PageReserved(page))
 | |
|                 return free_reserved_page(page);
 | |
| 
 | |
| 	BUG_ON(atomic_read(&page->pt_frag_refcount) <= 0);
 | |
| 	if (atomic_dec_and_test(&page->pt_frag_refcount)) {
 | |
| 		if (!kernel)
 | |
| 			pgtable_page_dtor(page);
 | |
| 		__free_page(page);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void pgtable_free(void *table, int index)
 | |
| {
 | |
| 	switch (index) {
 | |
| 	case PTE_INDEX:
 | |
| 		pte_fragment_free(table, 0);
 | |
| 		break;
 | |
| 	case PMD_INDEX:
 | |
| 		pmd_fragment_free(table);
 | |
| 		break;
 | |
| 	case PUD_INDEX:
 | |
| 		__pud_free(table);
 | |
| 		break;
 | |
| #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
 | |
| 		/* 16M hugepd directory at pud level */
 | |
| 	case HTLB_16M_INDEX:
 | |
| 		BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
 | |
| 		kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
 | |
| 		break;
 | |
| 		/* 16G hugepd directory at the pgd level */
 | |
| 	case HTLB_16G_INDEX:
 | |
| 		BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
 | |
| 		kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
 | |
| 		break;
 | |
| #endif
 | |
| 		/* We don't free pgd table via RCU callback */
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
 | |
| {
 | |
| 	unsigned long pgf = (unsigned long)table;
 | |
| 
 | |
| 	BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
 | |
| 	pgf |= index;
 | |
| 	tlb_remove_table(tlb, (void *)pgf);
 | |
| }
 | |
| 
 | |
| void __tlb_remove_table(void *_table)
 | |
| {
 | |
| 	void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
 | |
| 	unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
 | |
| 
 | |
| 	return pgtable_free(table, index);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For hash translation mode, we use the deposited table to store hash slot
 | |
|  * information and they are stored at PTRS_PER_PMD offset from related pmd
 | |
|  * location. Hence a pmd move requires deposit and withdraw.
 | |
|  *
 | |
|  * For radix translation with split pmd ptl, we store the deposited table in the
 | |
|  * pmd page. Hence if we have different pmd page we need to withdraw during pmd
 | |
|  * move.
 | |
|  *
 | |
|  * With hash we use deposited table always irrespective of anon or not.
 | |
|  * With radix we use deposited table only for anonymous mapping.
 | |
|  */
 | |
| int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
 | |
| 			   struct spinlock *old_pmd_ptl,
 | |
| 			   struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (radix_enabled())
 | |
| 		return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Does the CPU support tlbie?
 | |
|  */
 | |
| bool tlbie_capable __read_mostly = true;
 | |
| EXPORT_SYMBOL(tlbie_capable);
 | |
| 
 | |
| /*
 | |
|  * Should tlbie be used for management of CPU TLBs, for kernel and process
 | |
|  * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
 | |
|  * guest address spaces.
 | |
|  */
 | |
| bool tlbie_enabled __read_mostly = true;
 | |
| 
 | |
| static int __init setup_disable_tlbie(char *str)
 | |
| {
 | |
| 	if (!radix_enabled()) {
 | |
| 		pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	tlbie_capable = false;
 | |
| 	tlbie_enabled = false;
 | |
| 
 | |
|         return 1;
 | |
| }
 | |
| __setup("disable_tlbie", setup_disable_tlbie);
 | |
| 
 | |
| static int __init pgtable_debugfs_setup(void)
 | |
| {
 | |
| 	if (!tlbie_capable)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no locking vs tlb flushing when changing this value.
 | |
| 	 * The tlb flushers will see one value or another, and use either
 | |
| 	 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
 | |
| 	 * invalidated as expected.
 | |
| 	 */
 | |
| 	debugfs_create_bool("tlbie_enabled", 0600,
 | |
| 			powerpc_debugfs_root,
 | |
| 			&tlbie_enabled);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| arch_initcall(pgtable_debugfs_setup);
 |