473 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			473 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #define _GNU_SOURCE
 | |
| 
 | |
| #include <arpa/inet.h>
 | |
| #include <errno.h>
 | |
| #include <error.h>
 | |
| #include <linux/in.h>
 | |
| #include <netinet/ip.h>
 | |
| #include <netinet/ip6.h>
 | |
| #include <netinet/udp.h>
 | |
| #include <stdbool.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| static bool		cfg_do_ipv4;
 | |
| static bool		cfg_do_ipv6;
 | |
| static bool		cfg_verbose;
 | |
| static bool		cfg_overlap;
 | |
| static bool		cfg_permissive;
 | |
| static unsigned short	cfg_port = 9000;
 | |
| 
 | |
| const struct in_addr addr4 = { .s_addr = __constant_htonl(INADDR_LOOPBACK + 2) };
 | |
| const struct in6_addr addr6 = IN6ADDR_LOOPBACK_INIT;
 | |
| 
 | |
| #define IP4_HLEN	(sizeof(struct iphdr))
 | |
| #define IP6_HLEN	(sizeof(struct ip6_hdr))
 | |
| #define UDP_HLEN	(sizeof(struct udphdr))
 | |
| 
 | |
| /* IPv6 fragment header lenth. */
 | |
| #define FRAG_HLEN	8
 | |
| 
 | |
| static int payload_len;
 | |
| static int max_frag_len;
 | |
| 
 | |
| #define MSG_LEN_MAX	10000	/* Max UDP payload length. */
 | |
| 
 | |
| #define IP4_MF		(1u << 13)  /* IPv4 MF flag. */
 | |
| #define IP6_MF		(1)  /* IPv6 MF flag. */
 | |
| 
 | |
| #define CSUM_MANGLED_0 (0xffff)
 | |
| 
 | |
| static uint8_t udp_payload[MSG_LEN_MAX];
 | |
| static uint8_t ip_frame[IP_MAXPACKET];
 | |
| static uint32_t ip_id = 0xabcd;
 | |
| static int msg_counter;
 | |
| static int frag_counter;
 | |
| static unsigned int seed;
 | |
| 
 | |
| /* Receive a UDP packet. Validate it matches udp_payload. */
 | |
| static void recv_validate_udp(int fd_udp)
 | |
| {
 | |
| 	ssize_t ret;
 | |
| 	static uint8_t recv_buff[MSG_LEN_MAX];
 | |
| 
 | |
| 	ret = recv(fd_udp, recv_buff, payload_len, 0);
 | |
| 	msg_counter++;
 | |
| 
 | |
| 	if (cfg_overlap) {
 | |
| 		if (ret == -1 && (errno == ETIMEDOUT || errno == EAGAIN))
 | |
| 			return;  /* OK */
 | |
| 		if (!cfg_permissive) {
 | |
| 			if (ret != -1)
 | |
| 				error(1, 0, "recv: expected timeout; got %d",
 | |
| 					(int)ret);
 | |
| 			error(1, errno, "recv: expected timeout: %d", errno);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (ret == -1)
 | |
| 		error(1, errno, "recv: payload_len = %d max_frag_len = %d",
 | |
| 			payload_len, max_frag_len);
 | |
| 	if (ret != payload_len)
 | |
| 		error(1, 0, "recv: wrong size: %d vs %d", (int)ret, payload_len);
 | |
| 	if (memcmp(udp_payload, recv_buff, payload_len))
 | |
| 		error(1, 0, "recv: wrong data");
 | |
| }
 | |
| 
 | |
| static uint32_t raw_checksum(uint8_t *buf, int len, uint32_t sum)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < (len & ~1U); i += 2) {
 | |
| 		sum += (u_int16_t)ntohs(*((u_int16_t *)(buf + i)));
 | |
| 		if (sum > 0xffff)
 | |
| 			sum -= 0xffff;
 | |
| 	}
 | |
| 
 | |
| 	if (i < len) {
 | |
| 		sum += buf[i] << 8;
 | |
| 		if (sum > 0xffff)
 | |
| 			sum -= 0xffff;
 | |
| 	}
 | |
| 
 | |
| 	return sum;
 | |
| }
 | |
| 
 | |
| static uint16_t udp_checksum(struct ip *iphdr, struct udphdr *udphdr)
 | |
| {
 | |
| 	uint32_t sum = 0;
 | |
| 	uint16_t res;
 | |
| 
 | |
| 	sum = raw_checksum((uint8_t *)&iphdr->ip_src, 2 * sizeof(iphdr->ip_src),
 | |
| 				IPPROTO_UDP + (uint32_t)(UDP_HLEN + payload_len));
 | |
| 	sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum);
 | |
| 	sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum);
 | |
| 	res = 0xffff & ~sum;
 | |
| 	if (res)
 | |
| 		return htons(res);
 | |
| 	else
 | |
| 		return CSUM_MANGLED_0;
 | |
| }
 | |
| 
 | |
| static uint16_t udp6_checksum(struct ip6_hdr *iphdr, struct udphdr *udphdr)
 | |
| {
 | |
| 	uint32_t sum = 0;
 | |
| 	uint16_t res;
 | |
| 
 | |
| 	sum = raw_checksum((uint8_t *)&iphdr->ip6_src, 2 * sizeof(iphdr->ip6_src),
 | |
| 				IPPROTO_UDP);
 | |
| 	sum = raw_checksum((uint8_t *)&udphdr->len, sizeof(udphdr->len), sum);
 | |
| 	sum = raw_checksum((uint8_t *)udphdr, UDP_HLEN, sum);
 | |
| 	sum = raw_checksum((uint8_t *)udp_payload, payload_len, sum);
 | |
| 	res = 0xffff & ~sum;
 | |
| 	if (res)
 | |
| 		return htons(res);
 | |
| 	else
 | |
| 		return CSUM_MANGLED_0;
 | |
| }
 | |
| 
 | |
| static void send_fragment(int fd_raw, struct sockaddr *addr, socklen_t alen,
 | |
| 				int offset, bool ipv6)
 | |
| {
 | |
| 	int frag_len;
 | |
| 	int res;
 | |
| 	int payload_offset = offset > 0 ? offset - UDP_HLEN : 0;
 | |
| 	uint8_t *frag_start = ipv6 ? ip_frame + IP6_HLEN + FRAG_HLEN :
 | |
| 					ip_frame + IP4_HLEN;
 | |
| 
 | |
| 	if (offset == 0) {
 | |
| 		struct udphdr udphdr;
 | |
| 		udphdr.source = htons(cfg_port + 1);
 | |
| 		udphdr.dest = htons(cfg_port);
 | |
| 		udphdr.len = htons(UDP_HLEN + payload_len);
 | |
| 		udphdr.check = 0;
 | |
| 		if (ipv6)
 | |
| 			udphdr.check = udp6_checksum((struct ip6_hdr *)ip_frame, &udphdr);
 | |
| 		else
 | |
| 			udphdr.check = udp_checksum((struct ip *)ip_frame, &udphdr);
 | |
| 		memcpy(frag_start, &udphdr, UDP_HLEN);
 | |
| 	}
 | |
| 
 | |
| 	if (ipv6) {
 | |
| 		struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame;
 | |
| 		struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
 | |
| 		if (payload_len - payload_offset <= max_frag_len && offset > 0) {
 | |
| 			/* This is the last fragment. */
 | |
| 			frag_len = FRAG_HLEN + payload_len - payload_offset;
 | |
| 			fraghdr->ip6f_offlg = htons(offset);
 | |
| 		} else {
 | |
| 			frag_len = FRAG_HLEN + max_frag_len;
 | |
| 			fraghdr->ip6f_offlg = htons(offset | IP6_MF);
 | |
| 		}
 | |
| 		ip6hdr->ip6_plen = htons(frag_len);
 | |
| 		if (offset == 0)
 | |
| 			memcpy(frag_start + UDP_HLEN, udp_payload,
 | |
| 				frag_len - FRAG_HLEN - UDP_HLEN);
 | |
| 		else
 | |
| 			memcpy(frag_start, udp_payload + payload_offset,
 | |
| 				frag_len - FRAG_HLEN);
 | |
| 		frag_len += IP6_HLEN;
 | |
| 	} else {
 | |
| 		struct ip *iphdr = (struct ip *)ip_frame;
 | |
| 		if (payload_len - payload_offset <= max_frag_len && offset > 0) {
 | |
| 			/* This is the last fragment. */
 | |
| 			frag_len = IP4_HLEN + payload_len - payload_offset;
 | |
| 			iphdr->ip_off = htons(offset / 8);
 | |
| 		} else {
 | |
| 			frag_len = IP4_HLEN + max_frag_len;
 | |
| 			iphdr->ip_off = htons(offset / 8 | IP4_MF);
 | |
| 		}
 | |
| 		iphdr->ip_len = htons(frag_len);
 | |
| 		if (offset == 0)
 | |
| 			memcpy(frag_start + UDP_HLEN, udp_payload,
 | |
| 				frag_len - IP4_HLEN - UDP_HLEN);
 | |
| 		else
 | |
| 			memcpy(frag_start, udp_payload + payload_offset,
 | |
| 				frag_len - IP4_HLEN);
 | |
| 	}
 | |
| 
 | |
| 	res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen);
 | |
| 	if (res < 0 && errno != EPERM)
 | |
| 		error(1, errno, "send_fragment");
 | |
| 	if (res >= 0 && res != frag_len)
 | |
| 		error(1, 0, "send_fragment: %d vs %d", res, frag_len);
 | |
| 
 | |
| 	frag_counter++;
 | |
| }
 | |
| 
 | |
| static void send_udp_frags(int fd_raw, struct sockaddr *addr,
 | |
| 				socklen_t alen, bool ipv6)
 | |
| {
 | |
| 	struct ip *iphdr = (struct ip *)ip_frame;
 | |
| 	struct ip6_hdr *ip6hdr = (struct ip6_hdr *)ip_frame;
 | |
| 	int res;
 | |
| 	int offset;
 | |
| 	int frag_len;
 | |
| 
 | |
| 	/* Send the UDP datagram using raw IP fragments: the 0th fragment
 | |
| 	 * has the UDP header; other fragments are pieces of udp_payload
 | |
| 	 * split in chunks of frag_len size.
 | |
| 	 *
 | |
| 	 * Odd fragments (1st, 3rd, 5th, etc.) are sent out first, then
 | |
| 	 * even fragments (0th, 2nd, etc.) are sent out.
 | |
| 	 */
 | |
| 	if (ipv6) {
 | |
| 		struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
 | |
| 		((struct sockaddr_in6 *)addr)->sin6_port = 0;
 | |
| 		memset(ip6hdr, 0, sizeof(*ip6hdr));
 | |
| 		ip6hdr->ip6_flow = htonl(6<<28);  /* Version. */
 | |
| 		ip6hdr->ip6_nxt = IPPROTO_FRAGMENT;
 | |
| 		ip6hdr->ip6_hops = 255;
 | |
| 		ip6hdr->ip6_src = addr6;
 | |
| 		ip6hdr->ip6_dst = addr6;
 | |
| 		fraghdr->ip6f_nxt = IPPROTO_UDP;
 | |
| 		fraghdr->ip6f_reserved = 0;
 | |
| 		fraghdr->ip6f_ident = htonl(ip_id++);
 | |
| 	} else {
 | |
| 		memset(iphdr, 0, sizeof(*iphdr));
 | |
| 		iphdr->ip_hl = 5;
 | |
| 		iphdr->ip_v = 4;
 | |
| 		iphdr->ip_tos = 0;
 | |
| 		iphdr->ip_id = htons(ip_id++);
 | |
| 		iphdr->ip_ttl = 0x40;
 | |
| 		iphdr->ip_p = IPPROTO_UDP;
 | |
| 		iphdr->ip_src.s_addr = htonl(INADDR_LOOPBACK);
 | |
| 		iphdr->ip_dst = addr4;
 | |
| 		iphdr->ip_sum = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Occasionally test in-order fragments. */
 | |
| 	if (!cfg_overlap && (rand() % 100 < 15)) {
 | |
| 		offset = 0;
 | |
| 		while (offset < (UDP_HLEN + payload_len)) {
 | |
| 			send_fragment(fd_raw, addr, alen, offset, ipv6);
 | |
| 			offset += max_frag_len;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Occasionally test IPv4 "runs" (see net/ipv4/ip_fragment.c) */
 | |
| 	if (!cfg_overlap && (rand() % 100 < 20) &&
 | |
| 			(payload_len > 9 * max_frag_len)) {
 | |
| 		offset = 6 * max_frag_len;
 | |
| 		while (offset < (UDP_HLEN + payload_len)) {
 | |
| 			send_fragment(fd_raw, addr, alen, offset, ipv6);
 | |
| 			offset += max_frag_len;
 | |
| 		}
 | |
| 		offset = 3 * max_frag_len;
 | |
| 		while (offset < 6 * max_frag_len) {
 | |
| 			send_fragment(fd_raw, addr, alen, offset, ipv6);
 | |
| 			offset += max_frag_len;
 | |
| 		}
 | |
| 		offset = 0;
 | |
| 		while (offset < 3 * max_frag_len) {
 | |
| 			send_fragment(fd_raw, addr, alen, offset, ipv6);
 | |
| 			offset += max_frag_len;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Odd fragments. */
 | |
| 	offset = max_frag_len;
 | |
| 	while (offset < (UDP_HLEN + payload_len)) {
 | |
| 		send_fragment(fd_raw, addr, alen, offset, ipv6);
 | |
| 		/* IPv4 ignores duplicates, so randomly send a duplicate. */
 | |
| 		if (rand() % 100 == 1)
 | |
| 			send_fragment(fd_raw, addr, alen, offset, ipv6);
 | |
| 		offset += 2 * max_frag_len;
 | |
| 	}
 | |
| 
 | |
| 	if (cfg_overlap) {
 | |
| 		/* Send an extra random fragment.
 | |
| 		 *
 | |
| 		 * Duplicates and some fragments completely inside
 | |
| 		 * previously sent fragments are dropped/ignored. So
 | |
| 		 * random offset and frag_len can result in a dropped
 | |
| 		 * fragment instead of a dropped queue/packet. Thus we
 | |
| 		 * hard-code offset and frag_len.
 | |
| 		 */
 | |
| 		if (max_frag_len * 4 < payload_len || max_frag_len < 16) {
 | |
| 			/* not enough payload for random offset and frag_len. */
 | |
| 			offset = 8;
 | |
| 			frag_len = UDP_HLEN + max_frag_len;
 | |
| 		} else {
 | |
| 			offset = rand() % (payload_len / 2);
 | |
| 			frag_len = 2 * max_frag_len + 1 + rand() % 256;
 | |
| 		}
 | |
| 		if (ipv6) {
 | |
| 			struct ip6_frag *fraghdr = (struct ip6_frag *)(ip_frame + IP6_HLEN);
 | |
| 			/* sendto() returns EINVAL if offset + frag_len is too small. */
 | |
| 			/* In IPv6 if !!(frag_len % 8), the fragment is dropped. */
 | |
| 			frag_len &= ~0x7;
 | |
| 			fraghdr->ip6f_offlg = htons(offset / 8 | IP6_MF);
 | |
| 			ip6hdr->ip6_plen = htons(frag_len);
 | |
| 			frag_len += IP6_HLEN;
 | |
| 		} else {
 | |
| 			frag_len += IP4_HLEN;
 | |
| 			iphdr->ip_off = htons(offset / 8 | IP4_MF);
 | |
| 			iphdr->ip_len = htons(frag_len);
 | |
| 		}
 | |
| 		res = sendto(fd_raw, ip_frame, frag_len, 0, addr, alen);
 | |
| 		if (res < 0 && errno != EPERM)
 | |
| 			error(1, errno, "sendto overlap: %d", frag_len);
 | |
| 		if (res >= 0 && res != frag_len)
 | |
| 			error(1, 0, "sendto overlap: %d vs %d", (int)res, frag_len);
 | |
| 		frag_counter++;
 | |
| 	}
 | |
| 
 | |
| 	/* Event fragments. */
 | |
| 	offset = 0;
 | |
| 	while (offset < (UDP_HLEN + payload_len)) {
 | |
| 		send_fragment(fd_raw, addr, alen, offset, ipv6);
 | |
| 		/* IPv4 ignores duplicates, so randomly send a duplicate. */
 | |
| 		if (rand() % 100 == 1)
 | |
| 			send_fragment(fd_raw, addr, alen, offset, ipv6);
 | |
| 		offset += 2 * max_frag_len;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void run_test(struct sockaddr *addr, socklen_t alen, bool ipv6)
 | |
| {
 | |
| 	int fd_tx_raw, fd_rx_udp;
 | |
| 	/* Frag queue timeout is set to one second in the calling script;
 | |
| 	 * socket timeout should be just a bit longer to avoid tests interfering
 | |
| 	 * with each other.
 | |
| 	 */
 | |
| 	struct timeval tv = { .tv_sec = 1, .tv_usec = 10 };
 | |
| 	int idx;
 | |
| 	int min_frag_len = 8;
 | |
| 
 | |
| 	/* Initialize the payload. */
 | |
| 	for (idx = 0; idx < MSG_LEN_MAX; ++idx)
 | |
| 		udp_payload[idx] = idx % 256;
 | |
| 
 | |
| 	/* Open sockets. */
 | |
| 	fd_tx_raw = socket(addr->sa_family, SOCK_RAW, IPPROTO_RAW);
 | |
| 	if (fd_tx_raw == -1)
 | |
| 		error(1, errno, "socket tx_raw");
 | |
| 
 | |
| 	fd_rx_udp = socket(addr->sa_family, SOCK_DGRAM, 0);
 | |
| 	if (fd_rx_udp == -1)
 | |
| 		error(1, errno, "socket rx_udp");
 | |
| 	if (bind(fd_rx_udp, addr, alen))
 | |
| 		error(1, errno, "bind");
 | |
| 	/* Fail fast. */
 | |
| 	if (setsockopt(fd_rx_udp, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)))
 | |
| 		error(1, errno, "setsockopt rcv timeout");
 | |
| 
 | |
| 	for (payload_len = min_frag_len; payload_len < MSG_LEN_MAX;
 | |
| 			payload_len += (rand() % 4096)) {
 | |
| 		if (cfg_verbose)
 | |
| 			printf("payload_len: %d\n", payload_len);
 | |
| 
 | |
| 		if (cfg_overlap) {
 | |
| 			/* With overlaps, one send/receive pair below takes
 | |
| 			 * at least one second (== timeout) to run, so there
 | |
| 			 * is not enough test time to run a nested loop:
 | |
| 			 * the full overlap test takes 20-30 seconds.
 | |
| 			 */
 | |
| 			max_frag_len = min_frag_len +
 | |
| 				rand() % (1500 - FRAG_HLEN - min_frag_len);
 | |
| 			send_udp_frags(fd_tx_raw, addr, alen, ipv6);
 | |
| 			recv_validate_udp(fd_rx_udp);
 | |
| 		} else {
 | |
| 			/* Without overlaps, each packet reassembly (== one
 | |
| 			 * send/receive pair below) takes very little time to
 | |
| 			 * run, so we can easily afford more thourough testing
 | |
| 			 * with a nested loop: the full non-overlap test takes
 | |
| 			 * less than one second).
 | |
| 			 */
 | |
| 			max_frag_len = min_frag_len;
 | |
| 			do {
 | |
| 				send_udp_frags(fd_tx_raw, addr, alen, ipv6);
 | |
| 				recv_validate_udp(fd_rx_udp);
 | |
| 				max_frag_len += 8 * (rand() % 8);
 | |
| 			} while (max_frag_len < (1500 - FRAG_HLEN) &&
 | |
| 				 max_frag_len <= payload_len);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Cleanup. */
 | |
| 	if (close(fd_tx_raw))
 | |
| 		error(1, errno, "close tx_raw");
 | |
| 	if (close(fd_rx_udp))
 | |
| 		error(1, errno, "close rx_udp");
 | |
| 
 | |
| 	if (cfg_verbose)
 | |
| 		printf("processed %d messages, %d fragments\n",
 | |
| 			msg_counter, frag_counter);
 | |
| 
 | |
| 	fprintf(stderr, "PASS\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| static void run_test_v4(void)
 | |
| {
 | |
| 	struct sockaddr_in addr = {0};
 | |
| 
 | |
| 	addr.sin_family = AF_INET;
 | |
| 	addr.sin_port = htons(cfg_port);
 | |
| 	addr.sin_addr = addr4;
 | |
| 
 | |
| 	run_test((void *)&addr, sizeof(addr), false /* !ipv6 */);
 | |
| }
 | |
| 
 | |
| static void run_test_v6(void)
 | |
| {
 | |
| 	struct sockaddr_in6 addr = {0};
 | |
| 
 | |
| 	addr.sin6_family = AF_INET6;
 | |
| 	addr.sin6_port = htons(cfg_port);
 | |
| 	addr.sin6_addr = addr6;
 | |
| 
 | |
| 	run_test((void *)&addr, sizeof(addr), true /* ipv6 */);
 | |
| }
 | |
| 
 | |
| static void parse_opts(int argc, char **argv)
 | |
| {
 | |
| 	int c;
 | |
| 
 | |
| 	while ((c = getopt(argc, argv, "46opv")) != -1) {
 | |
| 		switch (c) {
 | |
| 		case '4':
 | |
| 			cfg_do_ipv4 = true;
 | |
| 			break;
 | |
| 		case '6':
 | |
| 			cfg_do_ipv6 = true;
 | |
| 			break;
 | |
| 		case 'o':
 | |
| 			cfg_overlap = true;
 | |
| 			break;
 | |
| 		case 'p':
 | |
| 			cfg_permissive = true;
 | |
| 			break;
 | |
| 		case 'v':
 | |
| 			cfg_verbose = true;
 | |
| 			break;
 | |
| 		default:
 | |
| 			error(1, 0, "%s: parse error", argv[0]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
| 	parse_opts(argc, argv);
 | |
| 	seed = time(NULL);
 | |
| 	srand(seed);
 | |
| 	/* Print the seed to track/reproduce potential failures. */
 | |
| 	printf("seed = %d\n", seed);
 | |
| 
 | |
| 	if (cfg_do_ipv4)
 | |
| 		run_test_v4();
 | |
| 	if (cfg_do_ipv6)
 | |
| 		run_test_v6();
 | |
| 
 | |
| 	return 0;
 | |
| }
 |