681 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			681 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Hyper-V HvFlushVirtualAddress{List,Space}{,Ex} tests
 | |
|  *
 | |
|  * Copyright (C) 2022, Red Hat, Inc.
 | |
|  *
 | |
|  */
 | |
| #include <asm/barrier.h>
 | |
| #include <pthread.h>
 | |
| #include <inttypes.h>
 | |
| 
 | |
| #include "kvm_util.h"
 | |
| #include "processor.h"
 | |
| #include "hyperv.h"
 | |
| #include "test_util.h"
 | |
| #include "vmx.h"
 | |
| 
 | |
| #define WORKER_VCPU_ID_1 2
 | |
| #define WORKER_VCPU_ID_2 65
 | |
| 
 | |
| #define NTRY 100
 | |
| #define NTEST_PAGES 2
 | |
| 
 | |
| struct hv_vpset {
 | |
| 	u64 format;
 | |
| 	u64 valid_bank_mask;
 | |
| 	u64 bank_contents[];
 | |
| };
 | |
| 
 | |
| enum HV_GENERIC_SET_FORMAT {
 | |
| 	HV_GENERIC_SET_SPARSE_4K,
 | |
| 	HV_GENERIC_SET_ALL,
 | |
| };
 | |
| 
 | |
| #define HV_FLUSH_ALL_PROCESSORS			BIT(0)
 | |
| #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES	BIT(1)
 | |
| #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY	BIT(2)
 | |
| #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT	BIT(3)
 | |
| 
 | |
| /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
 | |
| struct hv_tlb_flush {
 | |
| 	u64 address_space;
 | |
| 	u64 flags;
 | |
| 	u64 processor_mask;
 | |
| 	u64 gva_list[];
 | |
| } __packed;
 | |
| 
 | |
| /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
 | |
| struct hv_tlb_flush_ex {
 | |
| 	u64 address_space;
 | |
| 	u64 flags;
 | |
| 	struct hv_vpset hv_vp_set;
 | |
| 	u64 gva_list[];
 | |
| } __packed;
 | |
| 
 | |
| /*
 | |
|  * Pass the following info to 'workers' and 'sender'
 | |
|  * - Hypercall page's GVA
 | |
|  * - Hypercall page's GPA
 | |
|  * - Test pages GVA
 | |
|  * - GVAs of the test pages' PTEs
 | |
|  */
 | |
| struct test_data {
 | |
| 	vm_vaddr_t hcall_gva;
 | |
| 	vm_paddr_t hcall_gpa;
 | |
| 	vm_vaddr_t test_pages;
 | |
| 	vm_vaddr_t test_pages_pte[NTEST_PAGES];
 | |
| };
 | |
| 
 | |
| /* 'Worker' vCPU code checking the contents of the test page */
 | |
| static void worker_guest_code(vm_vaddr_t test_data)
 | |
| {
 | |
| 	struct test_data *data = (struct test_data *)test_data;
 | |
| 	u32 vcpu_id = rdmsr(HV_X64_MSR_VP_INDEX);
 | |
| 	void *exp_page = (void *)data->test_pages + PAGE_SIZE * NTEST_PAGES;
 | |
| 	u64 *this_cpu = (u64 *)(exp_page + vcpu_id * sizeof(u64));
 | |
| 	u64 expected, val;
 | |
| 
 | |
| 	x2apic_enable();
 | |
| 	wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		cpu_relax();
 | |
| 
 | |
| 		expected = READ_ONCE(*this_cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure the value in the test page is read after reading
 | |
| 		 * the expectation for the first time. Pairs with wmb() in
 | |
| 		 * prepare_to_test().
 | |
| 		 */
 | |
| 		rmb();
 | |
| 
 | |
| 		val = READ_ONCE(*(u64 *)data->test_pages);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure the value in the test page is read after before
 | |
| 		 * reading the expectation for the second time. Pairs with wmb()
 | |
| 		 * post_test().
 | |
| 		 */
 | |
| 		rmb();
 | |
| 
 | |
| 		/*
 | |
| 		 * '0' indicates the sender is between iterations, wait until
 | |
| 		 * the sender is ready for this vCPU to start checking again.
 | |
| 		 */
 | |
| 		if (!expected)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Re-read the per-vCPU byte to ensure the sender didn't move
 | |
| 		 * onto a new iteration.
 | |
| 		 */
 | |
| 		if (expected != READ_ONCE(*this_cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		GUEST_ASSERT(val == expected);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write per-CPU info indicating what each 'worker' CPU is supposed to see in
 | |
|  * test page. '0' means don't check.
 | |
|  */
 | |
| static void set_expected_val(void *addr, u64 val, int vcpu_id)
 | |
| {
 | |
| 	void *exp_page = addr + PAGE_SIZE * NTEST_PAGES;
 | |
| 
 | |
| 	*(u64 *)(exp_page + vcpu_id * sizeof(u64)) = val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update PTEs swapping two test pages.
 | |
|  * TODO: use swap()/xchg() when these are provided.
 | |
|  */
 | |
| static void swap_two_test_pages(vm_paddr_t pte_gva1, vm_paddr_t pte_gva2)
 | |
| {
 | |
| 	uint64_t tmp = *(uint64_t *)pte_gva1;
 | |
| 
 | |
| 	*(uint64_t *)pte_gva1 = *(uint64_t *)pte_gva2;
 | |
| 	*(uint64_t *)pte_gva2 = tmp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO: replace the silly NOP loop with a proper udelay() implementation.
 | |
|  */
 | |
| static inline void do_delay(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 1000000; i++)
 | |
| 		asm volatile("nop");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare to test: 'disable' workers by setting the expectation to '0',
 | |
|  * clear hypercall input page and then swap two test pages.
 | |
|  */
 | |
| static inline void prepare_to_test(struct test_data *data)
 | |
| {
 | |
| 	/* Clear hypercall input page */
 | |
| 	memset((void *)data->hcall_gva, 0, PAGE_SIZE);
 | |
| 
 | |
| 	/* 'Disable' workers */
 | |
| 	set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_1);
 | |
| 	set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_2);
 | |
| 
 | |
| 	/* Make sure workers are 'disabled' before we swap PTEs. */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* Make sure workers have enough time to notice */
 | |
| 	do_delay();
 | |
| 
 | |
| 	/* Swap test page mappings */
 | |
| 	swap_two_test_pages(data->test_pages_pte[0], data->test_pages_pte[1]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finalize the test: check hypercall resule set the expected val for
 | |
|  * 'worker' CPUs and give them some time to test.
 | |
|  */
 | |
| static inline void post_test(struct test_data *data, u64 exp1, u64 exp2)
 | |
| {
 | |
| 	/* Make sure we change the expectation after swapping PTEs */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* Set the expectation for workers, '0' means don't test */
 | |
| 	set_expected_val((void *)data->test_pages, exp1, WORKER_VCPU_ID_1);
 | |
| 	set_expected_val((void *)data->test_pages, exp2, WORKER_VCPU_ID_2);
 | |
| 
 | |
| 	/* Make sure workers have enough time to test */
 | |
| 	do_delay();
 | |
| }
 | |
| 
 | |
| #define TESTVAL1 0x0101010101010101
 | |
| #define TESTVAL2 0x0202020202020202
 | |
| 
 | |
| /* Main vCPU doing the test */
 | |
| static void sender_guest_code(vm_vaddr_t test_data)
 | |
| {
 | |
| 	struct test_data *data = (struct test_data *)test_data;
 | |
| 	struct hv_tlb_flush *flush = (struct hv_tlb_flush *)data->hcall_gva;
 | |
| 	struct hv_tlb_flush_ex *flush_ex = (struct hv_tlb_flush_ex *)data->hcall_gva;
 | |
| 	vm_paddr_t hcall_gpa = data->hcall_gpa;
 | |
| 	int i, stage = 1;
 | |
| 
 | |
| 	wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID);
 | |
| 	wrmsr(HV_X64_MSR_HYPERCALL, data->hcall_gpa);
 | |
| 
 | |
| 	/* "Slow" hypercalls */
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush->processor_mask = BIT(WORKER_VCPU_ID_1);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
 | |
| 				 hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush->processor_mask = BIT(WORKER_VCPU_ID_1);
 | |
| 		flush->gva_list[0] = (u64)data->test_pages;
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 hcall_gpa, hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
 | |
| 			HV_FLUSH_ALL_PROCESSORS;
 | |
| 		flush->processor_mask = 0;
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa,
 | |
| 				 hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
 | |
| 			HV_FLUSH_ALL_PROCESSORS;
 | |
| 		flush->gva_list[0] = (u64)data->test_pages;
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 hcall_gpa, hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
 | |
| 		flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
 | |
| 				 (1 << HV_HYPERCALL_VARHEAD_OFFSET),
 | |
| 				 hcall_gpa, hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
 | |
| 		flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
 | |
| 		/* bank_contents and gva_list occupy the same space, thus [1] */
 | |
| 		flush_ex->gva_list[1] = (u64)data->test_pages;
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
 | |
| 				 (1 << HV_HYPERCALL_VARHEAD_OFFSET) |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 hcall_gpa, hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
 | |
| 		flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
 | |
| 			BIT_ULL(WORKER_VCPU_ID_1 / 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
 | |
| 				 (2 << HV_HYPERCALL_VARHEAD_OFFSET),
 | |
| 				 hcall_gpa, hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
 | |
| 		flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
 | |
| 			BIT_ULL(WORKER_VCPU_ID_2 / 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
 | |
| 		/* bank_contents and gva_list occupy the same space, thus [2] */
 | |
| 		flush_ex->gva_list[2] = (u64)data->test_pages;
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
 | |
| 				 (2 << HV_HYPERCALL_VARHEAD_OFFSET) |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 hcall_gpa, hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX,
 | |
| 				 hcall_gpa, hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
 | |
| 		flush_ex->gva_list[0] = (u64)data->test_pages;
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 hcall_gpa, hcall_gpa + PAGE_SIZE);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	/* "Fast" hypercalls */
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush->processor_mask = BIT(WORKER_VCPU_ID_1);
 | |
| 		hyperv_write_xmm_input(&flush->processor_mask, 1);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
 | |
| 				 HV_HYPERCALL_FAST_BIT, 0x0,
 | |
| 				 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush->processor_mask = BIT(WORKER_VCPU_ID_1);
 | |
| 		flush->gva_list[0] = (u64)data->test_pages;
 | |
| 		hyperv_write_xmm_input(&flush->processor_mask, 1);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
 | |
| 				 HV_HYPERCALL_FAST_BIT |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		hyperv_write_xmm_input(&flush->processor_mask, 1);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE |
 | |
| 				 HV_HYPERCALL_FAST_BIT, 0x0,
 | |
| 				 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
 | |
| 				 HV_FLUSH_ALL_PROCESSORS);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush->gva_list[0] = (u64)data->test_pages;
 | |
| 		hyperv_write_xmm_input(&flush->processor_mask, 1);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST |
 | |
| 				 HV_HYPERCALL_FAST_BIT |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0,
 | |
| 				 HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES |
 | |
| 				 HV_FLUSH_ALL_PROCESSORS);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
 | |
| 		flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
 | |
| 		hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
 | |
| 				 HV_HYPERCALL_FAST_BIT |
 | |
| 				 (1 << HV_HYPERCALL_VARHEAD_OFFSET),
 | |
| 				 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
 | |
| 		post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
 | |
| 		flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
 | |
| 		/* bank_contents and gva_list occupy the same space, thus [1] */
 | |
| 		flush_ex->gva_list[1] = (u64)data->test_pages;
 | |
| 		hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
 | |
| 				 HV_HYPERCALL_FAST_BIT |
 | |
| 				 (1 << HV_HYPERCALL_VARHEAD_OFFSET) |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
 | |
| 		post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
 | |
| 		flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) |
 | |
| 			BIT_ULL(WORKER_VCPU_ID_1 / 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
 | |
| 		hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
 | |
| 				 HV_HYPERCALL_FAST_BIT |
 | |
| 				 (2 << HV_HYPERCALL_VARHEAD_OFFSET),
 | |
| 				 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 :
 | |
| 			  TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K;
 | |
| 		flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) |
 | |
| 			BIT_ULL(WORKER_VCPU_ID_2 / 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64);
 | |
| 		flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64);
 | |
| 		/* bank_contents and gva_list occupy the same space, thus [2] */
 | |
| 		flush_ex->gva_list[2] = (u64)data->test_pages;
 | |
| 		hyperv_write_xmm_input(&flush_ex->hv_vp_set, 3);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
 | |
| 				 HV_HYPERCALL_FAST_BIT |
 | |
| 				 (2 << HV_HYPERCALL_VARHEAD_OFFSET) |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
 | |
| 		hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX |
 | |
| 				 HV_HYPERCALL_FAST_BIT,
 | |
| 				 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(stage++);
 | |
| 
 | |
| 	/* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */
 | |
| 	for (i = 0; i < NTRY; i++) {
 | |
| 		prepare_to_test(data);
 | |
| 		flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES;
 | |
| 		flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL;
 | |
| 		flush_ex->gva_list[0] = (u64)data->test_pages;
 | |
| 		hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2);
 | |
| 		hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX |
 | |
| 				 HV_HYPERCALL_FAST_BIT |
 | |
| 				 (1UL << HV_HYPERCALL_REP_COMP_OFFSET),
 | |
| 				 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES);
 | |
| 		post_test(data, i % 2 ? TESTVAL1 : TESTVAL2,
 | |
| 			  i % 2 ? TESTVAL1 : TESTVAL2);
 | |
| 	}
 | |
| 
 | |
| 	GUEST_DONE();
 | |
| }
 | |
| 
 | |
| static void *vcpu_thread(void *arg)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)arg;
 | |
| 	struct ucall uc;
 | |
| 	int old;
 | |
| 	int r;
 | |
| 
 | |
| 	r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old);
 | |
| 	TEST_ASSERT(!r, "pthread_setcanceltype failed on vcpu_id=%u with errno=%d",
 | |
| 		    vcpu->id, r);
 | |
| 
 | |
| 	vcpu_run(vcpu);
 | |
| 	TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO);
 | |
| 
 | |
| 	switch (get_ucall(vcpu, &uc)) {
 | |
| 	case UCALL_ABORT:
 | |
| 		REPORT_GUEST_ASSERT(uc);
 | |
| 		/* NOT REACHED */
 | |
| 	default:
 | |
| 		TEST_FAIL("Unexpected ucall %lu, vCPU %d", uc.cmd, vcpu->id);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void cancel_join_vcpu_thread(pthread_t thread, struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	void *retval;
 | |
| 	int r;
 | |
| 
 | |
| 	r = pthread_cancel(thread);
 | |
| 	TEST_ASSERT(!r, "pthread_cancel on vcpu_id=%d failed with errno=%d",
 | |
| 		    vcpu->id, r);
 | |
| 
 | |
| 	r = pthread_join(thread, &retval);
 | |
| 	TEST_ASSERT(!r, "pthread_join on vcpu_id=%d failed with errno=%d",
 | |
| 		    vcpu->id, r);
 | |
| 	TEST_ASSERT(retval == PTHREAD_CANCELED,
 | |
| 		    "expected retval=%p, got %p", PTHREAD_CANCELED,
 | |
| 		    retval);
 | |
| }
 | |
| 
 | |
| int main(int argc, char *argv[])
 | |
| {
 | |
| 	struct kvm_vm *vm;
 | |
| 	struct kvm_vcpu *vcpu[3];
 | |
| 	pthread_t threads[2];
 | |
| 	vm_vaddr_t test_data_page, gva;
 | |
| 	vm_paddr_t gpa;
 | |
| 	uint64_t *pte;
 | |
| 	struct test_data *data;
 | |
| 	struct ucall uc;
 | |
| 	int stage = 1, r, i;
 | |
| 
 | |
| 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_HYPERV_TLBFLUSH));
 | |
| 
 | |
| 	vm = vm_create_with_one_vcpu(&vcpu[0], sender_guest_code);
 | |
| 
 | |
| 	/* Test data page */
 | |
| 	test_data_page = vm_vaddr_alloc_page(vm);
 | |
| 	data = (struct test_data *)addr_gva2hva(vm, test_data_page);
 | |
| 
 | |
| 	/* Hypercall input/output */
 | |
| 	data->hcall_gva = vm_vaddr_alloc_pages(vm, 2);
 | |
| 	data->hcall_gpa = addr_gva2gpa(vm, data->hcall_gva);
 | |
| 	memset(addr_gva2hva(vm, data->hcall_gva), 0x0, 2 * PAGE_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Test pages: the first one is filled with '0x01's, the second with '0x02's
 | |
| 	 * and the test will swap their mappings. The third page keeps the indication
 | |
| 	 * about the current state of mappings.
 | |
| 	 */
 | |
| 	data->test_pages = vm_vaddr_alloc_pages(vm, NTEST_PAGES + 1);
 | |
| 	for (i = 0; i < NTEST_PAGES; i++)
 | |
| 		memset(addr_gva2hva(vm, data->test_pages + PAGE_SIZE * i),
 | |
| 		       (u8)(i + 1), PAGE_SIZE);
 | |
| 	set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_1);
 | |
| 	set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_2);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get PTE pointers for test pages and map them inside the guest.
 | |
| 	 * Use separate page for each PTE for simplicity.
 | |
| 	 */
 | |
| 	gva = vm_vaddr_unused_gap(vm, NTEST_PAGES * PAGE_SIZE, KVM_UTIL_MIN_VADDR);
 | |
| 	for (i = 0; i < NTEST_PAGES; i++) {
 | |
| 		pte = vm_get_page_table_entry(vm, data->test_pages + i * PAGE_SIZE);
 | |
| 		gpa = addr_hva2gpa(vm, pte);
 | |
| 		__virt_pg_map(vm, gva + PAGE_SIZE * i, gpa & PAGE_MASK, PG_LEVEL_4K);
 | |
| 		data->test_pages_pte[i] = gva + (gpa & ~PAGE_MASK);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sender vCPU which performs the test: swaps test pages, sets expectation
 | |
| 	 * for 'workers' and issues TLB flush hypercalls.
 | |
| 	 */
 | |
| 	vcpu_args_set(vcpu[0], 1, test_data_page);
 | |
| 	vcpu_set_hv_cpuid(vcpu[0]);
 | |
| 
 | |
| 	/* Create worker vCPUs which check the contents of the test pages */
 | |
| 	vcpu[1] = vm_vcpu_add(vm, WORKER_VCPU_ID_1, worker_guest_code);
 | |
| 	vcpu_args_set(vcpu[1], 1, test_data_page);
 | |
| 	vcpu_set_msr(vcpu[1], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_1);
 | |
| 	vcpu_set_hv_cpuid(vcpu[1]);
 | |
| 
 | |
| 	vcpu[2] = vm_vcpu_add(vm, WORKER_VCPU_ID_2, worker_guest_code);
 | |
| 	vcpu_args_set(vcpu[2], 1, test_data_page);
 | |
| 	vcpu_set_msr(vcpu[2], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_2);
 | |
| 	vcpu_set_hv_cpuid(vcpu[2]);
 | |
| 
 | |
| 	r = pthread_create(&threads[0], NULL, vcpu_thread, vcpu[1]);
 | |
| 	TEST_ASSERT(!r, "pthread_create() failed");
 | |
| 
 | |
| 	r = pthread_create(&threads[1], NULL, vcpu_thread, vcpu[2]);
 | |
| 	TEST_ASSERT(!r, "pthread_create() failed");
 | |
| 
 | |
| 	while (true) {
 | |
| 		vcpu_run(vcpu[0]);
 | |
| 		TEST_ASSERT_KVM_EXIT_REASON(vcpu[0], KVM_EXIT_IO);
 | |
| 
 | |
| 		switch (get_ucall(vcpu[0], &uc)) {
 | |
| 		case UCALL_SYNC:
 | |
| 			TEST_ASSERT(uc.args[1] == stage,
 | |
| 				    "Unexpected stage: %ld (%d expected)",
 | |
| 				    uc.args[1], stage);
 | |
| 			break;
 | |
| 		case UCALL_ABORT:
 | |
| 			REPORT_GUEST_ASSERT(uc);
 | |
| 			/* NOT REACHED */
 | |
| 		case UCALL_DONE:
 | |
| 			goto done;
 | |
| 		default:
 | |
| 			TEST_FAIL("Unknown ucall %lu", uc.cmd);
 | |
| 		}
 | |
| 
 | |
| 		stage++;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	cancel_join_vcpu_thread(threads[0], vcpu[1]);
 | |
| 	cancel_join_vcpu_thread(threads[1], vcpu[2]);
 | |
| 	kvm_vm_free(vm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |