1188 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1188 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Test for s390x KVM_S390_MEM_OP
 | |
|  *
 | |
|  * Copyright (C) 2019, Red Hat, Inc.
 | |
|  */
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <pthread.h>
 | |
| 
 | |
| #include <linux/bits.h>
 | |
| 
 | |
| #include "test_util.h"
 | |
| #include "kvm_util.h"
 | |
| #include "kselftest.h"
 | |
| #include "ucall_common.h"
 | |
| #include "processor.h"
 | |
| 
 | |
| enum mop_target {
 | |
| 	LOGICAL,
 | |
| 	SIDA,
 | |
| 	ABSOLUTE,
 | |
| 	INVALID,
 | |
| };
 | |
| 
 | |
| enum mop_access_mode {
 | |
| 	READ,
 | |
| 	WRITE,
 | |
| 	CMPXCHG,
 | |
| };
 | |
| 
 | |
| struct mop_desc {
 | |
| 	uintptr_t gaddr;
 | |
| 	uintptr_t gaddr_v;
 | |
| 	uint64_t set_flags;
 | |
| 	unsigned int f_check : 1;
 | |
| 	unsigned int f_inject : 1;
 | |
| 	unsigned int f_key : 1;
 | |
| 	unsigned int _gaddr_v : 1;
 | |
| 	unsigned int _set_flags : 1;
 | |
| 	unsigned int _sida_offset : 1;
 | |
| 	unsigned int _ar : 1;
 | |
| 	uint32_t size;
 | |
| 	enum mop_target target;
 | |
| 	enum mop_access_mode mode;
 | |
| 	void *buf;
 | |
| 	uint32_t sida_offset;
 | |
| 	void *old;
 | |
| 	uint8_t old_value[16];
 | |
| 	bool *cmpxchg_success;
 | |
| 	uint8_t ar;
 | |
| 	uint8_t key;
 | |
| };
 | |
| 
 | |
| const uint8_t NO_KEY = 0xff;
 | |
| 
 | |
| static struct kvm_s390_mem_op ksmo_from_desc(struct mop_desc *desc)
 | |
| {
 | |
| 	struct kvm_s390_mem_op ksmo = {
 | |
| 		.gaddr = (uintptr_t)desc->gaddr,
 | |
| 		.size = desc->size,
 | |
| 		.buf = ((uintptr_t)desc->buf),
 | |
| 		.reserved = "ignored_ignored_ignored_ignored"
 | |
| 	};
 | |
| 
 | |
| 	switch (desc->target) {
 | |
| 	case LOGICAL:
 | |
| 		if (desc->mode == READ)
 | |
| 			ksmo.op = KVM_S390_MEMOP_LOGICAL_READ;
 | |
| 		if (desc->mode == WRITE)
 | |
| 			ksmo.op = KVM_S390_MEMOP_LOGICAL_WRITE;
 | |
| 		break;
 | |
| 	case SIDA:
 | |
| 		if (desc->mode == READ)
 | |
| 			ksmo.op = KVM_S390_MEMOP_SIDA_READ;
 | |
| 		if (desc->mode == WRITE)
 | |
| 			ksmo.op = KVM_S390_MEMOP_SIDA_WRITE;
 | |
| 		break;
 | |
| 	case ABSOLUTE:
 | |
| 		if (desc->mode == READ)
 | |
| 			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_READ;
 | |
| 		if (desc->mode == WRITE)
 | |
| 			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_WRITE;
 | |
| 		if (desc->mode == CMPXCHG) {
 | |
| 			ksmo.op = KVM_S390_MEMOP_ABSOLUTE_CMPXCHG;
 | |
| 			ksmo.old_addr = (uint64_t)desc->old;
 | |
| 			memcpy(desc->old_value, desc->old, desc->size);
 | |
| 		}
 | |
| 		break;
 | |
| 	case INVALID:
 | |
| 		ksmo.op = -1;
 | |
| 	}
 | |
| 	if (desc->f_check)
 | |
| 		ksmo.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
 | |
| 	if (desc->f_inject)
 | |
| 		ksmo.flags |= KVM_S390_MEMOP_F_INJECT_EXCEPTION;
 | |
| 	if (desc->_set_flags)
 | |
| 		ksmo.flags = desc->set_flags;
 | |
| 	if (desc->f_key && desc->key != NO_KEY) {
 | |
| 		ksmo.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION;
 | |
| 		ksmo.key = desc->key;
 | |
| 	}
 | |
| 	if (desc->_ar)
 | |
| 		ksmo.ar = desc->ar;
 | |
| 	else
 | |
| 		ksmo.ar = 0;
 | |
| 	if (desc->_sida_offset)
 | |
| 		ksmo.sida_offset = desc->sida_offset;
 | |
| 
 | |
| 	return ksmo;
 | |
| }
 | |
| 
 | |
| struct test_info {
 | |
| 	struct kvm_vm *vm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| };
 | |
| 
 | |
| #define PRINT_MEMOP false
 | |
| static void print_memop(struct kvm_vcpu *vcpu, const struct kvm_s390_mem_op *ksmo)
 | |
| {
 | |
| 	if (!PRINT_MEMOP)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu)
 | |
| 		printf("vm memop(");
 | |
| 	else
 | |
| 		printf("vcpu memop(");
 | |
| 	switch (ksmo->op) {
 | |
| 	case KVM_S390_MEMOP_LOGICAL_READ:
 | |
| 		printf("LOGICAL, READ, ");
 | |
| 		break;
 | |
| 	case KVM_S390_MEMOP_LOGICAL_WRITE:
 | |
| 		printf("LOGICAL, WRITE, ");
 | |
| 		break;
 | |
| 	case KVM_S390_MEMOP_SIDA_READ:
 | |
| 		printf("SIDA, READ, ");
 | |
| 		break;
 | |
| 	case KVM_S390_MEMOP_SIDA_WRITE:
 | |
| 		printf("SIDA, WRITE, ");
 | |
| 		break;
 | |
| 	case KVM_S390_MEMOP_ABSOLUTE_READ:
 | |
| 		printf("ABSOLUTE, READ, ");
 | |
| 		break;
 | |
| 	case KVM_S390_MEMOP_ABSOLUTE_WRITE:
 | |
| 		printf("ABSOLUTE, WRITE, ");
 | |
| 		break;
 | |
| 	case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
 | |
| 		printf("ABSOLUTE, CMPXCHG, ");
 | |
| 		break;
 | |
| 	}
 | |
| 	printf("gaddr=%llu, size=%u, buf=%llu, ar=%u, key=%u, old_addr=%llx",
 | |
| 	       ksmo->gaddr, ksmo->size, ksmo->buf, ksmo->ar, ksmo->key,
 | |
| 	       ksmo->old_addr);
 | |
| 	if (ksmo->flags & KVM_S390_MEMOP_F_CHECK_ONLY)
 | |
| 		printf(", CHECK_ONLY");
 | |
| 	if (ksmo->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION)
 | |
| 		printf(", INJECT_EXCEPTION");
 | |
| 	if (ksmo->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION)
 | |
| 		printf(", SKEY_PROTECTION");
 | |
| 	puts(")");
 | |
| }
 | |
| 
 | |
| static int err_memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
 | |
| 			   struct mop_desc *desc)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = info.vcpu;
 | |
| 
 | |
| 	if (!vcpu)
 | |
| 		return __vm_ioctl(info.vm, KVM_S390_MEM_OP, ksmo);
 | |
| 	else
 | |
| 		return __vcpu_ioctl(vcpu, KVM_S390_MEM_OP, ksmo);
 | |
| }
 | |
| 
 | |
| static void memop_ioctl(struct test_info info, struct kvm_s390_mem_op *ksmo,
 | |
| 			struct mop_desc *desc)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = err_memop_ioctl(info, ksmo, desc);
 | |
| 	if (ksmo->op == KVM_S390_MEMOP_ABSOLUTE_CMPXCHG) {
 | |
| 		if (desc->cmpxchg_success) {
 | |
| 			int diff = memcmp(desc->old_value, desc->old, desc->size);
 | |
| 			*desc->cmpxchg_success = !diff;
 | |
| 		}
 | |
| 	}
 | |
| 	TEST_ASSERT(!r, __KVM_IOCTL_ERROR("KVM_S390_MEM_OP", r));
 | |
| }
 | |
| 
 | |
| #define MEMOP(err, info_p, mop_target_p, access_mode_p, buf_p, size_p, ...)	\
 | |
| ({										\
 | |
| 	struct test_info __info = (info_p);					\
 | |
| 	struct mop_desc __desc = {						\
 | |
| 		.target = (mop_target_p),					\
 | |
| 		.mode = (access_mode_p),					\
 | |
| 		.buf = (buf_p),							\
 | |
| 		.size = (size_p),						\
 | |
| 		__VA_ARGS__							\
 | |
| 	};									\
 | |
| 	struct kvm_s390_mem_op __ksmo;						\
 | |
| 										\
 | |
| 	if (__desc._gaddr_v) {							\
 | |
| 		if (__desc.target == ABSOLUTE)					\
 | |
| 			__desc.gaddr = addr_gva2gpa(__info.vm, __desc.gaddr_v);	\
 | |
| 		else								\
 | |
| 			__desc.gaddr = __desc.gaddr_v;				\
 | |
| 	}									\
 | |
| 	__ksmo = ksmo_from_desc(&__desc);					\
 | |
| 	print_memop(__info.vcpu, &__ksmo);					\
 | |
| 	err##memop_ioctl(__info, &__ksmo, &__desc);				\
 | |
| })
 | |
| 
 | |
| #define MOP(...) MEMOP(, __VA_ARGS__)
 | |
| #define ERR_MOP(...) MEMOP(err_, __VA_ARGS__)
 | |
| 
 | |
| #define GADDR(a) .gaddr = ((uintptr_t)a)
 | |
| #define GADDR_V(v) ._gaddr_v = 1, .gaddr_v = ((uintptr_t)v)
 | |
| #define CHECK_ONLY .f_check = 1
 | |
| #define SET_FLAGS(f) ._set_flags = 1, .set_flags = (f)
 | |
| #define SIDA_OFFSET(o) ._sida_offset = 1, .sida_offset = (o)
 | |
| #define AR(a) ._ar = 1, .ar = (a)
 | |
| #define KEY(a) .f_key = 1, .key = (a)
 | |
| #define INJECT .f_inject = 1
 | |
| #define CMPXCHG_OLD(o) .old = (o)
 | |
| #define CMPXCHG_SUCCESS(s) .cmpxchg_success = (s)
 | |
| 
 | |
| #define CHECK_N_DO(f, ...) ({ f(__VA_ARGS__, CHECK_ONLY); f(__VA_ARGS__); })
 | |
| 
 | |
| #define CR0_FETCH_PROTECTION_OVERRIDE	(1UL << (63 - 38))
 | |
| #define CR0_STORAGE_PROTECTION_OVERRIDE	(1UL << (63 - 39))
 | |
| 
 | |
| static uint8_t __aligned(PAGE_SIZE) mem1[65536];
 | |
| static uint8_t __aligned(PAGE_SIZE) mem2[65536];
 | |
| 
 | |
| struct test_default {
 | |
| 	struct kvm_vm *kvm_vm;
 | |
| 	struct test_info vm;
 | |
| 	struct test_info vcpu;
 | |
| 	struct kvm_run *run;
 | |
| 	int size;
 | |
| };
 | |
| 
 | |
| static struct test_default test_default_init(void *guest_code)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	struct test_default t;
 | |
| 
 | |
| 	t.size = min((size_t)kvm_check_cap(KVM_CAP_S390_MEM_OP), sizeof(mem1));
 | |
| 	t.kvm_vm = vm_create_with_one_vcpu(&vcpu, guest_code);
 | |
| 	t.vm = (struct test_info) { t.kvm_vm, NULL };
 | |
| 	t.vcpu = (struct test_info) { t.kvm_vm, vcpu };
 | |
| 	t.run = vcpu->run;
 | |
| 	return t;
 | |
| }
 | |
| 
 | |
| enum stage {
 | |
| 	/* Synced state set by host, e.g. DAT */
 | |
| 	STAGE_INITED,
 | |
| 	/* Guest did nothing */
 | |
| 	STAGE_IDLED,
 | |
| 	/* Guest set storage keys (specifics up to test case) */
 | |
| 	STAGE_SKEYS_SET,
 | |
| 	/* Guest copied memory (locations up to test case) */
 | |
| 	STAGE_COPIED,
 | |
| 	/* End of guest code reached */
 | |
| 	STAGE_DONE,
 | |
| };
 | |
| 
 | |
| #define HOST_SYNC(info_p, stage)					\
 | |
| ({									\
 | |
| 	struct test_info __info = (info_p);				\
 | |
| 	struct kvm_vcpu *__vcpu = __info.vcpu;				\
 | |
| 	struct ucall uc;						\
 | |
| 	int __stage = (stage);						\
 | |
| 									\
 | |
| 	vcpu_run(__vcpu);						\
 | |
| 	get_ucall(__vcpu, &uc);						\
 | |
| 	if (uc.cmd == UCALL_ABORT) {					\
 | |
| 		REPORT_GUEST_ASSERT(uc);				\
 | |
| 	}								\
 | |
| 	TEST_ASSERT_EQ(uc.cmd, UCALL_SYNC);				\
 | |
| 	TEST_ASSERT_EQ(uc.args[1], __stage);				\
 | |
| })									\
 | |
| 
 | |
| static void prepare_mem12(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < sizeof(mem1); i++)
 | |
| 		mem1[i] = rand();
 | |
| 	memset(mem2, 0xaa, sizeof(mem2));
 | |
| }
 | |
| 
 | |
| #define ASSERT_MEM_EQ(p1, p2, size) \
 | |
| 	TEST_ASSERT(!memcmp(p1, p2, size), "Memory contents do not match!")
 | |
| 
 | |
| static void default_write_read(struct test_info copy_cpu, struct test_info mop_cpu,
 | |
| 			       enum mop_target mop_target, uint32_t size, uint8_t key)
 | |
| {
 | |
| 	prepare_mem12();
 | |
| 	CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size,
 | |
| 		   GADDR_V(mem1), KEY(key));
 | |
| 	HOST_SYNC(copy_cpu, STAGE_COPIED);
 | |
| 	CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
 | |
| 		   GADDR_V(mem2), KEY(key));
 | |
| 	ASSERT_MEM_EQ(mem1, mem2, size);
 | |
| }
 | |
| 
 | |
| static void default_read(struct test_info copy_cpu, struct test_info mop_cpu,
 | |
| 			 enum mop_target mop_target, uint32_t size, uint8_t key)
 | |
| {
 | |
| 	prepare_mem12();
 | |
| 	CHECK_N_DO(MOP, mop_cpu, mop_target, WRITE, mem1, size, GADDR_V(mem1));
 | |
| 	HOST_SYNC(copy_cpu, STAGE_COPIED);
 | |
| 	CHECK_N_DO(MOP, mop_cpu, mop_target, READ, mem2, size,
 | |
| 		   GADDR_V(mem2), KEY(key));
 | |
| 	ASSERT_MEM_EQ(mem1, mem2, size);
 | |
| }
 | |
| 
 | |
| static void default_cmpxchg(struct test_default *test, uint8_t key)
 | |
| {
 | |
| 	for (int size = 1; size <= 16; size *= 2) {
 | |
| 		for (int offset = 0; offset < 16; offset += size) {
 | |
| 			uint8_t __aligned(16) new[16] = {};
 | |
| 			uint8_t __aligned(16) old[16];
 | |
| 			bool succ;
 | |
| 
 | |
| 			prepare_mem12();
 | |
| 			default_write_read(test->vcpu, test->vcpu, LOGICAL, 16, NO_KEY);
 | |
| 
 | |
| 			memcpy(&old, mem1, 16);
 | |
| 			MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
 | |
| 			    size, GADDR_V(mem1 + offset),
 | |
| 			    CMPXCHG_OLD(old + offset),
 | |
| 			    CMPXCHG_SUCCESS(&succ), KEY(key));
 | |
| 			HOST_SYNC(test->vcpu, STAGE_COPIED);
 | |
| 			MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
 | |
| 			TEST_ASSERT(succ, "exchange of values should succeed");
 | |
| 			memcpy(mem1 + offset, new + offset, size);
 | |
| 			ASSERT_MEM_EQ(mem1, mem2, 16);
 | |
| 
 | |
| 			memcpy(&old, mem1, 16);
 | |
| 			new[offset]++;
 | |
| 			old[offset]++;
 | |
| 			MOP(test->vm, ABSOLUTE, CMPXCHG, new + offset,
 | |
| 			    size, GADDR_V(mem1 + offset),
 | |
| 			    CMPXCHG_OLD(old + offset),
 | |
| 			    CMPXCHG_SUCCESS(&succ), KEY(key));
 | |
| 			HOST_SYNC(test->vcpu, STAGE_COPIED);
 | |
| 			MOP(test->vm, ABSOLUTE, READ, mem2, 16, GADDR_V(mem2));
 | |
| 			TEST_ASSERT(!succ, "exchange of values should not succeed");
 | |
| 			ASSERT_MEM_EQ(mem1, mem2, 16);
 | |
| 			ASSERT_MEM_EQ(&old, mem1, 16);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void guest_copy(void)
 | |
| {
 | |
| 	GUEST_SYNC(STAGE_INITED);
 | |
| 	memcpy(&mem2, &mem1, sizeof(mem2));
 | |
| 	GUEST_SYNC(STAGE_COPIED);
 | |
| }
 | |
| 
 | |
| static void test_copy(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy);
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 
 | |
| 	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, NO_KEY);
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_copy_access_register(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy);
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 
 | |
| 	prepare_mem12();
 | |
| 	t.run->psw_mask &= ~(3UL << (63 - 17));
 | |
| 	t.run->psw_mask |= 1UL << (63 - 17);  /* Enable AR mode */
 | |
| 
 | |
| 	/*
 | |
| 	 * Primary address space gets used if an access register
 | |
| 	 * contains zero. The host makes use of AR[1] so is a good
 | |
| 	 * candidate to ensure the guest AR (of zero) is used.
 | |
| 	 */
 | |
| 	CHECK_N_DO(MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size,
 | |
| 		   GADDR_V(mem1), AR(1));
 | |
| 	HOST_SYNC(t.vcpu, STAGE_COPIED);
 | |
| 
 | |
| 	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, t.size,
 | |
| 		   GADDR_V(mem2), AR(1));
 | |
| 	ASSERT_MEM_EQ(mem1, mem2, t.size);
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void set_storage_key_range(void *addr, size_t len, uint8_t key)
 | |
| {
 | |
| 	uintptr_t _addr, abs, i;
 | |
| 	int not_mapped = 0;
 | |
| 
 | |
| 	_addr = (uintptr_t)addr;
 | |
| 	for (i = _addr & PAGE_MASK; i < _addr + len; i += PAGE_SIZE) {
 | |
| 		abs = i;
 | |
| 		asm volatile (
 | |
| 			       "lra	%[abs], 0(0,%[abs])\n"
 | |
| 			"	jz	0f\n"
 | |
| 			"	llill	%[not_mapped],1\n"
 | |
| 			"	j	1f\n"
 | |
| 			"0:	sske	%[key], %[abs]\n"
 | |
| 			"1:"
 | |
| 			: [abs] "+&a" (abs), [not_mapped] "+r" (not_mapped)
 | |
| 			: [key] "r" (key)
 | |
| 			: "cc"
 | |
| 		);
 | |
| 		GUEST_ASSERT_EQ(not_mapped, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void guest_copy_key(void)
 | |
| {
 | |
| 	set_storage_key_range(mem1, sizeof(mem1), 0x90);
 | |
| 	set_storage_key_range(mem2, sizeof(mem2), 0x90);
 | |
| 	GUEST_SYNC(STAGE_SKEYS_SET);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		memcpy(&mem2, &mem1, sizeof(mem2));
 | |
| 		GUEST_SYNC(STAGE_COPIED);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void test_copy_key(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key);
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/* vm, no key */
 | |
| 	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, NO_KEY);
 | |
| 
 | |
| 	/* vm/vcpu, machting key or key 0 */
 | |
| 	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 0);
 | |
| 	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
 | |
| 	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 0);
 | |
| 	default_write_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);
 | |
| 	/*
 | |
| 	 * There used to be different code paths for key handling depending on
 | |
| 	 * if the region crossed a page boundary.
 | |
| 	 * There currently are not, but the more tests the merrier.
 | |
| 	 */
 | |
| 	default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 0);
 | |
| 	default_write_read(t.vcpu, t.vcpu, LOGICAL, 1, 9);
 | |
| 	default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 0);
 | |
| 	default_write_read(t.vcpu, t.vm, ABSOLUTE, 1, 9);
 | |
| 
 | |
| 	/* vm/vcpu, mismatching keys on read, but no fetch protection */
 | |
| 	default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);
 | |
| 	default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 2);
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_cmpxchg_key(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key);
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	default_cmpxchg(&t, NO_KEY);
 | |
| 	default_cmpxchg(&t, 0);
 | |
| 	default_cmpxchg(&t, 9);
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static __uint128_t cut_to_size(int size, __uint128_t val)
 | |
| {
 | |
| 	switch (size) {
 | |
| 	case 1:
 | |
| 		return (uint8_t)val;
 | |
| 	case 2:
 | |
| 		return (uint16_t)val;
 | |
| 	case 4:
 | |
| 		return (uint32_t)val;
 | |
| 	case 8:
 | |
| 		return (uint64_t)val;
 | |
| 	case 16:
 | |
| 		return val;
 | |
| 	}
 | |
| 	GUEST_FAIL("Invalid size = %u", size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool popcount_eq(__uint128_t a, __uint128_t b)
 | |
| {
 | |
| 	unsigned int count_a, count_b;
 | |
| 
 | |
| 	count_a = __builtin_popcountl((uint64_t)(a >> 64)) +
 | |
| 		  __builtin_popcountl((uint64_t)a);
 | |
| 	count_b = __builtin_popcountl((uint64_t)(b >> 64)) +
 | |
| 		  __builtin_popcountl((uint64_t)b);
 | |
| 	return count_a == count_b;
 | |
| }
 | |
| 
 | |
| static __uint128_t rotate(int size, __uint128_t val, int amount)
 | |
| {
 | |
| 	unsigned int bits = size * 8;
 | |
| 
 | |
| 	amount = (amount + bits) % bits;
 | |
| 	val = cut_to_size(size, val);
 | |
| 	if (!amount)
 | |
| 		return val;
 | |
| 	return (val << (bits - amount)) | (val >> amount);
 | |
| }
 | |
| 
 | |
| const unsigned int max_block = 16;
 | |
| 
 | |
| static void choose_block(bool guest, int i, int *size, int *offset)
 | |
| {
 | |
| 	unsigned int rand;
 | |
| 
 | |
| 	rand = i;
 | |
| 	if (guest) {
 | |
| 		rand = rand * 19 + 11;
 | |
| 		*size = 1 << ((rand % 3) + 2);
 | |
| 		rand = rand * 19 + 11;
 | |
| 		*offset = (rand % max_block) & ~(*size - 1);
 | |
| 	} else {
 | |
| 		rand = rand * 17 + 5;
 | |
| 		*size = 1 << (rand % 5);
 | |
| 		rand = rand * 17 + 5;
 | |
| 		*offset = (rand % max_block) & ~(*size - 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __uint128_t permutate_bits(bool guest, int i, int size, __uint128_t old)
 | |
| {
 | |
| 	unsigned int rand;
 | |
| 	int amount;
 | |
| 	bool swap;
 | |
| 
 | |
| 	rand = i;
 | |
| 	rand = rand * 3 + 1;
 | |
| 	if (guest)
 | |
| 		rand = rand * 3 + 1;
 | |
| 	swap = rand % 2 == 0;
 | |
| 	if (swap) {
 | |
| 		int i, j;
 | |
| 		__uint128_t new;
 | |
| 		uint8_t byte0, byte1;
 | |
| 
 | |
| 		rand = rand * 3 + 1;
 | |
| 		i = rand % size;
 | |
| 		rand = rand * 3 + 1;
 | |
| 		j = rand % size;
 | |
| 		if (i == j)
 | |
| 			return old;
 | |
| 		new = rotate(16, old, i * 8);
 | |
| 		byte0 = new & 0xff;
 | |
| 		new &= ~0xff;
 | |
| 		new = rotate(16, new, -i * 8);
 | |
| 		new = rotate(16, new, j * 8);
 | |
| 		byte1 = new & 0xff;
 | |
| 		new = (new & ~0xff) | byte0;
 | |
| 		new = rotate(16, new, -j * 8);
 | |
| 		new = rotate(16, new, i * 8);
 | |
| 		new = new | byte1;
 | |
| 		new = rotate(16, new, -i * 8);
 | |
| 		return new;
 | |
| 	}
 | |
| 	rand = rand * 3 + 1;
 | |
| 	amount = rand % (size * 8);
 | |
| 	return rotate(size, old, amount);
 | |
| }
 | |
| 
 | |
| static bool _cmpxchg(int size, void *target, __uint128_t *old_addr, __uint128_t new)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	switch (size) {
 | |
| 	case 4: {
 | |
| 			uint32_t old = *old_addr;
 | |
| 
 | |
| 			asm volatile ("cs %[old],%[new],%[address]"
 | |
| 			    : [old] "+d" (old),
 | |
| 			      [address] "+Q" (*(uint32_t *)(target))
 | |
| 			    : [new] "d" ((uint32_t)new)
 | |
| 			    : "cc"
 | |
| 			);
 | |
| 			ret = old == (uint32_t)*old_addr;
 | |
| 			*old_addr = old;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	case 8: {
 | |
| 			uint64_t old = *old_addr;
 | |
| 
 | |
| 			asm volatile ("csg %[old],%[new],%[address]"
 | |
| 			    : [old] "+d" (old),
 | |
| 			      [address] "+Q" (*(uint64_t *)(target))
 | |
| 			    : [new] "d" ((uint64_t)new)
 | |
| 			    : "cc"
 | |
| 			);
 | |
| 			ret = old == (uint64_t)*old_addr;
 | |
| 			*old_addr = old;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	case 16: {
 | |
| 			__uint128_t old = *old_addr;
 | |
| 
 | |
| 			asm volatile ("cdsg %[old],%[new],%[address]"
 | |
| 			    : [old] "+d" (old),
 | |
| 			      [address] "+Q" (*(__uint128_t *)(target))
 | |
| 			    : [new] "d" (new)
 | |
| 			    : "cc"
 | |
| 			);
 | |
| 			ret = old == *old_addr;
 | |
| 			*old_addr = old;
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 	GUEST_FAIL("Invalid size = %u", size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const unsigned int cmpxchg_iter_outer = 100, cmpxchg_iter_inner = 10000;
 | |
| 
 | |
| static void guest_cmpxchg_key(void)
 | |
| {
 | |
| 	int size, offset;
 | |
| 	__uint128_t old, new;
 | |
| 
 | |
| 	set_storage_key_range(mem1, max_block, 0x10);
 | |
| 	set_storage_key_range(mem2, max_block, 0x10);
 | |
| 	GUEST_SYNC(STAGE_SKEYS_SET);
 | |
| 
 | |
| 	for (int i = 0; i < cmpxchg_iter_outer; i++) {
 | |
| 		do {
 | |
| 			old = 1;
 | |
| 		} while (!_cmpxchg(16, mem1, &old, 0));
 | |
| 		for (int j = 0; j < cmpxchg_iter_inner; j++) {
 | |
| 			choose_block(true, i + j, &size, &offset);
 | |
| 			do {
 | |
| 				new = permutate_bits(true, i + j, size, old);
 | |
| 			} while (!_cmpxchg(size, mem2 + offset, &old, new));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	GUEST_SYNC(STAGE_DONE);
 | |
| }
 | |
| 
 | |
| static void *run_guest(void *data)
 | |
| {
 | |
| 	struct test_info *info = data;
 | |
| 
 | |
| 	HOST_SYNC(*info, STAGE_DONE);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static char *quad_to_char(__uint128_t *quad, int size)
 | |
| {
 | |
| 	return ((char *)quad) + (sizeof(*quad) - size);
 | |
| }
 | |
| 
 | |
| static void test_cmpxchg_key_concurrent(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_cmpxchg_key);
 | |
| 	int size, offset;
 | |
| 	__uint128_t old, new;
 | |
| 	bool success;
 | |
| 	pthread_t thread;
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 	prepare_mem12();
 | |
| 	MOP(t.vcpu, LOGICAL, WRITE, mem1, max_block, GADDR_V(mem2));
 | |
| 	pthread_create(&thread, NULL, run_guest, &t.vcpu);
 | |
| 
 | |
| 	for (int i = 0; i < cmpxchg_iter_outer; i++) {
 | |
| 		do {
 | |
| 			old = 0;
 | |
| 			new = 1;
 | |
| 			MOP(t.vm, ABSOLUTE, CMPXCHG, &new,
 | |
| 			    sizeof(new), GADDR_V(mem1),
 | |
| 			    CMPXCHG_OLD(&old),
 | |
| 			    CMPXCHG_SUCCESS(&success), KEY(1));
 | |
| 		} while (!success);
 | |
| 		for (int j = 0; j < cmpxchg_iter_inner; j++) {
 | |
| 			choose_block(false, i + j, &size, &offset);
 | |
| 			do {
 | |
| 				new = permutate_bits(false, i + j, size, old);
 | |
| 				MOP(t.vm, ABSOLUTE, CMPXCHG, quad_to_char(&new, size),
 | |
| 				    size, GADDR_V(mem2 + offset),
 | |
| 				    CMPXCHG_OLD(quad_to_char(&old, size)),
 | |
| 				    CMPXCHG_SUCCESS(&success), KEY(1));
 | |
| 			} while (!success);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pthread_join(thread, NULL);
 | |
| 
 | |
| 	MOP(t.vcpu, LOGICAL, READ, mem2, max_block, GADDR_V(mem2));
 | |
| 	TEST_ASSERT(popcount_eq(*(__uint128_t *)mem1, *(__uint128_t *)mem2),
 | |
| 		    "Must retain number of set bits");
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void guest_copy_key_fetch_prot(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * For some reason combining the first sync with override enablement
 | |
| 	 * results in an exception when calling HOST_SYNC.
 | |
| 	 */
 | |
| 	GUEST_SYNC(STAGE_INITED);
 | |
| 	/* Storage protection override applies to both store and fetch. */
 | |
| 	set_storage_key_range(mem1, sizeof(mem1), 0x98);
 | |
| 	set_storage_key_range(mem2, sizeof(mem2), 0x98);
 | |
| 	GUEST_SYNC(STAGE_SKEYS_SET);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		memcpy(&mem2, &mem1, sizeof(mem2));
 | |
| 		GUEST_SYNC(STAGE_COPIED);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void test_copy_key_storage_prot_override(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
 | |
| 	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/* vcpu, mismatching keys, storage protection override in effect */
 | |
| 	default_write_read(t.vcpu, t.vcpu, LOGICAL, t.size, 2);
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_copy_key_fetch_prot(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/* vm/vcpu, matching key, fetch protection in effect */
 | |
| 	default_read(t.vcpu, t.vcpu, LOGICAL, t.size, 9);
 | |
| 	default_read(t.vcpu, t.vm, ABSOLUTE, t.size, 9);
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| #define ERR_PROT_MOP(...)							\
 | |
| ({										\
 | |
| 	int rv;									\
 | |
| 										\
 | |
| 	rv = ERR_MOP(__VA_ARGS__);						\
 | |
| 	TEST_ASSERT(rv == 4, "Should result in protection exception");		\
 | |
| })
 | |
| 
 | |
| static void guest_error_key(void)
 | |
| {
 | |
| 	GUEST_SYNC(STAGE_INITED);
 | |
| 	set_storage_key_range(mem1, PAGE_SIZE, 0x18);
 | |
| 	set_storage_key_range(mem1 + PAGE_SIZE, sizeof(mem1) - PAGE_SIZE, 0x98);
 | |
| 	GUEST_SYNC(STAGE_SKEYS_SET);
 | |
| 	GUEST_SYNC(STAGE_IDLED);
 | |
| }
 | |
| 
 | |
| static void test_errors_key(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_error_key);
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/* vm/vcpu, mismatching keys, fetch protection in effect */
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, t.size, GADDR_V(mem1), KEY(2));
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem1), KEY(2));
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_errors_cmpxchg_key(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
 | |
| 	int i;
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	for (i = 1; i <= 16; i *= 2) {
 | |
| 		__uint128_t old = 0;
 | |
| 
 | |
| 		ERR_PROT_MOP(t.vm, ABSOLUTE, CMPXCHG, mem2, i, GADDR_V(mem2),
 | |
| 			     CMPXCHG_OLD(&old), KEY(2));
 | |
| 	}
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_termination(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_error_key);
 | |
| 	uint64_t prefix;
 | |
| 	uint64_t teid;
 | |
| 	uint64_t teid_mask = BIT(63 - 56) | BIT(63 - 60) | BIT(63 - 61);
 | |
| 	uint64_t psw[2];
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/* vcpu, mismatching keys after first page */
 | |
| 	ERR_PROT_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), KEY(1), INJECT);
 | |
| 	/*
 | |
| 	 * The memop injected a program exception and the test needs to check the
 | |
| 	 * Translation-Exception Identification (TEID). It is necessary to run
 | |
| 	 * the guest in order to be able to read the TEID from guest memory.
 | |
| 	 * Set the guest program new PSW, so the guest state is not clobbered.
 | |
| 	 */
 | |
| 	prefix = t.run->s.regs.prefix;
 | |
| 	psw[0] = t.run->psw_mask;
 | |
| 	psw[1] = t.run->psw_addr;
 | |
| 	MOP(t.vm, ABSOLUTE, WRITE, psw, sizeof(psw), GADDR(prefix + 464));
 | |
| 	HOST_SYNC(t.vcpu, STAGE_IDLED);
 | |
| 	MOP(t.vm, ABSOLUTE, READ, &teid, sizeof(teid), GADDR(prefix + 168));
 | |
| 	/* Bits 56, 60, 61 form a code, 0 being the only one allowing for termination */
 | |
| 	TEST_ASSERT_EQ(teid & teid_mask, 0);
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_errors_key_storage_prot_override(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key_fetch_prot);
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	t.run->s.regs.crs[0] |= CR0_STORAGE_PROTECTION_OVERRIDE;
 | |
| 	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/* vm, mismatching keys, storage protection override not applicable to vm */
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, WRITE, mem1, t.size, GADDR_V(mem1), KEY(2));
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, t.size, GADDR_V(mem2), KEY(2));
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| const uint64_t last_page_addr = -PAGE_SIZE;
 | |
| 
 | |
| static void guest_copy_key_fetch_prot_override(void)
 | |
| {
 | |
| 	int i;
 | |
| 	char *page_0 = 0;
 | |
| 
 | |
| 	GUEST_SYNC(STAGE_INITED);
 | |
| 	set_storage_key_range(0, PAGE_SIZE, 0x18);
 | |
| 	set_storage_key_range((void *)last_page_addr, PAGE_SIZE, 0x0);
 | |
| 	asm volatile ("sske %[key],%[addr]\n" :: [addr] "r"(0L), [key] "r"(0x18) : "cc");
 | |
| 	GUEST_SYNC(STAGE_SKEYS_SET);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		for (i = 0; i < PAGE_SIZE; i++)
 | |
| 			page_0[i] = mem1[i];
 | |
| 		GUEST_SYNC(STAGE_COPIED);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void test_copy_key_fetch_prot_override(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
 | |
| 	vm_vaddr_t guest_0_page, guest_last_page;
 | |
| 
 | |
| 	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
 | |
| 	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
 | |
| 	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
 | |
| 		print_skip("did not allocate guest pages at required positions");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
 | |
| 	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/* vcpu, mismatching keys on fetch, fetch protection override applies */
 | |
| 	prepare_mem12();
 | |
| 	MOP(t.vcpu, LOGICAL, WRITE, mem1, PAGE_SIZE, GADDR_V(mem1));
 | |
| 	HOST_SYNC(t.vcpu, STAGE_COPIED);
 | |
| 	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));
 | |
| 	ASSERT_MEM_EQ(mem1, mem2, 2048);
 | |
| 
 | |
| 	/*
 | |
| 	 * vcpu, mismatching keys on fetch, fetch protection override applies,
 | |
| 	 * wraparound
 | |
| 	 */
 | |
| 	prepare_mem12();
 | |
| 	MOP(t.vcpu, LOGICAL, WRITE, mem1, 2 * PAGE_SIZE, GADDR_V(guest_last_page));
 | |
| 	HOST_SYNC(t.vcpu, STAGE_COPIED);
 | |
| 	CHECK_N_DO(MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048,
 | |
| 		   GADDR_V(guest_last_page), KEY(2));
 | |
| 	ASSERT_MEM_EQ(mem1, mem2, 2048);
 | |
| 
 | |
| out:
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_errors_key_fetch_prot_override_not_enabled(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
 | |
| 	vm_vaddr_t guest_0_page, guest_last_page;
 | |
| 
 | |
| 	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
 | |
| 	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
 | |
| 	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
 | |
| 		print_skip("did not allocate guest pages at required positions");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/* vcpu, mismatching keys on fetch, fetch protection override not enabled */
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048, GADDR_V(0), KEY(2));
 | |
| 
 | |
| out:
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_errors_key_fetch_prot_override_enabled(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_copy_key_fetch_prot_override);
 | |
| 	vm_vaddr_t guest_0_page, guest_last_page;
 | |
| 
 | |
| 	guest_0_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, 0);
 | |
| 	guest_last_page = vm_vaddr_alloc(t.kvm_vm, PAGE_SIZE, last_page_addr);
 | |
| 	if (guest_0_page != 0 || guest_last_page != last_page_addr) {
 | |
| 		print_skip("did not allocate guest pages at required positions");
 | |
| 		goto out;
 | |
| 	}
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 	t.run->s.regs.crs[0] |= CR0_FETCH_PROTECTION_OVERRIDE;
 | |
| 	t.run->kvm_dirty_regs = KVM_SYNC_CRS;
 | |
| 	HOST_SYNC(t.vcpu, STAGE_SKEYS_SET);
 | |
| 
 | |
| 	/*
 | |
| 	 * vcpu, mismatching keys on fetch,
 | |
| 	 * fetch protection override does not apply because memory range exceeded
 | |
| 	 */
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, 2048 + 1, GADDR_V(0), KEY(2));
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vcpu, LOGICAL, READ, mem2, PAGE_SIZE + 2048 + 1,
 | |
| 		   GADDR_V(guest_last_page), KEY(2));
 | |
| 	/* vm, fetch protected override does not apply */
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR(0), KEY(2));
 | |
| 	CHECK_N_DO(ERR_PROT_MOP, t.vm, ABSOLUTE, READ, mem2, 2048, GADDR_V(guest_0_page), KEY(2));
 | |
| 
 | |
| out:
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void guest_idle(void)
 | |
| {
 | |
| 	GUEST_SYNC(STAGE_INITED); /* for consistency's sake */
 | |
| 	for (;;)
 | |
| 		GUEST_SYNC(STAGE_IDLED);
 | |
| }
 | |
| 
 | |
| static void _test_errors_common(struct test_info info, enum mop_target target, int size)
 | |
| {
 | |
| 	int rv;
 | |
| 
 | |
| 	/* Bad size: */
 | |
| 	rv = ERR_MOP(info, target, WRITE, mem1, -1, GADDR_V(mem1));
 | |
| 	TEST_ASSERT(rv == -1 && errno == E2BIG, "ioctl allows insane sizes");
 | |
| 
 | |
| 	/* Zero size: */
 | |
| 	rv = ERR_MOP(info, target, WRITE, mem1, 0, GADDR_V(mem1));
 | |
| 	TEST_ASSERT(rv == -1 && (errno == EINVAL || errno == ENOMEM),
 | |
| 		    "ioctl allows 0 as size");
 | |
| 
 | |
| 	/* Bad flags: */
 | |
| 	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), SET_FLAGS(-1));
 | |
| 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows all flags");
 | |
| 
 | |
| 	/* Bad guest address: */
 | |
| 	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL), CHECK_ONLY);
 | |
| 	TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address with CHECK_ONLY");
 | |
| 	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR((void *)~0xfffUL));
 | |
| 	TEST_ASSERT(rv > 0, "ioctl does not report bad guest memory address on write");
 | |
| 
 | |
| 	/* Bad host address: */
 | |
| 	rv = ERR_MOP(info, target, WRITE, 0, size, GADDR_V(mem1));
 | |
| 	TEST_ASSERT(rv == -1 && errno == EFAULT,
 | |
| 		    "ioctl does not report bad host memory address");
 | |
| 
 | |
| 	/* Bad key: */
 | |
| 	rv = ERR_MOP(info, target, WRITE, mem1, size, GADDR_V(mem1), KEY(17));
 | |
| 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows invalid key");
 | |
| }
 | |
| 
 | |
| static void test_errors(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_idle);
 | |
| 	int rv;
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 
 | |
| 	_test_errors_common(t.vcpu, LOGICAL, t.size);
 | |
| 	_test_errors_common(t.vm, ABSOLUTE, t.size);
 | |
| 
 | |
| 	/* Bad operation: */
 | |
| 	rv = ERR_MOP(t.vcpu, INVALID, WRITE, mem1, t.size, GADDR_V(mem1));
 | |
| 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");
 | |
| 	/* virtual addresses are not translated when passing INVALID */
 | |
| 	rv = ERR_MOP(t.vm, INVALID, WRITE, mem1, PAGE_SIZE, GADDR(0));
 | |
| 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows bad operations");
 | |
| 
 | |
| 	/* Bad access register: */
 | |
| 	t.run->psw_mask &= ~(3UL << (63 - 17));
 | |
| 	t.run->psw_mask |= 1UL << (63 - 17);  /* Enable AR mode */
 | |
| 	HOST_SYNC(t.vcpu, STAGE_IDLED); /* To sync new state to SIE block */
 | |
| 	rv = ERR_MOP(t.vcpu, LOGICAL, WRITE, mem1, t.size, GADDR_V(mem1), AR(17));
 | |
| 	TEST_ASSERT(rv == -1 && errno == EINVAL, "ioctl allows ARs > 15");
 | |
| 	t.run->psw_mask &= ~(3UL << (63 - 17));   /* Disable AR mode */
 | |
| 	HOST_SYNC(t.vcpu, STAGE_IDLED); /* Run to sync new state */
 | |
| 
 | |
| 	/* Check that the SIDA calls are rejected for non-protected guests */
 | |
| 	rv = ERR_MOP(t.vcpu, SIDA, READ, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
 | |
| 	TEST_ASSERT(rv == -1 && errno == EINVAL,
 | |
| 		    "ioctl does not reject SIDA_READ in non-protected mode");
 | |
| 	rv = ERR_MOP(t.vcpu, SIDA, WRITE, mem1, 8, GADDR(0), SIDA_OFFSET(0x1c0));
 | |
| 	TEST_ASSERT(rv == -1 && errno == EINVAL,
 | |
| 		    "ioctl does not reject SIDA_WRITE in non-protected mode");
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| static void test_errors_cmpxchg(void)
 | |
| {
 | |
| 	struct test_default t = test_default_init(guest_idle);
 | |
| 	__uint128_t old;
 | |
| 	int rv, i, power = 1;
 | |
| 
 | |
| 	HOST_SYNC(t.vcpu, STAGE_INITED);
 | |
| 
 | |
| 	for (i = 0; i < 32; i++) {
 | |
| 		if (i == power) {
 | |
| 			power *= 2;
 | |
| 			continue;
 | |
| 		}
 | |
| 		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1),
 | |
| 			     CMPXCHG_OLD(&old));
 | |
| 		TEST_ASSERT(rv == -1 && errno == EINVAL,
 | |
| 			    "ioctl allows bad size for cmpxchg");
 | |
| 	}
 | |
| 	for (i = 1; i <= 16; i *= 2) {
 | |
| 		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR((void *)~0xfffUL),
 | |
| 			     CMPXCHG_OLD(&old));
 | |
| 		TEST_ASSERT(rv > 0, "ioctl allows bad guest address for cmpxchg");
 | |
| 	}
 | |
| 	for (i = 2; i <= 16; i *= 2) {
 | |
| 		rv = ERR_MOP(t.vm, ABSOLUTE, CMPXCHG, mem1, i, GADDR_V(mem1 + 1),
 | |
| 			     CMPXCHG_OLD(&old));
 | |
| 		TEST_ASSERT(rv == -1 && errno == EINVAL,
 | |
| 			    "ioctl allows bad alignment for cmpxchg");
 | |
| 	}
 | |
| 
 | |
| 	kvm_vm_free(t.kvm_vm);
 | |
| }
 | |
| 
 | |
| int main(int argc, char *argv[])
 | |
| {
 | |
| 	int extension_cap, idx;
 | |
| 
 | |
| 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_S390_MEM_OP));
 | |
| 	extension_cap = kvm_check_cap(KVM_CAP_S390_MEM_OP_EXTENSION);
 | |
| 
 | |
| 	struct testdef {
 | |
| 		const char *name;
 | |
| 		void (*test)(void);
 | |
| 		bool requirements_met;
 | |
| 	} testlist[] = {
 | |
| 		{
 | |
| 			.name = "simple copy",
 | |
| 			.test = test_copy,
 | |
| 			.requirements_met = true,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "generic error checks",
 | |
| 			.test = test_errors,
 | |
| 			.requirements_met = true,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "copy with storage keys",
 | |
| 			.test = test_copy_key,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "cmpxchg with storage keys",
 | |
| 			.test = test_cmpxchg_key,
 | |
| 			.requirements_met = extension_cap & 0x2,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "concurrently cmpxchg with storage keys",
 | |
| 			.test = test_cmpxchg_key_concurrent,
 | |
| 			.requirements_met = extension_cap & 0x2,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "copy with key storage protection override",
 | |
| 			.test = test_copy_key_storage_prot_override,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "copy with key fetch protection",
 | |
| 			.test = test_copy_key_fetch_prot,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "copy with key fetch protection override",
 | |
| 			.test = test_copy_key_fetch_prot_override,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "copy with access register mode",
 | |
| 			.test = test_copy_access_register,
 | |
| 			.requirements_met = true,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "error checks with key",
 | |
| 			.test = test_errors_key,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "error checks for cmpxchg with key",
 | |
| 			.test = test_errors_cmpxchg_key,
 | |
| 			.requirements_met = extension_cap & 0x2,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "error checks for cmpxchg",
 | |
| 			.test = test_errors_cmpxchg,
 | |
| 			.requirements_met = extension_cap & 0x2,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "termination",
 | |
| 			.test = test_termination,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "error checks with key storage protection override",
 | |
| 			.test = test_errors_key_storage_prot_override,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "error checks without key fetch prot override",
 | |
| 			.test = test_errors_key_fetch_prot_override_not_enabled,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 		{
 | |
| 			.name = "error checks with key fetch prot override",
 | |
| 			.test = test_errors_key_fetch_prot_override_enabled,
 | |
| 			.requirements_met = extension_cap > 0,
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	ksft_print_header();
 | |
| 	ksft_set_plan(ARRAY_SIZE(testlist));
 | |
| 
 | |
| 	for (idx = 0; idx < ARRAY_SIZE(testlist); idx++) {
 | |
| 		if (testlist[idx].requirements_met) {
 | |
| 			testlist[idx].test();
 | |
| 			ksft_test_result_pass("%s\n", testlist[idx].name);
 | |
| 		} else {
 | |
| 			ksft_test_result_skip("%s - requirements not met (kernel has extension cap %#x)\n",
 | |
| 					      testlist[idx].name, extension_cap);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ksft_finished();	/* Print results and exit() accordingly */
 | |
| }
 |