2875 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2875 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
 | |
| 
 | |
| #include <linux/etherdevice.h>
 | |
| #include <net/ip6_checksum.h>
 | |
| #include <net/page_pool/helpers.h>
 | |
| #include <net/inet_ecn.h>
 | |
| #include <linux/iopoll.h>
 | |
| #include <linux/sctp.h>
 | |
| #include <linux/pci.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/ip.h>
 | |
| 
 | |
| #include "wx_type.h"
 | |
| #include "wx_lib.h"
 | |
| #include "wx_hw.h"
 | |
| 
 | |
| /* Lookup table mapping the HW PTYPE to the bit field for decoding */
 | |
| static struct wx_dec_ptype wx_ptype_lookup[256] = {
 | |
| 	/* L2: mac */
 | |
| 	[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
 | |
| 	[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
 | |
| 	[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
 | |
| 	[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
 | |
| 	[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
 | |
| 	[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
 | |
| 	[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
 | |
| 
 | |
| 	/* L2: ethertype filter */
 | |
| 	[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
 | |
| 
 | |
| 	/* L3: ip non-tunnel */
 | |
| 	[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
 | |
| 	[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
 | |
| 	[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
 | |
| 	[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
 | |
| 	[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
 | |
| 	[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
 | |
| 	[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
 | |
| 	[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
 | |
| 	[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
 | |
| 	[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
 | |
| 
 | |
| 	/* L2: fcoe */
 | |
| 	[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
 | |
| 	[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
 | |
| 
 | |
| 	/* IPv4 --> IPv4/IPv6 */
 | |
| 	[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
 | |
| 	[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
 | |
| 	[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
 | |
| 	[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
 | |
| 	[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
 | |
| 	[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
 | |
| 	[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
 | |
| 	[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
 | |
| 	[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
 | |
| 	[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
 | |
| 
 | |
| 	/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
 | |
| 	[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
 | |
| 	[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
 | |
| 	[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
 | |
| 	[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
 | |
| 	[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
 | |
| 	[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
 | |
| 	[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
 | |
| 	[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
 | |
| 	[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
 | |
| 	[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
 | |
| 	[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
 | |
| 
 | |
| 	/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
 | |
| 	[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
 | |
| 	[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
 | |
| 	[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
 | |
| 	[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
 | |
| 	[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
 | |
| 	[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
 | |
| 	[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
 | |
| 	[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
 | |
| 	[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
 | |
| 	[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
 | |
| 	[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
 | |
| 
 | |
| 	/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
 | |
| 	[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
 | |
| 	[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
 | |
| 	[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
 | |
| 	[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
 | |
| 	[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
 | |
| 	[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
 | |
| 	[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
 | |
| 	[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
 | |
| 	[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
 | |
| 	[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
 | |
| 	[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
 | |
| 
 | |
| 	/* IPv6 --> IPv4/IPv6 */
 | |
| 	[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
 | |
| 	[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
 | |
| 	[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
 | |
| 	[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
 | |
| 	[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
 | |
| 	[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
 | |
| 	[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
 | |
| 	[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
 | |
| 	[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
 | |
| 	[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
 | |
| 
 | |
| 	/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
 | |
| 	[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
 | |
| 	[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
 | |
| 	[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
 | |
| 	[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
 | |
| 	[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
 | |
| 	[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
 | |
| 	[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
 | |
| 	[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
 | |
| 	[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
 | |
| 	[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
 | |
| 	[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
 | |
| 
 | |
| 	/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
 | |
| 	[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
 | |
| 	[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
 | |
| 	[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
 | |
| 	[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
 | |
| 	[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
 | |
| 	[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
 | |
| 	[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
 | |
| 	[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
 | |
| 	[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
 | |
| 	[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
 | |
| 	[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
 | |
| 
 | |
| 	/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
 | |
| 	[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
 | |
| 	[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
 | |
| 	[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
 | |
| 	[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
 | |
| 	[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
 | |
| 	[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
 | |
| 	[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
 | |
| 	[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
 | |
| 	[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
 | |
| 	[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
 | |
| 	[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
 | |
| };
 | |
| 
 | |
| struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
 | |
| {
 | |
| 	return wx_ptype_lookup[ptype];
 | |
| }
 | |
| EXPORT_SYMBOL(wx_decode_ptype);
 | |
| 
 | |
| /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
 | |
| static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
 | |
| 			      const u32 stat_err_bits)
 | |
| {
 | |
| 	return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
 | |
| }
 | |
| 
 | |
| static void wx_dma_sync_frag(struct wx_ring *rx_ring,
 | |
| 			     struct wx_rx_buffer *rx_buffer)
 | |
| {
 | |
| 	struct sk_buff *skb = rx_buffer->skb;
 | |
| 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
 | |
| 
 | |
| 	dma_sync_single_range_for_cpu(rx_ring->dev,
 | |
| 				      WX_CB(skb)->dma,
 | |
| 				      skb_frag_off(frag),
 | |
| 				      skb_frag_size(frag),
 | |
| 				      DMA_FROM_DEVICE);
 | |
| 
 | |
| 	/* If the page was released, just unmap it. */
 | |
| 	if (unlikely(WX_CB(skb)->page_released))
 | |
| 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
 | |
| }
 | |
| 
 | |
| static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
 | |
| 					     union wx_rx_desc *rx_desc,
 | |
| 					     struct sk_buff **skb,
 | |
| 					     int *rx_buffer_pgcnt)
 | |
| {
 | |
| 	struct wx_rx_buffer *rx_buffer;
 | |
| 	unsigned int size;
 | |
| 
 | |
| 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
 | |
| 	size = le16_to_cpu(rx_desc->wb.upper.length);
 | |
| 
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	*rx_buffer_pgcnt = page_count(rx_buffer->page);
 | |
| #else
 | |
| 	*rx_buffer_pgcnt = 0;
 | |
| #endif
 | |
| 
 | |
| 	prefetchw(rx_buffer->page);
 | |
| 	*skb = rx_buffer->skb;
 | |
| 
 | |
| 	/* Delay unmapping of the first packet. It carries the header
 | |
| 	 * information, HW may still access the header after the writeback.
 | |
| 	 * Only unmap it when EOP is reached
 | |
| 	 */
 | |
| 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
 | |
| 		if (!*skb)
 | |
| 			goto skip_sync;
 | |
| 	} else {
 | |
| 		if (*skb)
 | |
| 			wx_dma_sync_frag(rx_ring, rx_buffer);
 | |
| 	}
 | |
| 
 | |
| 	/* we are reusing so sync this buffer for CPU use */
 | |
| 	dma_sync_single_range_for_cpu(rx_ring->dev,
 | |
| 				      rx_buffer->dma,
 | |
| 				      rx_buffer->page_offset,
 | |
| 				      size,
 | |
| 				      DMA_FROM_DEVICE);
 | |
| skip_sync:
 | |
| 	return rx_buffer;
 | |
| }
 | |
| 
 | |
| static void wx_put_rx_buffer(struct wx_ring *rx_ring,
 | |
| 			     struct wx_rx_buffer *rx_buffer,
 | |
| 			     struct sk_buff *skb,
 | |
| 			     int rx_buffer_pgcnt)
 | |
| {
 | |
| 	if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
 | |
| 		/* the page has been released from the ring */
 | |
| 		WX_CB(skb)->page_released = true;
 | |
| 
 | |
| 	/* clear contents of rx_buffer */
 | |
| 	rx_buffer->page = NULL;
 | |
| 	rx_buffer->skb = NULL;
 | |
| }
 | |
| 
 | |
| static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
 | |
| 				    struct wx_rx_buffer *rx_buffer,
 | |
| 				    union wx_rx_desc *rx_desc)
 | |
| {
 | |
| 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	unsigned int truesize = WX_RX_BUFSZ;
 | |
| #else
 | |
| 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
 | |
| #endif
 | |
| 	struct sk_buff *skb = rx_buffer->skb;
 | |
| 
 | |
| 	if (!skb) {
 | |
| 		void *page_addr = page_address(rx_buffer->page) +
 | |
| 				  rx_buffer->page_offset;
 | |
| 
 | |
| 		/* prefetch first cache line of first page */
 | |
| 		net_prefetch(page_addr);
 | |
| 
 | |
| 		/* allocate a skb to store the frags */
 | |
| 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
 | |
| 		if (unlikely(!skb))
 | |
| 			return NULL;
 | |
| 
 | |
| 		/* we will be copying header into skb->data in
 | |
| 		 * pskb_may_pull so it is in our interest to prefetch
 | |
| 		 * it now to avoid a possible cache miss
 | |
| 		 */
 | |
| 		prefetchw(skb->data);
 | |
| 
 | |
| 		if (size <= WX_RXBUFFER_256) {
 | |
| 			memcpy(__skb_put(skb, size), page_addr,
 | |
| 			       ALIGN(size, sizeof(long)));
 | |
| 			page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
 | |
| 			return skb;
 | |
| 		}
 | |
| 
 | |
| 		skb_mark_for_recycle(skb);
 | |
| 
 | |
| 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
 | |
| 			WX_CB(skb)->dma = rx_buffer->dma;
 | |
| 
 | |
| 		skb_add_rx_frag(skb, 0, rx_buffer->page,
 | |
| 				rx_buffer->page_offset,
 | |
| 				size, truesize);
 | |
| 		goto out;
 | |
| 
 | |
| 	} else {
 | |
| 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
 | |
| 				rx_buffer->page_offset, size, truesize);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| #if (PAGE_SIZE < 8192)
 | |
| 	/* flip page offset to other buffer */
 | |
| 	rx_buffer->page_offset ^= truesize;
 | |
| #else
 | |
| 	/* move offset up to the next cache line */
 | |
| 	rx_buffer->page_offset += truesize;
 | |
| #endif
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
 | |
| 				 struct wx_rx_buffer *bi)
 | |
| {
 | |
| 	struct page *page = bi->page;
 | |
| 	dma_addr_t dma;
 | |
| 
 | |
| 	/* since we are recycling buffers we should seldom need to alloc */
 | |
| 	if (likely(page))
 | |
| 		return true;
 | |
| 
 | |
| 	page = page_pool_dev_alloc_pages(rx_ring->page_pool);
 | |
| 	WARN_ON(!page);
 | |
| 	dma = page_pool_get_dma_addr(page);
 | |
| 
 | |
| 	bi->page_dma = dma;
 | |
| 	bi->page = page;
 | |
| 	bi->page_offset = 0;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_alloc_rx_buffers - Replace used receive buffers
 | |
|  * @rx_ring: ring to place buffers on
 | |
|  * @cleaned_count: number of buffers to replace
 | |
|  **/
 | |
| void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
 | |
| {
 | |
| 	u16 i = rx_ring->next_to_use;
 | |
| 	union wx_rx_desc *rx_desc;
 | |
| 	struct wx_rx_buffer *bi;
 | |
| 
 | |
| 	/* nothing to do */
 | |
| 	if (!cleaned_count)
 | |
| 		return;
 | |
| 
 | |
| 	rx_desc = WX_RX_DESC(rx_ring, i);
 | |
| 	bi = &rx_ring->rx_buffer_info[i];
 | |
| 	i -= rx_ring->count;
 | |
| 
 | |
| 	do {
 | |
| 		if (!wx_alloc_mapped_page(rx_ring, bi))
 | |
| 			break;
 | |
| 
 | |
| 		/* sync the buffer for use by the device */
 | |
| 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 | |
| 						 bi->page_offset,
 | |
| 						 WX_RX_BUFSZ,
 | |
| 						 DMA_FROM_DEVICE);
 | |
| 
 | |
| 		rx_desc->read.pkt_addr =
 | |
| 			cpu_to_le64(bi->page_dma + bi->page_offset);
 | |
| 
 | |
| 		rx_desc++;
 | |
| 		bi++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			rx_desc = WX_RX_DESC(rx_ring, 0);
 | |
| 			bi = rx_ring->rx_buffer_info;
 | |
| 			i -= rx_ring->count;
 | |
| 		}
 | |
| 
 | |
| 		/* clear the status bits for the next_to_use descriptor */
 | |
| 		rx_desc->wb.upper.status_error = 0;
 | |
| 
 | |
| 		cleaned_count--;
 | |
| 	} while (cleaned_count);
 | |
| 
 | |
| 	i += rx_ring->count;
 | |
| 
 | |
| 	if (rx_ring->next_to_use != i) {
 | |
| 		rx_ring->next_to_use = i;
 | |
| 		/* update next to alloc since we have filled the ring */
 | |
| 		rx_ring->next_to_alloc = i;
 | |
| 
 | |
| 		/* Force memory writes to complete before letting h/w
 | |
| 		 * know there are new descriptors to fetch.  (Only
 | |
| 		 * applicable for weak-ordered memory model archs,
 | |
| 		 * such as IA-64).
 | |
| 		 */
 | |
| 		wmb();
 | |
| 		writel(i, rx_ring->tail);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| u16 wx_desc_unused(struct wx_ring *ring)
 | |
| {
 | |
| 	u16 ntc = ring->next_to_clean;
 | |
| 	u16 ntu = ring->next_to_use;
 | |
| 
 | |
| 	return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_is_non_eop - process handling of non-EOP buffers
 | |
|  * @rx_ring: Rx ring being processed
 | |
|  * @rx_desc: Rx descriptor for current buffer
 | |
|  * @skb: Current socket buffer containing buffer in progress
 | |
|  *
 | |
|  * This function updates next to clean. If the buffer is an EOP buffer
 | |
|  * this function exits returning false, otherwise it will place the
 | |
|  * sk_buff in the next buffer to be chained and return true indicating
 | |
|  * that this is in fact a non-EOP buffer.
 | |
|  **/
 | |
| static bool wx_is_non_eop(struct wx_ring *rx_ring,
 | |
| 			  union wx_rx_desc *rx_desc,
 | |
| 			  struct sk_buff *skb)
 | |
| {
 | |
| 	u32 ntc = rx_ring->next_to_clean + 1;
 | |
| 
 | |
| 	/* fetch, update, and store next to clean */
 | |
| 	ntc = (ntc < rx_ring->count) ? ntc : 0;
 | |
| 	rx_ring->next_to_clean = ntc;
 | |
| 
 | |
| 	prefetch(WX_RX_DESC(rx_ring, ntc));
 | |
| 
 | |
| 	/* if we are the last buffer then there is nothing else to do */
 | |
| 	if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
 | |
| 		return false;
 | |
| 
 | |
| 	rx_ring->rx_buffer_info[ntc].skb = skb;
 | |
| 	rx_ring->rx_stats.non_eop_descs++;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void wx_pull_tail(struct sk_buff *skb)
 | |
| {
 | |
| 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
 | |
| 	unsigned int pull_len;
 | |
| 	unsigned char *va;
 | |
| 
 | |
| 	/* it is valid to use page_address instead of kmap since we are
 | |
| 	 * working with pages allocated out of the lomem pool per
 | |
| 	 * alloc_page(GFP_ATOMIC)
 | |
| 	 */
 | |
| 	va = skb_frag_address(frag);
 | |
| 
 | |
| 	/* we need the header to contain the greater of either ETH_HLEN or
 | |
| 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 | |
| 	 */
 | |
| 	pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
 | |
| 
 | |
| 	/* align pull length to size of long to optimize memcpy performance */
 | |
| 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
 | |
| 
 | |
| 	/* update all of the pointers */
 | |
| 	skb_frag_size_sub(frag, pull_len);
 | |
| 	skb_frag_off_add(frag, pull_len);
 | |
| 	skb->data_len -= pull_len;
 | |
| 	skb->tail += pull_len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_cleanup_headers - Correct corrupted or empty headers
 | |
|  * @rx_ring: rx descriptor ring packet is being transacted on
 | |
|  * @rx_desc: pointer to the EOP Rx descriptor
 | |
|  * @skb: pointer to current skb being fixed
 | |
|  *
 | |
|  * Check for corrupted packet headers caused by senders on the local L2
 | |
|  * embedded NIC switch not setting up their Tx Descriptors right.  These
 | |
|  * should be very rare.
 | |
|  *
 | |
|  * Also address the case where we are pulling data in on pages only
 | |
|  * and as such no data is present in the skb header.
 | |
|  *
 | |
|  * In addition if skb is not at least 60 bytes we need to pad it so that
 | |
|  * it is large enough to qualify as a valid Ethernet frame.
 | |
|  *
 | |
|  * Returns true if an error was encountered and skb was freed.
 | |
|  **/
 | |
| static bool wx_cleanup_headers(struct wx_ring *rx_ring,
 | |
| 			       union wx_rx_desc *rx_desc,
 | |
| 			       struct sk_buff *skb)
 | |
| {
 | |
| 	struct net_device *netdev = rx_ring->netdev;
 | |
| 
 | |
| 	/* verify that the packet does not have any known errors */
 | |
| 	if (!netdev ||
 | |
| 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
 | |
| 		     !(netdev->features & NETIF_F_RXALL))) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* place header in linear portion of buffer */
 | |
| 	if (!skb_headlen(skb))
 | |
| 		wx_pull_tail(skb);
 | |
| 
 | |
| 	/* if eth_skb_pad returns an error the skb was freed */
 | |
| 	if (eth_skb_pad(skb))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void wx_rx_hash(struct wx_ring *ring,
 | |
| 		       union wx_rx_desc *rx_desc,
 | |
| 		       struct sk_buff *skb)
 | |
| {
 | |
| 	u16 rss_type;
 | |
| 
 | |
| 	if (!(ring->netdev->features & NETIF_F_RXHASH))
 | |
| 		return;
 | |
| 
 | |
| 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
 | |
| 			       WX_RXD_RSSTYPE_MASK;
 | |
| 
 | |
| 	if (!rss_type)
 | |
| 		return;
 | |
| 
 | |
| 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
 | |
| 		     (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
 | |
| 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_rx_checksum - indicate in skb if hw indicated a good cksum
 | |
|  * @ring: structure containing ring specific data
 | |
|  * @rx_desc: current Rx descriptor being processed
 | |
|  * @skb: skb currently being received and modified
 | |
|  **/
 | |
| static void wx_rx_checksum(struct wx_ring *ring,
 | |
| 			   union wx_rx_desc *rx_desc,
 | |
| 			   struct sk_buff *skb)
 | |
| {
 | |
| 	struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
 | |
| 
 | |
| 	skb_checksum_none_assert(skb);
 | |
| 	/* Rx csum disabled */
 | |
| 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 | |
| 		return;
 | |
| 
 | |
| 	/* if IPv4 header checksum error */
 | |
| 	if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
 | |
| 	     wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
 | |
| 	    (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
 | |
| 	     wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
 | |
| 		ring->rx_stats.csum_err++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* L4 checksum offload flag must set for the below code to work */
 | |
| 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
 | |
| 		return;
 | |
| 
 | |
| 	/* Hardware can't guarantee csum if IPv6 Dest Header found */
 | |
| 	if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
 | |
| 		return;
 | |
| 
 | |
| 	/* if L4 checksum error */
 | |
| 	if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
 | |
| 		ring->rx_stats.csum_err++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* It must be a TCP or UDP or SCTP packet with a valid checksum */
 | |
| 	skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 
 | |
| 	/* If there is an outer header present that might contain a checksum
 | |
| 	 * we need to bump the checksum level by 1 to reflect the fact that
 | |
| 	 * we are indicating we validated the inner checksum.
 | |
| 	 */
 | |
| 	if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
 | |
| 		__skb_incr_checksum_unnecessary(skb);
 | |
| 	ring->rx_stats.csum_good_cnt++;
 | |
| }
 | |
| 
 | |
| static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
 | |
| 		       struct sk_buff *skb)
 | |
| {
 | |
| 	u16 ethertype;
 | |
| 	u8 idx = 0;
 | |
| 
 | |
| 	if ((ring->netdev->features &
 | |
| 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
 | |
| 	    wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
 | |
| 		idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
 | |
| 		       0x1c0) >> 6;
 | |
| 		ethertype = ring->q_vector->wx->tpid[idx];
 | |
| 		__vlan_hwaccel_put_tag(skb, htons(ethertype),
 | |
| 				       le16_to_cpu(rx_desc->wb.upper.vlan));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_process_skb_fields - Populate skb header fields from Rx descriptor
 | |
|  * @rx_ring: rx descriptor ring packet is being transacted on
 | |
|  * @rx_desc: pointer to the EOP Rx descriptor
 | |
|  * @skb: pointer to current skb being populated
 | |
|  *
 | |
|  * This function checks the ring, descriptor, and packet information in
 | |
|  * order to populate the hash, checksum, protocol, and
 | |
|  * other fields within the skb.
 | |
|  **/
 | |
| static void wx_process_skb_fields(struct wx_ring *rx_ring,
 | |
| 				  union wx_rx_desc *rx_desc,
 | |
| 				  struct sk_buff *skb)
 | |
| {
 | |
| 	wx_rx_hash(rx_ring, rx_desc, skb);
 | |
| 	wx_rx_checksum(rx_ring, rx_desc, skb);
 | |
| 	wx_rx_vlan(rx_ring, rx_desc, skb);
 | |
| 	skb_record_rx_queue(skb, rx_ring->queue_index);
 | |
| 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 | |
|  * @q_vector: structure containing interrupt and ring information
 | |
|  * @rx_ring: rx descriptor ring to transact packets on
 | |
|  * @budget: Total limit on number of packets to process
 | |
|  *
 | |
|  * This function provides a "bounce buffer" approach to Rx interrupt
 | |
|  * processing.  The advantage to this is that on systems that have
 | |
|  * expensive overhead for IOMMU access this provides a means of avoiding
 | |
|  * it by maintaining the mapping of the page to the system.
 | |
|  *
 | |
|  * Returns amount of work completed.
 | |
|  **/
 | |
| static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
 | |
| 			   struct wx_ring *rx_ring,
 | |
| 			   int budget)
 | |
| {
 | |
| 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 | |
| 	u16 cleaned_count = wx_desc_unused(rx_ring);
 | |
| 
 | |
| 	do {
 | |
| 		struct wx_rx_buffer *rx_buffer;
 | |
| 		union wx_rx_desc *rx_desc;
 | |
| 		struct sk_buff *skb;
 | |
| 		int rx_buffer_pgcnt;
 | |
| 
 | |
| 		/* return some buffers to hardware, one at a time is too slow */
 | |
| 		if (cleaned_count >= WX_RX_BUFFER_WRITE) {
 | |
| 			wx_alloc_rx_buffers(rx_ring, cleaned_count);
 | |
| 			cleaned_count = 0;
 | |
| 		}
 | |
| 
 | |
| 		rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
 | |
| 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
 | |
| 			break;
 | |
| 
 | |
| 		/* This memory barrier is needed to keep us from reading
 | |
| 		 * any other fields out of the rx_desc until we know the
 | |
| 		 * descriptor has been written back
 | |
| 		 */
 | |
| 		dma_rmb();
 | |
| 
 | |
| 		rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
 | |
| 
 | |
| 		/* retrieve a buffer from the ring */
 | |
| 		skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
 | |
| 
 | |
| 		/* exit if we failed to retrieve a buffer */
 | |
| 		if (!skb) {
 | |
| 			rx_ring->rx_stats.alloc_rx_buff_failed++;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
 | |
| 		cleaned_count++;
 | |
| 
 | |
| 		/* place incomplete frames back on ring for completion */
 | |
| 		if (wx_is_non_eop(rx_ring, rx_desc, skb))
 | |
| 			continue;
 | |
| 
 | |
| 		/* verify the packet layout is correct */
 | |
| 		if (wx_cleanup_headers(rx_ring, rx_desc, skb))
 | |
| 			continue;
 | |
| 
 | |
| 		/* probably a little skewed due to removing CRC */
 | |
| 		total_rx_bytes += skb->len;
 | |
| 
 | |
| 		/* populate checksum, timestamp, VLAN, and protocol */
 | |
| 		wx_process_skb_fields(rx_ring, rx_desc, skb);
 | |
| 		napi_gro_receive(&q_vector->napi, skb);
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		total_rx_packets++;
 | |
| 	} while (likely(total_rx_packets < budget));
 | |
| 
 | |
| 	u64_stats_update_begin(&rx_ring->syncp);
 | |
| 	rx_ring->stats.packets += total_rx_packets;
 | |
| 	rx_ring->stats.bytes += total_rx_bytes;
 | |
| 	u64_stats_update_end(&rx_ring->syncp);
 | |
| 	q_vector->rx.total_packets += total_rx_packets;
 | |
| 	q_vector->rx.total_bytes += total_rx_bytes;
 | |
| 
 | |
| 	return total_rx_packets;
 | |
| }
 | |
| 
 | |
| static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
 | |
| {
 | |
| 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_clean_tx_irq - Reclaim resources after transmit completes
 | |
|  * @q_vector: structure containing interrupt and ring information
 | |
|  * @tx_ring: tx ring to clean
 | |
|  * @napi_budget: Used to determine if we are in netpoll
 | |
|  **/
 | |
| static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
 | |
| 			    struct wx_ring *tx_ring, int napi_budget)
 | |
| {
 | |
| 	unsigned int budget = q_vector->wx->tx_work_limit;
 | |
| 	unsigned int total_bytes = 0, total_packets = 0;
 | |
| 	unsigned int i = tx_ring->next_to_clean;
 | |
| 	struct wx_tx_buffer *tx_buffer;
 | |
| 	union wx_tx_desc *tx_desc;
 | |
| 
 | |
| 	if (!netif_carrier_ok(tx_ring->netdev))
 | |
| 		return true;
 | |
| 
 | |
| 	tx_buffer = &tx_ring->tx_buffer_info[i];
 | |
| 	tx_desc = WX_TX_DESC(tx_ring, i);
 | |
| 	i -= tx_ring->count;
 | |
| 
 | |
| 	do {
 | |
| 		union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
 | |
| 
 | |
| 		/* if next_to_watch is not set then there is no work pending */
 | |
| 		if (!eop_desc)
 | |
| 			break;
 | |
| 
 | |
| 		/* prevent any other reads prior to eop_desc */
 | |
| 		smp_rmb();
 | |
| 
 | |
| 		/* if DD is not set pending work has not been completed */
 | |
| 		if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
 | |
| 			break;
 | |
| 
 | |
| 		/* clear next_to_watch to prevent false hangs */
 | |
| 		tx_buffer->next_to_watch = NULL;
 | |
| 
 | |
| 		/* update the statistics for this packet */
 | |
| 		total_bytes += tx_buffer->bytecount;
 | |
| 		total_packets += tx_buffer->gso_segs;
 | |
| 
 | |
| 		/* free the skb */
 | |
| 		napi_consume_skb(tx_buffer->skb, napi_budget);
 | |
| 
 | |
| 		/* unmap skb header data */
 | |
| 		dma_unmap_single(tx_ring->dev,
 | |
| 				 dma_unmap_addr(tx_buffer, dma),
 | |
| 				 dma_unmap_len(tx_buffer, len),
 | |
| 				 DMA_TO_DEVICE);
 | |
| 
 | |
| 		/* clear tx_buffer data */
 | |
| 		dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 
 | |
| 		/* unmap remaining buffers */
 | |
| 		while (tx_desc != eop_desc) {
 | |
| 			tx_buffer++;
 | |
| 			tx_desc++;
 | |
| 			i++;
 | |
| 			if (unlikely(!i)) {
 | |
| 				i -= tx_ring->count;
 | |
| 				tx_buffer = tx_ring->tx_buffer_info;
 | |
| 				tx_desc = WX_TX_DESC(tx_ring, 0);
 | |
| 			}
 | |
| 
 | |
| 			/* unmap any remaining paged data */
 | |
| 			if (dma_unmap_len(tx_buffer, len)) {
 | |
| 				dma_unmap_page(tx_ring->dev,
 | |
| 					       dma_unmap_addr(tx_buffer, dma),
 | |
| 					       dma_unmap_len(tx_buffer, len),
 | |
| 					       DMA_TO_DEVICE);
 | |
| 				dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* move us one more past the eop_desc for start of next pkt */
 | |
| 		tx_buffer++;
 | |
| 		tx_desc++;
 | |
| 		i++;
 | |
| 		if (unlikely(!i)) {
 | |
| 			i -= tx_ring->count;
 | |
| 			tx_buffer = tx_ring->tx_buffer_info;
 | |
| 			tx_desc = WX_TX_DESC(tx_ring, 0);
 | |
| 		}
 | |
| 
 | |
| 		/* issue prefetch for next Tx descriptor */
 | |
| 		prefetch(tx_desc);
 | |
| 
 | |
| 		/* update budget accounting */
 | |
| 		budget--;
 | |
| 	} while (likely(budget));
 | |
| 
 | |
| 	i += tx_ring->count;
 | |
| 	tx_ring->next_to_clean = i;
 | |
| 	u64_stats_update_begin(&tx_ring->syncp);
 | |
| 	tx_ring->stats.bytes += total_bytes;
 | |
| 	tx_ring->stats.packets += total_packets;
 | |
| 	u64_stats_update_end(&tx_ring->syncp);
 | |
| 	q_vector->tx.total_bytes += total_bytes;
 | |
| 	q_vector->tx.total_packets += total_packets;
 | |
| 
 | |
| 	netdev_tx_completed_queue(wx_txring_txq(tx_ring),
 | |
| 				  total_packets, total_bytes);
 | |
| 
 | |
| #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 | |
| 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 | |
| 		     (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
 | |
| 		/* Make sure that anybody stopping the queue after this
 | |
| 		 * sees the new next_to_clean.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 
 | |
| 		if (__netif_subqueue_stopped(tx_ring->netdev,
 | |
| 					     tx_ring->queue_index) &&
 | |
| 		    netif_running(tx_ring->netdev)) {
 | |
| 			netif_wake_subqueue(tx_ring->netdev,
 | |
| 					    tx_ring->queue_index);
 | |
| 			++tx_ring->tx_stats.restart_queue;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return !!budget;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_poll - NAPI polling RX/TX cleanup routine
 | |
|  * @napi: napi struct with our devices info in it
 | |
|  * @budget: amount of work driver is allowed to do this pass, in packets
 | |
|  *
 | |
|  * This function will clean all queues associated with a q_vector.
 | |
|  **/
 | |
| static int wx_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
 | |
| 	int per_ring_budget, work_done = 0;
 | |
| 	struct wx *wx = q_vector->wx;
 | |
| 	bool clean_complete = true;
 | |
| 	struct wx_ring *ring;
 | |
| 
 | |
| 	wx_for_each_ring(ring, q_vector->tx) {
 | |
| 		if (!wx_clean_tx_irq(q_vector, ring, budget))
 | |
| 			clean_complete = false;
 | |
| 	}
 | |
| 
 | |
| 	/* Exit if we are called by netpoll */
 | |
| 	if (budget <= 0)
 | |
| 		return budget;
 | |
| 
 | |
| 	/* attempt to distribute budget to each queue fairly, but don't allow
 | |
| 	 * the budget to go below 1 because we'll exit polling
 | |
| 	 */
 | |
| 	if (q_vector->rx.count > 1)
 | |
| 		per_ring_budget = max(budget / q_vector->rx.count, 1);
 | |
| 	else
 | |
| 		per_ring_budget = budget;
 | |
| 
 | |
| 	wx_for_each_ring(ring, q_vector->rx) {
 | |
| 		int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
 | |
| 
 | |
| 		work_done += cleaned;
 | |
| 		if (cleaned >= per_ring_budget)
 | |
| 			clean_complete = false;
 | |
| 	}
 | |
| 
 | |
| 	/* If all work not completed, return budget and keep polling */
 | |
| 	if (!clean_complete)
 | |
| 		return budget;
 | |
| 
 | |
| 	/* all work done, exit the polling mode */
 | |
| 	if (likely(napi_complete_done(napi, work_done))) {
 | |
| 		if (netif_running(wx->netdev))
 | |
| 			wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
 | |
| 	}
 | |
| 
 | |
| 	return min(work_done, budget - 1);
 | |
| }
 | |
| 
 | |
| static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
 | |
| {
 | |
| 	if (likely(wx_desc_unused(tx_ring) >= size))
 | |
| 		return 0;
 | |
| 
 | |
| 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 | |
| 
 | |
| 	/* For the next check */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* We need to check again in a case another CPU has just
 | |
| 	 * made room available.
 | |
| 	 */
 | |
| 	if (likely(wx_desc_unused(tx_ring) < size))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* A reprieve! - use start_queue because it doesn't call schedule */
 | |
| 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 | |
| 	++tx_ring->tx_stats.restart_queue;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 wx_tx_cmd_type(u32 tx_flags)
 | |
| {
 | |
| 	/* set type for advanced descriptor with frame checksum insertion */
 | |
| 	u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
 | |
| 
 | |
| 	/* set HW vlan bit if vlan is present */
 | |
| 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
 | |
| 	/* set segmentation enable bits for TSO/FSO */
 | |
| 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
 | |
| 	/* set timestamp bit if present */
 | |
| 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
 | |
| 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
 | |
| 
 | |
| 	return cmd_type;
 | |
| }
 | |
| 
 | |
| static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
 | |
| 				u32 tx_flags, unsigned int paylen)
 | |
| {
 | |
| 	u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
 | |
| 
 | |
| 	/* enable L4 checksum for TSO and TX checksum offload */
 | |
| 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
 | |
| 	/* enable IPv4 checksum for TSO */
 | |
| 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
 | |
| 	/* enable outer IPv4 checksum for TSO */
 | |
| 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
 | |
| 				     WX_TXD_EIPCS);
 | |
| 	/* Check Context must be set if Tx switch is enabled, which it
 | |
| 	 * always is for case where virtual functions are running
 | |
| 	 */
 | |
| 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
 | |
| 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
 | |
| 				     WX_TXD_IPSEC);
 | |
| 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 | |
| }
 | |
| 
 | |
| static void wx_tx_map(struct wx_ring *tx_ring,
 | |
| 		      struct wx_tx_buffer *first,
 | |
| 		      const u8 hdr_len)
 | |
| {
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	struct wx_tx_buffer *tx_buffer;
 | |
| 	u32 tx_flags = first->tx_flags;
 | |
| 	u16 i = tx_ring->next_to_use;
 | |
| 	unsigned int data_len, size;
 | |
| 	union wx_tx_desc *tx_desc;
 | |
| 	skb_frag_t *frag;
 | |
| 	dma_addr_t dma;
 | |
| 	u32 cmd_type;
 | |
| 
 | |
| 	cmd_type = wx_tx_cmd_type(tx_flags);
 | |
| 	tx_desc = WX_TX_DESC(tx_ring, i);
 | |
| 	wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
 | |
| 
 | |
| 	size = skb_headlen(skb);
 | |
| 	data_len = skb->data_len;
 | |
| 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 | |
| 
 | |
| 	tx_buffer = first;
 | |
| 
 | |
| 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 | |
| 		if (dma_mapping_error(tx_ring->dev, dma))
 | |
| 			goto dma_error;
 | |
| 
 | |
| 		/* record length, and DMA address */
 | |
| 		dma_unmap_len_set(tx_buffer, len, size);
 | |
| 		dma_unmap_addr_set(tx_buffer, dma, dma);
 | |
| 
 | |
| 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 | |
| 
 | |
| 		while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
 | |
| 			tx_desc->read.cmd_type_len =
 | |
| 				cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
 | |
| 
 | |
| 			i++;
 | |
| 			tx_desc++;
 | |
| 			if (i == tx_ring->count) {
 | |
| 				tx_desc = WX_TX_DESC(tx_ring, 0);
 | |
| 				i = 0;
 | |
| 			}
 | |
| 			tx_desc->read.olinfo_status = 0;
 | |
| 
 | |
| 			dma += WX_MAX_DATA_PER_TXD;
 | |
| 			size -= WX_MAX_DATA_PER_TXD;
 | |
| 
 | |
| 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
 | |
| 		}
 | |
| 
 | |
| 		if (likely(!data_len))
 | |
| 			break;
 | |
| 
 | |
| 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
 | |
| 
 | |
| 		i++;
 | |
| 		tx_desc++;
 | |
| 		if (i == tx_ring->count) {
 | |
| 			tx_desc = WX_TX_DESC(tx_ring, 0);
 | |
| 			i = 0;
 | |
| 		}
 | |
| 		tx_desc->read.olinfo_status = 0;
 | |
| 
 | |
| 		size = skb_frag_size(frag);
 | |
| 
 | |
| 		data_len -= size;
 | |
| 
 | |
| 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
 | |
| 				       DMA_TO_DEVICE);
 | |
| 
 | |
| 		tx_buffer = &tx_ring->tx_buffer_info[i];
 | |
| 	}
 | |
| 
 | |
| 	/* write last descriptor with RS and EOP bits */
 | |
| 	cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
 | |
| 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 | |
| 
 | |
| 	netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
 | |
| 
 | |
| 	skb_tx_timestamp(skb);
 | |
| 
 | |
| 	/* Force memory writes to complete before letting h/w know there
 | |
| 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
 | |
| 	 * memory model archs, such as IA-64).
 | |
| 	 *
 | |
| 	 * We also need this memory barrier to make certain all of the
 | |
| 	 * status bits have been updated before next_to_watch is written.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* set next_to_watch value indicating a packet is present */
 | |
| 	first->next_to_watch = tx_desc;
 | |
| 
 | |
| 	i++;
 | |
| 	if (i == tx_ring->count)
 | |
| 		i = 0;
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| 
 | |
| 	wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
 | |
| 
 | |
| 	if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
 | |
| 		writel(i, tx_ring->tail);
 | |
| 
 | |
| 	return;
 | |
| dma_error:
 | |
| 	dev_err(tx_ring->dev, "TX DMA map failed\n");
 | |
| 
 | |
| 	/* clear dma mappings for failed tx_buffer_info map */
 | |
| 	for (;;) {
 | |
| 		tx_buffer = &tx_ring->tx_buffer_info[i];
 | |
| 		if (dma_unmap_len(tx_buffer, len))
 | |
| 			dma_unmap_page(tx_ring->dev,
 | |
| 				       dma_unmap_addr(tx_buffer, dma),
 | |
| 				       dma_unmap_len(tx_buffer, len),
 | |
| 				       DMA_TO_DEVICE);
 | |
| 		dma_unmap_len_set(tx_buffer, len, 0);
 | |
| 		if (tx_buffer == first)
 | |
| 			break;
 | |
| 		if (i == 0)
 | |
| 			i += tx_ring->count;
 | |
| 		i--;
 | |
| 	}
 | |
| 
 | |
| 	dev_kfree_skb_any(first->skb);
 | |
| 	first->skb = NULL;
 | |
| 
 | |
| 	tx_ring->next_to_use = i;
 | |
| }
 | |
| 
 | |
| static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
 | |
| 			   u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
 | |
| {
 | |
| 	struct wx_tx_context_desc *context_desc;
 | |
| 	u16 i = tx_ring->next_to_use;
 | |
| 
 | |
| 	context_desc = WX_TX_CTXTDESC(tx_ring, i);
 | |
| 	i++;
 | |
| 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 | |
| 
 | |
| 	/* set bits to identify this as an advanced context descriptor */
 | |
| 	type_tucmd |= WX_TXD_DTYP_CTXT;
 | |
| 	context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
 | |
| 	context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
 | |
| 	context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
 | |
| 	context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
 | |
| }
 | |
| 
 | |
| static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
 | |
| {
 | |
| 	struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
 | |
| 
 | |
| 	*nexthdr = hdr->nexthdr;
 | |
| 	offset += sizeof(struct ipv6hdr);
 | |
| 	while (ipv6_ext_hdr(*nexthdr)) {
 | |
| 		struct ipv6_opt_hdr _hdr, *hp;
 | |
| 
 | |
| 		if (*nexthdr == NEXTHDR_NONE)
 | |
| 			return;
 | |
| 		hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
 | |
| 		if (!hp)
 | |
| 			return;
 | |
| 		if (*nexthdr == NEXTHDR_FRAGMENT)
 | |
| 			break;
 | |
| 		*nexthdr = hp->nexthdr;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| union network_header {
 | |
| 	struct iphdr *ipv4;
 | |
| 	struct ipv6hdr *ipv6;
 | |
| 	void *raw;
 | |
| };
 | |
| 
 | |
| static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
 | |
| {
 | |
| 	u8 tun_prot = 0, l4_prot = 0, ptype = 0;
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 
 | |
| 	if (skb->encapsulation) {
 | |
| 		union network_header hdr;
 | |
| 
 | |
| 		switch (first->protocol) {
 | |
| 		case htons(ETH_P_IP):
 | |
| 			tun_prot = ip_hdr(skb)->protocol;
 | |
| 			ptype = WX_PTYPE_TUN_IPV4;
 | |
| 			break;
 | |
| 		case htons(ETH_P_IPV6):
 | |
| 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
 | |
| 			ptype = WX_PTYPE_TUN_IPV6;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return ptype;
 | |
| 		}
 | |
| 
 | |
| 		if (tun_prot == IPPROTO_IPIP) {
 | |
| 			hdr.raw = (void *)inner_ip_hdr(skb);
 | |
| 			ptype |= WX_PTYPE_PKT_IPIP;
 | |
| 		} else if (tun_prot == IPPROTO_UDP) {
 | |
| 			hdr.raw = (void *)inner_ip_hdr(skb);
 | |
| 			if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 | |
| 			    skb->inner_protocol != htons(ETH_P_TEB)) {
 | |
| 				ptype |= WX_PTYPE_PKT_IG;
 | |
| 			} else {
 | |
| 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
 | |
| 				     == htons(ETH_P_8021Q))
 | |
| 					ptype |= WX_PTYPE_PKT_IGMV;
 | |
| 				else
 | |
| 					ptype |= WX_PTYPE_PKT_IGM;
 | |
| 			}
 | |
| 
 | |
| 		} else if (tun_prot == IPPROTO_GRE) {
 | |
| 			hdr.raw = (void *)inner_ip_hdr(skb);
 | |
| 			if (skb->inner_protocol ==  htons(ETH_P_IP) ||
 | |
| 			    skb->inner_protocol ==  htons(ETH_P_IPV6)) {
 | |
| 				ptype |= WX_PTYPE_PKT_IG;
 | |
| 			} else {
 | |
| 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
 | |
| 				    == htons(ETH_P_8021Q))
 | |
| 					ptype |= WX_PTYPE_PKT_IGMV;
 | |
| 				else
 | |
| 					ptype |= WX_PTYPE_PKT_IGM;
 | |
| 			}
 | |
| 		} else {
 | |
| 			return ptype;
 | |
| 		}
 | |
| 
 | |
| 		switch (hdr.ipv4->version) {
 | |
| 		case IPVERSION:
 | |
| 			l4_prot = hdr.ipv4->protocol;
 | |
| 			break;
 | |
| 		case 6:
 | |
| 			wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
 | |
| 			ptype |= WX_PTYPE_PKT_IPV6;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return ptype;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (first->protocol) {
 | |
| 		case htons(ETH_P_IP):
 | |
| 			l4_prot = ip_hdr(skb)->protocol;
 | |
| 			ptype = WX_PTYPE_PKT_IP;
 | |
| 			break;
 | |
| 		case htons(ETH_P_IPV6):
 | |
| 			wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
 | |
| 			ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
 | |
| 			break;
 | |
| 		default:
 | |
| 			return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
 | |
| 		}
 | |
| 	}
 | |
| 	switch (l4_prot) {
 | |
| 	case IPPROTO_TCP:
 | |
| 		ptype |= WX_PTYPE_TYP_TCP;
 | |
| 		break;
 | |
| 	case IPPROTO_UDP:
 | |
| 		ptype |= WX_PTYPE_TYP_UDP;
 | |
| 		break;
 | |
| 	case IPPROTO_SCTP:
 | |
| 		ptype |= WX_PTYPE_TYP_SCTP;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ptype |= WX_PTYPE_TYP_IP;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ptype;
 | |
| }
 | |
| 
 | |
| static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
 | |
| 		  u8 *hdr_len, u8 ptype)
 | |
| {
 | |
| 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
 | |
| 	struct net_device *netdev = tx_ring->netdev;
 | |
| 	u32 l4len, tunhdr_eiplen_tunlen = 0;
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	bool enc = skb->encapsulation;
 | |
| 	struct ipv6hdr *ipv6h;
 | |
| 	struct tcphdr *tcph;
 | |
| 	struct iphdr *iph;
 | |
| 	u8 tun_prot = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!skb_is_gso(skb))
 | |
| 		return 0;
 | |
| 
 | |
| 	err = skb_cow_head(skb, 0);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	/* indicates the inner headers in the skbuff are valid. */
 | |
| 	iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
 | |
| 	if (iph->version == 4) {
 | |
| 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
 | |
| 		iph->tot_len = 0;
 | |
| 		iph->check = 0;
 | |
| 		tcph->check = ~csum_tcpudp_magic(iph->saddr,
 | |
| 						 iph->daddr, 0,
 | |
| 						 IPPROTO_TCP, 0);
 | |
| 		first->tx_flags |= WX_TX_FLAGS_TSO |
 | |
| 				   WX_TX_FLAGS_CSUM |
 | |
| 				   WX_TX_FLAGS_IPV4 |
 | |
| 				   WX_TX_FLAGS_CC;
 | |
| 	} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
 | |
| 		ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
 | |
| 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
 | |
| 		ipv6h->payload_len = 0;
 | |
| 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
 | |
| 					       &ipv6h->daddr, 0,
 | |
| 					       IPPROTO_TCP, 0);
 | |
| 		first->tx_flags |= WX_TX_FLAGS_TSO |
 | |
| 				   WX_TX_FLAGS_CSUM |
 | |
| 				   WX_TX_FLAGS_CC;
 | |
| 	}
 | |
| 
 | |
| 	/* compute header lengths */
 | |
| 	l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
 | |
| 	*hdr_len = enc ? skb_inner_transport_offset(skb) :
 | |
| 			 skb_transport_offset(skb);
 | |
| 	*hdr_len += l4len;
 | |
| 
 | |
| 	/* update gso size and bytecount with header size */
 | |
| 	first->gso_segs = skb_shinfo(skb)->gso_segs;
 | |
| 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
 | |
| 
 | |
| 	/* mss_l4len_id: use 0 as index for TSO */
 | |
| 	mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
 | |
| 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
 | |
| 
 | |
| 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
 | |
| 	if (enc) {
 | |
| 		switch (first->protocol) {
 | |
| 		case htons(ETH_P_IP):
 | |
| 			tun_prot = ip_hdr(skb)->protocol;
 | |
| 			first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
 | |
| 			break;
 | |
| 		case htons(ETH_P_IPV6):
 | |
| 			tun_prot = ipv6_hdr(skb)->nexthdr;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		switch (tun_prot) {
 | |
| 		case IPPROTO_UDP:
 | |
| 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
 | |
| 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
 | |
| 						 WX_TXD_OUTER_IPLEN_SHIFT) |
 | |
| 						(((skb_inner_mac_header(skb) -
 | |
| 						skb_transport_header(skb)) >> 1) <<
 | |
| 						WX_TXD_TUNNEL_LEN_SHIFT);
 | |
| 			break;
 | |
| 		case IPPROTO_GRE:
 | |
| 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
 | |
| 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
 | |
| 						 WX_TXD_OUTER_IPLEN_SHIFT) |
 | |
| 						(((skb_inner_mac_header(skb) -
 | |
| 						skb_transport_header(skb)) >> 1) <<
 | |
| 						WX_TXD_TUNNEL_LEN_SHIFT);
 | |
| 			break;
 | |
| 		case IPPROTO_IPIP:
 | |
| 			tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
 | |
| 						(char *)ip_hdr(skb)) >> 2) <<
 | |
| 						WX_TXD_OUTER_IPLEN_SHIFT;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 		vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
 | |
| 	} else {
 | |
| 		vlan_macip_lens = skb_network_header_len(skb) >> 1;
 | |
| 	}
 | |
| 
 | |
| 	vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
 | |
| 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
 | |
| 
 | |
| 	type_tucmd = ptype << 24;
 | |
| 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
 | |
| 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
 | |
| 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
 | |
| 					  WX_TX_FLAGS_HW_VLAN,
 | |
| 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
 | |
| 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
 | |
| 		       type_tucmd, mss_l4len_idx);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
 | |
| 		       u8 ptype)
 | |
| {
 | |
| 	u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
 | |
| 	struct net_device *netdev = tx_ring->netdev;
 | |
| 	u32 mss_l4len_idx = 0, type_tucmd;
 | |
| 	struct sk_buff *skb = first->skb;
 | |
| 	u8 tun_prot = 0;
 | |
| 
 | |
| 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
 | |
| 		if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
 | |
| 		    !(first->tx_flags & WX_TX_FLAGS_CC))
 | |
| 			return;
 | |
| 		vlan_macip_lens = skb_network_offset(skb) <<
 | |
| 				  WX_TXD_MACLEN_SHIFT;
 | |
| 	} else {
 | |
| 		u8 l4_prot = 0;
 | |
| 		union {
 | |
| 			struct iphdr *ipv4;
 | |
| 			struct ipv6hdr *ipv6;
 | |
| 			u8 *raw;
 | |
| 		} network_hdr;
 | |
| 		union {
 | |
| 			struct tcphdr *tcphdr;
 | |
| 			u8 *raw;
 | |
| 		} transport_hdr;
 | |
| 
 | |
| 		if (skb->encapsulation) {
 | |
| 			network_hdr.raw = skb_inner_network_header(skb);
 | |
| 			transport_hdr.raw = skb_inner_transport_header(skb);
 | |
| 			vlan_macip_lens = skb_network_offset(skb) <<
 | |
| 					  WX_TXD_MACLEN_SHIFT;
 | |
| 			switch (first->protocol) {
 | |
| 			case htons(ETH_P_IP):
 | |
| 				tun_prot = ip_hdr(skb)->protocol;
 | |
| 				break;
 | |
| 			case htons(ETH_P_IPV6):
 | |
| 				tun_prot = ipv6_hdr(skb)->nexthdr;
 | |
| 				break;
 | |
| 			default:
 | |
| 				return;
 | |
| 			}
 | |
| 			switch (tun_prot) {
 | |
| 			case IPPROTO_UDP:
 | |
| 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
 | |
| 				tunhdr_eiplen_tunlen |=
 | |
| 					((skb_network_header_len(skb) >> 2) <<
 | |
| 					WX_TXD_OUTER_IPLEN_SHIFT) |
 | |
| 					(((skb_inner_mac_header(skb) -
 | |
| 					skb_transport_header(skb)) >> 1) <<
 | |
| 					WX_TXD_TUNNEL_LEN_SHIFT);
 | |
| 				break;
 | |
| 			case IPPROTO_GRE:
 | |
| 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
 | |
| 				tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
 | |
| 							 WX_TXD_OUTER_IPLEN_SHIFT) |
 | |
| 							 (((skb_inner_mac_header(skb) -
 | |
| 							    skb_transport_header(skb)) >> 1) <<
 | |
| 							  WX_TXD_TUNNEL_LEN_SHIFT);
 | |
| 				break;
 | |
| 			case IPPROTO_IPIP:
 | |
| 				tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
 | |
| 							(char *)ip_hdr(skb)) >> 2) <<
 | |
| 							WX_TXD_OUTER_IPLEN_SHIFT;
 | |
| 				break;
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 		} else {
 | |
| 			network_hdr.raw = skb_network_header(skb);
 | |
| 			transport_hdr.raw = skb_transport_header(skb);
 | |
| 			vlan_macip_lens = skb_network_offset(skb) <<
 | |
| 					  WX_TXD_MACLEN_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		switch (network_hdr.ipv4->version) {
 | |
| 		case IPVERSION:
 | |
| 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
 | |
| 			l4_prot = network_hdr.ipv4->protocol;
 | |
| 			break;
 | |
| 		case 6:
 | |
| 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
 | |
| 			l4_prot = network_hdr.ipv6->nexthdr;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		switch (l4_prot) {
 | |
| 		case IPPROTO_TCP:
 | |
| 		mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
 | |
| 				WX_TXD_L4LEN_SHIFT;
 | |
| 			break;
 | |
| 		case IPPROTO_SCTP:
 | |
| 			mss_l4len_idx = sizeof(struct sctphdr) <<
 | |
| 					WX_TXD_L4LEN_SHIFT;
 | |
| 			break;
 | |
| 		case IPPROTO_UDP:
 | |
| 			mss_l4len_idx = sizeof(struct udphdr) <<
 | |
| 					WX_TXD_L4LEN_SHIFT;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* update TX checksum flag */
 | |
| 		first->tx_flags |= WX_TX_FLAGS_CSUM;
 | |
| 	}
 | |
| 	first->tx_flags |= WX_TX_FLAGS_CC;
 | |
| 	/* vlan_macip_lens: MACLEN, VLAN tag */
 | |
| 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
 | |
| 
 | |
| 	type_tucmd = ptype << 24;
 | |
| 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
 | |
| 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
 | |
| 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
 | |
| 					  WX_TX_FLAGS_HW_VLAN,
 | |
| 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
 | |
| 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
 | |
| 		       type_tucmd, mss_l4len_idx);
 | |
| }
 | |
| 
 | |
| static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
 | |
| 				      struct wx_ring *tx_ring)
 | |
| {
 | |
| 	struct wx *wx = netdev_priv(tx_ring->netdev);
 | |
| 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
 | |
| 	struct wx_tx_buffer *first;
 | |
| 	u8 hdr_len = 0, ptype;
 | |
| 	unsigned short f;
 | |
| 	u32 tx_flags = 0;
 | |
| 	int tso;
 | |
| 
 | |
| 	/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
 | |
| 	 *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
 | |
| 	 *       + 2 desc gap to keep tail from touching head,
 | |
| 	 *       + 1 desc for context descriptor,
 | |
| 	 * otherwise try next time
 | |
| 	 */
 | |
| 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
 | |
| 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
 | |
| 						     frags[f]));
 | |
| 
 | |
| 	if (wx_maybe_stop_tx(tx_ring, count + 3)) {
 | |
| 		tx_ring->tx_stats.tx_busy++;
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	/* record the location of the first descriptor for this packet */
 | |
| 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
 | |
| 	first->skb = skb;
 | |
| 	first->bytecount = skb->len;
 | |
| 	first->gso_segs = 1;
 | |
| 
 | |
| 	/* if we have a HW VLAN tag being added default to the HW one */
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
 | |
| 		tx_flags |= WX_TX_FLAGS_HW_VLAN;
 | |
| 	}
 | |
| 
 | |
| 	/* record initial flags and protocol */
 | |
| 	first->tx_flags = tx_flags;
 | |
| 	first->protocol = vlan_get_protocol(skb);
 | |
| 
 | |
| 	ptype = wx_encode_tx_desc_ptype(first);
 | |
| 
 | |
| 	tso = wx_tso(tx_ring, first, &hdr_len, ptype);
 | |
| 	if (tso < 0)
 | |
| 		goto out_drop;
 | |
| 	else if (!tso)
 | |
| 		wx_tx_csum(tx_ring, first, ptype);
 | |
| 
 | |
| 	if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) && tx_ring->atr_sample_rate)
 | |
| 		wx->atr(tx_ring, first, ptype);
 | |
| 
 | |
| 	wx_tx_map(tx_ring, first, hdr_len);
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| out_drop:
 | |
| 	dev_kfree_skb_any(first->skb);
 | |
| 	first->skb = NULL;
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
 | |
| 			  struct net_device *netdev)
 | |
| {
 | |
| 	unsigned int r_idx = skb->queue_mapping;
 | |
| 	struct wx *wx = netdev_priv(netdev);
 | |
| 	struct wx_ring *tx_ring;
 | |
| 
 | |
| 	if (!netif_carrier_ok(netdev)) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
 | |
| 	 * in order to meet this minimum size requirement.
 | |
| 	 */
 | |
| 	if (skb_put_padto(skb, 17))
 | |
| 		return NETDEV_TX_OK;
 | |
| 
 | |
| 	if (r_idx >= wx->num_tx_queues)
 | |
| 		r_idx = r_idx % wx->num_tx_queues;
 | |
| 	tx_ring = wx->tx_ring[r_idx];
 | |
| 
 | |
| 	return wx_xmit_frame_ring(skb, tx_ring);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_xmit_frame);
 | |
| 
 | |
| void wx_napi_enable_all(struct wx *wx)
 | |
| {
 | |
| 	struct wx_q_vector *q_vector;
 | |
| 	int q_idx;
 | |
| 
 | |
| 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
 | |
| 		q_vector = wx->q_vector[q_idx];
 | |
| 		napi_enable(&q_vector->napi);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(wx_napi_enable_all);
 | |
| 
 | |
| void wx_napi_disable_all(struct wx *wx)
 | |
| {
 | |
| 	struct wx_q_vector *q_vector;
 | |
| 	int q_idx;
 | |
| 
 | |
| 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
 | |
| 		q_vector = wx->q_vector[q_idx];
 | |
| 		napi_disable(&q_vector->napi);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(wx_napi_disable_all);
 | |
| 
 | |
| /**
 | |
|  * wx_set_rss_queues: Allocate queues for RSS
 | |
|  * @wx: board private structure to initialize
 | |
|  *
 | |
|  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
 | |
|  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
 | |
|  *
 | |
|  **/
 | |
| static void wx_set_rss_queues(struct wx *wx)
 | |
| {
 | |
| 	struct wx_ring_feature *f;
 | |
| 
 | |
| 	/* set mask for 16 queue limit of RSS */
 | |
| 	f = &wx->ring_feature[RING_F_RSS];
 | |
| 	f->indices = f->limit;
 | |
| 
 | |
| 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
 | |
| 		goto out;
 | |
| 
 | |
| 	clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
 | |
| 
 | |
| 	/* Use Flow Director in addition to RSS to ensure the best
 | |
| 	 * distribution of flows across cores, even when an FDIR flow
 | |
| 	 * isn't matched.
 | |
| 	 */
 | |
| 	if (f->indices > 1) {
 | |
| 		f = &wx->ring_feature[RING_F_FDIR];
 | |
| 
 | |
| 		f->indices = f->limit;
 | |
| 
 | |
| 		if (!(test_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
 | |
| 			set_bit(WX_FLAG_FDIR_HASH, wx->flags);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	wx->num_rx_queues = f->indices;
 | |
| 	wx->num_tx_queues = f->indices;
 | |
| }
 | |
| 
 | |
| static void wx_set_num_queues(struct wx *wx)
 | |
| {
 | |
| 	/* Start with base case */
 | |
| 	wx->num_rx_queues = 1;
 | |
| 	wx->num_tx_queues = 1;
 | |
| 	wx->queues_per_pool = 1;
 | |
| 
 | |
| 	wx_set_rss_queues(wx);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_acquire_msix_vectors - acquire MSI-X vectors
 | |
|  * @wx: board private structure
 | |
|  *
 | |
|  * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
 | |
|  * return a negative error code if unable to acquire MSI-X vectors for any
 | |
|  * reason.
 | |
|  */
 | |
| static int wx_acquire_msix_vectors(struct wx *wx)
 | |
| {
 | |
| 	struct irq_affinity affd = { .pre_vectors = 1 };
 | |
| 	int nvecs, i;
 | |
| 
 | |
| 	/* We start by asking for one vector per queue pair */
 | |
| 	nvecs = max(wx->num_rx_queues, wx->num_tx_queues);
 | |
| 	nvecs = min_t(int, nvecs, num_online_cpus());
 | |
| 	nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors);
 | |
| 
 | |
| 	wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry),
 | |
| 				     GFP_KERNEL);
 | |
| 	if (!wx->msix_q_entries)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* One for non-queue interrupts */
 | |
| 	nvecs += 1;
 | |
| 
 | |
| 	wx->msix_entry = kcalloc(1, sizeof(struct msix_entry),
 | |
| 				 GFP_KERNEL);
 | |
| 	if (!wx->msix_entry) {
 | |
| 		kfree(wx->msix_q_entries);
 | |
| 		wx->msix_q_entries = NULL;
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
 | |
| 					       nvecs,
 | |
| 					       PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
 | |
| 					       &affd);
 | |
| 	if (nvecs < 0) {
 | |
| 		wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
 | |
| 		kfree(wx->msix_q_entries);
 | |
| 		wx->msix_q_entries = NULL;
 | |
| 		kfree(wx->msix_entry);
 | |
| 		wx->msix_entry = NULL;
 | |
| 		return nvecs;
 | |
| 	}
 | |
| 
 | |
| 	wx->msix_entry->entry = 0;
 | |
| 	wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0);
 | |
| 	nvecs -= 1;
 | |
| 	for (i = 0; i < nvecs; i++) {
 | |
| 		wx->msix_q_entries[i].entry = i;
 | |
| 		wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1);
 | |
| 	}
 | |
| 
 | |
| 	wx->num_q_vectors = nvecs;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_set_interrupt_capability - set MSI-X or MSI if supported
 | |
|  * @wx: board private structure to initialize
 | |
|  *
 | |
|  * Attempt to configure the interrupts using the best available
 | |
|  * capabilities of the hardware and the kernel.
 | |
|  **/
 | |
| static int wx_set_interrupt_capability(struct wx *wx)
 | |
| {
 | |
| 	struct pci_dev *pdev = wx->pdev;
 | |
| 	int nvecs, ret;
 | |
| 
 | |
| 	/* We will try to get MSI-X interrupts first */
 | |
| 	ret = wx_acquire_msix_vectors(wx);
 | |
| 	if (ret == 0 || (ret == -ENOMEM))
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Disable RSS */
 | |
| 	dev_warn(&wx->pdev->dev, "Disabling RSS support\n");
 | |
| 	wx->ring_feature[RING_F_RSS].limit = 1;
 | |
| 
 | |
| 	wx_set_num_queues(wx);
 | |
| 
 | |
| 	/* minmum one for queue, one for misc*/
 | |
| 	nvecs = 1;
 | |
| 	nvecs = pci_alloc_irq_vectors(pdev, nvecs,
 | |
| 				      nvecs, PCI_IRQ_MSI | PCI_IRQ_INTX);
 | |
| 	if (nvecs == 1) {
 | |
| 		if (pdev->msi_enabled)
 | |
| 			wx_err(wx, "Fallback to MSI.\n");
 | |
| 		else
 | |
| 			wx_err(wx, "Fallback to INTx.\n");
 | |
| 	} else {
 | |
| 		wx_err(wx, "Failed to allocate MSI/INTx interrupts. Error: %d\n", nvecs);
 | |
| 		return nvecs;
 | |
| 	}
 | |
| 
 | |
| 	pdev->irq = pci_irq_vector(pdev, 0);
 | |
| 	wx->num_q_vectors = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
 | |
|  * @wx: board private structure to initialize
 | |
|  *
 | |
|  * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
 | |
|  *
 | |
|  **/
 | |
| static void wx_cache_ring_rss(struct wx *wx)
 | |
| {
 | |
| 	u16 i;
 | |
| 
 | |
| 	for (i = 0; i < wx->num_rx_queues; i++)
 | |
| 		wx->rx_ring[i]->reg_idx = i;
 | |
| 
 | |
| 	for (i = 0; i < wx->num_tx_queues; i++)
 | |
| 		wx->tx_ring[i]->reg_idx = i;
 | |
| }
 | |
| 
 | |
| static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
 | |
| {
 | |
| 	ring->next = head->ring;
 | |
| 	head->ring = ring;
 | |
| 	head->count++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_alloc_q_vector - Allocate memory for a single interrupt vector
 | |
|  * @wx: board private structure to initialize
 | |
|  * @v_count: q_vectors allocated on wx, used for ring interleaving
 | |
|  * @v_idx: index of vector in wx struct
 | |
|  * @txr_count: total number of Tx rings to allocate
 | |
|  * @txr_idx: index of first Tx ring to allocate
 | |
|  * @rxr_count: total number of Rx rings to allocate
 | |
|  * @rxr_idx: index of first Rx ring to allocate
 | |
|  *
 | |
|  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
 | |
|  **/
 | |
| static int wx_alloc_q_vector(struct wx *wx,
 | |
| 			     unsigned int v_count, unsigned int v_idx,
 | |
| 			     unsigned int txr_count, unsigned int txr_idx,
 | |
| 			     unsigned int rxr_count, unsigned int rxr_idx)
 | |
| {
 | |
| 	struct wx_q_vector *q_vector;
 | |
| 	int ring_count, default_itr;
 | |
| 	struct wx_ring *ring;
 | |
| 
 | |
| 	/* note this will allocate space for the ring structure as well! */
 | |
| 	ring_count = txr_count + rxr_count;
 | |
| 
 | |
| 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
 | |
| 			   GFP_KERNEL);
 | |
| 	if (!q_vector)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* initialize NAPI */
 | |
| 	netif_napi_add(wx->netdev, &q_vector->napi,
 | |
| 		       wx_poll);
 | |
| 
 | |
| 	/* tie q_vector and wx together */
 | |
| 	wx->q_vector[v_idx] = q_vector;
 | |
| 	q_vector->wx = wx;
 | |
| 	q_vector->v_idx = v_idx;
 | |
| 	if (cpu_online(v_idx))
 | |
| 		q_vector->numa_node = cpu_to_node(v_idx);
 | |
| 
 | |
| 	/* initialize pointer to rings */
 | |
| 	ring = q_vector->ring;
 | |
| 
 | |
| 	if (wx->mac.type == wx_mac_sp)
 | |
| 		default_itr = WX_12K_ITR;
 | |
| 	else
 | |
| 		default_itr = WX_7K_ITR;
 | |
| 	/* initialize ITR */
 | |
| 	if (txr_count && !rxr_count)
 | |
| 		/* tx only vector */
 | |
| 		q_vector->itr = wx->tx_itr_setting ?
 | |
| 				default_itr : wx->tx_itr_setting;
 | |
| 	else
 | |
| 		/* rx or rx/tx vector */
 | |
| 		q_vector->itr = wx->rx_itr_setting ?
 | |
| 				default_itr : wx->rx_itr_setting;
 | |
| 
 | |
| 	while (txr_count) {
 | |
| 		/* assign generic ring traits */
 | |
| 		ring->dev = &wx->pdev->dev;
 | |
| 		ring->netdev = wx->netdev;
 | |
| 
 | |
| 		/* configure backlink on ring */
 | |
| 		ring->q_vector = q_vector;
 | |
| 
 | |
| 		/* update q_vector Tx values */
 | |
| 		wx_add_ring(ring, &q_vector->tx);
 | |
| 
 | |
| 		/* apply Tx specific ring traits */
 | |
| 		ring->count = wx->tx_ring_count;
 | |
| 
 | |
| 		ring->queue_index = txr_idx;
 | |
| 
 | |
| 		/* assign ring to wx */
 | |
| 		wx->tx_ring[txr_idx] = ring;
 | |
| 
 | |
| 		/* update count and index */
 | |
| 		txr_count--;
 | |
| 		txr_idx += v_count;
 | |
| 
 | |
| 		/* push pointer to next ring */
 | |
| 		ring++;
 | |
| 	}
 | |
| 
 | |
| 	while (rxr_count) {
 | |
| 		/* assign generic ring traits */
 | |
| 		ring->dev = &wx->pdev->dev;
 | |
| 		ring->netdev = wx->netdev;
 | |
| 
 | |
| 		/* configure backlink on ring */
 | |
| 		ring->q_vector = q_vector;
 | |
| 
 | |
| 		/* update q_vector Rx values */
 | |
| 		wx_add_ring(ring, &q_vector->rx);
 | |
| 
 | |
| 		/* apply Rx specific ring traits */
 | |
| 		ring->count = wx->rx_ring_count;
 | |
| 		ring->queue_index = rxr_idx;
 | |
| 
 | |
| 		/* assign ring to wx */
 | |
| 		wx->rx_ring[rxr_idx] = ring;
 | |
| 
 | |
| 		/* update count and index */
 | |
| 		rxr_count--;
 | |
| 		rxr_idx += v_count;
 | |
| 
 | |
| 		/* push pointer to next ring */
 | |
| 		ring++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_free_q_vector - Free memory allocated for specific interrupt vector
 | |
|  * @wx: board private structure to initialize
 | |
|  * @v_idx: Index of vector to be freed
 | |
|  *
 | |
|  * This function frees the memory allocated to the q_vector.  In addition if
 | |
|  * NAPI is enabled it will delete any references to the NAPI struct prior
 | |
|  * to freeing the q_vector.
 | |
|  **/
 | |
| static void wx_free_q_vector(struct wx *wx, int v_idx)
 | |
| {
 | |
| 	struct wx_q_vector *q_vector = wx->q_vector[v_idx];
 | |
| 	struct wx_ring *ring;
 | |
| 
 | |
| 	wx_for_each_ring(ring, q_vector->tx)
 | |
| 		wx->tx_ring[ring->queue_index] = NULL;
 | |
| 
 | |
| 	wx_for_each_ring(ring, q_vector->rx)
 | |
| 		wx->rx_ring[ring->queue_index] = NULL;
 | |
| 
 | |
| 	wx->q_vector[v_idx] = NULL;
 | |
| 	netif_napi_del(&q_vector->napi);
 | |
| 	kfree_rcu(q_vector, rcu);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_alloc_q_vectors - Allocate memory for interrupt vectors
 | |
|  * @wx: board private structure to initialize
 | |
|  *
 | |
|  * We allocate one q_vector per queue interrupt.  If allocation fails we
 | |
|  * return -ENOMEM.
 | |
|  **/
 | |
| static int wx_alloc_q_vectors(struct wx *wx)
 | |
| {
 | |
| 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
 | |
| 	unsigned int rxr_remaining = wx->num_rx_queues;
 | |
| 	unsigned int txr_remaining = wx->num_tx_queues;
 | |
| 	unsigned int q_vectors = wx->num_q_vectors;
 | |
| 	int rqpv, tqpv;
 | |
| 	int err;
 | |
| 
 | |
| 	for (; v_idx < q_vectors; v_idx++) {
 | |
| 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
 | |
| 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
 | |
| 		err = wx_alloc_q_vector(wx, q_vectors, v_idx,
 | |
| 					tqpv, txr_idx,
 | |
| 					rqpv, rxr_idx);
 | |
| 
 | |
| 		if (err)
 | |
| 			goto err_out;
 | |
| 
 | |
| 		/* update counts and index */
 | |
| 		rxr_remaining -= rqpv;
 | |
| 		txr_remaining -= tqpv;
 | |
| 		rxr_idx++;
 | |
| 		txr_idx++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	wx->num_tx_queues = 0;
 | |
| 	wx->num_rx_queues = 0;
 | |
| 	wx->num_q_vectors = 0;
 | |
| 
 | |
| 	while (v_idx--)
 | |
| 		wx_free_q_vector(wx, v_idx);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_free_q_vectors - Free memory allocated for interrupt vectors
 | |
|  * @wx: board private structure to initialize
 | |
|  *
 | |
|  * This function frees the memory allocated to the q_vectors.  In addition if
 | |
|  * NAPI is enabled it will delete any references to the NAPI struct prior
 | |
|  * to freeing the q_vector.
 | |
|  **/
 | |
| static void wx_free_q_vectors(struct wx *wx)
 | |
| {
 | |
| 	int v_idx = wx->num_q_vectors;
 | |
| 
 | |
| 	wx->num_tx_queues = 0;
 | |
| 	wx->num_rx_queues = 0;
 | |
| 	wx->num_q_vectors = 0;
 | |
| 
 | |
| 	while (v_idx--)
 | |
| 		wx_free_q_vector(wx, v_idx);
 | |
| }
 | |
| 
 | |
| void wx_reset_interrupt_capability(struct wx *wx)
 | |
| {
 | |
| 	struct pci_dev *pdev = wx->pdev;
 | |
| 
 | |
| 	if (!pdev->msi_enabled && !pdev->msix_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (pdev->msix_enabled) {
 | |
| 		kfree(wx->msix_q_entries);
 | |
| 		wx->msix_q_entries = NULL;
 | |
| 		kfree(wx->msix_entry);
 | |
| 		wx->msix_entry = NULL;
 | |
| 	}
 | |
| 	pci_free_irq_vectors(wx->pdev);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_reset_interrupt_capability);
 | |
| 
 | |
| /**
 | |
|  * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
 | |
|  * @wx: board private structure to clear interrupt scheme on
 | |
|  *
 | |
|  * We go through and clear interrupt specific resources and reset the structure
 | |
|  * to pre-load conditions
 | |
|  **/
 | |
| void wx_clear_interrupt_scheme(struct wx *wx)
 | |
| {
 | |
| 	wx_free_q_vectors(wx);
 | |
| 	wx_reset_interrupt_capability(wx);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_clear_interrupt_scheme);
 | |
| 
 | |
| int wx_init_interrupt_scheme(struct wx *wx)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Number of supported queues */
 | |
| 	wx_set_num_queues(wx);
 | |
| 
 | |
| 	/* Set interrupt mode */
 | |
| 	ret = wx_set_interrupt_capability(wx);
 | |
| 	if (ret) {
 | |
| 		wx_err(wx, "Allocate irq vectors for failed.\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate memory for queues */
 | |
| 	ret = wx_alloc_q_vectors(wx);
 | |
| 	if (ret) {
 | |
| 		wx_err(wx, "Unable to allocate memory for queue vectors.\n");
 | |
| 		wx_reset_interrupt_capability(wx);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	wx_cache_ring_rss(wx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(wx_init_interrupt_scheme);
 | |
| 
 | |
| irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
 | |
| {
 | |
| 	struct wx_q_vector *q_vector = data;
 | |
| 
 | |
| 	/* EIAM disabled interrupts (on this vector) for us */
 | |
| 	if (q_vector->rx.ring || q_vector->tx.ring)
 | |
| 		napi_schedule_irqoff(&q_vector->napi);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| EXPORT_SYMBOL(wx_msix_clean_rings);
 | |
| 
 | |
| void wx_free_irq(struct wx *wx)
 | |
| {
 | |
| 	struct pci_dev *pdev = wx->pdev;
 | |
| 	int vector;
 | |
| 
 | |
| 	if (!(pdev->msix_enabled)) {
 | |
| 		if (!wx->misc_irq_domain)
 | |
| 			free_irq(pdev->irq, wx);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (vector = 0; vector < wx->num_q_vectors; vector++) {
 | |
| 		struct wx_q_vector *q_vector = wx->q_vector[vector];
 | |
| 		struct msix_entry *entry = &wx->msix_q_entries[vector];
 | |
| 
 | |
| 		/* free only the irqs that were actually requested */
 | |
| 		if (!q_vector->rx.ring && !q_vector->tx.ring)
 | |
| 			continue;
 | |
| 
 | |
| 		free_irq(entry->vector, q_vector);
 | |
| 	}
 | |
| 
 | |
| 	if (!wx->misc_irq_domain)
 | |
| 		free_irq(wx->msix_entry->vector, wx);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_free_irq);
 | |
| 
 | |
| /**
 | |
|  * wx_setup_isb_resources - allocate interrupt status resources
 | |
|  * @wx: board private structure
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| int wx_setup_isb_resources(struct wx *wx)
 | |
| {
 | |
| 	struct pci_dev *pdev = wx->pdev;
 | |
| 
 | |
| 	if (wx->isb_mem)
 | |
| 		return 0;
 | |
| 
 | |
| 	wx->isb_mem = dma_alloc_coherent(&pdev->dev,
 | |
| 					 sizeof(u32) * 4,
 | |
| 					 &wx->isb_dma,
 | |
| 					 GFP_KERNEL);
 | |
| 	if (!wx->isb_mem) {
 | |
| 		wx_err(wx, "Alloc isb_mem failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(wx_setup_isb_resources);
 | |
| 
 | |
| /**
 | |
|  * wx_free_isb_resources - allocate all queues Rx resources
 | |
|  * @wx: board private structure
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| void wx_free_isb_resources(struct wx *wx)
 | |
| {
 | |
| 	struct pci_dev *pdev = wx->pdev;
 | |
| 
 | |
| 	dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
 | |
| 			  wx->isb_mem, wx->isb_dma);
 | |
| 	wx->isb_mem = NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(wx_free_isb_resources);
 | |
| 
 | |
| u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
 | |
| {
 | |
| 	u32 cur_tag = 0;
 | |
| 
 | |
| 	cur_tag = wx->isb_mem[WX_ISB_HEADER];
 | |
| 	wx->isb_tag[idx] = cur_tag;
 | |
| 
 | |
| 	return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_misc_isb);
 | |
| 
 | |
| /**
 | |
|  * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
 | |
|  * @wx: pointer to wx struct
 | |
|  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
 | |
|  * @queue: queue to map the corresponding interrupt to
 | |
|  * @msix_vector: the vector to map to the corresponding queue
 | |
|  *
 | |
|  **/
 | |
| static void wx_set_ivar(struct wx *wx, s8 direction,
 | |
| 			u16 queue, u16 msix_vector)
 | |
| {
 | |
| 	u32 ivar, index;
 | |
| 
 | |
| 	if (direction == -1) {
 | |
| 		/* other causes */
 | |
| 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
 | |
| 		index = 0;
 | |
| 		ivar = rd32(wx, WX_PX_MISC_IVAR);
 | |
| 		ivar &= ~(0xFF << index);
 | |
| 		ivar |= (msix_vector << index);
 | |
| 		wr32(wx, WX_PX_MISC_IVAR, ivar);
 | |
| 	} else {
 | |
| 		/* tx or rx causes */
 | |
| 		msix_vector += 1; /* offset for queue vectors */
 | |
| 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
 | |
| 		index = ((16 * (queue & 1)) + (8 * direction));
 | |
| 		ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
 | |
| 		ivar &= ~(0xFF << index);
 | |
| 		ivar |= (msix_vector << index);
 | |
| 		wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_write_eitr - write EITR register in hardware specific way
 | |
|  * @q_vector: structure containing interrupt and ring information
 | |
|  *
 | |
|  * This function is made to be called by ethtool and by the driver
 | |
|  * when it needs to update EITR registers at runtime.  Hardware
 | |
|  * specific quirks/differences are taken care of here.
 | |
|  */
 | |
| void wx_write_eitr(struct wx_q_vector *q_vector)
 | |
| {
 | |
| 	struct wx *wx = q_vector->wx;
 | |
| 	int v_idx = q_vector->v_idx;
 | |
| 	u32 itr_reg;
 | |
| 
 | |
| 	if (wx->mac.type == wx_mac_sp)
 | |
| 		itr_reg = q_vector->itr & WX_SP_MAX_EITR;
 | |
| 	else
 | |
| 		itr_reg = q_vector->itr & WX_EM_MAX_EITR;
 | |
| 
 | |
| 	itr_reg |= WX_PX_ITR_CNT_WDIS;
 | |
| 
 | |
| 	wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_configure_vectors - Configure vectors for hardware
 | |
|  * @wx: board private structure
 | |
|  *
 | |
|  * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/INTx
 | |
|  * interrupts.
 | |
|  **/
 | |
| void wx_configure_vectors(struct wx *wx)
 | |
| {
 | |
| 	struct pci_dev *pdev = wx->pdev;
 | |
| 	u32 eitrsel = 0;
 | |
| 	u16 v_idx;
 | |
| 
 | |
| 	if (pdev->msix_enabled) {
 | |
| 		/* Populate MSIX to EITR Select */
 | |
| 		wr32(wx, WX_PX_ITRSEL, eitrsel);
 | |
| 		/* use EIAM to auto-mask when MSI-X interrupt is asserted
 | |
| 		 * this saves a register write for every interrupt
 | |
| 		 */
 | |
| 		wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
 | |
| 	} else {
 | |
| 		/* legacy interrupts, use EIAM to auto-mask when reading EICR,
 | |
| 		 * specifically only auto mask tx and rx interrupts.
 | |
| 		 */
 | |
| 		wr32(wx, WX_PX_GPIE, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Populate the IVAR table and set the ITR values to the
 | |
| 	 * corresponding register.
 | |
| 	 */
 | |
| 	for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
 | |
| 		struct wx_q_vector *q_vector = wx->q_vector[v_idx];
 | |
| 		struct wx_ring *ring;
 | |
| 
 | |
| 		wx_for_each_ring(ring, q_vector->rx)
 | |
| 			wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
 | |
| 
 | |
| 		wx_for_each_ring(ring, q_vector->tx)
 | |
| 			wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
 | |
| 
 | |
| 		wx_write_eitr(q_vector);
 | |
| 	}
 | |
| 
 | |
| 	wx_set_ivar(wx, -1, 0, 0);
 | |
| 	if (pdev->msix_enabled)
 | |
| 		wr32(wx, WX_PX_ITR(0), 1950);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_configure_vectors);
 | |
| 
 | |
| /**
 | |
|  * wx_clean_rx_ring - Free Rx Buffers per Queue
 | |
|  * @rx_ring: ring to free buffers from
 | |
|  **/
 | |
| static void wx_clean_rx_ring(struct wx_ring *rx_ring)
 | |
| {
 | |
| 	struct wx_rx_buffer *rx_buffer;
 | |
| 	u16 i = rx_ring->next_to_clean;
 | |
| 
 | |
| 	rx_buffer = &rx_ring->rx_buffer_info[i];
 | |
| 
 | |
| 	/* Free all the Rx ring sk_buffs */
 | |
| 	while (i != rx_ring->next_to_alloc) {
 | |
| 		if (rx_buffer->skb) {
 | |
| 			struct sk_buff *skb = rx_buffer->skb;
 | |
| 
 | |
| 			if (WX_CB(skb)->page_released)
 | |
| 				page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
 | |
| 
 | |
| 			dev_kfree_skb(skb);
 | |
| 		}
 | |
| 
 | |
| 		/* Invalidate cache lines that may have been written to by
 | |
| 		 * device so that we avoid corrupting memory.
 | |
| 		 */
 | |
| 		dma_sync_single_range_for_cpu(rx_ring->dev,
 | |
| 					      rx_buffer->dma,
 | |
| 					      rx_buffer->page_offset,
 | |
| 					      WX_RX_BUFSZ,
 | |
| 					      DMA_FROM_DEVICE);
 | |
| 
 | |
| 		/* free resources associated with mapping */
 | |
| 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
 | |
| 
 | |
| 		i++;
 | |
| 		rx_buffer++;
 | |
| 		if (i == rx_ring->count) {
 | |
| 			i = 0;
 | |
| 			rx_buffer = rx_ring->rx_buffer_info;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rx_ring->next_to_alloc = 0;
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 	rx_ring->next_to_use = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_clean_all_rx_rings - Free Rx Buffers for all queues
 | |
|  * @wx: board private structure
 | |
|  **/
 | |
| void wx_clean_all_rx_rings(struct wx *wx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < wx->num_rx_queues; i++)
 | |
| 		wx_clean_rx_ring(wx->rx_ring[i]);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_clean_all_rx_rings);
 | |
| 
 | |
| /**
 | |
|  * wx_free_rx_resources - Free Rx Resources
 | |
|  * @rx_ring: ring to clean the resources from
 | |
|  *
 | |
|  * Free all receive software resources
 | |
|  **/
 | |
| static void wx_free_rx_resources(struct wx_ring *rx_ring)
 | |
| {
 | |
| 	wx_clean_rx_ring(rx_ring);
 | |
| 	kvfree(rx_ring->rx_buffer_info);
 | |
| 	rx_ring->rx_buffer_info = NULL;
 | |
| 
 | |
| 	/* if not set, then don't free */
 | |
| 	if (!rx_ring->desc)
 | |
| 		return;
 | |
| 
 | |
| 	dma_free_coherent(rx_ring->dev, rx_ring->size,
 | |
| 			  rx_ring->desc, rx_ring->dma);
 | |
| 
 | |
| 	rx_ring->desc = NULL;
 | |
| 
 | |
| 	if (rx_ring->page_pool) {
 | |
| 		page_pool_destroy(rx_ring->page_pool);
 | |
| 		rx_ring->page_pool = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_free_all_rx_resources - Free Rx Resources for All Queues
 | |
|  * @wx: pointer to hardware structure
 | |
|  *
 | |
|  * Free all receive software resources
 | |
|  **/
 | |
| static void wx_free_all_rx_resources(struct wx *wx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < wx->num_rx_queues; i++)
 | |
| 		wx_free_rx_resources(wx->rx_ring[i]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_clean_tx_ring - Free Tx Buffers
 | |
|  * @tx_ring: ring to be cleaned
 | |
|  **/
 | |
| static void wx_clean_tx_ring(struct wx_ring *tx_ring)
 | |
| {
 | |
| 	struct wx_tx_buffer *tx_buffer;
 | |
| 	u16 i = tx_ring->next_to_clean;
 | |
| 
 | |
| 	tx_buffer = &tx_ring->tx_buffer_info[i];
 | |
| 
 | |
| 	while (i != tx_ring->next_to_use) {
 | |
| 		union wx_tx_desc *eop_desc, *tx_desc;
 | |
| 
 | |
| 		/* Free all the Tx ring sk_buffs */
 | |
| 		dev_kfree_skb_any(tx_buffer->skb);
 | |
| 
 | |
| 		/* unmap skb header data */
 | |
| 		dma_unmap_single(tx_ring->dev,
 | |
| 				 dma_unmap_addr(tx_buffer, dma),
 | |
| 				 dma_unmap_len(tx_buffer, len),
 | |
| 				 DMA_TO_DEVICE);
 | |
| 
 | |
| 		/* check for eop_desc to determine the end of the packet */
 | |
| 		eop_desc = tx_buffer->next_to_watch;
 | |
| 		tx_desc = WX_TX_DESC(tx_ring, i);
 | |
| 
 | |
| 		/* unmap remaining buffers */
 | |
| 		while (tx_desc != eop_desc) {
 | |
| 			tx_buffer++;
 | |
| 			tx_desc++;
 | |
| 			i++;
 | |
| 			if (unlikely(i == tx_ring->count)) {
 | |
| 				i = 0;
 | |
| 				tx_buffer = tx_ring->tx_buffer_info;
 | |
| 				tx_desc = WX_TX_DESC(tx_ring, 0);
 | |
| 			}
 | |
| 
 | |
| 			/* unmap any remaining paged data */
 | |
| 			if (dma_unmap_len(tx_buffer, len))
 | |
| 				dma_unmap_page(tx_ring->dev,
 | |
| 					       dma_unmap_addr(tx_buffer, dma),
 | |
| 					       dma_unmap_len(tx_buffer, len),
 | |
| 					       DMA_TO_DEVICE);
 | |
| 		}
 | |
| 
 | |
| 		/* move us one more past the eop_desc for start of next pkt */
 | |
| 		tx_buffer++;
 | |
| 		i++;
 | |
| 		if (unlikely(i == tx_ring->count)) {
 | |
| 			i = 0;
 | |
| 			tx_buffer = tx_ring->tx_buffer_info;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	netdev_tx_reset_queue(wx_txring_txq(tx_ring));
 | |
| 
 | |
| 	/* reset next_to_use and next_to_clean */
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_clean_all_tx_rings - Free Tx Buffers for all queues
 | |
|  * @wx: board private structure
 | |
|  **/
 | |
| void wx_clean_all_tx_rings(struct wx *wx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < wx->num_tx_queues; i++)
 | |
| 		wx_clean_tx_ring(wx->tx_ring[i]);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_clean_all_tx_rings);
 | |
| 
 | |
| /**
 | |
|  * wx_free_tx_resources - Free Tx Resources per Queue
 | |
|  * @tx_ring: Tx descriptor ring for a specific queue
 | |
|  *
 | |
|  * Free all transmit software resources
 | |
|  **/
 | |
| static void wx_free_tx_resources(struct wx_ring *tx_ring)
 | |
| {
 | |
| 	wx_clean_tx_ring(tx_ring);
 | |
| 	kvfree(tx_ring->tx_buffer_info);
 | |
| 	tx_ring->tx_buffer_info = NULL;
 | |
| 
 | |
| 	/* if not set, then don't free */
 | |
| 	if (!tx_ring->desc)
 | |
| 		return;
 | |
| 
 | |
| 	dma_free_coherent(tx_ring->dev, tx_ring->size,
 | |
| 			  tx_ring->desc, tx_ring->dma);
 | |
| 	tx_ring->desc = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_free_all_tx_resources - Free Tx Resources for All Queues
 | |
|  * @wx: pointer to hardware structure
 | |
|  *
 | |
|  * Free all transmit software resources
 | |
|  **/
 | |
| static void wx_free_all_tx_resources(struct wx *wx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < wx->num_tx_queues; i++)
 | |
| 		wx_free_tx_resources(wx->tx_ring[i]);
 | |
| }
 | |
| 
 | |
| void wx_free_resources(struct wx *wx)
 | |
| {
 | |
| 	wx_free_all_rx_resources(wx);
 | |
| 	wx_free_all_tx_resources(wx);
 | |
| }
 | |
| EXPORT_SYMBOL(wx_free_resources);
 | |
| 
 | |
| static int wx_alloc_page_pool(struct wx_ring *rx_ring)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	struct page_pool_params pp_params = {
 | |
| 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
 | |
| 		.order = 0,
 | |
| 		.pool_size = rx_ring->size,
 | |
| 		.nid = dev_to_node(rx_ring->dev),
 | |
| 		.dev = rx_ring->dev,
 | |
| 		.dma_dir = DMA_FROM_DEVICE,
 | |
| 		.offset = 0,
 | |
| 		.max_len = PAGE_SIZE,
 | |
| 	};
 | |
| 
 | |
| 	rx_ring->page_pool = page_pool_create(&pp_params);
 | |
| 	if (IS_ERR(rx_ring->page_pool)) {
 | |
| 		ret = PTR_ERR(rx_ring->page_pool);
 | |
| 		rx_ring->page_pool = NULL;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_setup_rx_resources - allocate Rx resources (Descriptors)
 | |
|  * @rx_ring: rx descriptor ring (for a specific queue) to setup
 | |
|  *
 | |
|  * Returns 0 on success, negative on failure
 | |
|  **/
 | |
| static int wx_setup_rx_resources(struct wx_ring *rx_ring)
 | |
| {
 | |
| 	struct device *dev = rx_ring->dev;
 | |
| 	int orig_node = dev_to_node(dev);
 | |
| 	int numa_node = NUMA_NO_NODE;
 | |
| 	int size, ret;
 | |
| 
 | |
| 	size = sizeof(struct wx_rx_buffer) * rx_ring->count;
 | |
| 
 | |
| 	if (rx_ring->q_vector)
 | |
| 		numa_node = rx_ring->q_vector->numa_node;
 | |
| 
 | |
| 	rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
 | |
| 	if (!rx_ring->rx_buffer_info)
 | |
| 		rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
 | |
| 	if (!rx_ring->rx_buffer_info)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Round up to nearest 4K */
 | |
| 	rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
 | |
| 	rx_ring->size = ALIGN(rx_ring->size, 4096);
 | |
| 
 | |
| 	set_dev_node(dev, numa_node);
 | |
| 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 | |
| 					   &rx_ring->dma, GFP_KERNEL);
 | |
| 	if (!rx_ring->desc) {
 | |
| 		set_dev_node(dev, orig_node);
 | |
| 		rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 | |
| 						   &rx_ring->dma, GFP_KERNEL);
 | |
| 	}
 | |
| 
 | |
| 	if (!rx_ring->desc)
 | |
| 		goto err;
 | |
| 
 | |
| 	rx_ring->next_to_clean = 0;
 | |
| 	rx_ring->next_to_use = 0;
 | |
| 
 | |
| 	ret = wx_alloc_page_pool(rx_ring);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
 | |
| 		goto err_desc;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_desc:
 | |
| 	dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
 | |
| err:
 | |
| 	kvfree(rx_ring->rx_buffer_info);
 | |
| 	rx_ring->rx_buffer_info = NULL;
 | |
| 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_setup_all_rx_resources - allocate all queues Rx resources
 | |
|  * @wx: pointer to hardware structure
 | |
|  *
 | |
|  * If this function returns with an error, then it's possible one or
 | |
|  * more of the rings is populated (while the rest are not).  It is the
 | |
|  * callers duty to clean those orphaned rings.
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| static int wx_setup_all_rx_resources(struct wx *wx)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	for (i = 0; i < wx->num_rx_queues; i++) {
 | |
| 		err = wx_setup_rx_resources(wx->rx_ring[i]);
 | |
| 		if (!err)
 | |
| 			continue;
 | |
| 
 | |
| 		wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
 | |
| 		goto err_setup_rx;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| err_setup_rx:
 | |
| 	/* rewind the index freeing the rings as we go */
 | |
| 	while (i--)
 | |
| 		wx_free_rx_resources(wx->rx_ring[i]);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_setup_tx_resources - allocate Tx resources (Descriptors)
 | |
|  * @tx_ring: tx descriptor ring (for a specific queue) to setup
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| static int wx_setup_tx_resources(struct wx_ring *tx_ring)
 | |
| {
 | |
| 	struct device *dev = tx_ring->dev;
 | |
| 	int orig_node = dev_to_node(dev);
 | |
| 	int numa_node = NUMA_NO_NODE;
 | |
| 	int size;
 | |
| 
 | |
| 	size = sizeof(struct wx_tx_buffer) * tx_ring->count;
 | |
| 
 | |
| 	if (tx_ring->q_vector)
 | |
| 		numa_node = tx_ring->q_vector->numa_node;
 | |
| 
 | |
| 	tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
 | |
| 	if (!tx_ring->tx_buffer_info)
 | |
| 		tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
 | |
| 	if (!tx_ring->tx_buffer_info)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* round up to nearest 4K */
 | |
| 	tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
 | |
| 	tx_ring->size = ALIGN(tx_ring->size, 4096);
 | |
| 
 | |
| 	set_dev_node(dev, numa_node);
 | |
| 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 | |
| 					   &tx_ring->dma, GFP_KERNEL);
 | |
| 	if (!tx_ring->desc) {
 | |
| 		set_dev_node(dev, orig_node);
 | |
| 		tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 | |
| 						   &tx_ring->dma, GFP_KERNEL);
 | |
| 	}
 | |
| 
 | |
| 	if (!tx_ring->desc)
 | |
| 		goto err;
 | |
| 
 | |
| 	tx_ring->next_to_use = 0;
 | |
| 	tx_ring->next_to_clean = 0;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	kvfree(tx_ring->tx_buffer_info);
 | |
| 	tx_ring->tx_buffer_info = NULL;
 | |
| 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wx_setup_all_tx_resources - allocate all queues Tx resources
 | |
|  * @wx: pointer to private structure
 | |
|  *
 | |
|  * If this function returns with an error, then it's possible one or
 | |
|  * more of the rings is populated (while the rest are not).  It is the
 | |
|  * callers duty to clean those orphaned rings.
 | |
|  *
 | |
|  * Return 0 on success, negative on failure
 | |
|  **/
 | |
| static int wx_setup_all_tx_resources(struct wx *wx)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	for (i = 0; i < wx->num_tx_queues; i++) {
 | |
| 		err = wx_setup_tx_resources(wx->tx_ring[i]);
 | |
| 		if (!err)
 | |
| 			continue;
 | |
| 
 | |
| 		wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
 | |
| 		goto err_setup_tx;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| err_setup_tx:
 | |
| 	/* rewind the index freeing the rings as we go */
 | |
| 	while (i--)
 | |
| 		wx_free_tx_resources(wx->tx_ring[i]);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int wx_setup_resources(struct wx *wx)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	/* allocate transmit descriptors */
 | |
| 	err = wx_setup_all_tx_resources(wx);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* allocate receive descriptors */
 | |
| 	err = wx_setup_all_rx_resources(wx);
 | |
| 	if (err)
 | |
| 		goto err_free_tx;
 | |
| 
 | |
| 	err = wx_setup_isb_resources(wx);
 | |
| 	if (err)
 | |
| 		goto err_free_rx;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_free_rx:
 | |
| 	wx_free_all_rx_resources(wx);
 | |
| err_free_tx:
 | |
| 	wx_free_all_tx_resources(wx);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL(wx_setup_resources);
 | |
| 
 | |
| /**
 | |
|  * wx_get_stats64 - Get System Network Statistics
 | |
|  * @netdev: network interface device structure
 | |
|  * @stats: storage space for 64bit statistics
 | |
|  */
 | |
| void wx_get_stats64(struct net_device *netdev,
 | |
| 		    struct rtnl_link_stats64 *stats)
 | |
| {
 | |
| 	struct wx *wx = netdev_priv(netdev);
 | |
| 	struct wx_hw_stats *hwstats;
 | |
| 	int i;
 | |
| 
 | |
| 	wx_update_stats(wx);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	for (i = 0; i < wx->num_rx_queues; i++) {
 | |
| 		struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
 | |
| 		u64 bytes, packets;
 | |
| 		unsigned int start;
 | |
| 
 | |
| 		if (ring) {
 | |
| 			do {
 | |
| 				start = u64_stats_fetch_begin(&ring->syncp);
 | |
| 				packets = ring->stats.packets;
 | |
| 				bytes   = ring->stats.bytes;
 | |
| 			} while (u64_stats_fetch_retry(&ring->syncp, start));
 | |
| 			stats->rx_packets += packets;
 | |
| 			stats->rx_bytes   += bytes;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < wx->num_tx_queues; i++) {
 | |
| 		struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
 | |
| 		u64 bytes, packets;
 | |
| 		unsigned int start;
 | |
| 
 | |
| 		if (ring) {
 | |
| 			do {
 | |
| 				start = u64_stats_fetch_begin(&ring->syncp);
 | |
| 				packets = ring->stats.packets;
 | |
| 				bytes   = ring->stats.bytes;
 | |
| 			} while (u64_stats_fetch_retry(&ring->syncp,
 | |
| 							   start));
 | |
| 			stats->tx_packets += packets;
 | |
| 			stats->tx_bytes   += bytes;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	hwstats = &wx->stats;
 | |
| 	stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
 | |
| 	stats->multicast = hwstats->qmprc;
 | |
| 	stats->rx_length_errors = hwstats->rlec;
 | |
| 	stats->rx_crc_errors = hwstats->crcerrs;
 | |
| }
 | |
| EXPORT_SYMBOL(wx_get_stats64);
 | |
| 
 | |
| int wx_set_features(struct net_device *netdev, netdev_features_t features)
 | |
| {
 | |
| 	netdev_features_t changed = netdev->features ^ features;
 | |
| 	struct wx *wx = netdev_priv(netdev);
 | |
| 	bool need_reset = false;
 | |
| 
 | |
| 	if (features & NETIF_F_RXHASH) {
 | |
| 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
 | |
| 		      WX_RDB_RA_CTL_RSS_EN);
 | |
| 		wx->rss_enabled = true;
 | |
| 	} else {
 | |
| 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
 | |
| 		wx->rss_enabled = false;
 | |
| 	}
 | |
| 
 | |
| 	netdev->features = features;
 | |
| 
 | |
| 	if (wx->mac.type == wx_mac_sp && changed & NETIF_F_HW_VLAN_CTAG_RX)
 | |
| 		wx->do_reset(netdev);
 | |
| 	else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER))
 | |
| 		wx_set_rx_mode(netdev);
 | |
| 
 | |
| 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check if Flow Director n-tuple support was enabled or disabled.  If
 | |
| 	 * the state changed, we need to reset.
 | |
| 	 */
 | |
| 	switch (features & NETIF_F_NTUPLE) {
 | |
| 	case NETIF_F_NTUPLE:
 | |
| 		/* turn off ATR, enable perfect filters and reset */
 | |
| 		if (!(test_and_set_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
 | |
| 			need_reset = true;
 | |
| 
 | |
| 		clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* turn off perfect filters, enable ATR and reset */
 | |
| 		if (test_and_clear_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
 | |
| 			need_reset = true;
 | |
| 
 | |
| 		/* We cannot enable ATR if RSS is disabled */
 | |
| 		if (wx->ring_feature[RING_F_RSS].limit <= 1)
 | |
| 			break;
 | |
| 
 | |
| 		set_bit(WX_FLAG_FDIR_HASH, wx->flags);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (need_reset)
 | |
| 		wx->do_reset(netdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(wx_set_features);
 | |
| 
 | |
| #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
 | |
| 					 NETIF_F_HW_VLAN_STAG_RX)
 | |
| 
 | |
| #define NETIF_VLAN_INSERTION_FEATURES	(NETIF_F_HW_VLAN_CTAG_TX | \
 | |
| 					 NETIF_F_HW_VLAN_STAG_TX)
 | |
| 
 | |
| #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
 | |
| 					 NETIF_F_HW_VLAN_STAG_FILTER)
 | |
| 
 | |
| netdev_features_t wx_fix_features(struct net_device *netdev,
 | |
| 				  netdev_features_t features)
 | |
| {
 | |
| 	netdev_features_t changed = netdev->features ^ features;
 | |
| 	struct wx *wx = netdev_priv(netdev);
 | |
| 
 | |
| 	if (changed & NETIF_VLAN_STRIPPING_FEATURES) {
 | |
| 		if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES &&
 | |
| 		    (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) {
 | |
| 			features &= ~NETIF_VLAN_STRIPPING_FEATURES;
 | |
| 			features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES;
 | |
| 			wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off.");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (changed & NETIF_VLAN_INSERTION_FEATURES) {
 | |
| 		if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES &&
 | |
| 		    (features & NETIF_VLAN_INSERTION_FEATURES) != 0) {
 | |
| 			features &= ~NETIF_VLAN_INSERTION_FEATURES;
 | |
| 			features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES;
 | |
| 			wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off.");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (changed & NETIF_VLAN_FILTERING_FEATURES) {
 | |
| 		if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES &&
 | |
| 		    (features & NETIF_VLAN_FILTERING_FEATURES) != 0) {
 | |
| 			features &= ~NETIF_VLAN_FILTERING_FEATURES;
 | |
| 			features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES;
 | |
| 			wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off.");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return features;
 | |
| }
 | |
| EXPORT_SYMBOL(wx_fix_features);
 | |
| 
 | |
| void wx_set_ring(struct wx *wx, u32 new_tx_count,
 | |
| 		 u32 new_rx_count, struct wx_ring *temp_ring)
 | |
| {
 | |
| 	int i, err = 0;
 | |
| 
 | |
| 	/* Setup new Tx resources and free the old Tx resources in that order.
 | |
| 	 * We can then assign the new resources to the rings via a memcpy.
 | |
| 	 * The advantage to this approach is that we are guaranteed to still
 | |
| 	 * have resources even in the case of an allocation failure.
 | |
| 	 */
 | |
| 	if (new_tx_count != wx->tx_ring_count) {
 | |
| 		for (i = 0; i < wx->num_tx_queues; i++) {
 | |
| 			memcpy(&temp_ring[i], wx->tx_ring[i],
 | |
| 			       sizeof(struct wx_ring));
 | |
| 
 | |
| 			temp_ring[i].count = new_tx_count;
 | |
| 			err = wx_setup_tx_resources(&temp_ring[i]);
 | |
| 			if (err) {
 | |
| 				wx_err(wx, "setup new tx resources failed, keep using the old config\n");
 | |
| 				while (i) {
 | |
| 					i--;
 | |
| 					wx_free_tx_resources(&temp_ring[i]);
 | |
| 				}
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < wx->num_tx_queues; i++) {
 | |
| 			wx_free_tx_resources(wx->tx_ring[i]);
 | |
| 
 | |
| 			memcpy(wx->tx_ring[i], &temp_ring[i],
 | |
| 			       sizeof(struct wx_ring));
 | |
| 		}
 | |
| 
 | |
| 		wx->tx_ring_count = new_tx_count;
 | |
| 	}
 | |
| 
 | |
| 	/* Repeat the process for the Rx rings if needed */
 | |
| 	if (new_rx_count != wx->rx_ring_count) {
 | |
| 		for (i = 0; i < wx->num_rx_queues; i++) {
 | |
| 			memcpy(&temp_ring[i], wx->rx_ring[i],
 | |
| 			       sizeof(struct wx_ring));
 | |
| 
 | |
| 			temp_ring[i].count = new_rx_count;
 | |
| 			err = wx_setup_rx_resources(&temp_ring[i]);
 | |
| 			if (err) {
 | |
| 				wx_err(wx, "setup new rx resources failed, keep using the old config\n");
 | |
| 				while (i) {
 | |
| 					i--;
 | |
| 					wx_free_rx_resources(&temp_ring[i]);
 | |
| 				}
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < wx->num_rx_queues; i++) {
 | |
| 			wx_free_rx_resources(wx->rx_ring[i]);
 | |
| 			memcpy(wx->rx_ring[i], &temp_ring[i],
 | |
| 			       sizeof(struct wx_ring));
 | |
| 		}
 | |
| 
 | |
| 		wx->rx_ring_count = new_rx_count;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(wx_set_ring);
 | |
| 
 | |
| MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers.");
 | |
| MODULE_LICENSE("GPL");
 |