1865 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1865 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
 | |
| /*
 | |
|     Copyright (c) 2001, 2002 by D-Link Corporation
 | |
|     Written by Edward Peng.<edward_peng@dlink.com.tw>
 | |
|     Created 03-May-2001, base on Linux' sundance.c.
 | |
| 
 | |
| */
 | |
| 
 | |
| #include "dl2k.h"
 | |
| #include <linux/dma-mapping.h>
 | |
| 
 | |
| #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
 | |
| #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
 | |
| #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
 | |
| #define dr32(reg)	ioread32(ioaddr + (reg))
 | |
| #define dr16(reg)	ioread16(ioaddr + (reg))
 | |
| #define dr8(reg)	ioread8(ioaddr + (reg))
 | |
| 
 | |
| #define MAX_UNITS 8
 | |
| static int mtu[MAX_UNITS];
 | |
| static int vlan[MAX_UNITS];
 | |
| static int jumbo[MAX_UNITS];
 | |
| static char *media[MAX_UNITS];
 | |
| static int tx_flow=-1;
 | |
| static int rx_flow=-1;
 | |
| static int copy_thresh;
 | |
| static int rx_coalesce=10;	/* Rx frame count each interrupt */
 | |
| static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
 | |
| static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
 | |
| 
 | |
| 
 | |
| MODULE_AUTHOR ("Edward Peng");
 | |
| MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
 | |
| MODULE_LICENSE("GPL");
 | |
| module_param_array(mtu, int, NULL, 0);
 | |
| module_param_array(media, charp, NULL, 0);
 | |
| module_param_array(vlan, int, NULL, 0);
 | |
| module_param_array(jumbo, int, NULL, 0);
 | |
| module_param(tx_flow, int, 0);
 | |
| module_param(rx_flow, int, 0);
 | |
| module_param(copy_thresh, int, 0);
 | |
| module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
 | |
| module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
 | |
| module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
 | |
| 
 | |
| 
 | |
| /* Enable the default interrupts */
 | |
| #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
 | |
|        UpdateStats | LinkEvent)
 | |
| 
 | |
| static void dl2k_enable_int(struct netdev_private *np)
 | |
| {
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 
 | |
| 	dw16(IntEnable, DEFAULT_INTR);
 | |
| }
 | |
| 
 | |
| static const int max_intrloop = 50;
 | |
| static const int multicast_filter_limit = 0x40;
 | |
| 
 | |
| static int rio_open (struct net_device *dev);
 | |
| static void rio_timer (struct timer_list *t);
 | |
| static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
 | |
| static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
 | |
| static irqreturn_t rio_interrupt (int irq, void *dev_instance);
 | |
| static void rio_free_tx (struct net_device *dev, int irq);
 | |
| static void tx_error (struct net_device *dev, int tx_status);
 | |
| static int receive_packet (struct net_device *dev);
 | |
| static void rio_error (struct net_device *dev, int int_status);
 | |
| static void set_multicast (struct net_device *dev);
 | |
| static struct net_device_stats *get_stats (struct net_device *dev);
 | |
| static int clear_stats (struct net_device *dev);
 | |
| static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
 | |
| static int rio_close (struct net_device *dev);
 | |
| static int find_miiphy (struct net_device *dev);
 | |
| static int parse_eeprom (struct net_device *dev);
 | |
| static int read_eeprom (struct netdev_private *, int eep_addr);
 | |
| static int mii_wait_link (struct net_device *dev, int wait);
 | |
| static int mii_set_media (struct net_device *dev);
 | |
| static int mii_get_media (struct net_device *dev);
 | |
| static int mii_set_media_pcs (struct net_device *dev);
 | |
| static int mii_get_media_pcs (struct net_device *dev);
 | |
| static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
 | |
| static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
 | |
| 		      u16 data);
 | |
| 
 | |
| static const struct ethtool_ops ethtool_ops;
 | |
| 
 | |
| static const struct net_device_ops netdev_ops = {
 | |
| 	.ndo_open		= rio_open,
 | |
| 	.ndo_start_xmit	= start_xmit,
 | |
| 	.ndo_stop		= rio_close,
 | |
| 	.ndo_get_stats		= get_stats,
 | |
| 	.ndo_validate_addr	= eth_validate_addr,
 | |
| 	.ndo_set_mac_address 	= eth_mac_addr,
 | |
| 	.ndo_set_rx_mode	= set_multicast,
 | |
| 	.ndo_eth_ioctl		= rio_ioctl,
 | |
| 	.ndo_tx_timeout		= rio_tx_timeout,
 | |
| };
 | |
| 
 | |
| static int
 | |
| rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
 | |
| {
 | |
| 	struct net_device *dev;
 | |
| 	struct netdev_private *np;
 | |
| 	static int card_idx;
 | |
| 	int chip_idx = ent->driver_data;
 | |
| 	int err, irq;
 | |
| 	void __iomem *ioaddr;
 | |
| 	void *ring_space;
 | |
| 	dma_addr_t ring_dma;
 | |
| 
 | |
| 	err = pci_enable_device (pdev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	irq = pdev->irq;
 | |
| 	err = pci_request_regions (pdev, "dl2k");
 | |
| 	if (err)
 | |
| 		goto err_out_disable;
 | |
| 
 | |
| 	pci_set_master (pdev);
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 
 | |
| 	dev = alloc_etherdev (sizeof (*np));
 | |
| 	if (!dev)
 | |
| 		goto err_out_res;
 | |
| 	SET_NETDEV_DEV(dev, &pdev->dev);
 | |
| 
 | |
| 	np = netdev_priv(dev);
 | |
| 
 | |
| 	/* IO registers range. */
 | |
| 	ioaddr = pci_iomap(pdev, 0, 0);
 | |
| 	if (!ioaddr)
 | |
| 		goto err_out_dev;
 | |
| 	np->eeprom_addr = ioaddr;
 | |
| 
 | |
| #ifdef MEM_MAPPING
 | |
| 	/* MM registers range. */
 | |
| 	ioaddr = pci_iomap(pdev, 1, 0);
 | |
| 	if (!ioaddr)
 | |
| 		goto err_out_iounmap;
 | |
| #endif
 | |
| 	np->ioaddr = ioaddr;
 | |
| 	np->chip_id = chip_idx;
 | |
| 	np->pdev = pdev;
 | |
| 	spin_lock_init (&np->tx_lock);
 | |
| 	spin_lock_init (&np->rx_lock);
 | |
| 
 | |
| 	/* Parse manual configuration */
 | |
| 	np->an_enable = 1;
 | |
| 	np->tx_coalesce = 1;
 | |
| 	if (card_idx < MAX_UNITS) {
 | |
| 		if (media[card_idx] != NULL) {
 | |
| 			np->an_enable = 0;
 | |
| 			if (strcmp (media[card_idx], "auto") == 0 ||
 | |
| 			    strcmp (media[card_idx], "autosense") == 0 ||
 | |
| 			    strcmp (media[card_idx], "0") == 0 ) {
 | |
| 				np->an_enable = 2;
 | |
| 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
 | |
| 			    strcmp (media[card_idx], "4") == 0) {
 | |
| 				np->speed = 100;
 | |
| 				np->full_duplex = 1;
 | |
| 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
 | |
| 				   strcmp (media[card_idx], "3") == 0) {
 | |
| 				np->speed = 100;
 | |
| 				np->full_duplex = 0;
 | |
| 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
 | |
| 				   strcmp (media[card_idx], "2") == 0) {
 | |
| 				np->speed = 10;
 | |
| 				np->full_duplex = 1;
 | |
| 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
 | |
| 				   strcmp (media[card_idx], "1") == 0) {
 | |
| 				np->speed = 10;
 | |
| 				np->full_duplex = 0;
 | |
| 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
 | |
| 				 strcmp (media[card_idx], "6") == 0) {
 | |
| 				np->speed=1000;
 | |
| 				np->full_duplex=1;
 | |
| 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
 | |
| 				 strcmp (media[card_idx], "5") == 0) {
 | |
| 				np->speed = 1000;
 | |
| 				np->full_duplex = 0;
 | |
| 			} else {
 | |
| 				np->an_enable = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		if (jumbo[card_idx] != 0) {
 | |
| 			np->jumbo = 1;
 | |
| 			dev->mtu = MAX_JUMBO;
 | |
| 		} else {
 | |
| 			np->jumbo = 0;
 | |
| 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
 | |
| 				dev->mtu = mtu[card_idx];
 | |
| 		}
 | |
| 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
 | |
| 		    vlan[card_idx] : 0;
 | |
| 		if (rx_coalesce > 0 && rx_timeout > 0) {
 | |
| 			np->rx_coalesce = rx_coalesce;
 | |
| 			np->rx_timeout = rx_timeout;
 | |
| 			np->coalesce = 1;
 | |
| 		}
 | |
| 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
 | |
| 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
 | |
| 
 | |
| 		if (tx_coalesce < 1)
 | |
| 			tx_coalesce = 1;
 | |
| 		else if (tx_coalesce > TX_RING_SIZE-1)
 | |
| 			tx_coalesce = TX_RING_SIZE - 1;
 | |
| 	}
 | |
| 	dev->netdev_ops = &netdev_ops;
 | |
| 	dev->watchdog_timeo = TX_TIMEOUT;
 | |
| 	dev->ethtool_ops = ðtool_ops;
 | |
| #if 0
 | |
| 	dev->features = NETIF_F_IP_CSUM;
 | |
| #endif
 | |
| 	/* MTU range: 68 - 1536 or 8000 */
 | |
| 	dev->min_mtu = ETH_MIN_MTU;
 | |
| 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
 | |
| 
 | |
| 	pci_set_drvdata (pdev, dev);
 | |
| 
 | |
| 	ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
 | |
| 					GFP_KERNEL);
 | |
| 	if (!ring_space)
 | |
| 		goto err_out_iounmap;
 | |
| 	np->tx_ring = ring_space;
 | |
| 	np->tx_ring_dma = ring_dma;
 | |
| 
 | |
| 	ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
 | |
| 					GFP_KERNEL);
 | |
| 	if (!ring_space)
 | |
| 		goto err_out_unmap_tx;
 | |
| 	np->rx_ring = ring_space;
 | |
| 	np->rx_ring_dma = ring_dma;
 | |
| 
 | |
| 	/* Parse eeprom data */
 | |
| 	parse_eeprom (dev);
 | |
| 
 | |
| 	/* Find PHY address */
 | |
| 	err = find_miiphy (dev);
 | |
| 	if (err)
 | |
| 		goto err_out_unmap_rx;
 | |
| 
 | |
| 	/* Fiber device? */
 | |
| 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
 | |
| 	np->link_status = 0;
 | |
| 	/* Set media and reset PHY */
 | |
| 	if (np->phy_media) {
 | |
| 		/* default Auto-Negotiation for fiber deivices */
 | |
| 	 	if (np->an_enable == 2) {
 | |
| 			np->an_enable = 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Auto-Negotiation is mandatory for 1000BASE-T,
 | |
| 		   IEEE 802.3ab Annex 28D page 14 */
 | |
| 		if (np->speed == 1000)
 | |
| 			np->an_enable = 1;
 | |
| 	}
 | |
| 
 | |
| 	err = register_netdev (dev);
 | |
| 	if (err)
 | |
| 		goto err_out_unmap_rx;
 | |
| 
 | |
| 	card_idx++;
 | |
| 
 | |
| 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
 | |
| 		dev->name, np->name, dev->dev_addr, irq);
 | |
| 	if (tx_coalesce > 1)
 | |
| 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
 | |
| 				tx_coalesce);
 | |
| 	if (np->coalesce)
 | |
| 		printk(KERN_INFO
 | |
| 		       "rx_coalesce:\t%d packets\n"
 | |
| 		       "rx_timeout: \t%d ns\n",
 | |
| 				np->rx_coalesce, np->rx_timeout*640);
 | |
| 	if (np->vlan)
 | |
| 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
 | |
| 	return 0;
 | |
| 
 | |
| err_out_unmap_rx:
 | |
| 	dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
 | |
| 			  np->rx_ring_dma);
 | |
| err_out_unmap_tx:
 | |
| 	dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
 | |
| 			  np->tx_ring_dma);
 | |
| err_out_iounmap:
 | |
| #ifdef MEM_MAPPING
 | |
| 	pci_iounmap(pdev, np->ioaddr);
 | |
| #endif
 | |
| 	pci_iounmap(pdev, np->eeprom_addr);
 | |
| err_out_dev:
 | |
| 	free_netdev (dev);
 | |
| err_out_res:
 | |
| 	pci_release_regions (pdev);
 | |
| err_out_disable:
 | |
| 	pci_disable_device (pdev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int
 | |
| find_miiphy (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int i, phy_found = 0;
 | |
| 
 | |
| 	np->phy_addr = 1;
 | |
| 
 | |
| 	for (i = 31; i >= 0; i--) {
 | |
| 		int mii_status = mii_read (dev, i, 1);
 | |
| 		if (mii_status != 0xffff && mii_status != 0x0000) {
 | |
| 			np->phy_addr = i;
 | |
| 			phy_found++;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!phy_found) {
 | |
| 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| parse_eeprom (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	int i, j;
 | |
| 	u8 sromdata[256];
 | |
| 	u8 *psib;
 | |
| 	u32 crc;
 | |
| 	PSROM_t psrom = (PSROM_t) sromdata;
 | |
| 
 | |
| 	int cid, next;
 | |
| 
 | |
| 	for (i = 0; i < 128; i++)
 | |
| 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
 | |
| 
 | |
| 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
 | |
| 		/* Check CRC */
 | |
| 		crc = ~ether_crc_le (256 - 4, sromdata);
 | |
| 		if (psrom->crc != cpu_to_le32(crc)) {
 | |
| 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
 | |
| 					dev->name);
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set MAC address */
 | |
| 	eth_hw_addr_set(dev, psrom->mac_addr);
 | |
| 
 | |
| 	if (np->chip_id == CHIP_IP1000A) {
 | |
| 		np->led_mode = psrom->led_mode;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Parse Software Information Block */
 | |
| 	i = 0x30;
 | |
| 	psib = (u8 *) sromdata;
 | |
| 	do {
 | |
| 		cid = psib[i++];
 | |
| 		next = psib[i++];
 | |
| 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
 | |
| 			printk (KERN_ERR "Cell data error\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		switch (cid) {
 | |
| 		case 0:	/* Format version */
 | |
| 			break;
 | |
| 		case 1:	/* End of cell */
 | |
| 			return 0;
 | |
| 		case 2:	/* Duplex Polarity */
 | |
| 			np->duplex_polarity = psib[i];
 | |
| 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
 | |
| 			break;
 | |
| 		case 3:	/* Wake Polarity */
 | |
| 			np->wake_polarity = psib[i];
 | |
| 			break;
 | |
| 		case 9:	/* Adapter description */
 | |
| 			j = (next - i > 255) ? 255 : next - i;
 | |
| 			memcpy (np->name, &(psib[i]), j);
 | |
| 			break;
 | |
| 		case 4:
 | |
| 		case 5:
 | |
| 		case 6:
 | |
| 		case 7:
 | |
| 		case 8:	/* Reversed */
 | |
| 			break;
 | |
| 		default:	/* Unknown cell */
 | |
| 			return -1;
 | |
| 		}
 | |
| 		i = next;
 | |
| 	} while (1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rio_set_led_mode(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	u32 mode;
 | |
| 
 | |
| 	if (np->chip_id != CHIP_IP1000A)
 | |
| 		return;
 | |
| 
 | |
| 	mode = dr32(ASICCtrl);
 | |
| 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
 | |
| 
 | |
| 	if (np->led_mode & 0x01)
 | |
| 		mode |= IPG_AC_LED_MODE;
 | |
| 	if (np->led_mode & 0x02)
 | |
| 		mode |= IPG_AC_LED_MODE_BIT_1;
 | |
| 	if (np->led_mode & 0x08)
 | |
| 		mode |= IPG_AC_LED_SPEED;
 | |
| 
 | |
| 	dw32(ASICCtrl, mode);
 | |
| }
 | |
| 
 | |
| static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
 | |
| {
 | |
| 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
 | |
| }
 | |
| 
 | |
| static void free_list(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	struct sk_buff *skb;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Free all the skbuffs in the queue. */
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		skb = np->rx_skbuff[i];
 | |
| 		if (skb) {
 | |
| 			dma_unmap_single(&np->pdev->dev,
 | |
| 					 desc_to_dma(&np->rx_ring[i]),
 | |
| 					 skb->len, DMA_FROM_DEVICE);
 | |
| 			dev_kfree_skb(skb);
 | |
| 			np->rx_skbuff[i] = NULL;
 | |
| 		}
 | |
| 		np->rx_ring[i].status = 0;
 | |
| 		np->rx_ring[i].fraginfo = 0;
 | |
| 	}
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 		skb = np->tx_skbuff[i];
 | |
| 		if (skb) {
 | |
| 			dma_unmap_single(&np->pdev->dev,
 | |
| 					 desc_to_dma(&np->tx_ring[i]),
 | |
| 					 skb->len, DMA_TO_DEVICE);
 | |
| 			dev_kfree_skb(skb);
 | |
| 			np->tx_skbuff[i] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void rio_reset_ring(struct netdev_private *np)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	np->cur_rx = 0;
 | |
| 	np->cur_tx = 0;
 | |
| 	np->old_rx = 0;
 | |
| 	np->old_tx = 0;
 | |
| 
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++)
 | |
| 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
 | |
| 
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++)
 | |
| 		np->rx_ring[i].status = 0;
 | |
| }
 | |
| 
 | |
|  /* allocate and initialize Tx and Rx descriptors */
 | |
| static int alloc_list(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int i;
 | |
| 
 | |
| 	rio_reset_ring(np);
 | |
| 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
 | |
| 
 | |
| 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
 | |
| 	for (i = 0; i < TX_RING_SIZE; i++) {
 | |
| 		np->tx_skbuff[i] = NULL;
 | |
| 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
 | |
| 					      ((i + 1) % TX_RING_SIZE) *
 | |
| 					      sizeof(struct netdev_desc));
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize Rx descriptors & allocate buffers */
 | |
| 	for (i = 0; i < RX_RING_SIZE; i++) {
 | |
| 		/* Allocated fixed size of skbuff */
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 | |
| 		np->rx_skbuff[i] = skb;
 | |
| 		if (!skb) {
 | |
| 			free_list(dev);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
 | |
| 						((i + 1) % RX_RING_SIZE) *
 | |
| 						sizeof(struct netdev_desc));
 | |
| 		/* Rubicon now supports 40 bits of addressing space. */
 | |
| 		np->rx_ring[i].fraginfo =
 | |
| 		    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
 | |
| 					       np->rx_buf_sz, DMA_FROM_DEVICE));
 | |
| 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void rio_hw_init(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	int i;
 | |
| 	u16 macctrl;
 | |
| 
 | |
| 	/* Reset all logic functions */
 | |
| 	dw16(ASICCtrl + 2,
 | |
| 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
 | |
| 	mdelay(10);
 | |
| 
 | |
| 	rio_set_led_mode(dev);
 | |
| 
 | |
| 	/* DebugCtrl bit 4, 5, 9 must set */
 | |
| 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
 | |
| 
 | |
| 	if (np->chip_id == CHIP_IP1000A &&
 | |
| 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
 | |
| 		/* PHY magic taken from ipg driver, undocumented registers */
 | |
| 		mii_write(dev, np->phy_addr, 31, 0x0001);
 | |
| 		mii_write(dev, np->phy_addr, 27, 0x01e0);
 | |
| 		mii_write(dev, np->phy_addr, 31, 0x0002);
 | |
| 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
 | |
| 		mii_write(dev, np->phy_addr, 31, 0x0000);
 | |
| 		mii_write(dev, np->phy_addr, 30, 0x005e);
 | |
| 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
 | |
| 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
 | |
| 	}
 | |
| 
 | |
| 	if (np->phy_media)
 | |
| 		mii_set_media_pcs(dev);
 | |
| 	else
 | |
| 		mii_set_media(dev);
 | |
| 
 | |
| 	/* Jumbo frame */
 | |
| 	if (np->jumbo != 0)
 | |
| 		dw16(MaxFrameSize, MAX_JUMBO+14);
 | |
| 
 | |
| 	/* Set RFDListPtr */
 | |
| 	dw32(RFDListPtr0, np->rx_ring_dma);
 | |
| 	dw32(RFDListPtr1, 0);
 | |
| 
 | |
| 	/* Set station address */
 | |
| 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
 | |
| 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
 | |
| 	 */
 | |
| 	for (i = 0; i < 3; i++)
 | |
| 		dw16(StationAddr0 + 2 * i, get_unaligned_le16(&dev->dev_addr[2 * i]));
 | |
| 
 | |
| 	set_multicast (dev);
 | |
| 	if (np->coalesce) {
 | |
| 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
 | |
| 	}
 | |
| 	/* Set RIO to poll every N*320nsec. */
 | |
| 	dw8(RxDMAPollPeriod, 0x20);
 | |
| 	dw8(TxDMAPollPeriod, 0xff);
 | |
| 	dw8(RxDMABurstThresh, 0x30);
 | |
| 	dw8(RxDMAUrgentThresh, 0x30);
 | |
| 	dw32(RmonStatMask, 0x0007ffff);
 | |
| 	/* clear statistics */
 | |
| 	clear_stats (dev);
 | |
| 
 | |
| 	/* VLAN supported */
 | |
| 	if (np->vlan) {
 | |
| 		/* priority field in RxDMAIntCtrl  */
 | |
| 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
 | |
| 		/* VLANId */
 | |
| 		dw16(VLANId, np->vlan);
 | |
| 		/* Length/Type should be 0x8100 */
 | |
| 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
 | |
| 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
 | |
| 		   VLAN information tagged by TFC' VID, CFI fields. */
 | |
| 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
 | |
| 	}
 | |
| 
 | |
| 	/* Start Tx/Rx */
 | |
| 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
 | |
| 
 | |
| 	macctrl = 0;
 | |
| 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 | |
| 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 | |
| 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
 | |
| 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
 | |
| 	dw16(MACCtrl, macctrl);
 | |
| }
 | |
| 
 | |
| static void rio_hw_stop(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 
 | |
| 	/* Disable interrupts */
 | |
| 	dw16(IntEnable, 0);
 | |
| 
 | |
| 	/* Stop Tx and Rx logics */
 | |
| 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
 | |
| }
 | |
| 
 | |
| static int rio_open(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	const int irq = np->pdev->irq;
 | |
| 	int i;
 | |
| 
 | |
| 	i = alloc_list(dev);
 | |
| 	if (i)
 | |
| 		return i;
 | |
| 
 | |
| 	rio_hw_init(dev);
 | |
| 
 | |
| 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
 | |
| 	if (i) {
 | |
| 		rio_hw_stop(dev);
 | |
| 		free_list(dev);
 | |
| 		return i;
 | |
| 	}
 | |
| 
 | |
| 	timer_setup(&np->timer, rio_timer, 0);
 | |
| 	np->timer.expires = jiffies + 1 * HZ;
 | |
| 	add_timer(&np->timer);
 | |
| 
 | |
| 	netif_start_queue (dev);
 | |
| 
 | |
| 	dl2k_enable_int(np);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rio_timer (struct timer_list *t)
 | |
| {
 | |
| 	struct netdev_private *np = from_timer(np, t, timer);
 | |
| 	struct net_device *dev = pci_get_drvdata(np->pdev);
 | |
| 	unsigned int entry;
 | |
| 	int next_tick = 1*HZ;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&np->rx_lock, flags);
 | |
| 	/* Recover rx ring exhausted error */
 | |
| 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
 | |
| 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
 | |
| 		/* Re-allocate skbuffs to fill the descriptor ring */
 | |
| 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
 | |
| 			struct sk_buff *skb;
 | |
| 			entry = np->old_rx % RX_RING_SIZE;
 | |
| 			/* Dropped packets don't need to re-allocate */
 | |
| 			if (np->rx_skbuff[entry] == NULL) {
 | |
| 				skb = netdev_alloc_skb_ip_align(dev,
 | |
| 								np->rx_buf_sz);
 | |
| 				if (skb == NULL) {
 | |
| 					np->rx_ring[entry].fraginfo = 0;
 | |
| 					printk (KERN_INFO
 | |
| 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
 | |
| 						dev->name, entry);
 | |
| 					break;
 | |
| 				}
 | |
| 				np->rx_skbuff[entry] = skb;
 | |
| 				np->rx_ring[entry].fraginfo =
 | |
| 				    cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
 | |
| 								np->rx_buf_sz, DMA_FROM_DEVICE));
 | |
| 			}
 | |
| 			np->rx_ring[entry].fraginfo |=
 | |
| 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
 | |
| 			np->rx_ring[entry].status = 0;
 | |
| 		} /* end for */
 | |
| 	} /* end if */
 | |
| 	spin_unlock_irqrestore (&np->rx_lock, flags);
 | |
| 	np->timer.expires = jiffies + next_tick;
 | |
| 	add_timer(&np->timer);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 
 | |
| 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
 | |
| 		dev->name, dr32(TxStatus));
 | |
| 	rio_free_tx(dev, 0);
 | |
| 	dev->if_port = 0;
 | |
| 	netif_trans_update(dev); /* prevent tx timeout */
 | |
| }
 | |
| 
 | |
| static netdev_tx_t
 | |
| start_xmit (struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	struct netdev_desc *txdesc;
 | |
| 	unsigned entry;
 | |
| 	u64 tfc_vlan_tag = 0;
 | |
| 
 | |
| 	if (np->link_status == 0) {	/* Link Down */
 | |
| 		dev_kfree_skb(skb);
 | |
| 		return NETDEV_TX_OK;
 | |
| 	}
 | |
| 	entry = np->cur_tx % TX_RING_SIZE;
 | |
| 	np->tx_skbuff[entry] = skb;
 | |
| 	txdesc = &np->tx_ring[entry];
 | |
| 
 | |
| #if 0
 | |
| 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		txdesc->status |=
 | |
| 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
 | |
| 				 IPChecksumEnable);
 | |
| 	}
 | |
| #endif
 | |
| 	if (np->vlan) {
 | |
| 		tfc_vlan_tag = VLANTagInsert |
 | |
| 		    ((u64)np->vlan << 32) |
 | |
| 		    ((u64)skb->priority << 45);
 | |
| 	}
 | |
| 	txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
 | |
| 						       skb->len, DMA_TO_DEVICE));
 | |
| 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
 | |
| 
 | |
| 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
 | |
| 	 * Work around: Always use 1 descriptor in 10Mbps mode */
 | |
| 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
 | |
| 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 | |
| 					      WordAlignDisable |
 | |
| 					      TxDMAIndicate |
 | |
| 					      (1 << FragCountShift));
 | |
| 	else
 | |
| 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
 | |
| 					      WordAlignDisable |
 | |
| 					      (1 << FragCountShift));
 | |
| 
 | |
| 	/* TxDMAPollNow */
 | |
| 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
 | |
| 	/* Schedule ISR */
 | |
| 	dw32(CountDown, 10000);
 | |
| 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
 | |
| 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 | |
| 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
 | |
| 		/* do nothing */
 | |
| 	} else if (!netif_queue_stopped(dev)) {
 | |
| 		netif_stop_queue (dev);
 | |
| 	}
 | |
| 
 | |
| 	/* The first TFDListPtr */
 | |
| 	if (!dr32(TFDListPtr0)) {
 | |
| 		dw32(TFDListPtr0, np->tx_ring_dma +
 | |
| 		     entry * sizeof (struct netdev_desc));
 | |
| 		dw32(TFDListPtr1, 0);
 | |
| 	}
 | |
| 
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| static irqreturn_t
 | |
| rio_interrupt (int irq, void *dev_instance)
 | |
| {
 | |
| 	struct net_device *dev = dev_instance;
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	unsigned int_status;
 | |
| 	int cnt = max_intrloop;
 | |
| 	int handled = 0;
 | |
| 
 | |
| 	while (1) {
 | |
| 		int_status = dr16(IntStatus);
 | |
| 		dw16(IntStatus, int_status);
 | |
| 		int_status &= DEFAULT_INTR;
 | |
| 		if (int_status == 0 || --cnt < 0)
 | |
| 			break;
 | |
| 		handled = 1;
 | |
| 		/* Processing received packets */
 | |
| 		if (int_status & RxDMAComplete)
 | |
| 			receive_packet (dev);
 | |
| 		/* TxDMAComplete interrupt */
 | |
| 		if ((int_status & (TxDMAComplete|IntRequested))) {
 | |
| 			int tx_status;
 | |
| 			tx_status = dr32(TxStatus);
 | |
| 			if (tx_status & 0x01)
 | |
| 				tx_error (dev, tx_status);
 | |
| 			/* Free used tx skbuffs */
 | |
| 			rio_free_tx (dev, 1);
 | |
| 		}
 | |
| 
 | |
| 		/* Handle uncommon events */
 | |
| 		if (int_status &
 | |
| 		    (HostError | LinkEvent | UpdateStats))
 | |
| 			rio_error (dev, int_status);
 | |
| 	}
 | |
| 	if (np->cur_tx != np->old_tx)
 | |
| 		dw32(CountDown, 100);
 | |
| 	return IRQ_RETVAL(handled);
 | |
| }
 | |
| 
 | |
| static void
 | |
| rio_free_tx (struct net_device *dev, int irq)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int entry = np->old_tx % TX_RING_SIZE;
 | |
| 	unsigned long flag = 0;
 | |
| 
 | |
| 	if (irq)
 | |
| 		spin_lock(&np->tx_lock);
 | |
| 	else
 | |
| 		spin_lock_irqsave(&np->tx_lock, flag);
 | |
| 
 | |
| 	/* Free used tx skbuffs */
 | |
| 	while (entry != np->cur_tx) {
 | |
| 		struct sk_buff *skb;
 | |
| 
 | |
| 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
 | |
| 			break;
 | |
| 		skb = np->tx_skbuff[entry];
 | |
| 		dma_unmap_single(&np->pdev->dev,
 | |
| 				 desc_to_dma(&np->tx_ring[entry]), skb->len,
 | |
| 				 DMA_TO_DEVICE);
 | |
| 		if (irq)
 | |
| 			dev_consume_skb_irq(skb);
 | |
| 		else
 | |
| 			dev_kfree_skb(skb);
 | |
| 
 | |
| 		np->tx_skbuff[entry] = NULL;
 | |
| 		entry = (entry + 1) % TX_RING_SIZE;
 | |
| 	}
 | |
| 	if (irq)
 | |
| 		spin_unlock(&np->tx_lock);
 | |
| 	else
 | |
| 		spin_unlock_irqrestore(&np->tx_lock, flag);
 | |
| 	np->old_tx = entry;
 | |
| 
 | |
| 	/* If the ring is no longer full, clear tx_full and
 | |
| 	   call netif_wake_queue() */
 | |
| 
 | |
| 	if (netif_queue_stopped(dev) &&
 | |
| 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
 | |
| 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
 | |
| 		netif_wake_queue (dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| tx_error (struct net_device *dev, int tx_status)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	int frame_id;
 | |
| 	int i;
 | |
| 
 | |
| 	frame_id = (tx_status & 0xffff0000);
 | |
| 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
 | |
| 		dev->name, tx_status, frame_id);
 | |
| 	dev->stats.tx_errors++;
 | |
| 	/* Ttransmit Underrun */
 | |
| 	if (tx_status & 0x10) {
 | |
| 		dev->stats.tx_fifo_errors++;
 | |
| 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
 | |
| 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
 | |
| 		dw16(ASICCtrl + 2,
 | |
| 		     TxReset | DMAReset | FIFOReset | NetworkReset);
 | |
| 		/* Wait for ResetBusy bit clear */
 | |
| 		for (i = 50; i > 0; i--) {
 | |
| 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 | |
| 				break;
 | |
| 			mdelay (1);
 | |
| 		}
 | |
| 		rio_set_led_mode(dev);
 | |
| 		rio_free_tx (dev, 1);
 | |
| 		/* Reset TFDListPtr */
 | |
| 		dw32(TFDListPtr0, np->tx_ring_dma +
 | |
| 		     np->old_tx * sizeof (struct netdev_desc));
 | |
| 		dw32(TFDListPtr1, 0);
 | |
| 
 | |
| 		/* Let TxStartThresh stay default value */
 | |
| 	}
 | |
| 	/* Late Collision */
 | |
| 	if (tx_status & 0x04) {
 | |
| 		dev->stats.tx_fifo_errors++;
 | |
| 		/* TxReset and clear FIFO */
 | |
| 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
 | |
| 		/* Wait reset done */
 | |
| 		for (i = 50; i > 0; i--) {
 | |
| 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
 | |
| 				break;
 | |
| 			mdelay (1);
 | |
| 		}
 | |
| 		rio_set_led_mode(dev);
 | |
| 		/* Let TxStartThresh stay default value */
 | |
| 	}
 | |
| 	/* Maximum Collisions */
 | |
| 	if (tx_status & 0x08)
 | |
| 		dev->stats.collisions++;
 | |
| 	/* Restart the Tx */
 | |
| 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
 | |
| }
 | |
| 
 | |
| static int
 | |
| receive_packet (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	int entry = np->cur_rx % RX_RING_SIZE;
 | |
| 	int cnt = 30;
 | |
| 
 | |
| 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
 | |
| 	while (1) {
 | |
| 		struct netdev_desc *desc = &np->rx_ring[entry];
 | |
| 		int pkt_len;
 | |
| 		u64 frame_status;
 | |
| 
 | |
| 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
 | |
| 		    !(desc->status & cpu_to_le64(FrameStart)) ||
 | |
| 		    !(desc->status & cpu_to_le64(FrameEnd)))
 | |
| 			break;
 | |
| 
 | |
| 		/* Chip omits the CRC. */
 | |
| 		frame_status = le64_to_cpu(desc->status);
 | |
| 		pkt_len = frame_status & 0xffff;
 | |
| 		if (--cnt < 0)
 | |
| 			break;
 | |
| 		/* Update rx error statistics, drop packet. */
 | |
| 		if (frame_status & RFS_Errors) {
 | |
| 			dev->stats.rx_errors++;
 | |
| 			if (frame_status & (RxRuntFrame | RxLengthError))
 | |
| 				dev->stats.rx_length_errors++;
 | |
| 			if (frame_status & RxFCSError)
 | |
| 				dev->stats.rx_crc_errors++;
 | |
| 			if (frame_status & RxAlignmentError && np->speed != 1000)
 | |
| 				dev->stats.rx_frame_errors++;
 | |
| 			if (frame_status & RxFIFOOverrun)
 | |
| 				dev->stats.rx_fifo_errors++;
 | |
| 		} else {
 | |
| 			struct sk_buff *skb;
 | |
| 
 | |
| 			/* Small skbuffs for short packets */
 | |
| 			if (pkt_len > copy_thresh) {
 | |
| 				dma_unmap_single(&np->pdev->dev,
 | |
| 						 desc_to_dma(desc),
 | |
| 						 np->rx_buf_sz,
 | |
| 						 DMA_FROM_DEVICE);
 | |
| 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
 | |
| 				np->rx_skbuff[entry] = NULL;
 | |
| 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
 | |
| 				dma_sync_single_for_cpu(&np->pdev->dev,
 | |
| 							desc_to_dma(desc),
 | |
| 							np->rx_buf_sz,
 | |
| 							DMA_FROM_DEVICE);
 | |
| 				skb_copy_to_linear_data (skb,
 | |
| 						  np->rx_skbuff[entry]->data,
 | |
| 						  pkt_len);
 | |
| 				skb_put (skb, pkt_len);
 | |
| 				dma_sync_single_for_device(&np->pdev->dev,
 | |
| 							   desc_to_dma(desc),
 | |
| 							   np->rx_buf_sz,
 | |
| 							   DMA_FROM_DEVICE);
 | |
| 			}
 | |
| 			skb->protocol = eth_type_trans (skb, dev);
 | |
| #if 0
 | |
| 			/* Checksum done by hw, but csum value unavailable. */
 | |
| 			if (np->pdev->pci_rev_id >= 0x0c &&
 | |
| 				!(frame_status & (TCPError | UDPError | IPError))) {
 | |
| 				skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 			}
 | |
| #endif
 | |
| 			netif_rx (skb);
 | |
| 		}
 | |
| 		entry = (entry + 1) % RX_RING_SIZE;
 | |
| 	}
 | |
| 	spin_lock(&np->rx_lock);
 | |
| 	np->cur_rx = entry;
 | |
| 	/* Re-allocate skbuffs to fill the descriptor ring */
 | |
| 	entry = np->old_rx;
 | |
| 	while (entry != np->cur_rx) {
 | |
| 		struct sk_buff *skb;
 | |
| 		/* Dropped packets don't need to re-allocate */
 | |
| 		if (np->rx_skbuff[entry] == NULL) {
 | |
| 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
 | |
| 			if (skb == NULL) {
 | |
| 				np->rx_ring[entry].fraginfo = 0;
 | |
| 				printk (KERN_INFO
 | |
| 					"%s: receive_packet: "
 | |
| 					"Unable to re-allocate Rx skbuff.#%d\n",
 | |
| 					dev->name, entry);
 | |
| 				break;
 | |
| 			}
 | |
| 			np->rx_skbuff[entry] = skb;
 | |
| 			np->rx_ring[entry].fraginfo =
 | |
| 			    cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
 | |
| 						       np->rx_buf_sz, DMA_FROM_DEVICE));
 | |
| 		}
 | |
| 		np->rx_ring[entry].fraginfo |=
 | |
| 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
 | |
| 		np->rx_ring[entry].status = 0;
 | |
| 		entry = (entry + 1) % RX_RING_SIZE;
 | |
| 	}
 | |
| 	np->old_rx = entry;
 | |
| 	spin_unlock(&np->rx_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rio_error (struct net_device *dev, int int_status)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	u16 macctrl;
 | |
| 
 | |
| 	/* Link change event */
 | |
| 	if (int_status & LinkEvent) {
 | |
| 		if (mii_wait_link (dev, 10) == 0) {
 | |
| 			printk (KERN_INFO "%s: Link up\n", dev->name);
 | |
| 			if (np->phy_media)
 | |
| 				mii_get_media_pcs (dev);
 | |
| 			else
 | |
| 				mii_get_media (dev);
 | |
| 			if (np->speed == 1000)
 | |
| 				np->tx_coalesce = tx_coalesce;
 | |
| 			else
 | |
| 				np->tx_coalesce = 1;
 | |
| 			macctrl = 0;
 | |
| 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
 | |
| 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
 | |
| 			macctrl |= (np->tx_flow) ?
 | |
| 				TxFlowControlEnable : 0;
 | |
| 			macctrl |= (np->rx_flow) ?
 | |
| 				RxFlowControlEnable : 0;
 | |
| 			dw16(MACCtrl, macctrl);
 | |
| 			np->link_status = 1;
 | |
| 			netif_carrier_on(dev);
 | |
| 		} else {
 | |
| 			printk (KERN_INFO "%s: Link off\n", dev->name);
 | |
| 			np->link_status = 0;
 | |
| 			netif_carrier_off(dev);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* UpdateStats statistics registers */
 | |
| 	if (int_status & UpdateStats) {
 | |
| 		get_stats (dev);
 | |
| 	}
 | |
| 
 | |
| 	/* PCI Error, a catastronphic error related to the bus interface
 | |
| 	   occurs, set GlobalReset and HostReset to reset. */
 | |
| 	if (int_status & HostError) {
 | |
| 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
 | |
| 			dev->name, int_status);
 | |
| 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
 | |
| 		mdelay (500);
 | |
| 		rio_set_led_mode(dev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct net_device_stats *
 | |
| get_stats (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| #ifdef MEM_MAPPING
 | |
| 	int i;
 | |
| #endif
 | |
| 	unsigned int stat_reg;
 | |
| 
 | |
| 	/* All statistics registers need to be acknowledged,
 | |
| 	   else statistic overflow could cause problems */
 | |
| 
 | |
| 	dev->stats.rx_packets += dr32(FramesRcvOk);
 | |
| 	dev->stats.tx_packets += dr32(FramesXmtOk);
 | |
| 	dev->stats.rx_bytes += dr32(OctetRcvOk);
 | |
| 	dev->stats.tx_bytes += dr32(OctetXmtOk);
 | |
| 
 | |
| 	dev->stats.multicast = dr32(McstFramesRcvdOk);
 | |
| 	dev->stats.collisions += dr32(SingleColFrames)
 | |
| 			     +  dr32(MultiColFrames);
 | |
| 
 | |
| 	/* detailed tx errors */
 | |
| 	stat_reg = dr16(FramesAbortXSColls);
 | |
| 	dev->stats.tx_aborted_errors += stat_reg;
 | |
| 	dev->stats.tx_errors += stat_reg;
 | |
| 
 | |
| 	stat_reg = dr16(CarrierSenseErrors);
 | |
| 	dev->stats.tx_carrier_errors += stat_reg;
 | |
| 	dev->stats.tx_errors += stat_reg;
 | |
| 
 | |
| 	/* Clear all other statistic register. */
 | |
| 	dr32(McstOctetXmtOk);
 | |
| 	dr16(BcstFramesXmtdOk);
 | |
| 	dr32(McstFramesXmtdOk);
 | |
| 	dr16(BcstFramesRcvdOk);
 | |
| 	dr16(MacControlFramesRcvd);
 | |
| 	dr16(FrameTooLongErrors);
 | |
| 	dr16(InRangeLengthErrors);
 | |
| 	dr16(FramesCheckSeqErrors);
 | |
| 	dr16(FramesLostRxErrors);
 | |
| 	dr32(McstOctetXmtOk);
 | |
| 	dr32(BcstOctetXmtOk);
 | |
| 	dr32(McstFramesXmtdOk);
 | |
| 	dr32(FramesWDeferredXmt);
 | |
| 	dr32(LateCollisions);
 | |
| 	dr16(BcstFramesXmtdOk);
 | |
| 	dr16(MacControlFramesXmtd);
 | |
| 	dr16(FramesWEXDeferal);
 | |
| 
 | |
| #ifdef MEM_MAPPING
 | |
| 	for (i = 0x100; i <= 0x150; i += 4)
 | |
| 		dr32(i);
 | |
| #endif
 | |
| 	dr16(TxJumboFrames);
 | |
| 	dr16(RxJumboFrames);
 | |
| 	dr16(TCPCheckSumErrors);
 | |
| 	dr16(UDPCheckSumErrors);
 | |
| 	dr16(IPCheckSumErrors);
 | |
| 	return &dev->stats;
 | |
| }
 | |
| 
 | |
| static int
 | |
| clear_stats (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| #ifdef MEM_MAPPING
 | |
| 	int i;
 | |
| #endif
 | |
| 
 | |
| 	/* All statistics registers need to be acknowledged,
 | |
| 	   else statistic overflow could cause problems */
 | |
| 	dr32(FramesRcvOk);
 | |
| 	dr32(FramesXmtOk);
 | |
| 	dr32(OctetRcvOk);
 | |
| 	dr32(OctetXmtOk);
 | |
| 
 | |
| 	dr32(McstFramesRcvdOk);
 | |
| 	dr32(SingleColFrames);
 | |
| 	dr32(MultiColFrames);
 | |
| 	dr32(LateCollisions);
 | |
| 	/* detailed rx errors */
 | |
| 	dr16(FrameTooLongErrors);
 | |
| 	dr16(InRangeLengthErrors);
 | |
| 	dr16(FramesCheckSeqErrors);
 | |
| 	dr16(FramesLostRxErrors);
 | |
| 
 | |
| 	/* detailed tx errors */
 | |
| 	dr16(FramesAbortXSColls);
 | |
| 	dr16(CarrierSenseErrors);
 | |
| 
 | |
| 	/* Clear all other statistic register. */
 | |
| 	dr32(McstOctetXmtOk);
 | |
| 	dr16(BcstFramesXmtdOk);
 | |
| 	dr32(McstFramesXmtdOk);
 | |
| 	dr16(BcstFramesRcvdOk);
 | |
| 	dr16(MacControlFramesRcvd);
 | |
| 	dr32(McstOctetXmtOk);
 | |
| 	dr32(BcstOctetXmtOk);
 | |
| 	dr32(McstFramesXmtdOk);
 | |
| 	dr32(FramesWDeferredXmt);
 | |
| 	dr16(BcstFramesXmtdOk);
 | |
| 	dr16(MacControlFramesXmtd);
 | |
| 	dr16(FramesWEXDeferal);
 | |
| #ifdef MEM_MAPPING
 | |
| 	for (i = 0x100; i <= 0x150; i += 4)
 | |
| 		dr32(i);
 | |
| #endif
 | |
| 	dr16(TxJumboFrames);
 | |
| 	dr16(RxJumboFrames);
 | |
| 	dr16(TCPCheckSumErrors);
 | |
| 	dr16(UDPCheckSumErrors);
 | |
| 	dr16(IPCheckSumErrors);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| set_multicast (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	u32 hash_table[2];
 | |
| 	u16 rx_mode = 0;
 | |
| 
 | |
| 	hash_table[0] = hash_table[1] = 0;
 | |
| 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
 | |
| 	hash_table[1] |= 0x02000000;
 | |
| 	if (dev->flags & IFF_PROMISC) {
 | |
| 		/* Receive all frames promiscuously. */
 | |
| 		rx_mode = ReceiveAllFrames;
 | |
| 	} else if ((dev->flags & IFF_ALLMULTI) ||
 | |
| 			(netdev_mc_count(dev) > multicast_filter_limit)) {
 | |
| 		/* Receive broadcast and multicast frames */
 | |
| 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
 | |
| 	} else if (!netdev_mc_empty(dev)) {
 | |
| 		struct netdev_hw_addr *ha;
 | |
| 		/* Receive broadcast frames and multicast frames filtering
 | |
| 		   by Hashtable */
 | |
| 		rx_mode =
 | |
| 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
 | |
| 		netdev_for_each_mc_addr(ha, dev) {
 | |
| 			int bit, index = 0;
 | |
| 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
 | |
| 			/* The inverted high significant 6 bits of CRC are
 | |
| 			   used as an index to hashtable */
 | |
| 			for (bit = 0; bit < 6; bit++)
 | |
| 				if (crc & (1 << (31 - bit)))
 | |
| 					index |= (1 << bit);
 | |
| 			hash_table[index / 32] |= (1 << (index % 32));
 | |
| 		}
 | |
| 	} else {
 | |
| 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
 | |
| 	}
 | |
| 	if (np->vlan) {
 | |
| 		/* ReceiveVLANMatch field in ReceiveMode */
 | |
| 		rx_mode |= ReceiveVLANMatch;
 | |
| 	}
 | |
| 
 | |
| 	dw32(HashTable0, hash_table[0]);
 | |
| 	dw32(HashTable1, hash_table[1]);
 | |
| 	dw16(ReceiveMode, rx_mode);
 | |
| }
 | |
| 
 | |
| static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	strscpy(info->driver, "dl2k", sizeof(info->driver));
 | |
| 	strscpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
 | |
| }
 | |
| 
 | |
| static int rio_get_link_ksettings(struct net_device *dev,
 | |
| 				  struct ethtool_link_ksettings *cmd)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	u32 supported, advertising;
 | |
| 
 | |
| 	if (np->phy_media) {
 | |
| 		/* fiber device */
 | |
| 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
 | |
| 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
 | |
| 		cmd->base.port = PORT_FIBRE;
 | |
| 	} else {
 | |
| 		/* copper device */
 | |
| 		supported = SUPPORTED_10baseT_Half |
 | |
| 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
 | |
| 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
 | |
| 			SUPPORTED_Autoneg | SUPPORTED_MII;
 | |
| 		advertising = ADVERTISED_10baseT_Half |
 | |
| 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
 | |
| 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
 | |
| 			ADVERTISED_Autoneg | ADVERTISED_MII;
 | |
| 		cmd->base.port = PORT_MII;
 | |
| 	}
 | |
| 	if (np->link_status) {
 | |
| 		cmd->base.speed = np->speed;
 | |
| 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
 | |
| 	} else {
 | |
| 		cmd->base.speed = SPEED_UNKNOWN;
 | |
| 		cmd->base.duplex = DUPLEX_UNKNOWN;
 | |
| 	}
 | |
| 	if (np->an_enable)
 | |
| 		cmd->base.autoneg = AUTONEG_ENABLE;
 | |
| 	else
 | |
| 		cmd->base.autoneg = AUTONEG_DISABLE;
 | |
| 
 | |
| 	cmd->base.phy_address = np->phy_addr;
 | |
| 
 | |
| 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
 | |
| 						supported);
 | |
| 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
 | |
| 						advertising);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rio_set_link_ksettings(struct net_device *dev,
 | |
| 				  const struct ethtool_link_ksettings *cmd)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	u32 speed = cmd->base.speed;
 | |
| 	u8 duplex = cmd->base.duplex;
 | |
| 
 | |
| 	netif_carrier_off(dev);
 | |
| 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
 | |
| 		if (np->an_enable) {
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			np->an_enable = 1;
 | |
| 			mii_set_media(dev);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		np->an_enable = 0;
 | |
| 		if (np->speed == 1000) {
 | |
| 			speed = SPEED_100;
 | |
| 			duplex = DUPLEX_FULL;
 | |
| 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
 | |
| 		}
 | |
| 		switch (speed) {
 | |
| 		case SPEED_10:
 | |
| 			np->speed = 10;
 | |
| 			np->full_duplex = (duplex == DUPLEX_FULL);
 | |
| 			break;
 | |
| 		case SPEED_100:
 | |
| 			np->speed = 100;
 | |
| 			np->full_duplex = (duplex == DUPLEX_FULL);
 | |
| 			break;
 | |
| 		case SPEED_1000: /* not supported */
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		mii_set_media(dev);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 rio_get_link(struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	return np->link_status;
 | |
| }
 | |
| 
 | |
| static const struct ethtool_ops ethtool_ops = {
 | |
| 	.get_drvinfo = rio_get_drvinfo,
 | |
| 	.get_link = rio_get_link,
 | |
| 	.get_link_ksettings = rio_get_link_ksettings,
 | |
| 	.set_link_ksettings = rio_set_link_ksettings,
 | |
| };
 | |
| 
 | |
| static int
 | |
| rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
 | |
| {
 | |
| 	int phy_addr;
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	struct mii_ioctl_data *miidata = if_mii(rq);
 | |
| 
 | |
| 	phy_addr = np->phy_addr;
 | |
| 	switch (cmd) {
 | |
| 	case SIOCGMIIPHY:
 | |
| 		miidata->phy_id = phy_addr;
 | |
| 		break;
 | |
| 	case SIOCGMIIREG:
 | |
| 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
 | |
| 		break;
 | |
| 	case SIOCSMIIREG:
 | |
| 		if (!capable(CAP_NET_ADMIN))
 | |
| 			return -EPERM;
 | |
| 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define EEP_READ 0x0200
 | |
| #define EEP_BUSY 0x8000
 | |
| /* Read the EEPROM word */
 | |
| /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
 | |
| static int read_eeprom(struct netdev_private *np, int eep_addr)
 | |
| {
 | |
| 	void __iomem *ioaddr = np->eeprom_addr;
 | |
| 	int i = 1000;
 | |
| 
 | |
| 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
 | |
| 	while (i-- > 0) {
 | |
| 		if (!(dr16(EepromCtrl) & EEP_BUSY))
 | |
| 			return dr16(EepromData);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| enum phy_ctrl_bits {
 | |
| 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
 | |
| 	MII_DUPLEX = 0x08,
 | |
| };
 | |
| 
 | |
| #define mii_delay() dr8(PhyCtrl)
 | |
| static void
 | |
| mii_sendbit (struct net_device *dev, u32 data)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 
 | |
| 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
 | |
| 	dw8(PhyCtrl, data);
 | |
| 	mii_delay ();
 | |
| 	dw8(PhyCtrl, data | MII_CLK);
 | |
| 	mii_delay ();
 | |
| }
 | |
| 
 | |
| static int
 | |
| mii_getbit (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	void __iomem *ioaddr = np->ioaddr;
 | |
| 	u8 data;
 | |
| 
 | |
| 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
 | |
| 	dw8(PhyCtrl, data);
 | |
| 	mii_delay ();
 | |
| 	dw8(PhyCtrl, data | MII_CLK);
 | |
| 	mii_delay ();
 | |
| 	return (dr8(PhyCtrl) >> 1) & 1;
 | |
| }
 | |
| 
 | |
| static void
 | |
| mii_send_bits (struct net_device *dev, u32 data, int len)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = len - 1; i >= 0; i--) {
 | |
| 		mii_sendbit (dev, data & (1 << i));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| mii_read (struct net_device *dev, int phy_addr, int reg_num)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 	int i;
 | |
| 	u32 retval = 0;
 | |
| 
 | |
| 	/* Preamble */
 | |
| 	mii_send_bits (dev, 0xffffffff, 32);
 | |
| 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
 | |
| 	/* ST,OP = 0110'b for read operation */
 | |
| 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
 | |
| 	mii_send_bits (dev, cmd, 14);
 | |
| 	/* Turnaround */
 | |
| 	if (mii_getbit (dev))
 | |
| 		goto err_out;
 | |
| 	/* Read data */
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		retval |= mii_getbit (dev);
 | |
| 		retval <<= 1;
 | |
| 	}
 | |
| 	/* End cycle */
 | |
| 	mii_getbit (dev);
 | |
| 	return (retval >> 1) & 0xffff;
 | |
| 
 | |
|       err_out:
 | |
| 	return 0;
 | |
| }
 | |
| static int
 | |
| mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 
 | |
| 	/* Preamble */
 | |
| 	mii_send_bits (dev, 0xffffffff, 32);
 | |
| 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
 | |
| 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
 | |
| 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
 | |
| 	mii_send_bits (dev, cmd, 32);
 | |
| 	/* End cycle */
 | |
| 	mii_getbit (dev);
 | |
| 	return 0;
 | |
| }
 | |
| static int
 | |
| mii_wait_link (struct net_device *dev, int wait)
 | |
| {
 | |
| 	__u16 bmsr;
 | |
| 	int phy_addr;
 | |
| 	struct netdev_private *np;
 | |
| 
 | |
| 	np = netdev_priv(dev);
 | |
| 	phy_addr = np->phy_addr;
 | |
| 
 | |
| 	do {
 | |
| 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
 | |
| 		if (bmsr & BMSR_LSTATUS)
 | |
| 			return 0;
 | |
| 		mdelay (1);
 | |
| 	} while (--wait > 0);
 | |
| 	return -1;
 | |
| }
 | |
| static int
 | |
| mii_get_media (struct net_device *dev)
 | |
| {
 | |
| 	__u16 negotiate;
 | |
| 	__u16 bmsr;
 | |
| 	__u16 mscr;
 | |
| 	__u16 mssr;
 | |
| 	int phy_addr;
 | |
| 	struct netdev_private *np;
 | |
| 
 | |
| 	np = netdev_priv(dev);
 | |
| 	phy_addr = np->phy_addr;
 | |
| 
 | |
| 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
 | |
| 	if (np->an_enable) {
 | |
| 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
 | |
| 			/* Auto-Negotiation not completed */
 | |
| 			return -1;
 | |
| 		}
 | |
| 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
 | |
| 			mii_read (dev, phy_addr, MII_LPA);
 | |
| 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
 | |
| 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
 | |
| 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
 | |
| 			np->speed = 1000;
 | |
| 			np->full_duplex = 1;
 | |
| 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
 | |
| 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
 | |
| 			np->speed = 1000;
 | |
| 			np->full_duplex = 0;
 | |
| 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
 | |
| 		} else if (negotiate & ADVERTISE_100FULL) {
 | |
| 			np->speed = 100;
 | |
| 			np->full_duplex = 1;
 | |
| 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
 | |
| 		} else if (negotiate & ADVERTISE_100HALF) {
 | |
| 			np->speed = 100;
 | |
| 			np->full_duplex = 0;
 | |
| 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
 | |
| 		} else if (negotiate & ADVERTISE_10FULL) {
 | |
| 			np->speed = 10;
 | |
| 			np->full_duplex = 1;
 | |
| 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
 | |
| 		} else if (negotiate & ADVERTISE_10HALF) {
 | |
| 			np->speed = 10;
 | |
| 			np->full_duplex = 0;
 | |
| 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
 | |
| 		}
 | |
| 		if (negotiate & ADVERTISE_PAUSE_CAP) {
 | |
| 			np->tx_flow &= 1;
 | |
| 			np->rx_flow &= 1;
 | |
| 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
 | |
| 			np->tx_flow = 0;
 | |
| 			np->rx_flow &= 1;
 | |
| 		}
 | |
| 		/* else tx_flow, rx_flow = user select  */
 | |
| 	} else {
 | |
| 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
 | |
| 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
 | |
| 		case BMCR_SPEED1000:
 | |
| 			printk (KERN_INFO "Operating at 1000 Mbps, ");
 | |
| 			break;
 | |
| 		case BMCR_SPEED100:
 | |
| 			printk (KERN_INFO "Operating at 100 Mbps, ");
 | |
| 			break;
 | |
| 		case 0:
 | |
| 			printk (KERN_INFO "Operating at 10 Mbps, ");
 | |
| 		}
 | |
| 		if (bmcr & BMCR_FULLDPLX) {
 | |
| 			printk (KERN_CONT "Full duplex\n");
 | |
| 		} else {
 | |
| 			printk (KERN_CONT "Half duplex\n");
 | |
| 		}
 | |
| 	}
 | |
| 	if (np->tx_flow)
 | |
| 		printk(KERN_INFO "Enable Tx Flow Control\n");
 | |
| 	else
 | |
| 		printk(KERN_INFO "Disable Tx Flow Control\n");
 | |
| 	if (np->rx_flow)
 | |
| 		printk(KERN_INFO "Enable Rx Flow Control\n");
 | |
| 	else
 | |
| 		printk(KERN_INFO "Disable Rx Flow Control\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| mii_set_media (struct net_device *dev)
 | |
| {
 | |
| 	__u16 pscr;
 | |
| 	__u16 bmcr;
 | |
| 	__u16 bmsr;
 | |
| 	__u16 anar;
 | |
| 	int phy_addr;
 | |
| 	struct netdev_private *np;
 | |
| 	np = netdev_priv(dev);
 | |
| 	phy_addr = np->phy_addr;
 | |
| 
 | |
| 	/* Does user set speed? */
 | |
| 	if (np->an_enable) {
 | |
| 		/* Advertise capabilities */
 | |
| 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
 | |
| 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
 | |
| 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
 | |
| 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
 | |
| 			  ADVERTISE_100BASE4);
 | |
| 		if (bmsr & BMSR_100FULL)
 | |
| 			anar |= ADVERTISE_100FULL;
 | |
| 		if (bmsr & BMSR_100HALF)
 | |
| 			anar |= ADVERTISE_100HALF;
 | |
| 		if (bmsr & BMSR_100BASE4)
 | |
| 			anar |= ADVERTISE_100BASE4;
 | |
| 		if (bmsr & BMSR_10FULL)
 | |
| 			anar |= ADVERTISE_10FULL;
 | |
| 		if (bmsr & BMSR_10HALF)
 | |
| 			anar |= ADVERTISE_10HALF;
 | |
| 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
 | |
| 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
 | |
| 
 | |
| 		/* Enable Auto crossover */
 | |
| 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
 | |
| 		pscr |= 3 << 5;	/* 11'b */
 | |
| 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
 | |
| 
 | |
| 		/* Soft reset PHY */
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
 | |
| 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
 | |
| 		mdelay(1);
 | |
| 	} else {
 | |
| 		/* Force speed setting */
 | |
| 		/* 1) Disable Auto crossover */
 | |
| 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
 | |
| 		pscr &= ~(3 << 5);
 | |
| 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
 | |
| 
 | |
| 		/* 2) PHY Reset */
 | |
| 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
 | |
| 		bmcr |= BMCR_RESET;
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
 | |
| 
 | |
| 		/* 3) Power Down */
 | |
| 		bmcr = 0x1940;	/* must be 0x1940 */
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
 | |
| 		mdelay (100);	/* wait a certain time */
 | |
| 
 | |
| 		/* 4) Advertise nothing */
 | |
| 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
 | |
| 
 | |
| 		/* 5) Set media and Power Up */
 | |
| 		bmcr = BMCR_PDOWN;
 | |
| 		if (np->speed == 100) {
 | |
| 			bmcr |= BMCR_SPEED100;
 | |
| 			printk (KERN_INFO "Manual 100 Mbps, ");
 | |
| 		} else if (np->speed == 10) {
 | |
| 			printk (KERN_INFO "Manual 10 Mbps, ");
 | |
| 		}
 | |
| 		if (np->full_duplex) {
 | |
| 			bmcr |= BMCR_FULLDPLX;
 | |
| 			printk (KERN_CONT "Full duplex\n");
 | |
| 		} else {
 | |
| 			printk (KERN_CONT "Half duplex\n");
 | |
| 		}
 | |
| #if 0
 | |
| 		/* Set 1000BaseT Master/Slave setting */
 | |
| 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
 | |
| 		mscr |= MII_MSCR_CFG_ENABLE;
 | |
| 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
 | |
| #endif
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
 | |
| 		mdelay(10);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| mii_get_media_pcs (struct net_device *dev)
 | |
| {
 | |
| 	__u16 negotiate;
 | |
| 	__u16 bmsr;
 | |
| 	int phy_addr;
 | |
| 	struct netdev_private *np;
 | |
| 
 | |
| 	np = netdev_priv(dev);
 | |
| 	phy_addr = np->phy_addr;
 | |
| 
 | |
| 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
 | |
| 	if (np->an_enable) {
 | |
| 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
 | |
| 			/* Auto-Negotiation not completed */
 | |
| 			return -1;
 | |
| 		}
 | |
| 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
 | |
| 			mii_read (dev, phy_addr, PCS_ANLPAR);
 | |
| 		np->speed = 1000;
 | |
| 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
 | |
| 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
 | |
| 			np->full_duplex = 1;
 | |
| 		} else {
 | |
| 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
 | |
| 			np->full_duplex = 0;
 | |
| 		}
 | |
| 		if (negotiate & PCS_ANAR_PAUSE) {
 | |
| 			np->tx_flow &= 1;
 | |
| 			np->rx_flow &= 1;
 | |
| 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
 | |
| 			np->tx_flow = 0;
 | |
| 			np->rx_flow &= 1;
 | |
| 		}
 | |
| 		/* else tx_flow, rx_flow = user select  */
 | |
| 	} else {
 | |
| 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
 | |
| 		printk (KERN_INFO "Operating at 1000 Mbps, ");
 | |
| 		if (bmcr & BMCR_FULLDPLX) {
 | |
| 			printk (KERN_CONT "Full duplex\n");
 | |
| 		} else {
 | |
| 			printk (KERN_CONT "Half duplex\n");
 | |
| 		}
 | |
| 	}
 | |
| 	if (np->tx_flow)
 | |
| 		printk(KERN_INFO "Enable Tx Flow Control\n");
 | |
| 	else
 | |
| 		printk(KERN_INFO "Disable Tx Flow Control\n");
 | |
| 	if (np->rx_flow)
 | |
| 		printk(KERN_INFO "Enable Rx Flow Control\n");
 | |
| 	else
 | |
| 		printk(KERN_INFO "Disable Rx Flow Control\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| mii_set_media_pcs (struct net_device *dev)
 | |
| {
 | |
| 	__u16 bmcr;
 | |
| 	__u16 esr;
 | |
| 	__u16 anar;
 | |
| 	int phy_addr;
 | |
| 	struct netdev_private *np;
 | |
| 	np = netdev_priv(dev);
 | |
| 	phy_addr = np->phy_addr;
 | |
| 
 | |
| 	/* Auto-Negotiation? */
 | |
| 	if (np->an_enable) {
 | |
| 		/* Advertise capabilities */
 | |
| 		esr = mii_read (dev, phy_addr, PCS_ESR);
 | |
| 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
 | |
| 			~PCS_ANAR_HALF_DUPLEX &
 | |
| 			~PCS_ANAR_FULL_DUPLEX;
 | |
| 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
 | |
| 			anar |= PCS_ANAR_HALF_DUPLEX;
 | |
| 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
 | |
| 			anar |= PCS_ANAR_FULL_DUPLEX;
 | |
| 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
 | |
| 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
 | |
| 
 | |
| 		/* Soft reset PHY */
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
 | |
| 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
 | |
| 		mdelay(1);
 | |
| 	} else {
 | |
| 		/* Force speed setting */
 | |
| 		/* PHY Reset */
 | |
| 		bmcr = BMCR_RESET;
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
 | |
| 		mdelay(10);
 | |
| 		if (np->full_duplex) {
 | |
| 			bmcr = BMCR_FULLDPLX;
 | |
| 			printk (KERN_INFO "Manual full duplex\n");
 | |
| 		} else {
 | |
| 			bmcr = 0;
 | |
| 			printk (KERN_INFO "Manual half duplex\n");
 | |
| 		}
 | |
| 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
 | |
| 		mdelay(10);
 | |
| 
 | |
| 		/*  Advertise nothing */
 | |
| 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| rio_close (struct net_device *dev)
 | |
| {
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 	struct pci_dev *pdev = np->pdev;
 | |
| 
 | |
| 	netif_stop_queue (dev);
 | |
| 
 | |
| 	rio_hw_stop(dev);
 | |
| 
 | |
| 	free_irq(pdev->irq, dev);
 | |
| 	del_timer_sync (&np->timer);
 | |
| 
 | |
| 	free_list(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| rio_remove1 (struct pci_dev *pdev)
 | |
| {
 | |
| 	struct net_device *dev = pci_get_drvdata (pdev);
 | |
| 
 | |
| 	if (dev) {
 | |
| 		struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 		unregister_netdev (dev);
 | |
| 		dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
 | |
| 				  np->rx_ring_dma);
 | |
| 		dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
 | |
| 				  np->tx_ring_dma);
 | |
| #ifdef MEM_MAPPING
 | |
| 		pci_iounmap(pdev, np->ioaddr);
 | |
| #endif
 | |
| 		pci_iounmap(pdev, np->eeprom_addr);
 | |
| 		free_netdev (dev);
 | |
| 		pci_release_regions (pdev);
 | |
| 		pci_disable_device (pdev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int rio_suspend(struct device *device)
 | |
| {
 | |
| 	struct net_device *dev = dev_get_drvdata(device);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	netif_device_detach(dev);
 | |
| 	del_timer_sync(&np->timer);
 | |
| 	rio_hw_stop(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int rio_resume(struct device *device)
 | |
| {
 | |
| 	struct net_device *dev = dev_get_drvdata(device);
 | |
| 	struct netdev_private *np = netdev_priv(dev);
 | |
| 
 | |
| 	if (!netif_running(dev))
 | |
| 		return 0;
 | |
| 
 | |
| 	rio_reset_ring(np);
 | |
| 	rio_hw_init(dev);
 | |
| 	np->timer.expires = jiffies + 1 * HZ;
 | |
| 	add_timer(&np->timer);
 | |
| 	netif_device_attach(dev);
 | |
| 	dl2k_enable_int(np);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static DEFINE_SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
 | |
| #define RIO_PM_OPS    (&rio_pm_ops)
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define RIO_PM_OPS	NULL
 | |
| 
 | |
| #endif /* CONFIG_PM_SLEEP */
 | |
| 
 | |
| static struct pci_driver rio_driver = {
 | |
| 	.name		= "dl2k",
 | |
| 	.id_table	= rio_pci_tbl,
 | |
| 	.probe		= rio_probe1,
 | |
| 	.remove		= rio_remove1,
 | |
| 	.driver.pm	= RIO_PM_OPS,
 | |
| };
 | |
| 
 | |
| module_pci_driver(rio_driver);
 | |
| 
 | |
| /* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
 |