5221 lines
		
	
	
		
			147 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5221 lines
		
	
	
		
			147 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is part of the Chelsio T4 Ethernet driver for Linux.
 | |
|  *
 | |
|  * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the
 | |
|  * OpenIB.org BSD license below:
 | |
|  *
 | |
|  *     Redistribution and use in source and binary forms, with or
 | |
|  *     without modification, are permitted provided that the following
 | |
|  *     conditions are met:
 | |
|  *
 | |
|  *      - Redistributions of source code must retain the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer.
 | |
|  *
 | |
|  *      - Redistributions in binary form must reproduce the above
 | |
|  *        copyright notice, this list of conditions and the following
 | |
|  *        disclaimer in the documentation and/or other materials
 | |
|  *        provided with the distribution.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 | |
|  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 | |
|  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 | |
|  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 | |
|  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
|  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 | |
|  * SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/prefetch.h>
 | |
| #include <linux/export.h>
 | |
| #include <net/xfrm.h>
 | |
| #include <net/ipv6.h>
 | |
| #include <net/tcp.h>
 | |
| #include <net/busy_poll.h>
 | |
| #ifdef CONFIG_CHELSIO_T4_FCOE
 | |
| #include <scsi/fc/fc_fcoe.h>
 | |
| #endif /* CONFIG_CHELSIO_T4_FCOE */
 | |
| #include "cxgb4.h"
 | |
| #include "t4_regs.h"
 | |
| #include "t4_values.h"
 | |
| #include "t4_msg.h"
 | |
| #include "t4fw_api.h"
 | |
| #include "cxgb4_ptp.h"
 | |
| #include "cxgb4_uld.h"
 | |
| #include "cxgb4_tc_mqprio.h"
 | |
| #include "sched.h"
 | |
| 
 | |
| /*
 | |
|  * Rx buffer size.  We use largish buffers if possible but settle for single
 | |
|  * pages under memory shortage.
 | |
|  */
 | |
| #if PAGE_SHIFT >= 16
 | |
| # define FL_PG_ORDER 0
 | |
| #else
 | |
| # define FL_PG_ORDER (16 - PAGE_SHIFT)
 | |
| #endif
 | |
| 
 | |
| /* RX_PULL_LEN should be <= RX_COPY_THRES */
 | |
| #define RX_COPY_THRES    256
 | |
| #define RX_PULL_LEN      128
 | |
| 
 | |
| /*
 | |
|  * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
 | |
|  * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
 | |
|  */
 | |
| #define RX_PKT_SKB_LEN   512
 | |
| 
 | |
| /*
 | |
|  * Max number of Tx descriptors we clean up at a time.  Should be modest as
 | |
|  * freeing skbs isn't cheap and it happens while holding locks.  We just need
 | |
|  * to free packets faster than they arrive, we eventually catch up and keep
 | |
|  * the amortized cost reasonable.  Must be >= 2 * TXQ_STOP_THRES.  It should
 | |
|  * also match the CIDX Flush Threshold.
 | |
|  */
 | |
| #define MAX_TX_RECLAIM 32
 | |
| 
 | |
| /*
 | |
|  * Max number of Rx buffers we replenish at a time.  Again keep this modest,
 | |
|  * allocating buffers isn't cheap either.
 | |
|  */
 | |
| #define MAX_RX_REFILL 16U
 | |
| 
 | |
| /*
 | |
|  * Period of the Rx queue check timer.  This timer is infrequent as it has
 | |
|  * something to do only when the system experiences severe memory shortage.
 | |
|  */
 | |
| #define RX_QCHECK_PERIOD (HZ / 2)
 | |
| 
 | |
| /*
 | |
|  * Period of the Tx queue check timer.
 | |
|  */
 | |
| #define TX_QCHECK_PERIOD (HZ / 2)
 | |
| 
 | |
| /*
 | |
|  * Max number of Tx descriptors to be reclaimed by the Tx timer.
 | |
|  */
 | |
| #define MAX_TIMER_TX_RECLAIM 100
 | |
| 
 | |
| /*
 | |
|  * Timer index used when backing off due to memory shortage.
 | |
|  */
 | |
| #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
 | |
| 
 | |
| /*
 | |
|  * Suspension threshold for non-Ethernet Tx queues.  We require enough room
 | |
|  * for a full sized WR.
 | |
|  */
 | |
| #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
 | |
| 
 | |
| /*
 | |
|  * Max Tx descriptor space we allow for an Ethernet packet to be inlined
 | |
|  * into a WR.
 | |
|  */
 | |
| #define MAX_IMM_TX_PKT_LEN 256
 | |
| 
 | |
| /*
 | |
|  * Max size of a WR sent through a control Tx queue.
 | |
|  */
 | |
| #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
 | |
| 
 | |
| struct rx_sw_desc {                /* SW state per Rx descriptor */
 | |
| 	struct page *page;
 | |
| 	dma_addr_t dma_addr;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
 | |
|  * buffer).  We currently only support two sizes for 1500- and 9000-byte MTUs.
 | |
|  * We could easily support more but there doesn't seem to be much need for
 | |
|  * that ...
 | |
|  */
 | |
| #define FL_MTU_SMALL 1500
 | |
| #define FL_MTU_LARGE 9000
 | |
| 
 | |
| static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
 | |
| 					  unsigned int mtu)
 | |
| {
 | |
| 	struct sge *s = &adapter->sge;
 | |
| 
 | |
| 	return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
 | |
| }
 | |
| 
 | |
| #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
 | |
| #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
 | |
| 
 | |
| /*
 | |
|  * Bits 0..3 of rx_sw_desc.dma_addr have special meaning.  The hardware uses
 | |
|  * these to specify the buffer size as an index into the SGE Free List Buffer
 | |
|  * Size register array.  We also use bit 4, when the buffer has been unmapped
 | |
|  * for DMA, but this is of course never sent to the hardware and is only used
 | |
|  * to prevent double unmappings.  All of the above requires that the Free List
 | |
|  * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
 | |
|  * 32-byte or or a power of 2 greater in alignment.  Since the SGE's minimal
 | |
|  * Free List Buffer alignment is 32 bytes, this works out for us ...
 | |
|  */
 | |
| enum {
 | |
| 	RX_BUF_FLAGS     = 0x1f,   /* bottom five bits are special */
 | |
| 	RX_BUF_SIZE      = 0x0f,   /* bottom three bits are for buf sizes */
 | |
| 	RX_UNMAPPED_BUF  = 0x10,   /* buffer is not mapped */
 | |
| 
 | |
| 	/*
 | |
| 	 * XXX We shouldn't depend on being able to use these indices.
 | |
| 	 * XXX Especially when some other Master PF has initialized the
 | |
| 	 * XXX adapter or we use the Firmware Configuration File.  We
 | |
| 	 * XXX should really search through the Host Buffer Size register
 | |
| 	 * XXX array for the appropriately sized buffer indices.
 | |
| 	 */
 | |
| 	RX_SMALL_PG_BUF  = 0x0,   /* small (PAGE_SIZE) page buffer */
 | |
| 	RX_LARGE_PG_BUF  = 0x1,   /* buffer large (FL_PG_ORDER) page buffer */
 | |
| 
 | |
| 	RX_SMALL_MTU_BUF = 0x2,   /* small MTU buffer */
 | |
| 	RX_LARGE_MTU_BUF = 0x3,   /* large MTU buffer */
 | |
| };
 | |
| 
 | |
| static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
 | |
| #define MIN_NAPI_WORK  1
 | |
| 
 | |
| static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
 | |
| {
 | |
| 	return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
 | |
| }
 | |
| 
 | |
| static inline bool is_buf_mapped(const struct rx_sw_desc *d)
 | |
| {
 | |
| 	return !(d->dma_addr & RX_UNMAPPED_BUF);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	txq_avail - return the number of available slots in a Tx queue
 | |
|  *	@q: the Tx queue
 | |
|  *
 | |
|  *	Returns the number of descriptors in a Tx queue available to write new
 | |
|  *	packets.
 | |
|  */
 | |
| static inline unsigned int txq_avail(const struct sge_txq *q)
 | |
| {
 | |
| 	return q->size - 1 - q->in_use;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	fl_cap - return the capacity of a free-buffer list
 | |
|  *	@fl: the FL
 | |
|  *
 | |
|  *	Returns the capacity of a free-buffer list.  The capacity is less than
 | |
|  *	the size because one descriptor needs to be left unpopulated, otherwise
 | |
|  *	HW will think the FL is empty.
 | |
|  */
 | |
| static inline unsigned int fl_cap(const struct sge_fl *fl)
 | |
| {
 | |
| 	return fl->size - 8;   /* 1 descriptor = 8 buffers */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	fl_starving - return whether a Free List is starving.
 | |
|  *	@adapter: pointer to the adapter
 | |
|  *	@fl: the Free List
 | |
|  *
 | |
|  *	Tests specified Free List to see whether the number of buffers
 | |
|  *	available to the hardware has falled below our "starvation"
 | |
|  *	threshold.
 | |
|  */
 | |
| static inline bool fl_starving(const struct adapter *adapter,
 | |
| 			       const struct sge_fl *fl)
 | |
| {
 | |
| 	const struct sge *s = &adapter->sge;
 | |
| 
 | |
| 	return fl->avail - fl->pend_cred <= s->fl_starve_thres;
 | |
| }
 | |
| 
 | |
| int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
 | |
| 		  dma_addr_t *addr)
 | |
| {
 | |
| 	const skb_frag_t *fp, *end;
 | |
| 	const struct skb_shared_info *si;
 | |
| 
 | |
| 	*addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
 | |
| 	if (dma_mapping_error(dev, *addr))
 | |
| 		goto out_err;
 | |
| 
 | |
| 	si = skb_shinfo(skb);
 | |
| 	end = &si->frags[si->nr_frags];
 | |
| 
 | |
| 	for (fp = si->frags; fp < end; fp++) {
 | |
| 		*++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
 | |
| 					   DMA_TO_DEVICE);
 | |
| 		if (dma_mapping_error(dev, *addr))
 | |
| 			goto unwind;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| unwind:
 | |
| 	while (fp-- > si->frags)
 | |
| 		dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
 | |
| 
 | |
| 	dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
 | |
| out_err:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_map_skb);
 | |
| 
 | |
| static void unmap_skb(struct device *dev, const struct sk_buff *skb,
 | |
| 		      const dma_addr_t *addr)
 | |
| {
 | |
| 	const skb_frag_t *fp, *end;
 | |
| 	const struct skb_shared_info *si;
 | |
| 
 | |
| 	dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
 | |
| 
 | |
| 	si = skb_shinfo(skb);
 | |
| 	end = &si->frags[si->nr_frags];
 | |
| 	for (fp = si->frags; fp < end; fp++)
 | |
| 		dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_NEED_DMA_MAP_STATE
 | |
| /**
 | |
|  *	deferred_unmap_destructor - unmap a packet when it is freed
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	This is the packet destructor used for Tx packets that need to remain
 | |
|  *	mapped until they are freed rather than until their Tx descriptors are
 | |
|  *	freed.
 | |
|  */
 | |
| static void deferred_unmap_destructor(struct sk_buff *skb)
 | |
| {
 | |
| 	unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  *	free_tx_desc - reclaims Tx descriptors and their buffers
 | |
|  *	@adap: the adapter
 | |
|  *	@q: the Tx queue to reclaim descriptors from
 | |
|  *	@n: the number of descriptors to reclaim
 | |
|  *	@unmap: whether the buffers should be unmapped for DMA
 | |
|  *
 | |
|  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
 | |
|  *	Tx buffers.  Called with the Tx queue lock held.
 | |
|  */
 | |
| void free_tx_desc(struct adapter *adap, struct sge_txq *q,
 | |
| 		  unsigned int n, bool unmap)
 | |
| {
 | |
| 	unsigned int cidx = q->cidx;
 | |
| 	struct tx_sw_desc *d;
 | |
| 
 | |
| 	d = &q->sdesc[cidx];
 | |
| 	while (n--) {
 | |
| 		if (d->skb) {                       /* an SGL is present */
 | |
| 			if (unmap && d->addr[0]) {
 | |
| 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
 | |
| 				memset(d->addr, 0, sizeof(d->addr));
 | |
| 			}
 | |
| 			dev_consume_skb_any(d->skb);
 | |
| 			d->skb = NULL;
 | |
| 		}
 | |
| 		++d;
 | |
| 		if (++cidx == q->size) {
 | |
| 			cidx = 0;
 | |
| 			d = q->sdesc;
 | |
| 		}
 | |
| 	}
 | |
| 	q->cidx = cidx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the number of reclaimable descriptors in a Tx queue.
 | |
|  */
 | |
| static inline int reclaimable(const struct sge_txq *q)
 | |
| {
 | |
| 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
 | |
| 	hw_cidx -= q->cidx;
 | |
| 	return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	reclaim_completed_tx - reclaims completed TX Descriptors
 | |
|  *	@adap: the adapter
 | |
|  *	@q: the Tx queue to reclaim completed descriptors from
 | |
|  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
 | |
|  *	@unmap: whether the buffers should be unmapped for DMA
 | |
|  *
 | |
|  *	Reclaims Tx Descriptors that the SGE has indicated it has processed,
 | |
|  *	and frees the associated buffers if possible.  If @max == -1, then
 | |
|  *	we'll use a defaiult maximum.  Called with the TX Queue locked.
 | |
|  */
 | |
| static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 | |
| 				       int maxreclaim, bool unmap)
 | |
| {
 | |
| 	int reclaim = reclaimable(q);
 | |
| 
 | |
| 	if (reclaim) {
 | |
| 		/*
 | |
| 		 * Limit the amount of clean up work we do at a time to keep
 | |
| 		 * the Tx lock hold time O(1).
 | |
| 		 */
 | |
| 		if (maxreclaim < 0)
 | |
| 			maxreclaim = MAX_TX_RECLAIM;
 | |
| 		if (reclaim > maxreclaim)
 | |
| 			reclaim = maxreclaim;
 | |
| 
 | |
| 		free_tx_desc(adap, q, reclaim, unmap);
 | |
| 		q->in_use -= reclaim;
 | |
| 	}
 | |
| 
 | |
| 	return reclaim;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
 | |
|  *	@adap: the adapter
 | |
|  *	@q: the Tx queue to reclaim completed descriptors from
 | |
|  *	@unmap: whether the buffers should be unmapped for DMA
 | |
|  *
 | |
|  *	Reclaims Tx descriptors that the SGE has indicated it has processed,
 | |
|  *	and frees the associated buffers if possible.  Called with the Tx
 | |
|  *	queue locked.
 | |
|  */
 | |
| void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
 | |
| 				bool unmap)
 | |
| {
 | |
| 	(void)reclaim_completed_tx(adap, q, -1, unmap);
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
 | |
| 
 | |
| static inline int get_buf_size(struct adapter *adapter,
 | |
| 			       const struct rx_sw_desc *d)
 | |
| {
 | |
| 	struct sge *s = &adapter->sge;
 | |
| 	unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
 | |
| 	int buf_size;
 | |
| 
 | |
| 	switch (rx_buf_size_idx) {
 | |
| 	case RX_SMALL_PG_BUF:
 | |
| 		buf_size = PAGE_SIZE;
 | |
| 		break;
 | |
| 
 | |
| 	case RX_LARGE_PG_BUF:
 | |
| 		buf_size = PAGE_SIZE << s->fl_pg_order;
 | |
| 		break;
 | |
| 
 | |
| 	case RX_SMALL_MTU_BUF:
 | |
| 		buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
 | |
| 		break;
 | |
| 
 | |
| 	case RX_LARGE_MTU_BUF:
 | |
| 		buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return buf_size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	free_rx_bufs - free the Rx buffers on an SGE free list
 | |
|  *	@adap: the adapter
 | |
|  *	@q: the SGE free list to free buffers from
 | |
|  *	@n: how many buffers to free
 | |
|  *
 | |
|  *	Release the next @n buffers on an SGE free-buffer Rx queue.   The
 | |
|  *	buffers must be made inaccessible to HW before calling this function.
 | |
|  */
 | |
| static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
 | |
| {
 | |
| 	while (n--) {
 | |
| 		struct rx_sw_desc *d = &q->sdesc[q->cidx];
 | |
| 
 | |
| 		if (is_buf_mapped(d))
 | |
| 			dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 | |
| 				       get_buf_size(adap, d),
 | |
| 				       DMA_FROM_DEVICE);
 | |
| 		put_page(d->page);
 | |
| 		d->page = NULL;
 | |
| 		if (++q->cidx == q->size)
 | |
| 			q->cidx = 0;
 | |
| 		q->avail--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	unmap_rx_buf - unmap the current Rx buffer on an SGE free list
 | |
|  *	@adap: the adapter
 | |
|  *	@q: the SGE free list
 | |
|  *
 | |
|  *	Unmap the current buffer on an SGE free-buffer Rx queue.   The
 | |
|  *	buffer must be made inaccessible to HW before calling this function.
 | |
|  *
 | |
|  *	This is similar to @free_rx_bufs above but does not free the buffer.
 | |
|  *	Do note that the FL still loses any further access to the buffer.
 | |
|  */
 | |
| static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
 | |
| {
 | |
| 	struct rx_sw_desc *d = &q->sdesc[q->cidx];
 | |
| 
 | |
| 	if (is_buf_mapped(d))
 | |
| 		dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
 | |
| 			       get_buf_size(adap, d), DMA_FROM_DEVICE);
 | |
| 	d->page = NULL;
 | |
| 	if (++q->cidx == q->size)
 | |
| 		q->cidx = 0;
 | |
| 	q->avail--;
 | |
| }
 | |
| 
 | |
| static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
 | |
| {
 | |
| 	if (q->pend_cred >= 8) {
 | |
| 		u32 val = adap->params.arch.sge_fl_db;
 | |
| 
 | |
| 		if (is_t4(adap->params.chip))
 | |
| 			val |= PIDX_V(q->pend_cred / 8);
 | |
| 		else
 | |
| 			val |= PIDX_T5_V(q->pend_cred / 8);
 | |
| 
 | |
| 		/* Make sure all memory writes to the Free List queue are
 | |
| 		 * committed before we tell the hardware about them.
 | |
| 		 */
 | |
| 		wmb();
 | |
| 
 | |
| 		/* If we don't have access to the new User Doorbell (T5+), use
 | |
| 		 * the old doorbell mechanism; otherwise use the new BAR2
 | |
| 		 * mechanism.
 | |
| 		 */
 | |
| 		if (unlikely(q->bar2_addr == NULL)) {
 | |
| 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
 | |
| 				     val | QID_V(q->cntxt_id));
 | |
| 		} else {
 | |
| 			writel(val | QID_V(q->bar2_qid),
 | |
| 			       q->bar2_addr + SGE_UDB_KDOORBELL);
 | |
| 
 | |
| 			/* This Write memory Barrier will force the write to
 | |
| 			 * the User Doorbell area to be flushed.
 | |
| 			 */
 | |
| 			wmb();
 | |
| 		}
 | |
| 		q->pend_cred &= 7;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
 | |
| 				  dma_addr_t mapping)
 | |
| {
 | |
| 	sd->page = pg;
 | |
| 	sd->dma_addr = mapping;      /* includes size low bits */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	refill_fl - refill an SGE Rx buffer ring
 | |
|  *	@adap: the adapter
 | |
|  *	@q: the ring to refill
 | |
|  *	@n: the number of new buffers to allocate
 | |
|  *	@gfp: the gfp flags for the allocations
 | |
|  *
 | |
|  *	(Re)populate an SGE free-buffer queue with up to @n new packet buffers,
 | |
|  *	allocated with the supplied gfp flags.  The caller must assure that
 | |
|  *	@n does not exceed the queue's capacity.  If afterwards the queue is
 | |
|  *	found critically low mark it as starving in the bitmap of starving FLs.
 | |
|  *
 | |
|  *	Returns the number of buffers allocated.
 | |
|  */
 | |
| static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
 | |
| 			      gfp_t gfp)
 | |
| {
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	struct page *pg;
 | |
| 	dma_addr_t mapping;
 | |
| 	unsigned int cred = q->avail;
 | |
| 	__be64 *d = &q->desc[q->pidx];
 | |
| 	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
 | |
| 	int node;
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_FS
 | |
| 	if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
 | |
| 		goto out;
 | |
| #endif
 | |
| 
 | |
| 	gfp |= __GFP_NOWARN;
 | |
| 	node = dev_to_node(adap->pdev_dev);
 | |
| 
 | |
| 	if (s->fl_pg_order == 0)
 | |
| 		goto alloc_small_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prefer large buffers
 | |
| 	 */
 | |
| 	while (n) {
 | |
| 		pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
 | |
| 		if (unlikely(!pg)) {
 | |
| 			q->large_alloc_failed++;
 | |
| 			break;       /* fall back to single pages */
 | |
| 		}
 | |
| 
 | |
| 		mapping = dma_map_page(adap->pdev_dev, pg, 0,
 | |
| 				       PAGE_SIZE << s->fl_pg_order,
 | |
| 				       DMA_FROM_DEVICE);
 | |
| 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 | |
| 			__free_pages(pg, s->fl_pg_order);
 | |
| 			q->mapping_err++;
 | |
| 			goto out;   /* do not try small pages for this error */
 | |
| 		}
 | |
| 		mapping |= RX_LARGE_PG_BUF;
 | |
| 		*d++ = cpu_to_be64(mapping);
 | |
| 
 | |
| 		set_rx_sw_desc(sd, pg, mapping);
 | |
| 		sd++;
 | |
| 
 | |
| 		q->avail++;
 | |
| 		if (++q->pidx == q->size) {
 | |
| 			q->pidx = 0;
 | |
| 			sd = q->sdesc;
 | |
| 			d = q->desc;
 | |
| 		}
 | |
| 		n--;
 | |
| 	}
 | |
| 
 | |
| alloc_small_pages:
 | |
| 	while (n--) {
 | |
| 		pg = alloc_pages_node(node, gfp, 0);
 | |
| 		if (unlikely(!pg)) {
 | |
| 			q->alloc_failed++;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
 | |
| 				       DMA_FROM_DEVICE);
 | |
| 		if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
 | |
| 			put_page(pg);
 | |
| 			q->mapping_err++;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		*d++ = cpu_to_be64(mapping);
 | |
| 
 | |
| 		set_rx_sw_desc(sd, pg, mapping);
 | |
| 		sd++;
 | |
| 
 | |
| 		q->avail++;
 | |
| 		if (++q->pidx == q->size) {
 | |
| 			q->pidx = 0;
 | |
| 			sd = q->sdesc;
 | |
| 			d = q->desc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:	cred = q->avail - cred;
 | |
| 	q->pend_cred += cred;
 | |
| 	ring_fl_db(adap, q);
 | |
| 
 | |
| 	if (unlikely(fl_starving(adap, q))) {
 | |
| 		smp_wmb();
 | |
| 		q->low++;
 | |
| 		set_bit(q->cntxt_id - adap->sge.egr_start,
 | |
| 			adap->sge.starving_fl);
 | |
| 	}
 | |
| 
 | |
| 	return cred;
 | |
| }
 | |
| 
 | |
| static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
 | |
| {
 | |
| 	refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
 | |
| 		  GFP_ATOMIC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	alloc_ring - allocate resources for an SGE descriptor ring
 | |
|  *	@dev: the PCI device's core device
 | |
|  *	@nelem: the number of descriptors
 | |
|  *	@elem_size: the size of each descriptor
 | |
|  *	@sw_size: the size of the SW state associated with each ring element
 | |
|  *	@phys: the physical address of the allocated ring
 | |
|  *	@metadata: address of the array holding the SW state for the ring
 | |
|  *	@stat_size: extra space in HW ring for status information
 | |
|  *	@node: preferred node for memory allocations
 | |
|  *
 | |
|  *	Allocates resources for an SGE descriptor ring, such as Tx queues,
 | |
|  *	free buffer lists, or response queues.  Each SGE ring requires
 | |
|  *	space for its HW descriptors plus, optionally, space for the SW state
 | |
|  *	associated with each HW entry (the metadata).  The function returns
 | |
|  *	three values: the virtual address for the HW ring (the return value
 | |
|  *	of the function), the bus address of the HW ring, and the address
 | |
|  *	of the SW ring.
 | |
|  */
 | |
| static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
 | |
| 			size_t sw_size, dma_addr_t *phys, void *metadata,
 | |
| 			size_t stat_size, int node)
 | |
| {
 | |
| 	size_t len = nelem * elem_size + stat_size;
 | |
| 	void *s = NULL;
 | |
| 	void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
 | |
| 
 | |
| 	if (!p)
 | |
| 		return NULL;
 | |
| 	if (sw_size) {
 | |
| 		s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
 | |
| 
 | |
| 		if (!s) {
 | |
| 			dma_free_coherent(dev, len, p, *phys);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (metadata)
 | |
| 		*(void **)metadata = s;
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sgl_len - calculates the size of an SGL of the given capacity
 | |
|  *	@n: the number of SGL entries
 | |
|  *
 | |
|  *	Calculates the number of flits needed for a scatter/gather list that
 | |
|  *	can hold the given number of entries.
 | |
|  */
 | |
| static inline unsigned int sgl_len(unsigned int n)
 | |
| {
 | |
| 	/* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
 | |
| 	 * addresses.  The DSGL Work Request starts off with a 32-bit DSGL
 | |
| 	 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
 | |
| 	 * repeated sequences of { Length[i], Length[i+1], Address[i],
 | |
| 	 * Address[i+1] } (this ensures that all addresses are on 64-bit
 | |
| 	 * boundaries).  If N is even, then Length[N+1] should be set to 0 and
 | |
| 	 * Address[N+1] is omitted.
 | |
| 	 *
 | |
| 	 * The following calculation incorporates all of the above.  It's
 | |
| 	 * somewhat hard to follow but, briefly: the "+2" accounts for the
 | |
| 	 * first two flits which include the DSGL header, Length0 and
 | |
| 	 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
 | |
| 	 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
 | |
| 	 * finally the "+((n-1)&1)" adds the one remaining flit needed if
 | |
| 	 * (n-1) is odd ...
 | |
| 	 */
 | |
| 	n--;
 | |
| 	return (3 * n) / 2 + (n & 1) + 2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	flits_to_desc - returns the num of Tx descriptors for the given flits
 | |
|  *	@n: the number of flits
 | |
|  *
 | |
|  *	Returns the number of Tx descriptors needed for the supplied number
 | |
|  *	of flits.
 | |
|  */
 | |
| static inline unsigned int flits_to_desc(unsigned int n)
 | |
| {
 | |
| 	BUG_ON(n > SGE_MAX_WR_LEN / 8);
 | |
| 	return DIV_ROUND_UP(n, 8);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	is_eth_imm - can an Ethernet packet be sent as immediate data?
 | |
|  *	@skb: the packet
 | |
|  *	@chip_ver: chip version
 | |
|  *
 | |
|  *	Returns whether an Ethernet packet is small enough to fit as
 | |
|  *	immediate data. Return value corresponds to headroom required.
 | |
|  */
 | |
| static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
 | |
| {
 | |
| 	int hdrlen = 0;
 | |
| 
 | |
| 	if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
 | |
| 	    chip_ver > CHELSIO_T5) {
 | |
| 		hdrlen = sizeof(struct cpl_tx_tnl_lso);
 | |
| 		hdrlen += sizeof(struct cpl_tx_pkt_core);
 | |
| 	} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		hdrlen = skb_shinfo(skb)->gso_size ?
 | |
| 			 sizeof(struct cpl_tx_pkt_lso_core) : 0;
 | |
| 		hdrlen += sizeof(struct cpl_tx_pkt);
 | |
| 	}
 | |
| 	if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
 | |
| 		return hdrlen;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	calc_tx_flits - calculate the number of flits for a packet Tx WR
 | |
|  *	@skb: the packet
 | |
|  *	@chip_ver: chip version
 | |
|  *
 | |
|  *	Returns the number of flits needed for a Tx WR for the given Ethernet
 | |
|  *	packet, including the needed WR and CPL headers.
 | |
|  */
 | |
| static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
 | |
| 					 unsigned int chip_ver)
 | |
| {
 | |
| 	unsigned int flits;
 | |
| 	int hdrlen = is_eth_imm(skb, chip_ver);
 | |
| 
 | |
| 	/* If the skb is small enough, we can pump it out as a work request
 | |
| 	 * with only immediate data.  In that case we just have to have the
 | |
| 	 * TX Packet header plus the skb data in the Work Request.
 | |
| 	 */
 | |
| 
 | |
| 	if (hdrlen)
 | |
| 		return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
 | |
| 
 | |
| 	/* Otherwise, we're going to have to construct a Scatter gather list
 | |
| 	 * of the skb body and fragments.  We also include the flits necessary
 | |
| 	 * for the TX Packet Work Request and CPL.  We always have a firmware
 | |
| 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
 | |
| 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
 | |
| 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
 | |
| 	 * with an embedded TX Packet Write CPL message.
 | |
| 	 */
 | |
| 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 | |
| 	if (skb_shinfo(skb)->gso_size) {
 | |
| 		if (skb->encapsulation && chip_ver > CHELSIO_T5) {
 | |
| 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
 | |
| 				 sizeof(struct cpl_tx_tnl_lso);
 | |
| 		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
 | |
| 			u32 pkt_hdrlen;
 | |
| 
 | |
| 			pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
 | |
| 						     skb_headlen(skb));
 | |
| 			hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
 | |
| 				 round_up(pkt_hdrlen, 16);
 | |
| 		} else {
 | |
| 			hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
 | |
| 				 sizeof(struct cpl_tx_pkt_lso_core);
 | |
| 		}
 | |
| 
 | |
| 		hdrlen += sizeof(struct cpl_tx_pkt_core);
 | |
| 		flits += (hdrlen / sizeof(__be64));
 | |
| 	} else {
 | |
| 		flits += (sizeof(struct fw_eth_tx_pkt_wr) +
 | |
| 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 | |
| 	}
 | |
| 	return flits;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_write_sgl - populate a scatter/gather list for a packet
 | |
|  *	@skb: the packet
 | |
|  *	@q: the Tx queue we are writing into
 | |
|  *	@sgl: starting location for writing the SGL
 | |
|  *	@end: points right after the end of the SGL
 | |
|  *	@start: start offset into skb main-body data to include in the SGL
 | |
|  *	@addr: the list of bus addresses for the SGL elements
 | |
|  *
 | |
|  *	Generates a gather list for the buffers that make up a packet.
 | |
|  *	The caller must provide adequate space for the SGL that will be written.
 | |
|  *	The SGL includes all of the packet's page fragments and the data in its
 | |
|  *	main body except for the first @start bytes.  @sgl must be 16-byte
 | |
|  *	aligned and within a Tx descriptor with available space.  @end points
 | |
|  *	right after the end of the SGL but does not account for any potential
 | |
|  *	wrap around, i.e., @end > @sgl.
 | |
|  */
 | |
| void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
 | |
| 		     struct ulptx_sgl *sgl, u64 *end, unsigned int start,
 | |
| 		     const dma_addr_t *addr)
 | |
| {
 | |
| 	unsigned int i, len;
 | |
| 	struct ulptx_sge_pair *to;
 | |
| 	const struct skb_shared_info *si = skb_shinfo(skb);
 | |
| 	unsigned int nfrags = si->nr_frags;
 | |
| 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
 | |
| 
 | |
| 	len = skb_headlen(skb) - start;
 | |
| 	if (likely(len)) {
 | |
| 		sgl->len0 = htonl(len);
 | |
| 		sgl->addr0 = cpu_to_be64(addr[0] + start);
 | |
| 		nfrags++;
 | |
| 	} else {
 | |
| 		sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
 | |
| 		sgl->addr0 = cpu_to_be64(addr[1]);
 | |
| 	}
 | |
| 
 | |
| 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 | |
| 			      ULPTX_NSGE_V(nfrags));
 | |
| 	if (likely(--nfrags == 0))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * Most of the complexity below deals with the possibility we hit the
 | |
| 	 * end of the queue in the middle of writing the SGL.  For this case
 | |
| 	 * only we create the SGL in a temporary buffer and then copy it.
 | |
| 	 */
 | |
| 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 | |
| 
 | |
| 	for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
 | |
| 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 | |
| 		to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
 | |
| 		to->addr[0] = cpu_to_be64(addr[i]);
 | |
| 		to->addr[1] = cpu_to_be64(addr[++i]);
 | |
| 	}
 | |
| 	if (nfrags) {
 | |
| 		to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
 | |
| 		to->len[1] = cpu_to_be32(0);
 | |
| 		to->addr[0] = cpu_to_be64(addr[i + 1]);
 | |
| 	}
 | |
| 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
 | |
| 		unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 | |
| 
 | |
| 		if (likely(part0))
 | |
| 			memcpy(sgl->sge, buf, part0);
 | |
| 		part1 = (u8 *)end - (u8 *)q->stat;
 | |
| 		memcpy(q->desc, (u8 *)buf + part0, part1);
 | |
| 		end = (void *)q->desc + part1;
 | |
| 	}
 | |
| 	if ((uintptr_t)end & 8)           /* 0-pad to multiple of 16 */
 | |
| 		*end = 0;
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_write_sgl);
 | |
| 
 | |
| /*	cxgb4_write_partial_sgl - populate SGL for partial packet
 | |
|  *	@skb: the packet
 | |
|  *	@q: the Tx queue we are writing into
 | |
|  *	@sgl: starting location for writing the SGL
 | |
|  *	@end: points right after the end of the SGL
 | |
|  *	@addr: the list of bus addresses for the SGL elements
 | |
|  *	@start: start offset in the SKB where partial data starts
 | |
|  *	@len: length of data from @start to send out
 | |
|  *
 | |
|  *	This API will handle sending out partial data of a skb if required.
 | |
|  *	Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
 | |
|  *	and @len will decide how much data after @start offset to send out.
 | |
|  */
 | |
| void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
 | |
| 			     struct ulptx_sgl *sgl, u64 *end,
 | |
| 			     const dma_addr_t *addr, u32 start, u32 len)
 | |
| {
 | |
| 	struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
 | |
| 	u32 frag_size, skb_linear_data_len = skb_headlen(skb);
 | |
| 	struct skb_shared_info *si = skb_shinfo(skb);
 | |
| 	u8 i = 0, frag_idx = 0, nfrags = 0;
 | |
| 	skb_frag_t *frag;
 | |
| 
 | |
| 	/* Fill the first SGL either from linear data or from partial
 | |
| 	 * frag based on @start.
 | |
| 	 */
 | |
| 	if (unlikely(start < skb_linear_data_len)) {
 | |
| 		frag_size = min(len, skb_linear_data_len - start);
 | |
| 		sgl->len0 = htonl(frag_size);
 | |
| 		sgl->addr0 = cpu_to_be64(addr[0] + start);
 | |
| 		len -= frag_size;
 | |
| 		nfrags++;
 | |
| 	} else {
 | |
| 		start -= skb_linear_data_len;
 | |
| 		frag = &si->frags[frag_idx];
 | |
| 		frag_size = skb_frag_size(frag);
 | |
| 		/* find the first frag */
 | |
| 		while (start >= frag_size) {
 | |
| 			start -= frag_size;
 | |
| 			frag_idx++;
 | |
| 			frag = &si->frags[frag_idx];
 | |
| 			frag_size = skb_frag_size(frag);
 | |
| 		}
 | |
| 
 | |
| 		frag_size = min(len, skb_frag_size(frag) - start);
 | |
| 		sgl->len0 = cpu_to_be32(frag_size);
 | |
| 		sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
 | |
| 		len -= frag_size;
 | |
| 		nfrags++;
 | |
| 		frag_idx++;
 | |
| 	}
 | |
| 
 | |
| 	/* If the entire partial data fit in one SGL, then send it out
 | |
| 	 * now.
 | |
| 	 */
 | |
| 	if (!len)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* Most of the complexity below deals with the possibility we hit the
 | |
| 	 * end of the queue in the middle of writing the SGL.  For this case
 | |
| 	 * only we create the SGL in a temporary buffer and then copy it.
 | |
| 	 */
 | |
| 	to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
 | |
| 
 | |
| 	/* If the skb couldn't fit in first SGL completely, fill the
 | |
| 	 * rest of the frags in subsequent SGLs. Note that each SGL
 | |
| 	 * pair can store 2 frags.
 | |
| 	 */
 | |
| 	while (len) {
 | |
| 		frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
 | |
| 		to->len[i & 1] = cpu_to_be32(frag_size);
 | |
| 		to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
 | |
| 		if (i && (i & 1))
 | |
| 			to++;
 | |
| 		nfrags++;
 | |
| 		frag_idx++;
 | |
| 		i++;
 | |
| 		len -= frag_size;
 | |
| 	}
 | |
| 
 | |
| 	/* If we ended in an odd boundary, then set the second SGL's
 | |
| 	 * length in the pair to 0.
 | |
| 	 */
 | |
| 	if (i & 1)
 | |
| 		to->len[1] = cpu_to_be32(0);
 | |
| 
 | |
| 	/* Copy from temporary buffer to Tx ring, in case we hit the
 | |
| 	 * end of the queue in the middle of writing the SGL.
 | |
| 	 */
 | |
| 	if (unlikely((u8 *)end > (u8 *)q->stat)) {
 | |
| 		u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
 | |
| 
 | |
| 		if (likely(part0))
 | |
| 			memcpy(sgl->sge, buf, part0);
 | |
| 		part1 = (u8 *)end - (u8 *)q->stat;
 | |
| 		memcpy(q->desc, (u8 *)buf + part0, part1);
 | |
| 		end = (void *)q->desc + part1;
 | |
| 	}
 | |
| 
 | |
| 	/* 0-pad to multiple of 16 */
 | |
| 	if ((uintptr_t)end & 8)
 | |
| 		*end = 0;
 | |
| done:
 | |
| 	sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
 | |
| 			ULPTX_NSGE_V(nfrags));
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_write_partial_sgl);
 | |
| 
 | |
| /* This function copies 64 byte coalesced work request to
 | |
|  * memory mapped BAR2 space. For coalesced WR SGE fetches
 | |
|  * data from the FIFO instead of from Host.
 | |
|  */
 | |
| static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
 | |
| {
 | |
| 	int count = 8;
 | |
| 
 | |
| 	while (count) {
 | |
| 		writeq(*src, dst);
 | |
| 		src++;
 | |
| 		dst++;
 | |
| 		count--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
 | |
|  *	@adap: the adapter
 | |
|  *	@q: the Tx queue
 | |
|  *	@n: number of new descriptors to give to HW
 | |
|  *
 | |
|  *	Ring the doorbel for a Tx queue.
 | |
|  */
 | |
| inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
 | |
| {
 | |
| 	/* Make sure that all writes to the TX Descriptors are committed
 | |
| 	 * before we tell the hardware about them.
 | |
| 	 */
 | |
| 	wmb();
 | |
| 
 | |
| 	/* If we don't have access to the new User Doorbell (T5+), use the old
 | |
| 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
 | |
| 	 */
 | |
| 	if (unlikely(q->bar2_addr == NULL)) {
 | |
| 		u32 val = PIDX_V(n);
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		/* For T4 we need to participate in the Doorbell Recovery
 | |
| 		 * mechanism.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&q->db_lock, flags);
 | |
| 		if (!q->db_disabled)
 | |
| 			t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
 | |
| 				     QID_V(q->cntxt_id) | val);
 | |
| 		else
 | |
| 			q->db_pidx_inc += n;
 | |
| 		q->db_pidx = q->pidx;
 | |
| 		spin_unlock_irqrestore(&q->db_lock, flags);
 | |
| 	} else {
 | |
| 		u32 val = PIDX_T5_V(n);
 | |
| 
 | |
| 		/* T4 and later chips share the same PIDX field offset within
 | |
| 		 * the doorbell, but T5 and later shrank the field in order to
 | |
| 		 * gain a bit for Doorbell Priority.  The field was absurdly
 | |
| 		 * large in the first place (14 bits) so we just use the T5
 | |
| 		 * and later limits and warn if a Queue ID is too large.
 | |
| 		 */
 | |
| 		WARN_ON(val & DBPRIO_F);
 | |
| 
 | |
| 		/* If we're only writing a single TX Descriptor and we can use
 | |
| 		 * Inferred QID registers, we can use the Write Combining
 | |
| 		 * Gather Buffer; otherwise we use the simple doorbell.
 | |
| 		 */
 | |
| 		if (n == 1 && q->bar2_qid == 0) {
 | |
| 			int index = (q->pidx
 | |
| 				     ? (q->pidx - 1)
 | |
| 				     : (q->size - 1));
 | |
| 			u64 *wr = (u64 *)&q->desc[index];
 | |
| 
 | |
| 			cxgb_pio_copy((u64 __iomem *)
 | |
| 				      (q->bar2_addr + SGE_UDB_WCDOORBELL),
 | |
| 				      wr);
 | |
| 		} else {
 | |
| 			writel(val | QID_V(q->bar2_qid),
 | |
| 			       q->bar2_addr + SGE_UDB_KDOORBELL);
 | |
| 		}
 | |
| 
 | |
| 		/* This Write Memory Barrier will force the write to the User
 | |
| 		 * Doorbell area to be flushed.  This is needed to prevent
 | |
| 		 * writes on different CPUs for the same queue from hitting
 | |
| 		 * the adapter out of order.  This is required when some Work
 | |
| 		 * Requests take the Write Combine Gather Buffer path (user
 | |
| 		 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
 | |
| 		 * take the traditional path where we simply increment the
 | |
| 		 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
 | |
| 		 * hardware DMA read the actual Work Request.
 | |
| 		 */
 | |
| 		wmb();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_ring_tx_db);
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
 | |
|  *	@skb: the packet
 | |
|  *	@q: the Tx queue where the packet will be inlined
 | |
|  *	@pos: starting position in the Tx queue where to inline the packet
 | |
|  *
 | |
|  *	Inline a packet's contents directly into Tx descriptors, starting at
 | |
|  *	the given position within the Tx DMA ring.
 | |
|  *	Most of the complexity of this operation is dealing with wrap arounds
 | |
|  *	in the middle of the packet we want to inline.
 | |
|  */
 | |
| void cxgb4_inline_tx_skb(const struct sk_buff *skb,
 | |
| 			 const struct sge_txq *q, void *pos)
 | |
| {
 | |
| 	int left = (void *)q->stat - pos;
 | |
| 	u64 *p;
 | |
| 
 | |
| 	if (likely(skb->len <= left)) {
 | |
| 		if (likely(!skb->data_len))
 | |
| 			skb_copy_from_linear_data(skb, pos, skb->len);
 | |
| 		else
 | |
| 			skb_copy_bits(skb, 0, pos, skb->len);
 | |
| 		pos += skb->len;
 | |
| 	} else {
 | |
| 		skb_copy_bits(skb, 0, pos, left);
 | |
| 		skb_copy_bits(skb, left, q->desc, skb->len - left);
 | |
| 		pos = (void *)q->desc + (skb->len - left);
 | |
| 	}
 | |
| 
 | |
| 	/* 0-pad to multiple of 16 */
 | |
| 	p = PTR_ALIGN(pos, 8);
 | |
| 	if ((uintptr_t)p & 8)
 | |
| 		*p = 0;
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_inline_tx_skb);
 | |
| 
 | |
| static void *inline_tx_skb_header(const struct sk_buff *skb,
 | |
| 				  const struct sge_txq *q,  void *pos,
 | |
| 				  int length)
 | |
| {
 | |
| 	u64 *p;
 | |
| 	int left = (void *)q->stat - pos;
 | |
| 
 | |
| 	if (likely(length <= left)) {
 | |
| 		memcpy(pos, skb->data, length);
 | |
| 		pos += length;
 | |
| 	} else {
 | |
| 		memcpy(pos, skb->data, left);
 | |
| 		memcpy(q->desc, skb->data + left, length - left);
 | |
| 		pos = (void *)q->desc + (length - left);
 | |
| 	}
 | |
| 	/* 0-pad to multiple of 16 */
 | |
| 	p = PTR_ALIGN(pos, 8);
 | |
| 	if ((uintptr_t)p & 8) {
 | |
| 		*p = 0;
 | |
| 		return p + 1;
 | |
| 	}
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Figure out what HW csum a packet wants and return the appropriate control
 | |
|  * bits.
 | |
|  */
 | |
| static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
 | |
| {
 | |
| 	int csum_type;
 | |
| 	bool inner_hdr_csum = false;
 | |
| 	u16 proto, ver;
 | |
| 
 | |
| 	if (skb->encapsulation &&
 | |
| 	    (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
 | |
| 		inner_hdr_csum = true;
 | |
| 
 | |
| 	if (inner_hdr_csum) {
 | |
| 		ver = inner_ip_hdr(skb)->version;
 | |
| 		proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
 | |
| 			inner_ipv6_hdr(skb)->nexthdr;
 | |
| 	} else {
 | |
| 		ver = ip_hdr(skb)->version;
 | |
| 		proto = (ver == 4) ? ip_hdr(skb)->protocol :
 | |
| 			ipv6_hdr(skb)->nexthdr;
 | |
| 	}
 | |
| 
 | |
| 	if (ver == 4) {
 | |
| 		if (proto == IPPROTO_TCP)
 | |
| 			csum_type = TX_CSUM_TCPIP;
 | |
| 		else if (proto == IPPROTO_UDP)
 | |
| 			csum_type = TX_CSUM_UDPIP;
 | |
| 		else {
 | |
| nocsum:			/*
 | |
| 			 * unknown protocol, disable HW csum
 | |
| 			 * and hope a bad packet is detected
 | |
| 			 */
 | |
| 			return TXPKT_L4CSUM_DIS_F;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * this doesn't work with extension headers
 | |
| 		 */
 | |
| 		if (proto == IPPROTO_TCP)
 | |
| 			csum_type = TX_CSUM_TCPIP6;
 | |
| 		else if (proto == IPPROTO_UDP)
 | |
| 			csum_type = TX_CSUM_UDPIP6;
 | |
| 		else
 | |
| 			goto nocsum;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(csum_type >= TX_CSUM_TCPIP)) {
 | |
| 		int eth_hdr_len, l4_len;
 | |
| 		u64 hdr_len;
 | |
| 
 | |
| 		if (inner_hdr_csum) {
 | |
| 			/* This allows checksum offload for all encapsulated
 | |
| 			 * packets like GRE etc..
 | |
| 			 */
 | |
| 			l4_len = skb_inner_network_header_len(skb);
 | |
| 			eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
 | |
| 		} else {
 | |
| 			l4_len = skb_network_header_len(skb);
 | |
| 			eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
 | |
| 		}
 | |
| 		hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
 | |
| 
 | |
| 		if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
 | |
| 			hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
 | |
| 		else
 | |
| 			hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
 | |
| 		return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
 | |
| 	} else {
 | |
| 		int start = skb_transport_offset(skb);
 | |
| 
 | |
| 		return TXPKT_CSUM_TYPE_V(csum_type) |
 | |
| 			TXPKT_CSUM_START_V(start) |
 | |
| 			TXPKT_CSUM_LOC_V(start + skb->csum_offset);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void eth_txq_stop(struct sge_eth_txq *q)
 | |
| {
 | |
| 	netif_tx_stop_queue(q->txq);
 | |
| 	q->q.stops++;
 | |
| }
 | |
| 
 | |
| static inline void txq_advance(struct sge_txq *q, unsigned int n)
 | |
| {
 | |
| 	q->in_use += n;
 | |
| 	q->pidx += n;
 | |
| 	if (q->pidx >= q->size)
 | |
| 		q->pidx -= q->size;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CHELSIO_T4_FCOE
 | |
| static inline int
 | |
| cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
 | |
| 		  const struct port_info *pi, u64 *cntrl)
 | |
| {
 | |
| 	const struct cxgb_fcoe *fcoe = &pi->fcoe;
 | |
| 
 | |
| 	if (!(fcoe->flags & CXGB_FCOE_ENABLED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (skb->protocol != htons(ETH_P_FCOE))
 | |
| 		return 0;
 | |
| 
 | |
| 	skb_reset_mac_header(skb);
 | |
| 	skb->mac_len = sizeof(struct ethhdr);
 | |
| 
 | |
| 	skb_set_network_header(skb, skb->mac_len);
 | |
| 	skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
 | |
| 
 | |
| 	if (!cxgb_fcoe_sof_eof_supported(adap, skb))
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	/* FC CRC offload */
 | |
| 	*cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
 | |
| 		     TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
 | |
| 		     TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
 | |
| 		     TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
 | |
| 		     TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_CHELSIO_T4_FCOE */
 | |
| 
 | |
| /* Returns tunnel type if hardware supports offloading of the same.
 | |
|  * It is called only for T5 and onwards.
 | |
|  */
 | |
| enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
 | |
| {
 | |
| 	u8 l4_hdr = 0;
 | |
| 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
 | |
| 	struct port_info *pi = netdev_priv(skb->dev);
 | |
| 	struct adapter *adapter = pi->adapter;
 | |
| 
 | |
| 	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 | |
| 	    skb->inner_protocol != htons(ETH_P_TEB))
 | |
| 		return tnl_type;
 | |
| 
 | |
| 	switch (vlan_get_protocol(skb)) {
 | |
| 	case htons(ETH_P_IP):
 | |
| 		l4_hdr = ip_hdr(skb)->protocol;
 | |
| 		break;
 | |
| 	case htons(ETH_P_IPV6):
 | |
| 		l4_hdr = ipv6_hdr(skb)->nexthdr;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return tnl_type;
 | |
| 	}
 | |
| 
 | |
| 	switch (l4_hdr) {
 | |
| 	case IPPROTO_UDP:
 | |
| 		if (adapter->vxlan_port == udp_hdr(skb)->dest)
 | |
| 			tnl_type = TX_TNL_TYPE_VXLAN;
 | |
| 		else if (adapter->geneve_port == udp_hdr(skb)->dest)
 | |
| 			tnl_type = TX_TNL_TYPE_GENEVE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return tnl_type;
 | |
| 	}
 | |
| 
 | |
| 	return tnl_type;
 | |
| }
 | |
| 
 | |
| static inline void t6_fill_tnl_lso(struct sk_buff *skb,
 | |
| 				   struct cpl_tx_tnl_lso *tnl_lso,
 | |
| 				   enum cpl_tx_tnl_lso_type tnl_type)
 | |
| {
 | |
| 	u32 val;
 | |
| 	int in_eth_xtra_len;
 | |
| 	int l3hdr_len = skb_network_header_len(skb);
 | |
| 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
 | |
| 	const struct skb_shared_info *ssi = skb_shinfo(skb);
 | |
| 	bool v6 = (ip_hdr(skb)->version == 6);
 | |
| 
 | |
| 	val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
 | |
| 	      CPL_TX_TNL_LSO_FIRST_F |
 | |
| 	      CPL_TX_TNL_LSO_LAST_F |
 | |
| 	      (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
 | |
| 	      CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
 | |
| 	      CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
 | |
| 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
 | |
| 	      CPL_TX_TNL_LSO_IPLENSETOUT_F |
 | |
| 	      (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
 | |
| 	tnl_lso->op_to_IpIdSplitOut = htonl(val);
 | |
| 
 | |
| 	tnl_lso->IpIdOffsetOut = 0;
 | |
| 
 | |
| 	/* Get the tunnel header length */
 | |
| 	val = skb_inner_mac_header(skb) - skb_mac_header(skb);
 | |
| 	in_eth_xtra_len = skb_inner_network_header(skb) -
 | |
| 			  skb_inner_mac_header(skb) - ETH_HLEN;
 | |
| 
 | |
| 	switch (tnl_type) {
 | |
| 	case TX_TNL_TYPE_VXLAN:
 | |
| 	case TX_TNL_TYPE_GENEVE:
 | |
| 		tnl_lso->UdpLenSetOut_to_TnlHdrLen =
 | |
| 			htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
 | |
| 			CPL_TX_TNL_LSO_UDPLENSETOUT_F);
 | |
| 		break;
 | |
| 	default:
 | |
| 		tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
 | |
| 		 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
 | |
| 		       CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
 | |
| 
 | |
| 	tnl_lso->r1 = 0;
 | |
| 
 | |
| 	val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
 | |
| 	      CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
 | |
| 	      CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
 | |
| 	      CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
 | |
| 	tnl_lso->Flow_to_TcpHdrLen = htonl(val);
 | |
| 
 | |
| 	tnl_lso->IpIdOffset = htons(0);
 | |
| 
 | |
| 	tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
 | |
| 	tnl_lso->TCPSeqOffset = htonl(0);
 | |
| 	tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
 | |
| }
 | |
| 
 | |
| static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
 | |
| 				 struct cpl_tx_pkt_lso_core *lso)
 | |
| {
 | |
| 	int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
 | |
| 	int l3hdr_len = skb_network_header_len(skb);
 | |
| 	const struct skb_shared_info *ssi;
 | |
| 	bool ipv6 = false;
 | |
| 
 | |
| 	ssi = skb_shinfo(skb);
 | |
| 	if (ssi->gso_type & SKB_GSO_TCPV6)
 | |
| 		ipv6 = true;
 | |
| 
 | |
| 	lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
 | |
| 			      LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
 | |
| 			      LSO_IPV6_V(ipv6) |
 | |
| 			      LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
 | |
| 			      LSO_IPHDR_LEN_V(l3hdr_len / 4) |
 | |
| 			      LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
 | |
| 	lso->ipid_ofst = htons(0);
 | |
| 	lso->mss = htons(ssi->gso_size);
 | |
| 	lso->seqno_offset = htonl(0);
 | |
| 	if (is_t4(adap->params.chip))
 | |
| 		lso->len = htonl(skb->len);
 | |
| 	else
 | |
| 		lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
 | |
| 
 | |
| 	return (void *)(lso + 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
 | |
|  *	@adap: the adapter
 | |
|  *	@eq: the Ethernet TX Queue
 | |
|  *	@maxreclaim: the maximum number of TX Descriptors to reclaim or -1
 | |
|  *
 | |
|  *	We're typically called here to update the state of an Ethernet TX
 | |
|  *	Queue with respect to the hardware's progress in consuming the TX
 | |
|  *	Work Requests that we've put on that Egress Queue.  This happens
 | |
|  *	when we get Egress Queue Update messages and also prophylactically
 | |
|  *	in regular timer-based Ethernet TX Queue maintenance.
 | |
|  */
 | |
| int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
 | |
| 				 int maxreclaim)
 | |
| {
 | |
| 	unsigned int reclaimed, hw_cidx;
 | |
| 	struct sge_txq *q = &eq->q;
 | |
| 	int hw_in_use;
 | |
| 
 | |
| 	if (!q->in_use || !__netif_tx_trylock(eq->txq))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Reclaim pending completed TX Descriptors. */
 | |
| 	reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
 | |
| 
 | |
| 	hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
 | |
| 	hw_in_use = q->pidx - hw_cidx;
 | |
| 	if (hw_in_use < 0)
 | |
| 		hw_in_use += q->size;
 | |
| 
 | |
| 	/* If the TX Queue is currently stopped and there's now more than half
 | |
| 	 * the queue available, restart it.  Otherwise bail out since the rest
 | |
| 	 * of what we want do here is with the possibility of shipping any
 | |
| 	 * currently buffered Coalesced TX Work Request.
 | |
| 	 */
 | |
| 	if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
 | |
| 		netif_tx_wake_queue(eq->txq);
 | |
| 		eq->q.restarts++;
 | |
| 	}
 | |
| 
 | |
| 	__netif_tx_unlock(eq->txq);
 | |
| 	return reclaimed;
 | |
| }
 | |
| 
 | |
| static inline int cxgb4_validate_skb(struct sk_buff *skb,
 | |
| 				     struct net_device *dev,
 | |
| 				     u32 min_pkt_len)
 | |
| {
 | |
| 	u32 max_pkt_len;
 | |
| 
 | |
| 	/* The chip min packet length is 10 octets but some firmware
 | |
| 	 * commands have a minimum packet length requirement. So, play
 | |
| 	 * safe and reject anything shorter than @min_pkt_len.
 | |
| 	 */
 | |
| 	if (unlikely(skb->len < min_pkt_len))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Discard the packet if the length is greater than mtu */
 | |
| 	max_pkt_len = ETH_HLEN + dev->mtu;
 | |
| 
 | |
| 	if (skb_vlan_tagged(skb))
 | |
| 		max_pkt_len += VLAN_HLEN;
 | |
| 
 | |
| 	if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
 | |
| 			     u32 hdr_len)
 | |
| {
 | |
| 	wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
 | |
| 	wr->u.udpseg.ethlen = skb_network_offset(skb);
 | |
| 	wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
 | |
| 	wr->u.udpseg.udplen = sizeof(struct udphdr);
 | |
| 	wr->u.udpseg.rtplen = 0;
 | |
| 	wr->u.udpseg.r4 = 0;
 | |
| 	if (skb_shinfo(skb)->gso_size)
 | |
| 		wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
 | |
| 	else
 | |
| 		wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
 | |
| 	wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
 | |
| 	wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
 | |
| 
 | |
| 	return (void *)(wr + 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
 | |
|  *	@skb: the packet
 | |
|  *	@dev: the egress net device
 | |
|  *
 | |
|  *	Add a packet to an SGE Ethernet Tx queue.  Runs with softirqs disabled.
 | |
|  */
 | |
| static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
 | |
| 	bool ptp_enabled = is_ptp_enabled(skb, dev);
 | |
| 	unsigned int last_desc, flits, ndesc;
 | |
| 	u32 wr_mid, ctrl0, op, sgl_off = 0;
 | |
| 	const struct skb_shared_info *ssi;
 | |
| 	int len, qidx, credits, ret, left;
 | |
| 	struct tx_sw_desc *sgl_sdesc;
 | |
| 	struct fw_eth_tx_eo_wr *eowr;
 | |
| 	struct fw_eth_tx_pkt_wr *wr;
 | |
| 	struct cpl_tx_pkt_core *cpl;
 | |
| 	const struct port_info *pi;
 | |
| 	bool immediate = false;
 | |
| 	u64 cntrl, *end, *sgl;
 | |
| 	struct sge_eth_txq *q;
 | |
| 	unsigned int chip_ver;
 | |
| 	struct adapter *adap;
 | |
| 
 | |
| 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	pi = netdev_priv(dev);
 | |
| 	adap = pi->adapter;
 | |
| 	ssi = skb_shinfo(skb);
 | |
| #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
 | |
| 	if (xfrm_offload(skb) && !ssi->gso_size)
 | |
| 		return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
 | |
| #endif /* CHELSIO_IPSEC_INLINE */
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
 | |
| 	if (tls_is_skb_tx_device_offloaded(skb) &&
 | |
| 	    (skb->len - skb_tcp_all_headers(skb)))
 | |
| 		return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
 | |
| #endif /* CHELSIO_TLS_DEVICE */
 | |
| 
 | |
| 	qidx = skb_get_queue_mapping(skb);
 | |
| 	if (ptp_enabled) {
 | |
| 		if (!(adap->ptp_tx_skb)) {
 | |
| 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 | |
| 			adap->ptp_tx_skb = skb_get(skb);
 | |
| 		} else {
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		q = &adap->sge.ptptxq;
 | |
| 	} else {
 | |
| 		q = &adap->sge.ethtxq[qidx + pi->first_qset];
 | |
| 	}
 | |
| 	skb_tx_timestamp(skb);
 | |
| 
 | |
| 	reclaim_completed_tx(adap, &q->q, -1, true);
 | |
| 	cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
 | |
| 
 | |
| #ifdef CONFIG_CHELSIO_T4_FCOE
 | |
| 	ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
 | |
| 	if (unlikely(ret == -EOPNOTSUPP))
 | |
| 		goto out_free;
 | |
| #endif /* CONFIG_CHELSIO_T4_FCOE */
 | |
| 
 | |
| 	chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
 | |
| 	flits = calc_tx_flits(skb, chip_ver);
 | |
| 	ndesc = flits_to_desc(flits);
 | |
| 	credits = txq_avail(&q->q) - ndesc;
 | |
| 
 | |
| 	if (unlikely(credits < 0)) {
 | |
| 		eth_txq_stop(q);
 | |
| 		dev_err(adap->pdev_dev,
 | |
| 			"%s: Tx ring %u full while queue awake!\n",
 | |
| 			dev->name, qidx);
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (is_eth_imm(skb, chip_ver))
 | |
| 		immediate = true;
 | |
| 
 | |
| 	if (skb->encapsulation && chip_ver > CHELSIO_T5)
 | |
| 		tnl_type = cxgb_encap_offload_supported(skb);
 | |
| 
 | |
| 	last_desc = q->q.pidx + ndesc - 1;
 | |
| 	if (last_desc >= q->q.size)
 | |
| 		last_desc -= q->q.size;
 | |
| 	sgl_sdesc = &q->q.sdesc[last_desc];
 | |
| 
 | |
| 	if (!immediate &&
 | |
| 	    unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
 | |
| 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
 | |
| 		q->mapping_err++;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
 | |
| 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
 | |
| 		/* After we're done injecting the Work Request for this
 | |
| 		 * packet, we'll be below our "stop threshold" so stop the TX
 | |
| 		 * Queue now and schedule a request for an SGE Egress Queue
 | |
| 		 * Update message. The queue will get started later on when
 | |
| 		 * the firmware processes this Work Request and sends us an
 | |
| 		 * Egress Queue Status Update message indicating that space
 | |
| 		 * has opened up.
 | |
| 		 */
 | |
| 		eth_txq_stop(q);
 | |
| 		if (chip_ver > CHELSIO_T5)
 | |
| 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
 | |
| 	}
 | |
| 
 | |
| 	wr = (void *)&q->q.desc[q->q.pidx];
 | |
| 	eowr = (void *)&q->q.desc[q->q.pidx];
 | |
| 	wr->equiq_to_len16 = htonl(wr_mid);
 | |
| 	wr->r3 = cpu_to_be64(0);
 | |
| 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
 | |
| 		end = (u64 *)eowr + flits;
 | |
| 	else
 | |
| 		end = (u64 *)wr + flits;
 | |
| 
 | |
| 	len = immediate ? skb->len : 0;
 | |
| 	len += sizeof(*cpl);
 | |
| 	if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
 | |
| 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
 | |
| 		struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
 | |
| 
 | |
| 		if (tnl_type)
 | |
| 			len += sizeof(*tnl_lso);
 | |
| 		else
 | |
| 			len += sizeof(*lso);
 | |
| 
 | |
| 		wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
 | |
| 				       FW_WR_IMMDLEN_V(len));
 | |
| 		if (tnl_type) {
 | |
| 			struct iphdr *iph = ip_hdr(skb);
 | |
| 
 | |
| 			t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
 | |
| 			cpl = (void *)(tnl_lso + 1);
 | |
| 			/* Driver is expected to compute partial checksum that
 | |
| 			 * does not include the IP Total Length.
 | |
| 			 */
 | |
| 			if (iph->version == 4) {
 | |
| 				iph->check = 0;
 | |
| 				iph->tot_len = 0;
 | |
| 				iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
 | |
| 			}
 | |
| 			if (skb->ip_summed == CHECKSUM_PARTIAL)
 | |
| 				cntrl = hwcsum(adap->params.chip, skb);
 | |
| 		} else {
 | |
| 			cpl = write_tso_wr(adap, skb, lso);
 | |
| 			cntrl = hwcsum(adap->params.chip, skb);
 | |
| 		}
 | |
| 		sgl = (u64 *)(cpl + 1); /* sgl start here */
 | |
| 		q->tso++;
 | |
| 		q->tx_cso += ssi->gso_segs;
 | |
| 	} else if (ssi->gso_size) {
 | |
| 		u64 *start;
 | |
| 		u32 hdrlen;
 | |
| 
 | |
| 		hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
 | |
| 		len += hdrlen;
 | |
| 		wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
 | |
| 					     FW_ETH_TX_EO_WR_IMMDLEN_V(len));
 | |
| 		cpl = write_eo_udp_wr(skb, eowr, hdrlen);
 | |
| 		cntrl = hwcsum(adap->params.chip, skb);
 | |
| 
 | |
| 		start = (u64 *)(cpl + 1);
 | |
| 		sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
 | |
| 						  hdrlen);
 | |
| 		if (unlikely(start > sgl)) {
 | |
| 			left = (u8 *)end - (u8 *)q->q.stat;
 | |
| 			end = (void *)q->q.desc + left;
 | |
| 		}
 | |
| 		sgl_off = hdrlen;
 | |
| 		q->uso++;
 | |
| 		q->tx_cso += ssi->gso_segs;
 | |
| 	} else {
 | |
| 		if (ptp_enabled)
 | |
| 			op = FW_PTP_TX_PKT_WR;
 | |
| 		else
 | |
| 			op = FW_ETH_TX_PKT_WR;
 | |
| 		wr->op_immdlen = htonl(FW_WR_OP_V(op) |
 | |
| 				       FW_WR_IMMDLEN_V(len));
 | |
| 		cpl = (void *)(wr + 1);
 | |
| 		sgl = (u64 *)(cpl + 1);
 | |
| 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 			cntrl = hwcsum(adap->params.chip, skb) |
 | |
| 				TXPKT_IPCSUM_DIS_F;
 | |
| 			q->tx_cso++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
 | |
| 		/* If current position is already at the end of the
 | |
| 		 * txq, reset the current to point to start of the queue
 | |
| 		 * and update the end ptr as well.
 | |
| 		 */
 | |
| 		left = (u8 *)end - (u8 *)q->q.stat;
 | |
| 		end = (void *)q->q.desc + left;
 | |
| 		sgl = (void *)q->q.desc;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		q->vlan_ins++;
 | |
| 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
 | |
| #ifdef CONFIG_CHELSIO_T4_FCOE
 | |
| 		if (skb->protocol == htons(ETH_P_FCOE))
 | |
| 			cntrl |= TXPKT_VLAN_V(
 | |
| 				 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
 | |
| #endif /* CONFIG_CHELSIO_T4_FCOE */
 | |
| 	}
 | |
| 
 | |
| 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
 | |
| 		TXPKT_PF_V(adap->pf);
 | |
| 	if (ptp_enabled)
 | |
| 		ctrl0 |= TXPKT_TSTAMP_F;
 | |
| #ifdef CONFIG_CHELSIO_T4_DCB
 | |
| 	if (is_t4(adap->params.chip))
 | |
| 		ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
 | |
| 	else
 | |
| 		ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
 | |
| #endif
 | |
| 	cpl->ctrl0 = htonl(ctrl0);
 | |
| 	cpl->pack = htons(0);
 | |
| 	cpl->len = htons(skb->len);
 | |
| 	cpl->ctrl1 = cpu_to_be64(cntrl);
 | |
| 
 | |
| 	if (immediate) {
 | |
| 		cxgb4_inline_tx_skb(skb, &q->q, sgl);
 | |
| 		dev_consume_skb_any(skb);
 | |
| 	} else {
 | |
| 		cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
 | |
| 				sgl_sdesc->addr);
 | |
| 		skb_orphan(skb);
 | |
| 		sgl_sdesc->skb = skb;
 | |
| 	}
 | |
| 
 | |
| 	txq_advance(&q->q, ndesc);
 | |
| 
 | |
| 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| out_free:
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /* Constants ... */
 | |
| enum {
 | |
| 	/* Egress Queue sizes, producer and consumer indices are all in units
 | |
| 	 * of Egress Context Units bytes.  Note that as far as the hardware is
 | |
| 	 * concerned, the free list is an Egress Queue (the host produces free
 | |
| 	 * buffers which the hardware consumes) and free list entries are
 | |
| 	 * 64-bit PCI DMA addresses.
 | |
| 	 */
 | |
| 	EQ_UNIT = SGE_EQ_IDXSIZE,
 | |
| 	FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
 | |
| 	TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
 | |
| 
 | |
| 	T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 | |
| 			       sizeof(struct cpl_tx_pkt_lso_core) +
 | |
| 			       sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Returns whether an Ethernet packet is small enough to fit completely as
 | |
|  *	immediate data.
 | |
|  */
 | |
| static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
 | |
| {
 | |
| 	/* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
 | |
| 	 * which does not accommodate immediate data.  We could dike out all
 | |
| 	 * of the support code for immediate data but that would tie our hands
 | |
| 	 * too much if we ever want to enhace the firmware.  It would also
 | |
| 	 * create more differences between the PF and VF Drivers.
 | |
| 	 */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Returns the number of flits needed for a TX Work Request for the
 | |
|  *	given Ethernet packet, including the needed WR and CPL headers.
 | |
|  */
 | |
| static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int flits;
 | |
| 
 | |
| 	/* If the skb is small enough, we can pump it out as a work request
 | |
| 	 * with only immediate data.  In that case we just have to have the
 | |
| 	 * TX Packet header plus the skb data in the Work Request.
 | |
| 	 */
 | |
| 	if (t4vf_is_eth_imm(skb))
 | |
| 		return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
 | |
| 				    sizeof(__be64));
 | |
| 
 | |
| 	/* Otherwise, we're going to have to construct a Scatter gather list
 | |
| 	 * of the skb body and fragments.  We also include the flits necessary
 | |
| 	 * for the TX Packet Work Request and CPL.  We always have a firmware
 | |
| 	 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
 | |
| 	 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
 | |
| 	 * message or, if we're doing a Large Send Offload, an LSO CPL message
 | |
| 	 * with an embedded TX Packet Write CPL message.
 | |
| 	 */
 | |
| 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 | |
| 	if (skb_shinfo(skb)->gso_size)
 | |
| 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 | |
| 			  sizeof(struct cpl_tx_pkt_lso_core) +
 | |
| 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 | |
| 	else
 | |
| 		flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
 | |
| 			  sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
 | |
| 	return flits;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
 | |
|  *	@skb: the packet
 | |
|  *	@dev: the egress net device
 | |
|  *
 | |
|  *	Add a packet to an SGE Ethernet TX queue.  Runs with softirqs disabled.
 | |
|  */
 | |
| static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
 | |
| 				     struct net_device *dev)
 | |
| {
 | |
| 	unsigned int last_desc, flits, ndesc;
 | |
| 	const struct skb_shared_info *ssi;
 | |
| 	struct fw_eth_tx_pkt_vm_wr *wr;
 | |
| 	struct tx_sw_desc *sgl_sdesc;
 | |
| 	struct cpl_tx_pkt_core *cpl;
 | |
| 	const struct port_info *pi;
 | |
| 	struct sge_eth_txq *txq;
 | |
| 	struct adapter *adapter;
 | |
| 	int qidx, credits, ret;
 | |
| 	size_t fw_hdr_copy_len;
 | |
| 	unsigned int chip_ver;
 | |
| 	u64 cntrl, *end;
 | |
| 	u32 wr_mid;
 | |
| 
 | |
| 	/* The chip minimum packet length is 10 octets but the firmware
 | |
| 	 * command that we are using requires that we copy the Ethernet header
 | |
| 	 * (including the VLAN tag) into the header so we reject anything
 | |
| 	 * smaller than that ...
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(wr->firmware) !=
 | |
| 		     (sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
 | |
| 		      sizeof(wr->ethtype) + sizeof(wr->vlantci)));
 | |
| 	fw_hdr_copy_len = sizeof(wr->firmware);
 | |
| 	ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	/* Figure out which TX Queue we're going to use. */
 | |
| 	pi = netdev_priv(dev);
 | |
| 	adapter = pi->adapter;
 | |
| 	qidx = skb_get_queue_mapping(skb);
 | |
| 	WARN_ON(qidx >= pi->nqsets);
 | |
| 	txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
 | |
| 
 | |
| 	/* Take this opportunity to reclaim any TX Descriptors whose DMA
 | |
| 	 * transfers have completed.
 | |
| 	 */
 | |
| 	reclaim_completed_tx(adapter, &txq->q, -1, true);
 | |
| 
 | |
| 	/* Calculate the number of flits and TX Descriptors we're going to
 | |
| 	 * need along with how many TX Descriptors will be left over after
 | |
| 	 * we inject our Work Request.
 | |
| 	 */
 | |
| 	flits = t4vf_calc_tx_flits(skb);
 | |
| 	ndesc = flits_to_desc(flits);
 | |
| 	credits = txq_avail(&txq->q) - ndesc;
 | |
| 
 | |
| 	if (unlikely(credits < 0)) {
 | |
| 		/* Not enough room for this packet's Work Request.  Stop the
 | |
| 		 * TX Queue and return a "busy" condition.  The queue will get
 | |
| 		 * started later on when the firmware informs us that space
 | |
| 		 * has opened up.
 | |
| 		 */
 | |
| 		eth_txq_stop(txq);
 | |
| 		dev_err(adapter->pdev_dev,
 | |
| 			"%s: TX ring %u full while queue awake!\n",
 | |
| 			dev->name, qidx);
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	last_desc = txq->q.pidx + ndesc - 1;
 | |
| 	if (last_desc >= txq->q.size)
 | |
| 		last_desc -= txq->q.size;
 | |
| 	sgl_sdesc = &txq->q.sdesc[last_desc];
 | |
| 
 | |
| 	if (!t4vf_is_eth_imm(skb) &&
 | |
| 	    unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
 | |
| 				   sgl_sdesc->addr) < 0)) {
 | |
| 		/* We need to map the skb into PCI DMA space (because it can't
 | |
| 		 * be in-lined directly into the Work Request) and the mapping
 | |
| 		 * operation failed.  Record the error and drop the packet.
 | |
| 		 */
 | |
| 		memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
 | |
| 		txq->mapping_err++;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
 | |
| 	wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
 | |
| 	if (unlikely(credits < ETHTXQ_STOP_THRES)) {
 | |
| 		/* After we're done injecting the Work Request for this
 | |
| 		 * packet, we'll be below our "stop threshold" so stop the TX
 | |
| 		 * Queue now and schedule a request for an SGE Egress Queue
 | |
| 		 * Update message.  The queue will get started later on when
 | |
| 		 * the firmware processes this Work Request and sends us an
 | |
| 		 * Egress Queue Status Update message indicating that space
 | |
| 		 * has opened up.
 | |
| 		 */
 | |
| 		eth_txq_stop(txq);
 | |
| 		if (chip_ver > CHELSIO_T5)
 | |
| 			wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
 | |
| 	}
 | |
| 
 | |
| 	/* Start filling in our Work Request.  Note that we do _not_ handle
 | |
| 	 * the WR Header wrapping around the TX Descriptor Ring.  If our
 | |
| 	 * maximum header size ever exceeds one TX Descriptor, we'll need to
 | |
| 	 * do something else here.
 | |
| 	 */
 | |
| 	WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
 | |
| 	wr = (void *)&txq->q.desc[txq->q.pidx];
 | |
| 	wr->equiq_to_len16 = cpu_to_be32(wr_mid);
 | |
| 	wr->r3[0] = cpu_to_be32(0);
 | |
| 	wr->r3[1] = cpu_to_be32(0);
 | |
| 	skb_copy_from_linear_data(skb, &wr->firmware, fw_hdr_copy_len);
 | |
| 	end = (u64 *)wr + flits;
 | |
| 
 | |
| 	/* If this is a Large Send Offload packet we'll put in an LSO CPL
 | |
| 	 * message with an encapsulated TX Packet CPL message.  Otherwise we
 | |
| 	 * just use a TX Packet CPL message.
 | |
| 	 */
 | |
| 	ssi = skb_shinfo(skb);
 | |
| 	if (ssi->gso_size) {
 | |
| 		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
 | |
| 		bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
 | |
| 		int l3hdr_len = skb_network_header_len(skb);
 | |
| 		int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
 | |
| 
 | |
| 		wr->op_immdlen =
 | |
| 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
 | |
| 				    FW_WR_IMMDLEN_V(sizeof(*lso) +
 | |
| 						    sizeof(*cpl)));
 | |
| 		 /* Fill in the LSO CPL message. */
 | |
| 		lso->lso_ctrl =
 | |
| 			cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
 | |
| 				    LSO_FIRST_SLICE_F |
 | |
| 				    LSO_LAST_SLICE_F |
 | |
| 				    LSO_IPV6_V(v6) |
 | |
| 				    LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
 | |
| 				    LSO_IPHDR_LEN_V(l3hdr_len / 4) |
 | |
| 				    LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
 | |
| 		lso->ipid_ofst = cpu_to_be16(0);
 | |
| 		lso->mss = cpu_to_be16(ssi->gso_size);
 | |
| 		lso->seqno_offset = cpu_to_be32(0);
 | |
| 		if (is_t4(adapter->params.chip))
 | |
| 			lso->len = cpu_to_be32(skb->len);
 | |
| 		else
 | |
| 			lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
 | |
| 
 | |
| 		/* Set up TX Packet CPL pointer, control word and perform
 | |
| 		 * accounting.
 | |
| 		 */
 | |
| 		cpl = (void *)(lso + 1);
 | |
| 
 | |
| 		if (chip_ver <= CHELSIO_T5)
 | |
| 			cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
 | |
| 		else
 | |
| 			cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
 | |
| 
 | |
| 		cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
 | |
| 					   TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
 | |
| 			 TXPKT_IPHDR_LEN_V(l3hdr_len);
 | |
| 		txq->tso++;
 | |
| 		txq->tx_cso += ssi->gso_segs;
 | |
| 	} else {
 | |
| 		int len;
 | |
| 
 | |
| 		len = (t4vf_is_eth_imm(skb)
 | |
| 		       ? skb->len + sizeof(*cpl)
 | |
| 		       : sizeof(*cpl));
 | |
| 		wr->op_immdlen =
 | |
| 			cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
 | |
| 				    FW_WR_IMMDLEN_V(len));
 | |
| 
 | |
| 		/* Set up TX Packet CPL pointer, control word and perform
 | |
| 		 * accounting.
 | |
| 		 */
 | |
| 		cpl = (void *)(wr + 1);
 | |
| 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 			cntrl = hwcsum(adapter->params.chip, skb) |
 | |
| 				TXPKT_IPCSUM_DIS_F;
 | |
| 			txq->tx_cso++;
 | |
| 		} else {
 | |
| 			cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If there's a VLAN tag present, add that to the list of things to
 | |
| 	 * do in this Work Request.
 | |
| 	 */
 | |
| 	if (skb_vlan_tag_present(skb)) {
 | |
| 		txq->vlan_ins++;
 | |
| 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
 | |
| 	}
 | |
| 
 | |
| 	 /* Fill in the TX Packet CPL message header. */
 | |
| 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
 | |
| 				 TXPKT_INTF_V(pi->port_id) |
 | |
| 				 TXPKT_PF_V(0));
 | |
| 	cpl->pack = cpu_to_be16(0);
 | |
| 	cpl->len = cpu_to_be16(skb->len);
 | |
| 	cpl->ctrl1 = cpu_to_be64(cntrl);
 | |
| 
 | |
| 	/* Fill in the body of the TX Packet CPL message with either in-lined
 | |
| 	 * data or a Scatter/Gather List.
 | |
| 	 */
 | |
| 	if (t4vf_is_eth_imm(skb)) {
 | |
| 		/* In-line the packet's data and free the skb since we don't
 | |
| 		 * need it any longer.
 | |
| 		 */
 | |
| 		cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
 | |
| 		dev_consume_skb_any(skb);
 | |
| 	} else {
 | |
| 		/* Write the skb's Scatter/Gather list into the TX Packet CPL
 | |
| 		 * message and retain a pointer to the skb so we can free it
 | |
| 		 * later when its DMA completes.  (We store the skb pointer
 | |
| 		 * in the Software Descriptor corresponding to the last TX
 | |
| 		 * Descriptor used by the Work Request.)
 | |
| 		 *
 | |
| 		 * The retained skb will be freed when the corresponding TX
 | |
| 		 * Descriptors are reclaimed after their DMAs complete.
 | |
| 		 * However, this could take quite a while since, in general,
 | |
| 		 * the hardware is set up to be lazy about sending DMA
 | |
| 		 * completion notifications to us and we mostly perform TX
 | |
| 		 * reclaims in the transmit routine.
 | |
| 		 *
 | |
| 		 * This is good for performamce but means that we rely on new
 | |
| 		 * TX packets arriving to run the destructors of completed
 | |
| 		 * packets, which open up space in their sockets' send queues.
 | |
| 		 * Sometimes we do not get such new packets causing TX to
 | |
| 		 * stall.  A single UDP transmitter is a good example of this
 | |
| 		 * situation.  We have a clean up timer that periodically
 | |
| 		 * reclaims completed packets but it doesn't run often enough
 | |
| 		 * (nor do we want it to) to prevent lengthy stalls.  A
 | |
| 		 * solution to this problem is to run the destructor early,
 | |
| 		 * after the packet is queued but before it's DMAd.  A con is
 | |
| 		 * that we lie to socket memory accounting, but the amount of
 | |
| 		 * extra memory is reasonable (limited by the number of TX
 | |
| 		 * descriptors), the packets do actually get freed quickly by
 | |
| 		 * new packets almost always, and for protocols like TCP that
 | |
| 		 * wait for acks to really free up the data the extra memory
 | |
| 		 * is even less.  On the positive side we run the destructors
 | |
| 		 * on the sending CPU rather than on a potentially different
 | |
| 		 * completing CPU, usually a good thing.
 | |
| 		 *
 | |
| 		 * Run the destructor before telling the DMA engine about the
 | |
| 		 * packet to make sure it doesn't complete and get freed
 | |
| 		 * prematurely.
 | |
| 		 */
 | |
| 		struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
 | |
| 		struct sge_txq *tq = &txq->q;
 | |
| 
 | |
| 		/* If the Work Request header was an exact multiple of our TX
 | |
| 		 * Descriptor length, then it's possible that the starting SGL
 | |
| 		 * pointer lines up exactly with the end of our TX Descriptor
 | |
| 		 * ring.  If that's the case, wrap around to the beginning
 | |
| 		 * here ...
 | |
| 		 */
 | |
| 		if (unlikely((void *)sgl == (void *)tq->stat)) {
 | |
| 			sgl = (void *)tq->desc;
 | |
| 			end = (void *)((void *)tq->desc +
 | |
| 				       ((void *)end - (void *)tq->stat));
 | |
| 		}
 | |
| 
 | |
| 		cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
 | |
| 		skb_orphan(skb);
 | |
| 		sgl_sdesc->skb = skb;
 | |
| 	}
 | |
| 
 | |
| 	/* Advance our internal TX Queue state, tell the hardware about
 | |
| 	 * the new TX descriptors and return success.
 | |
| 	 */
 | |
| 	txq_advance(&txq->q, ndesc);
 | |
| 
 | |
| 	cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| out_free:
 | |
| 	/* An error of some sort happened.  Free the TX skb and tell the
 | |
| 	 * OS that we've "dealt" with the packet ...
 | |
| 	 */
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
 | |
|  * @q: the SGE control Tx queue
 | |
|  *
 | |
|  * This is a variant of cxgb4_reclaim_completed_tx() that is used
 | |
|  * for Tx queues that send only immediate data (presently just
 | |
|  * the control queues) and	thus do not have any sk_buffs to release.
 | |
|  */
 | |
| static inline void reclaim_completed_tx_imm(struct sge_txq *q)
 | |
| {
 | |
| 	int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
 | |
| 	int reclaim = hw_cidx - q->cidx;
 | |
| 
 | |
| 	if (reclaim < 0)
 | |
| 		reclaim += q->size;
 | |
| 
 | |
| 	q->in_use -= reclaim;
 | |
| 	q->cidx = hw_cidx;
 | |
| }
 | |
| 
 | |
| static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
 | |
| {
 | |
| 	u32 val = *idx + n;
 | |
| 
 | |
| 	if (val >= max)
 | |
| 		val -= max;
 | |
| 
 | |
| 	*idx = val;
 | |
| }
 | |
| 
 | |
| void cxgb4_eosw_txq_free_desc(struct adapter *adap,
 | |
| 			      struct sge_eosw_txq *eosw_txq, u32 ndesc)
 | |
| {
 | |
| 	struct tx_sw_desc *d;
 | |
| 
 | |
| 	d = &eosw_txq->desc[eosw_txq->last_cidx];
 | |
| 	while (ndesc--) {
 | |
| 		if (d->skb) {
 | |
| 			if (d->addr[0]) {
 | |
| 				unmap_skb(adap->pdev_dev, d->skb, d->addr);
 | |
| 				memset(d->addr, 0, sizeof(d->addr));
 | |
| 			}
 | |
| 			dev_consume_skb_any(d->skb);
 | |
| 			d->skb = NULL;
 | |
| 		}
 | |
| 		eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
 | |
| 				       eosw_txq->ndesc);
 | |
| 		d = &eosw_txq->desc[eosw_txq->last_cidx];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
 | |
| {
 | |
| 	eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
 | |
| 	eosw_txq->inuse += n;
 | |
| }
 | |
| 
 | |
| static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
 | |
| 				   struct sk_buff *skb)
 | |
| {
 | |
| 	if (eosw_txq->inuse == eosw_txq->ndesc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	eosw_txq->desc[eosw_txq->pidx].skb = skb;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
 | |
| {
 | |
| 	return eosw_txq->desc[eosw_txq->last_pidx].skb;
 | |
| }
 | |
| 
 | |
| static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
 | |
| 				       struct sk_buff *skb, u32 hdr_len)
 | |
| {
 | |
| 	u8 flits, nsgl = 0;
 | |
| 	u32 wrlen;
 | |
| 
 | |
| 	wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
 | |
| 	if (skb_shinfo(skb)->gso_size &&
 | |
| 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
 | |
| 		wrlen += sizeof(struct cpl_tx_pkt_lso_core);
 | |
| 
 | |
| 	wrlen += roundup(hdr_len, 16);
 | |
| 
 | |
| 	/* Packet headers + WR + CPLs */
 | |
| 	flits = DIV_ROUND_UP(wrlen, 8);
 | |
| 
 | |
| 	if (skb_shinfo(skb)->nr_frags > 0) {
 | |
| 		if (skb_headlen(skb) - hdr_len)
 | |
| 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
 | |
| 		else
 | |
| 			nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
 | |
| 	} else if (skb->len - hdr_len) {
 | |
| 		nsgl = sgl_len(1);
 | |
| 	}
 | |
| 
 | |
| 	return flits + nsgl;
 | |
| }
 | |
| 
 | |
| static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
 | |
| 			 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
 | |
| 			 u32 hdr_len, u32 wrlen)
 | |
| {
 | |
| 	const struct skb_shared_info *ssi = skb_shinfo(skb);
 | |
| 	struct cpl_tx_pkt_core *cpl;
 | |
| 	u32 immd_len, wrlen16;
 | |
| 	bool compl = false;
 | |
| 	u8 ver, proto;
 | |
| 
 | |
| 	ver = ip_hdr(skb)->version;
 | |
| 	proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
 | |
| 
 | |
| 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
 | |
| 	immd_len = sizeof(struct cpl_tx_pkt_core);
 | |
| 	if (skb_shinfo(skb)->gso_size &&
 | |
| 	    !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
 | |
| 		immd_len += sizeof(struct cpl_tx_pkt_lso_core);
 | |
| 	immd_len += hdr_len;
 | |
| 
 | |
| 	if (!eosw_txq->ncompl ||
 | |
| 	    (eosw_txq->last_compl + wrlen16) >=
 | |
| 	    (adap->params.ofldq_wr_cred / 2)) {
 | |
| 		compl = true;
 | |
| 		eosw_txq->ncompl++;
 | |
| 		eosw_txq->last_compl = 0;
 | |
| 	}
 | |
| 
 | |
| 	wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
 | |
| 				     FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
 | |
| 				     FW_WR_COMPL_V(compl));
 | |
| 	wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
 | |
| 					 FW_WR_FLOWID_V(eosw_txq->hwtid));
 | |
| 	wr->r3 = 0;
 | |
| 	if (proto == IPPROTO_UDP) {
 | |
| 		cpl = write_eo_udp_wr(skb, wr, hdr_len);
 | |
| 	} else {
 | |
| 		wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
 | |
| 		wr->u.tcpseg.ethlen = skb_network_offset(skb);
 | |
| 		wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
 | |
| 		wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
 | |
| 		wr->u.tcpseg.tsclk_tsoff = 0;
 | |
| 		wr->u.tcpseg.r4 = 0;
 | |
| 		wr->u.tcpseg.r5 = 0;
 | |
| 		wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
 | |
| 
 | |
| 		if (ssi->gso_size) {
 | |
| 			struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
 | |
| 
 | |
| 			wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
 | |
| 			cpl = write_tso_wr(adap, skb, lso);
 | |
| 		} else {
 | |
| 			wr->u.tcpseg.mss = cpu_to_be16(0xffff);
 | |
| 			cpl = (void *)(wr + 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	eosw_txq->cred -= wrlen16;
 | |
| 	eosw_txq->last_compl += wrlen16;
 | |
| 	return cpl;
 | |
| }
 | |
| 
 | |
| static int ethofld_hard_xmit(struct net_device *dev,
 | |
| 			     struct sge_eosw_txq *eosw_txq)
 | |
| {
 | |
| 	struct port_info *pi = netdev2pinfo(dev);
 | |
| 	struct adapter *adap = netdev2adap(dev);
 | |
| 	u32 wrlen, wrlen16, hdr_len, data_len;
 | |
| 	enum sge_eosw_state next_state;
 | |
| 	u64 cntrl, *start, *end, *sgl;
 | |
| 	struct sge_eohw_txq *eohw_txq;
 | |
| 	struct cpl_tx_pkt_core *cpl;
 | |
| 	struct fw_eth_tx_eo_wr *wr;
 | |
| 	bool skip_eotx_wr = false;
 | |
| 	struct tx_sw_desc *d;
 | |
| 	struct sk_buff *skb;
 | |
| 	int left, ret = 0;
 | |
| 	u8 flits, ndesc;
 | |
| 
 | |
| 	eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
 | |
| 	spin_lock(&eohw_txq->lock);
 | |
| 	reclaim_completed_tx_imm(&eohw_txq->q);
 | |
| 
 | |
| 	d = &eosw_txq->desc[eosw_txq->last_pidx];
 | |
| 	skb = d->skb;
 | |
| 	skb_tx_timestamp(skb);
 | |
| 
 | |
| 	wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
 | |
| 	if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
 | |
| 		     eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
 | |
| 		hdr_len = skb->len;
 | |
| 		data_len = 0;
 | |
| 		flits = DIV_ROUND_UP(hdr_len, 8);
 | |
| 		if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
 | |
| 			next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
 | |
| 		else
 | |
| 			next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
 | |
| 		skip_eotx_wr = true;
 | |
| 	} else {
 | |
| 		hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
 | |
| 		data_len = skb->len - hdr_len;
 | |
| 		flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
 | |
| 	}
 | |
| 	ndesc = flits_to_desc(flits);
 | |
| 	wrlen = flits * 8;
 | |
| 	wrlen16 = DIV_ROUND_UP(wrlen, 16);
 | |
| 
 | |
| 	left = txq_avail(&eohw_txq->q) - ndesc;
 | |
| 
 | |
| 	/* If there are no descriptors left in hardware queues or no
 | |
| 	 * CPL credits left in software queues, then wait for them
 | |
| 	 * to come back and retry again. Note that we always request
 | |
| 	 * for credits update via interrupt for every half credits
 | |
| 	 * consumed. So, the interrupt will eventually restore the
 | |
| 	 * credits and invoke the Tx path again.
 | |
| 	 */
 | |
| 	if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(skip_eotx_wr)) {
 | |
| 		start = (u64 *)wr;
 | |
| 		eosw_txq->state = next_state;
 | |
| 		eosw_txq->cred -= wrlen16;
 | |
| 		eosw_txq->ncompl++;
 | |
| 		eosw_txq->last_compl = 0;
 | |
| 		goto write_wr_headers;
 | |
| 	}
 | |
| 
 | |
| 	cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
 | |
| 	cntrl = hwcsum(adap->params.chip, skb);
 | |
| 	if (skb_vlan_tag_present(skb))
 | |
| 		cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
 | |
| 
 | |
| 	cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
 | |
| 				 TXPKT_INTF_V(pi->tx_chan) |
 | |
| 				 TXPKT_PF_V(adap->pf));
 | |
| 	cpl->pack = 0;
 | |
| 	cpl->len = cpu_to_be16(skb->len);
 | |
| 	cpl->ctrl1 = cpu_to_be64(cntrl);
 | |
| 
 | |
| 	start = (u64 *)(cpl + 1);
 | |
| 
 | |
| write_wr_headers:
 | |
| 	sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
 | |
| 					  hdr_len);
 | |
| 	if (data_len) {
 | |
| 		ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
 | |
| 		if (unlikely(ret)) {
 | |
| 			memset(d->addr, 0, sizeof(d->addr));
 | |
| 			eohw_txq->mapping_err++;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		end = (u64 *)wr + flits;
 | |
| 		if (unlikely(start > sgl)) {
 | |
| 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
 | |
| 			end = (void *)eohw_txq->q.desc + left;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
 | |
| 			/* If current position is already at the end of the
 | |
| 			 * txq, reset the current to point to start of the queue
 | |
| 			 * and update the end ptr as well.
 | |
| 			 */
 | |
| 			left = (u8 *)end - (u8 *)eohw_txq->q.stat;
 | |
| 
 | |
| 			end = (void *)eohw_txq->q.desc + left;
 | |
| 			sgl = (void *)eohw_txq->q.desc;
 | |
| 		}
 | |
| 
 | |
| 		cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
 | |
| 				d->addr);
 | |
| 	}
 | |
| 
 | |
| 	if (skb_shinfo(skb)->gso_size) {
 | |
| 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
 | |
| 			eohw_txq->uso++;
 | |
| 		else
 | |
| 			eohw_txq->tso++;
 | |
| 		eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
 | |
| 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 | |
| 		eohw_txq->tx_cso++;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_vlan_tag_present(skb))
 | |
| 		eohw_txq->vlan_ins++;
 | |
| 
 | |
| 	txq_advance(&eohw_txq->q, ndesc);
 | |
| 	cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
 | |
| 	eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&eohw_txq->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	int pktcount, ret;
 | |
| 
 | |
| 	switch (eosw_txq->state) {
 | |
| 	case CXGB4_EO_STATE_ACTIVE:
 | |
| 	case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
 | |
| 	case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
 | |
| 		pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
 | |
| 		if (pktcount < 0)
 | |
| 			pktcount += eosw_txq->ndesc;
 | |
| 		break;
 | |
| 	case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
 | |
| 	case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
 | |
| 	case CXGB4_EO_STATE_CLOSED:
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	while (pktcount--) {
 | |
| 		skb = eosw_txq_peek(eosw_txq);
 | |
| 		if (!skb) {
 | |
| 			eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
 | |
| 					       eosw_txq->ndesc);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = ethofld_hard_xmit(dev, eosw_txq);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
 | |
| 				      struct net_device *dev)
 | |
| {
 | |
| 	struct cxgb4_tc_port_mqprio *tc_port_mqprio;
 | |
| 	struct port_info *pi = netdev2pinfo(dev);
 | |
| 	struct adapter *adap = netdev2adap(dev);
 | |
| 	struct sge_eosw_txq *eosw_txq;
 | |
| 	u32 qid;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
 | |
| 	if (ret)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
 | |
| 	qid = skb_get_queue_mapping(skb) - pi->nqsets;
 | |
| 	eosw_txq = &tc_port_mqprio->eosw_txq[qid];
 | |
| 	spin_lock_bh(&eosw_txq->lock);
 | |
| 	if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	ret = eosw_txq_enqueue(eosw_txq, skb);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/* SKB is queued for processing until credits are available.
 | |
| 	 * So, call the destructor now and we'll free the skb later
 | |
| 	 * after it has been successfully transmitted.
 | |
| 	 */
 | |
| 	skb_orphan(skb);
 | |
| 
 | |
| 	eosw_txq_advance(eosw_txq, 1);
 | |
| 	ethofld_xmit(dev, eosw_txq);
 | |
| 	spin_unlock_bh(&eosw_txq->lock);
 | |
| 	return NETDEV_TX_OK;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock_bh(&eosw_txq->lock);
 | |
| out_free:
 | |
| 	dev_kfree_skb_any(skb);
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	u16 qid = skb_get_queue_mapping(skb);
 | |
| 
 | |
| 	if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
 | |
| 		return cxgb4_vf_eth_xmit(skb, dev);
 | |
| 
 | |
| 	if (unlikely(qid >= pi->nqsets))
 | |
| 		return cxgb4_ethofld_xmit(skb, dev);
 | |
| 
 | |
| 	if (is_ptp_enabled(skb, dev)) {
 | |
| 		struct adapter *adap = netdev2adap(dev);
 | |
| 		netdev_tx_t ret;
 | |
| 
 | |
| 		spin_lock(&adap->ptp_lock);
 | |
| 		ret = cxgb4_eth_xmit(skb, dev);
 | |
| 		spin_unlock(&adap->ptp_lock);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return cxgb4_eth_xmit(skb, dev);
 | |
| }
 | |
| 
 | |
| static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
 | |
| {
 | |
| 	int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
 | |
| 	int pidx = eosw_txq->pidx;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	if (!pktcount)
 | |
| 		return;
 | |
| 
 | |
| 	if (pktcount < 0)
 | |
| 		pktcount += eosw_txq->ndesc;
 | |
| 
 | |
| 	while (pktcount--) {
 | |
| 		pidx--;
 | |
| 		if (pidx < 0)
 | |
| 			pidx += eosw_txq->ndesc;
 | |
| 
 | |
| 		skb = eosw_txq->desc[pidx].skb;
 | |
| 		if (skb) {
 | |
| 			dev_consume_skb_any(skb);
 | |
| 			eosw_txq->desc[pidx].skb = NULL;
 | |
| 			eosw_txq->inuse--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	eosw_txq->pidx = eosw_txq->last_pidx + 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
 | |
|  * @dev: netdevice
 | |
|  * @eotid: ETHOFLD tid to bind/unbind
 | |
|  * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
 | |
|  *
 | |
|  * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
 | |
|  * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
 | |
|  * a traffic class.
 | |
|  */
 | |
| int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
 | |
| {
 | |
| 	struct port_info *pi = netdev2pinfo(dev);
 | |
| 	struct adapter *adap = netdev2adap(dev);
 | |
| 	enum sge_eosw_state next_state;
 | |
| 	struct sge_eosw_txq *eosw_txq;
 | |
| 	u32 len, len16, nparams = 6;
 | |
| 	struct fw_flowc_wr *flowc;
 | |
| 	struct eotid_entry *entry;
 | |
| 	struct sge_ofld_rxq *rxq;
 | |
| 	struct sk_buff *skb;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	len = struct_size(flowc, mnemval, nparams);
 | |
| 	len16 = DIV_ROUND_UP(len, 16);
 | |
| 
 | |
| 	entry = cxgb4_lookup_eotid(&adap->tids, eotid);
 | |
| 	if (!entry)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	eosw_txq = (struct sge_eosw_txq *)entry->data;
 | |
| 	if (!eosw_txq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!(adap->flags & CXGB4_FW_OK)) {
 | |
| 		/* Don't stall caller when access to FW is lost */
 | |
| 		complete(&eosw_txq->completion);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	skb = alloc_skb(len, GFP_KERNEL);
 | |
| 	if (!skb)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_bh(&eosw_txq->lock);
 | |
| 	if (tc != FW_SCHED_CLS_NONE) {
 | |
| 		if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
 | |
| 			goto out_free_skb;
 | |
| 
 | |
| 		next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
 | |
| 	} else {
 | |
| 		if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
 | |
| 			goto out_free_skb;
 | |
| 
 | |
| 		next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
 | |
| 	}
 | |
| 
 | |
| 	flowc = __skb_put(skb, len);
 | |
| 	memset(flowc, 0, len);
 | |
| 
 | |
| 	rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
 | |
| 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
 | |
| 					  FW_WR_FLOWID_V(eosw_txq->hwtid));
 | |
| 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
 | |
| 					   FW_FLOWC_WR_NPARAMS_V(nparams) |
 | |
| 					   FW_WR_COMPL_V(1));
 | |
| 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
 | |
| 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
 | |
| 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
 | |
| 	flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
 | |
| 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
 | |
| 	flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
 | |
| 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
 | |
| 	flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
 | |
| 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
 | |
| 	flowc->mnemval[4].val = cpu_to_be32(tc);
 | |
| 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
 | |
| 	flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
 | |
| 					    FW_FLOWC_MNEM_EOSTATE_CLOSING :
 | |
| 					    FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
 | |
| 
 | |
| 	/* Free up any pending skbs to ensure there's room for
 | |
| 	 * termination FLOWC.
 | |
| 	 */
 | |
| 	if (tc == FW_SCHED_CLS_NONE)
 | |
| 		eosw_txq_flush_pending_skbs(eosw_txq);
 | |
| 
 | |
| 	ret = eosw_txq_enqueue(eosw_txq, skb);
 | |
| 	if (ret)
 | |
| 		goto out_free_skb;
 | |
| 
 | |
| 	eosw_txq->state = next_state;
 | |
| 	eosw_txq->flowc_idx = eosw_txq->pidx;
 | |
| 	eosw_txq_advance(eosw_txq, 1);
 | |
| 	ethofld_xmit(dev, eosw_txq);
 | |
| 
 | |
| 	spin_unlock_bh(&eosw_txq->lock);
 | |
| 	return 0;
 | |
| 
 | |
| out_free_skb:
 | |
| 	dev_consume_skb_any(skb);
 | |
| 	spin_unlock_bh(&eosw_txq->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	is_imm - check whether a packet can be sent as immediate data
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Returns true if a packet can be sent as a WR with immediate data.
 | |
|  */
 | |
| static inline int is_imm(const struct sk_buff *skb)
 | |
| {
 | |
| 	return skb->len <= MAX_CTRL_WR_LEN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ctrlq_check_stop - check if a control queue is full and should stop
 | |
|  *	@q: the queue
 | |
|  *	@wr: most recent WR written to the queue
 | |
|  *
 | |
|  *	Check if a control queue has become full and should be stopped.
 | |
|  *	We clean up control queue descriptors very lazily, only when we are out.
 | |
|  *	If the queue is still full after reclaiming any completed descriptors
 | |
|  *	we suspend it and have the last WR wake it up.
 | |
|  */
 | |
| static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
 | |
| {
 | |
| 	reclaim_completed_tx_imm(&q->q);
 | |
| 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
 | |
| 		wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
 | |
| 		q->q.stops++;
 | |
| 		q->full = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
 | |
| 
 | |
| int cxgb4_selftest_lb_pkt(struct net_device *netdev)
 | |
| {
 | |
| 	struct port_info *pi = netdev_priv(netdev);
 | |
| 	struct adapter *adap = pi->adapter;
 | |
| 	struct cxgb4_ethtool_lb_test *lb;
 | |
| 	int ret, i = 0, pkt_len, credits;
 | |
| 	struct fw_eth_tx_pkt_wr *wr;
 | |
| 	struct cpl_tx_pkt_core *cpl;
 | |
| 	u32 ctrl0, ndesc, flits;
 | |
| 	struct sge_eth_txq *q;
 | |
| 	u8 *sgl;
 | |
| 
 | |
| 	pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
 | |
| 
 | |
| 	flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
 | |
| 			     sizeof(__be64));
 | |
| 	ndesc = flits_to_desc(flits);
 | |
| 
 | |
| 	lb = &pi->ethtool_lb;
 | |
| 	lb->loopback = 1;
 | |
| 
 | |
| 	q = &adap->sge.ethtxq[pi->first_qset];
 | |
| 	__netif_tx_lock_bh(q->txq);
 | |
| 
 | |
| 	reclaim_completed_tx(adap, &q->q, -1, true);
 | |
| 	credits = txq_avail(&q->q) - ndesc;
 | |
| 	if (unlikely(credits < 0)) {
 | |
| 		__netif_tx_unlock_bh(q->txq);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	wr = (void *)&q->q.desc[q->q.pidx];
 | |
| 	memset(wr, 0, sizeof(struct tx_desc));
 | |
| 
 | |
| 	wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
 | |
| 			       FW_WR_IMMDLEN_V(pkt_len +
 | |
| 			       sizeof(*cpl)));
 | |
| 	wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
 | |
| 	wr->r3 = cpu_to_be64(0);
 | |
| 
 | |
| 	cpl = (void *)(wr + 1);
 | |
| 	sgl = (u8 *)(cpl + 1);
 | |
| 
 | |
| 	ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
 | |
| 		TXPKT_INTF_V(pi->tx_chan + 4);
 | |
| 
 | |
| 	cpl->ctrl0 = htonl(ctrl0);
 | |
| 	cpl->pack = htons(0);
 | |
| 	cpl->len = htons(pkt_len);
 | |
| 	cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
 | |
| 
 | |
| 	eth_broadcast_addr(sgl);
 | |
| 	i += ETH_ALEN;
 | |
| 	ether_addr_copy(&sgl[i], netdev->dev_addr);
 | |
| 	i += ETH_ALEN;
 | |
| 
 | |
| 	snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
 | |
| 		 CXGB4_SELFTEST_LB_STR);
 | |
| 
 | |
| 	init_completion(&lb->completion);
 | |
| 	txq_advance(&q->q, ndesc);
 | |
| 	cxgb4_ring_tx_db(adap, &q->q, ndesc);
 | |
| 	__netif_tx_unlock_bh(q->txq);
 | |
| 
 | |
| 	/* wait for the pkt to return */
 | |
| 	ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
 | |
| 	if (!ret)
 | |
| 		ret = -ETIMEDOUT;
 | |
| 	else
 | |
| 		ret = lb->result;
 | |
| 
 | |
| 	lb->loopback = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ctrl_xmit - send a packet through an SGE control Tx queue
 | |
|  *	@q: the control queue
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Send a packet through an SGE control Tx queue.  Packets sent through
 | |
|  *	a control queue must fit entirely as immediate data.
 | |
|  */
 | |
| static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int ndesc;
 | |
| 	struct fw_wr_hdr *wr;
 | |
| 
 | |
| 	if (unlikely(!is_imm(skb))) {
 | |
| 		WARN_ON(1);
 | |
| 		dev_kfree_skb(skb);
 | |
| 		return NET_XMIT_DROP;
 | |
| 	}
 | |
| 
 | |
| 	ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
 | |
| 	spin_lock(&q->sendq.lock);
 | |
| 
 | |
| 	if (unlikely(q->full)) {
 | |
| 		skb->priority = ndesc;                  /* save for restart */
 | |
| 		__skb_queue_tail(&q->sendq, skb);
 | |
| 		spin_unlock(&q->sendq.lock);
 | |
| 		return NET_XMIT_CN;
 | |
| 	}
 | |
| 
 | |
| 	wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
 | |
| 	cxgb4_inline_tx_skb(skb, &q->q, wr);
 | |
| 
 | |
| 	txq_advance(&q->q, ndesc);
 | |
| 	if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
 | |
| 		ctrlq_check_stop(q, wr);
 | |
| 
 | |
| 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
 | |
| 	spin_unlock(&q->sendq.lock);
 | |
| 
 | |
| 	kfree_skb(skb);
 | |
| 	return NET_XMIT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	restart_ctrlq - restart a suspended control queue
 | |
|  *	@t: pointer to the tasklet associated with this handler
 | |
|  *
 | |
|  *	Resumes transmission on a suspended Tx control queue.
 | |
|  */
 | |
| static void restart_ctrlq(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int written = 0;
 | |
| 	struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
 | |
| 
 | |
| 	spin_lock(&q->sendq.lock);
 | |
| 	reclaim_completed_tx_imm(&q->q);
 | |
| 	BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES);  /* q should be empty */
 | |
| 
 | |
| 	while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
 | |
| 		struct fw_wr_hdr *wr;
 | |
| 		unsigned int ndesc = skb->priority;     /* previously saved */
 | |
| 
 | |
| 		written += ndesc;
 | |
| 		/* Write descriptors and free skbs outside the lock to limit
 | |
| 		 * wait times.  q->full is still set so new skbs will be queued.
 | |
| 		 */
 | |
| 		wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
 | |
| 		txq_advance(&q->q, ndesc);
 | |
| 		spin_unlock(&q->sendq.lock);
 | |
| 
 | |
| 		cxgb4_inline_tx_skb(skb, &q->q, wr);
 | |
| 		kfree_skb(skb);
 | |
| 
 | |
| 		if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
 | |
| 			unsigned long old = q->q.stops;
 | |
| 
 | |
| 			ctrlq_check_stop(q, wr);
 | |
| 			if (q->q.stops != old) {          /* suspended anew */
 | |
| 				spin_lock(&q->sendq.lock);
 | |
| 				goto ringdb;
 | |
| 			}
 | |
| 		}
 | |
| 		if (written > 16) {
 | |
| 			cxgb4_ring_tx_db(q->adap, &q->q, written);
 | |
| 			written = 0;
 | |
| 		}
 | |
| 		spin_lock(&q->sendq.lock);
 | |
| 	}
 | |
| 	q->full = 0;
 | |
| ringdb:
 | |
| 	if (written)
 | |
| 		cxgb4_ring_tx_db(q->adap, &q->q, written);
 | |
| 	spin_unlock(&q->sendq.lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_mgmt_tx - send a management message
 | |
|  *	@adap: the adapter
 | |
|  *	@skb: the packet containing the management message
 | |
|  *
 | |
|  *	Send a management message through control queue 0.
 | |
|  */
 | |
| int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	local_bh_disable();
 | |
| 	ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
 | |
| 	local_bh_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	is_ofld_imm - check whether a packet can be sent as immediate data
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Returns true if a packet can be sent as an offload WR with immediate
 | |
|  *	data.
 | |
|  *	FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
 | |
|  *      However, FW_ULPTX_WR commands have a 256 byte immediate only
 | |
|  *      payload limit.
 | |
|  */
 | |
| static inline int is_ofld_imm(const struct sk_buff *skb)
 | |
| {
 | |
| 	struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
 | |
| 	unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
 | |
| 
 | |
| 	if (unlikely(opcode == FW_ULPTX_WR))
 | |
| 		return skb->len <= MAX_IMM_ULPTX_WR_LEN;
 | |
| 	else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
 | |
| 		return skb->len <= SGE_MAX_WR_LEN;
 | |
| 	else
 | |
| 		return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	calc_tx_flits_ofld - calculate # of flits for an offload packet
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Returns the number of flits needed for the given offload packet.
 | |
|  *	These packets are already fully constructed and no additional headers
 | |
|  *	will be added.
 | |
|  */
 | |
| static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int flits, cnt;
 | |
| 
 | |
| 	if (is_ofld_imm(skb))
 | |
| 		return DIV_ROUND_UP(skb->len, 8);
 | |
| 
 | |
| 	flits = skb_transport_offset(skb) / 8U;   /* headers */
 | |
| 	cnt = skb_shinfo(skb)->nr_frags;
 | |
| 	if (skb_tail_pointer(skb) != skb_transport_header(skb))
 | |
| 		cnt++;
 | |
| 	return flits + sgl_len(cnt);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
 | |
|  *	@q: the queue to stop
 | |
|  *
 | |
|  *	Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
 | |
|  *	inability to map packets.  A periodic timer attempts to restart
 | |
|  *	queues so marked.
 | |
|  */
 | |
| static void txq_stop_maperr(struct sge_uld_txq *q)
 | |
| {
 | |
| 	q->mapping_err++;
 | |
| 	q->q.stops++;
 | |
| 	set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
 | |
| 		q->adap->sge.txq_maperr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ofldtxq_stop - stop an offload Tx queue that has become full
 | |
|  *	@q: the queue to stop
 | |
|  *	@wr: the Work Request causing the queue to become full
 | |
|  *
 | |
|  *	Stops an offload Tx queue that has become full and modifies the packet
 | |
|  *	being written to request a wakeup.
 | |
|  */
 | |
| static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
 | |
| {
 | |
| 	wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
 | |
| 	q->q.stops++;
 | |
| 	q->full = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	service_ofldq - service/restart a suspended offload queue
 | |
|  *	@q: the offload queue
 | |
|  *
 | |
|  *	Services an offload Tx queue by moving packets from its Pending Send
 | |
|  *	Queue to the Hardware TX ring.  The function starts and ends with the
 | |
|  *	Send Queue locked, but drops the lock while putting the skb at the
 | |
|  *	head of the Send Queue onto the Hardware TX Ring.  Dropping the lock
 | |
|  *	allows more skbs to be added to the Send Queue by other threads.
 | |
|  *	The packet being processed at the head of the Pending Send Queue is
 | |
|  *	left on the queue in case we experience DMA Mapping errors, etc.
 | |
|  *	and need to give up and restart later.
 | |
|  *
 | |
|  *	service_ofldq() can be thought of as a task which opportunistically
 | |
|  *	uses other threads execution contexts.  We use the Offload Queue
 | |
|  *	boolean "service_ofldq_running" to make sure that only one instance
 | |
|  *	is ever running at a time ...
 | |
|  */
 | |
| static void service_ofldq(struct sge_uld_txq *q)
 | |
| 	__must_hold(&q->sendq.lock)
 | |
| {
 | |
| 	u64 *pos, *before, *end;
 | |
| 	int credits;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct sge_txq *txq;
 | |
| 	unsigned int left;
 | |
| 	unsigned int written = 0;
 | |
| 	unsigned int flits, ndesc;
 | |
| 
 | |
| 	/* If another thread is currently in service_ofldq() processing the
 | |
| 	 * Pending Send Queue then there's nothing to do. Otherwise, flag
 | |
| 	 * that we're doing the work and continue.  Examining/modifying
 | |
| 	 * the Offload Queue boolean "service_ofldq_running" must be done
 | |
| 	 * while holding the Pending Send Queue Lock.
 | |
| 	 */
 | |
| 	if (q->service_ofldq_running)
 | |
| 		return;
 | |
| 	q->service_ofldq_running = true;
 | |
| 
 | |
| 	while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
 | |
| 		/* We drop the lock while we're working with the skb at the
 | |
| 		 * head of the Pending Send Queue.  This allows more skbs to
 | |
| 		 * be added to the Pending Send Queue while we're working on
 | |
| 		 * this one.  We don't need to lock to guard the TX Ring
 | |
| 		 * updates because only one thread of execution is ever
 | |
| 		 * allowed into service_ofldq() at a time.
 | |
| 		 */
 | |
| 		spin_unlock(&q->sendq.lock);
 | |
| 
 | |
| 		cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
 | |
| 
 | |
| 		flits = skb->priority;                /* previously saved */
 | |
| 		ndesc = flits_to_desc(flits);
 | |
| 		credits = txq_avail(&q->q) - ndesc;
 | |
| 		BUG_ON(credits < 0);
 | |
| 		if (unlikely(credits < TXQ_STOP_THRES))
 | |
| 			ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
 | |
| 
 | |
| 		pos = (u64 *)&q->q.desc[q->q.pidx];
 | |
| 		if (is_ofld_imm(skb))
 | |
| 			cxgb4_inline_tx_skb(skb, &q->q, pos);
 | |
| 		else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
 | |
| 				       (dma_addr_t *)skb->head)) {
 | |
| 			txq_stop_maperr(q);
 | |
| 			spin_lock(&q->sendq.lock);
 | |
| 			break;
 | |
| 		} else {
 | |
| 			int last_desc, hdr_len = skb_transport_offset(skb);
 | |
| 
 | |
| 			/* The WR headers  may not fit within one descriptor.
 | |
| 			 * So we need to deal with wrap-around here.
 | |
| 			 */
 | |
| 			before = (u64 *)pos;
 | |
| 			end = (u64 *)pos + flits;
 | |
| 			txq = &q->q;
 | |
| 			pos = (void *)inline_tx_skb_header(skb, &q->q,
 | |
| 							   (void *)pos,
 | |
| 							   hdr_len);
 | |
| 			if (before > (u64 *)pos) {
 | |
| 				left = (u8 *)end - (u8 *)txq->stat;
 | |
| 				end = (void *)txq->desc + left;
 | |
| 			}
 | |
| 
 | |
| 			/* If current position is already at the end of the
 | |
| 			 * ofld queue, reset the current to point to
 | |
| 			 * start of the queue and update the end ptr as well.
 | |
| 			 */
 | |
| 			if (pos == (u64 *)txq->stat) {
 | |
| 				left = (u8 *)end - (u8 *)txq->stat;
 | |
| 				end = (void *)txq->desc + left;
 | |
| 				pos = (void *)txq->desc;
 | |
| 			}
 | |
| 
 | |
| 			cxgb4_write_sgl(skb, &q->q, (void *)pos,
 | |
| 					end, hdr_len,
 | |
| 					(dma_addr_t *)skb->head);
 | |
| #ifdef CONFIG_NEED_DMA_MAP_STATE
 | |
| 			skb->dev = q->adap->port[0];
 | |
| 			skb->destructor = deferred_unmap_destructor;
 | |
| #endif
 | |
| 			last_desc = q->q.pidx + ndesc - 1;
 | |
| 			if (last_desc >= q->q.size)
 | |
| 				last_desc -= q->q.size;
 | |
| 			q->q.sdesc[last_desc].skb = skb;
 | |
| 		}
 | |
| 
 | |
| 		txq_advance(&q->q, ndesc);
 | |
| 		written += ndesc;
 | |
| 		if (unlikely(written > 32)) {
 | |
| 			cxgb4_ring_tx_db(q->adap, &q->q, written);
 | |
| 			written = 0;
 | |
| 		}
 | |
| 
 | |
| 		/* Reacquire the Pending Send Queue Lock so we can unlink the
 | |
| 		 * skb we've just successfully transferred to the TX Ring and
 | |
| 		 * loop for the next skb which may be at the head of the
 | |
| 		 * Pending Send Queue.
 | |
| 		 */
 | |
| 		spin_lock(&q->sendq.lock);
 | |
| 		__skb_unlink(skb, &q->sendq);
 | |
| 		if (is_ofld_imm(skb))
 | |
| 			kfree_skb(skb);
 | |
| 	}
 | |
| 	if (likely(written))
 | |
| 		cxgb4_ring_tx_db(q->adap, &q->q, written);
 | |
| 
 | |
| 	/*Indicate that no thread is processing the Pending Send Queue
 | |
| 	 * currently.
 | |
| 	 */
 | |
| 	q->service_ofldq_running = false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ofld_xmit - send a packet through an offload queue
 | |
|  *	@q: the Tx offload queue
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Send an offload packet through an SGE offload queue.
 | |
|  */
 | |
| static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
 | |
| {
 | |
| 	skb->priority = calc_tx_flits_ofld(skb);       /* save for restart */
 | |
| 	spin_lock(&q->sendq.lock);
 | |
| 
 | |
| 	/* Queue the new skb onto the Offload Queue's Pending Send Queue.  If
 | |
| 	 * that results in this new skb being the only one on the queue, start
 | |
| 	 * servicing it.  If there are other skbs already on the list, then
 | |
| 	 * either the queue is currently being processed or it's been stopped
 | |
| 	 * for some reason and it'll be restarted at a later time.  Restart
 | |
| 	 * paths are triggered by events like experiencing a DMA Mapping Error
 | |
| 	 * or filling the Hardware TX Ring.
 | |
| 	 */
 | |
| 	__skb_queue_tail(&q->sendq, skb);
 | |
| 	if (q->sendq.qlen == 1)
 | |
| 		service_ofldq(q);
 | |
| 
 | |
| 	spin_unlock(&q->sendq.lock);
 | |
| 	return NET_XMIT_SUCCESS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	restart_ofldq - restart a suspended offload queue
 | |
|  *	@t: pointer to the tasklet associated with this handler
 | |
|  *
 | |
|  *	Resumes transmission on a suspended Tx offload queue.
 | |
|  */
 | |
| static void restart_ofldq(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
 | |
| 
 | |
| 	spin_lock(&q->sendq.lock);
 | |
| 	q->full = 0;            /* the queue actually is completely empty now */
 | |
| 	service_ofldq(q);
 | |
| 	spin_unlock(&q->sendq.lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	skb_txq - return the Tx queue an offload packet should use
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Returns the Tx queue an offload packet should use as indicated by bits
 | |
|  *	1-15 in the packet's queue_mapping.
 | |
|  */
 | |
| static inline unsigned int skb_txq(const struct sk_buff *skb)
 | |
| {
 | |
| 	return skb->queue_mapping >> 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	is_ctrl_pkt - return whether an offload packet is a control packet
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Returns whether an offload packet should use an OFLD or a CTRL
 | |
|  *	Tx queue as indicated by bit 0 in the packet's queue_mapping.
 | |
|  */
 | |
| static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
 | |
| {
 | |
| 	return skb->queue_mapping & 1;
 | |
| }
 | |
| 
 | |
| static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
 | |
| 			   unsigned int tx_uld_type)
 | |
| {
 | |
| 	struct sge_uld_txq_info *txq_info;
 | |
| 	struct sge_uld_txq *txq;
 | |
| 	unsigned int idx = skb_txq(skb);
 | |
| 
 | |
| 	if (unlikely(is_ctrl_pkt(skb))) {
 | |
| 		/* Single ctrl queue is a requirement for LE workaround path */
 | |
| 		if (adap->tids.nsftids)
 | |
| 			idx = 0;
 | |
| 		return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
 | |
| 	}
 | |
| 
 | |
| 	txq_info = adap->sge.uld_txq_info[tx_uld_type];
 | |
| 	if (unlikely(!txq_info)) {
 | |
| 		WARN_ON(true);
 | |
| 		kfree_skb(skb);
 | |
| 		return NET_XMIT_DROP;
 | |
| 	}
 | |
| 
 | |
| 	txq = &txq_info->uldtxq[idx];
 | |
| 	return ofld_xmit(txq, skb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_ofld_send - send an offload packet
 | |
|  *	@adap: the adapter
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Sends an offload packet.  We use the packet queue_mapping to select the
 | |
|  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
 | |
|  *	should be sent as regular or control, bits 1-15 select the queue.
 | |
|  */
 | |
| int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	local_bh_disable();
 | |
| 	ret = uld_send(adap, skb, CXGB4_TX_OFLD);
 | |
| 	local_bh_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_ofld_send - send an offload packet
 | |
|  *	@dev: the net device
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Sends an offload packet.  This is an exported version of @t4_ofld_send,
 | |
|  *	intended for ULDs.
 | |
|  */
 | |
| int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
 | |
| {
 | |
| 	return t4_ofld_send(netdev2adap(dev), skb);
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_ofld_send);
 | |
| 
 | |
| static void *inline_tx_header(const void *src,
 | |
| 			      const struct sge_txq *q,
 | |
| 			      void *pos, int length)
 | |
| {
 | |
| 	int left = (void *)q->stat - pos;
 | |
| 	u64 *p;
 | |
| 
 | |
| 	if (likely(length <= left)) {
 | |
| 		memcpy(pos, src, length);
 | |
| 		pos += length;
 | |
| 	} else {
 | |
| 		memcpy(pos, src, left);
 | |
| 		memcpy(q->desc, src + left, length - left);
 | |
| 		pos = (void *)q->desc + (length - left);
 | |
| 	}
 | |
| 	/* 0-pad to multiple of 16 */
 | |
| 	p = PTR_ALIGN(pos, 8);
 | |
| 	if ((uintptr_t)p & 8) {
 | |
| 		*p = 0;
 | |
| 		return p + 1;
 | |
| 	}
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      ofld_xmit_direct - copy a WR into offload queue
 | |
|  *      @q: the Tx offload queue
 | |
|  *      @src: location of WR
 | |
|  *      @len: WR length
 | |
|  *
 | |
|  *      Copy an immediate WR into an uncontended SGE offload queue.
 | |
|  */
 | |
| static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
 | |
| 			    unsigned int len)
 | |
| {
 | |
| 	unsigned int ndesc;
 | |
| 	int credits;
 | |
| 	u64 *pos;
 | |
| 
 | |
| 	/* Use the lower limit as the cut-off */
 | |
| 	if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
 | |
| 		WARN_ON(1);
 | |
| 		return NET_XMIT_DROP;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't return NET_XMIT_CN here as the current
 | |
| 	 * implementation doesn't queue the request
 | |
| 	 * using an skb when the following conditions not met
 | |
| 	 */
 | |
| 	if (!spin_trylock(&q->sendq.lock))
 | |
| 		return NET_XMIT_DROP;
 | |
| 
 | |
| 	if (q->full || !skb_queue_empty(&q->sendq) ||
 | |
| 	    q->service_ofldq_running) {
 | |
| 		spin_unlock(&q->sendq.lock);
 | |
| 		return NET_XMIT_DROP;
 | |
| 	}
 | |
| 	ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
 | |
| 	credits = txq_avail(&q->q) - ndesc;
 | |
| 	pos = (u64 *)&q->q.desc[q->q.pidx];
 | |
| 
 | |
| 	/* ofldtxq_stop modifies WR header in-situ */
 | |
| 	inline_tx_header(src, &q->q, pos, len);
 | |
| 	if (unlikely(credits < TXQ_STOP_THRES))
 | |
| 		ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
 | |
| 	txq_advance(&q->q, ndesc);
 | |
| 	cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
 | |
| 
 | |
| 	spin_unlock(&q->sendq.lock);
 | |
| 	return NET_XMIT_SUCCESS;
 | |
| }
 | |
| 
 | |
| int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
 | |
| 		       const void *src, unsigned int len)
 | |
| {
 | |
| 	struct sge_uld_txq_info *txq_info;
 | |
| 	struct sge_uld_txq *txq;
 | |
| 	struct adapter *adap;
 | |
| 	int ret;
 | |
| 
 | |
| 	adap = netdev2adap(dev);
 | |
| 
 | |
| 	local_bh_disable();
 | |
| 	txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
 | |
| 	if (unlikely(!txq_info)) {
 | |
| 		WARN_ON(true);
 | |
| 		local_bh_enable();
 | |
| 		return NET_XMIT_DROP;
 | |
| 	}
 | |
| 	txq = &txq_info->uldtxq[idx];
 | |
| 
 | |
| 	ret = ofld_xmit_direct(txq, src, len);
 | |
| 	local_bh_enable();
 | |
| 	return net_xmit_eval(ret);
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_immdata_send);
 | |
| 
 | |
| /**
 | |
|  *	t4_crypto_send - send crypto packet
 | |
|  *	@adap: the adapter
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Sends crypto packet.  We use the packet queue_mapping to select the
 | |
|  *	appropriate Tx queue as follows: bit 0 indicates whether the packet
 | |
|  *	should be sent as regular or control, bits 1-15 select the queue.
 | |
|  */
 | |
| static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	local_bh_disable();
 | |
| 	ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
 | |
| 	local_bh_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_crypto_send - send crypto packet
 | |
|  *	@dev: the net device
 | |
|  *	@skb: the packet
 | |
|  *
 | |
|  *	Sends crypto packet.  This is an exported version of @t4_crypto_send,
 | |
|  *	intended for ULDs.
 | |
|  */
 | |
| int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
 | |
| {
 | |
| 	return t4_crypto_send(netdev2adap(dev), skb);
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_crypto_send);
 | |
| 
 | |
| static inline void copy_frags(struct sk_buff *skb,
 | |
| 			      const struct pkt_gl *gl, unsigned int offset)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* usually there's just one frag */
 | |
| 	__skb_fill_page_desc(skb, 0, gl->frags[0].page,
 | |
| 			     gl->frags[0].offset + offset,
 | |
| 			     gl->frags[0].size - offset);
 | |
| 	skb_shinfo(skb)->nr_frags = gl->nfrags;
 | |
| 	for (i = 1; i < gl->nfrags; i++)
 | |
| 		__skb_fill_page_desc(skb, i, gl->frags[i].page,
 | |
| 				     gl->frags[i].offset,
 | |
| 				     gl->frags[i].size);
 | |
| 
 | |
| 	/* get a reference to the last page, we don't own it */
 | |
| 	get_page(gl->frags[gl->nfrags - 1].page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
 | |
|  *	@gl: the gather list
 | |
|  *	@skb_len: size of sk_buff main body if it carries fragments
 | |
|  *	@pull_len: amount of data to move to the sk_buff's main body
 | |
|  *
 | |
|  *	Builds an sk_buff from the given packet gather list.  Returns the
 | |
|  *	sk_buff or %NULL if sk_buff allocation failed.
 | |
|  */
 | |
| struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
 | |
| 				   unsigned int skb_len, unsigned int pull_len)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/*
 | |
| 	 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
 | |
| 	 * size, which is expected since buffers are at least PAGE_SIZEd.
 | |
| 	 * In this case packets up to RX_COPY_THRES have only one fragment.
 | |
| 	 */
 | |
| 	if (gl->tot_len <= RX_COPY_THRES) {
 | |
| 		skb = dev_alloc_skb(gl->tot_len);
 | |
| 		if (unlikely(!skb))
 | |
| 			goto out;
 | |
| 		__skb_put(skb, gl->tot_len);
 | |
| 		skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
 | |
| 	} else {
 | |
| 		skb = dev_alloc_skb(skb_len);
 | |
| 		if (unlikely(!skb))
 | |
| 			goto out;
 | |
| 		__skb_put(skb, pull_len);
 | |
| 		skb_copy_to_linear_data(skb, gl->va, pull_len);
 | |
| 
 | |
| 		copy_frags(skb, gl, pull_len);
 | |
| 		skb->len = gl->tot_len;
 | |
| 		skb->data_len = skb->len - pull_len;
 | |
| 		skb->truesize += skb->data_len;
 | |
| 	}
 | |
| out:	return skb;
 | |
| }
 | |
| EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
 | |
| 
 | |
| /**
 | |
|  *	t4_pktgl_free - free a packet gather list
 | |
|  *	@gl: the gather list
 | |
|  *
 | |
|  *	Releases the pages of a packet gather list.  We do not own the last
 | |
|  *	page on the list and do not free it.
 | |
|  */
 | |
| static void t4_pktgl_free(const struct pkt_gl *gl)
 | |
| {
 | |
| 	int n;
 | |
| 	const struct page_frag *p;
 | |
| 
 | |
| 	for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
 | |
| 		put_page(p->page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process an MPS trace packet.  Give it an unused protocol number so it won't
 | |
|  * be delivered to anyone and send it to the stack for capture.
 | |
|  */
 | |
| static noinline int handle_trace_pkt(struct adapter *adap,
 | |
| 				     const struct pkt_gl *gl)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		t4_pktgl_free(gl);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_t4(adap->params.chip))
 | |
| 		__skb_pull(skb, sizeof(struct cpl_trace_pkt));
 | |
| 	else
 | |
| 		__skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
 | |
| 
 | |
| 	skb_reset_mac_header(skb);
 | |
| 	skb->protocol = htons(0xffff);
 | |
| 	skb->dev = adap->port[0];
 | |
| 	netif_receive_skb(skb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
 | |
|  * @adap: the adapter
 | |
|  * @hwtstamps: time stamp structure to update
 | |
|  * @sgetstamp: 60bit iqe timestamp
 | |
|  *
 | |
|  * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
 | |
|  * which is in Core Clock ticks into ktime_t and assign it
 | |
|  **/
 | |
| static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
 | |
| 				     struct skb_shared_hwtstamps *hwtstamps,
 | |
| 				     u64 sgetstamp)
 | |
| {
 | |
| 	u64 ns;
 | |
| 	u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
 | |
| 
 | |
| 	ns = div_u64(tmp, adap->params.vpd.cclk);
 | |
| 
 | |
| 	memset(hwtstamps, 0, sizeof(*hwtstamps));
 | |
| 	hwtstamps->hwtstamp = ns_to_ktime(ns);
 | |
| }
 | |
| 
 | |
| static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
 | |
| 		   const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
 | |
| {
 | |
| 	struct adapter *adapter = rxq->rspq.adap;
 | |
| 	struct sge *s = &adapter->sge;
 | |
| 	struct port_info *pi;
 | |
| 	int ret;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	skb = napi_get_frags(&rxq->rspq.napi);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		t4_pktgl_free(gl);
 | |
| 		rxq->stats.rx_drops++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	copy_frags(skb, gl, s->pktshift);
 | |
| 	if (tnl_hdr_len)
 | |
| 		skb->csum_level = 1;
 | |
| 	skb->len = gl->tot_len - s->pktshift;
 | |
| 	skb->data_len = skb->len;
 | |
| 	skb->truesize += skb->data_len;
 | |
| 	skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 	skb_record_rx_queue(skb, rxq->rspq.idx);
 | |
| 	pi = netdev_priv(skb->dev);
 | |
| 	if (pi->rxtstamp)
 | |
| 		cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
 | |
| 					 gl->sgetstamp);
 | |
| 	if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
 | |
| 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
 | |
| 			     PKT_HASH_TYPE_L3);
 | |
| 
 | |
| 	if (unlikely(pkt->vlan_ex)) {
 | |
| 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
 | |
| 		rxq->stats.vlan_ex++;
 | |
| 	}
 | |
| 	ret = napi_gro_frags(&rxq->rspq.napi);
 | |
| 	if (ret == GRO_HELD)
 | |
| 		rxq->stats.lro_pkts++;
 | |
| 	else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
 | |
| 		rxq->stats.lro_merged++;
 | |
| 	rxq->stats.pkts++;
 | |
| 	rxq->stats.rx_cso++;
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	RX_NON_PTP_PKT = 0,
 | |
| 	RX_PTP_PKT_SUC = 1,
 | |
| 	RX_PTP_PKT_ERR = 2
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *     t4_systim_to_hwstamp - read hardware time stamp
 | |
|  *     @adapter: the adapter
 | |
|  *     @skb: the packet
 | |
|  *
 | |
|  *     Read Time Stamp from MPS packet and insert in skb which
 | |
|  *     is forwarded to PTP application
 | |
|  */
 | |
| static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
 | |
| 					 struct sk_buff *skb)
 | |
| {
 | |
| 	struct skb_shared_hwtstamps *hwtstamps;
 | |
| 	struct cpl_rx_mps_pkt *cpl = NULL;
 | |
| 	unsigned char *data;
 | |
| 	int offset;
 | |
| 
 | |
| 	cpl = (struct cpl_rx_mps_pkt *)skb->data;
 | |
| 	if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
 | |
| 	     X_CPL_RX_MPS_PKT_TYPE_PTP))
 | |
| 		return RX_PTP_PKT_ERR;
 | |
| 
 | |
| 	data = skb->data + sizeof(*cpl);
 | |
| 	skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
 | |
| 	offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
 | |
| 	if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
 | |
| 		return RX_PTP_PKT_ERR;
 | |
| 
 | |
| 	hwtstamps = skb_hwtstamps(skb);
 | |
| 	memset(hwtstamps, 0, sizeof(*hwtstamps));
 | |
| 	hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
 | |
| 
 | |
| 	return RX_PTP_PKT_SUC;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *     t4_rx_hststamp - Recv PTP Event Message
 | |
|  *     @adapter: the adapter
 | |
|  *     @rsp: the response queue descriptor holding the RX_PKT message
 | |
|  *     @rxq: the response queue holding the RX_PKT message
 | |
|  *     @skb: the packet
 | |
|  *
 | |
|  *     PTP enabled and MPS packet, read HW timestamp
 | |
|  */
 | |
| static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
 | |
| 			  struct sge_eth_rxq *rxq, struct sk_buff *skb)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
 | |
| 		     !is_t4(adapter->params.chip))) {
 | |
| 		ret = t4_systim_to_hwstamp(adapter, skb);
 | |
| 		if (ret == RX_PTP_PKT_ERR) {
 | |
| 			kfree_skb(skb);
 | |
| 			rxq->stats.rx_drops++;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return RX_NON_PTP_PKT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      t4_tx_hststamp - Loopback PTP Transmit Event Message
 | |
|  *      @adapter: the adapter
 | |
|  *      @skb: the packet
 | |
|  *      @dev: the ingress net device
 | |
|  *
 | |
|  *      Read hardware timestamp for the loopback PTP Tx event message
 | |
|  */
 | |
| static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
 | |
| 			  struct net_device *dev)
 | |
| {
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 
 | |
| 	if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
 | |
| 		cxgb4_ptp_read_hwstamp(adapter, pi);
 | |
| 		kfree_skb(skb);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
 | |
|  *	@rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
 | |
|  *	@rsp: Response Entry pointer into Response Queue
 | |
|  *	@gl: Gather List pointer
 | |
|  *
 | |
|  *	For adapters which support the SGE Doorbell Queue Timer facility,
 | |
|  *	we configure the Ethernet TX Queues to send CIDX Updates to the
 | |
|  *	Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
 | |
|  *	messages.  This adds a small load to PCIe Link RX bandwidth and,
 | |
|  *	potentially, higher CPU Interrupt load, but allows us to respond
 | |
|  *	much more quickly to the CIDX Updates.  This is important for
 | |
|  *	Upper Layer Software which isn't willing to have a large amount
 | |
|  *	of TX Data outstanding before receiving DMA Completions.
 | |
|  */
 | |
| static void t4_tx_completion_handler(struct sge_rspq *rspq,
 | |
| 				     const __be64 *rsp,
 | |
| 				     const struct pkt_gl *gl)
 | |
| {
 | |
| 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
 | |
| 	struct port_info *pi = netdev_priv(rspq->netdev);
 | |
| 	struct adapter *adapter = rspq->adap;
 | |
| 	struct sge *s = &adapter->sge;
 | |
| 	struct sge_eth_txq *txq;
 | |
| 
 | |
| 	/* skip RSS header */
 | |
| 	rsp++;
 | |
| 
 | |
| 	/* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 | |
| 	 */
 | |
| 	if (unlikely(opcode == CPL_FW4_MSG &&
 | |
| 		     ((const struct cpl_fw4_msg *)rsp)->type ==
 | |
| 							FW_TYPE_RSSCPL)) {
 | |
| 		rsp++;
 | |
| 		opcode = ((const struct rss_header *)rsp)->opcode;
 | |
| 		rsp++;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
 | |
| 		pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
 | |
| 			__func__, opcode);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	txq = &s->ethtxq[pi->first_qset + rspq->idx];
 | |
| 
 | |
| 	/* We've got the Hardware Consumer Index Update in the Egress Update
 | |
| 	 * message. These Egress Update messages will be our sole CIDX Updates
 | |
| 	 * we get since we don't want to chew up PCIe bandwidth for both Ingress
 | |
| 	 * Messages and Status Page writes.  However, The code which manages
 | |
| 	 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
 | |
| 	 * stored in the Status Page at the end of the TX Queue.  It's easiest
 | |
| 	 * to simply copy the CIDX Update value from the Egress Update message
 | |
| 	 * to the Status Page.  Also note that no Endian issues need to be
 | |
| 	 * considered here since both are Big Endian and we're just copying
 | |
| 	 * bytes consistently ...
 | |
| 	 */
 | |
| 	if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
 | |
| 		struct cpl_sge_egr_update *egr;
 | |
| 
 | |
| 		egr = (struct cpl_sge_egr_update *)rsp;
 | |
| 		WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
 | |
| 	}
 | |
| 
 | |
| 	t4_sge_eth_txq_egress_update(adapter, txq, -1);
 | |
| }
 | |
| 
 | |
| static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
 | |
| {
 | |
| 	struct adapter *adap = pi->adapter;
 | |
| 	struct cxgb4_ethtool_lb_test *lb;
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	struct net_device *netdev;
 | |
| 	u8 *data;
 | |
| 	int i;
 | |
| 
 | |
| 	netdev = adap->port[pi->port_id];
 | |
| 	lb = &pi->ethtool_lb;
 | |
| 	data = si->va + s->pktshift;
 | |
| 
 | |
| 	i = ETH_ALEN;
 | |
| 	if (!ether_addr_equal(data + i, netdev->dev_addr))
 | |
| 		return -1;
 | |
| 
 | |
| 	i += ETH_ALEN;
 | |
| 	if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
 | |
| 		lb->result = -EIO;
 | |
| 
 | |
| 	complete(&lb->completion);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_ethrx_handler - process an ingress ethernet packet
 | |
|  *	@q: the response queue that received the packet
 | |
|  *	@rsp: the response queue descriptor holding the RX_PKT message
 | |
|  *	@si: the gather list of packet fragments
 | |
|  *
 | |
|  *	Process an ingress ethernet packet and deliver it to the stack.
 | |
|  */
 | |
| int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
 | |
| 		     const struct pkt_gl *si)
 | |
| {
 | |
| 	bool csum_ok;
 | |
| 	struct sk_buff *skb;
 | |
| 	const struct cpl_rx_pkt *pkt;
 | |
| 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
 | |
| 	struct adapter *adapter = q->adap;
 | |
| 	struct sge *s = &q->adap->sge;
 | |
| 	int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
 | |
| 			    CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
 | |
| 	u16 err_vec, tnl_hdr_len = 0;
 | |
| 	struct port_info *pi;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	pi = netdev_priv(q->netdev);
 | |
| 	/* If we're looking at TX Queue CIDX Update, handle that separately
 | |
| 	 * and return.
 | |
| 	 */
 | |
| 	if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
 | |
| 		     (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
 | |
| 		t4_tx_completion_handler(q, rsp, si);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
 | |
| 		return handle_trace_pkt(q->adap, si);
 | |
| 
 | |
| 	pkt = (const struct cpl_rx_pkt *)rsp;
 | |
| 	/* Compressed error vector is enabled for T6 only */
 | |
| 	if (q->adap->params.tp.rx_pkt_encap) {
 | |
| 		err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
 | |
| 		tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
 | |
| 	} else {
 | |
| 		err_vec = be16_to_cpu(pkt->err_vec);
 | |
| 	}
 | |
| 
 | |
| 	csum_ok = pkt->csum_calc && !err_vec &&
 | |
| 		  (q->netdev->features & NETIF_F_RXCSUM);
 | |
| 
 | |
| 	if (err_vec)
 | |
| 		rxq->stats.bad_rx_pkts++;
 | |
| 
 | |
| 	if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
 | |
| 		ret = cxgb4_validate_lb_pkt(pi, si);
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (((pkt->l2info & htonl(RXF_TCP_F)) ||
 | |
| 	     tnl_hdr_len) &&
 | |
| 	    (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
 | |
| 		do_gro(rxq, si, pkt, tnl_hdr_len);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		t4_pktgl_free(si);
 | |
| 		rxq->stats.rx_drops++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Handle PTP Event Rx packet */
 | |
| 	if (unlikely(pi->ptp_enable)) {
 | |
| 		ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
 | |
| 		if (ret == RX_PTP_PKT_ERR)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	if (likely(!ret))
 | |
| 		__skb_pull(skb, s->pktshift); /* remove ethernet header pad */
 | |
| 
 | |
| 	/* Handle the PTP Event Tx Loopback packet */
 | |
| 	if (unlikely(pi->ptp_enable && !ret &&
 | |
| 		     (pkt->l2info & htonl(RXF_UDP_F)) &&
 | |
| 		     cxgb4_ptp_is_ptp_rx(skb))) {
 | |
| 		if (!t4_tx_hststamp(adapter, skb, q->netdev))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	skb->protocol = eth_type_trans(skb, q->netdev);
 | |
| 	skb_record_rx_queue(skb, q->idx);
 | |
| 	if (skb->dev->features & NETIF_F_RXHASH)
 | |
| 		skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
 | |
| 			     PKT_HASH_TYPE_L3);
 | |
| 
 | |
| 	rxq->stats.pkts++;
 | |
| 
 | |
| 	if (pi->rxtstamp)
 | |
| 		cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
 | |
| 					 si->sgetstamp);
 | |
| 	if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
 | |
| 		if (!pkt->ip_frag) {
 | |
| 			skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 			rxq->stats.rx_cso++;
 | |
| 		} else if (pkt->l2info & htonl(RXF_IP_F)) {
 | |
| 			__sum16 c = (__force __sum16)pkt->csum;
 | |
| 			skb->csum = csum_unfold(c);
 | |
| 
 | |
| 			if (tnl_hdr_len) {
 | |
| 				skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 				skb->csum_level = 1;
 | |
| 			} else {
 | |
| 				skb->ip_summed = CHECKSUM_COMPLETE;
 | |
| 			}
 | |
| 			rxq->stats.rx_cso++;
 | |
| 		}
 | |
| 	} else {
 | |
| 		skb_checksum_none_assert(skb);
 | |
| #ifdef CONFIG_CHELSIO_T4_FCOE
 | |
| #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
 | |
| 			  RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
 | |
| 
 | |
| 		if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
 | |
| 			if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
 | |
| 			    (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
 | |
| 				if (q->adap->params.tp.rx_pkt_encap)
 | |
| 					csum_ok = err_vec &
 | |
| 						  T6_COMPR_RXERR_SUM_F;
 | |
| 				else
 | |
| 					csum_ok = err_vec & RXERR_CSUM_F;
 | |
| 				if (!csum_ok)
 | |
| 					skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #undef CPL_RX_PKT_FLAGS
 | |
| #endif /* CONFIG_CHELSIO_T4_FCOE */
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(pkt->vlan_ex)) {
 | |
| 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
 | |
| 		rxq->stats.vlan_ex++;
 | |
| 	}
 | |
| 	skb_mark_napi_id(skb, &q->napi);
 | |
| 	netif_receive_skb(skb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	restore_rx_bufs - put back a packet's Rx buffers
 | |
|  *	@si: the packet gather list
 | |
|  *	@q: the SGE free list
 | |
|  *	@frags: number of FL buffers to restore
 | |
|  *
 | |
|  *	Puts back on an FL the Rx buffers associated with @si.  The buffers
 | |
|  *	have already been unmapped and are left unmapped, we mark them so to
 | |
|  *	prevent further unmapping attempts.
 | |
|  *
 | |
|  *	This function undoes a series of @unmap_rx_buf calls when we find out
 | |
|  *	that the current packet can't be processed right away afterall and we
 | |
|  *	need to come back to it later.  This is a very rare event and there's
 | |
|  *	no effort to make this particularly efficient.
 | |
|  */
 | |
| static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
 | |
| 			    int frags)
 | |
| {
 | |
| 	struct rx_sw_desc *d;
 | |
| 
 | |
| 	while (frags--) {
 | |
| 		if (q->cidx == 0)
 | |
| 			q->cidx = q->size - 1;
 | |
| 		else
 | |
| 			q->cidx--;
 | |
| 		d = &q->sdesc[q->cidx];
 | |
| 		d->page = si->frags[frags].page;
 | |
| 		d->dma_addr |= RX_UNMAPPED_BUF;
 | |
| 		q->avail++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	is_new_response - check if a response is newly written
 | |
|  *	@r: the response descriptor
 | |
|  *	@q: the response queue
 | |
|  *
 | |
|  *	Returns true if a response descriptor contains a yet unprocessed
 | |
|  *	response.
 | |
|  */
 | |
| static inline bool is_new_response(const struct rsp_ctrl *r,
 | |
| 				   const struct sge_rspq *q)
 | |
| {
 | |
| 	return (r->type_gen >> RSPD_GEN_S) == q->gen;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	rspq_next - advance to the next entry in a response queue
 | |
|  *	@q: the queue
 | |
|  *
 | |
|  *	Updates the state of a response queue to advance it to the next entry.
 | |
|  */
 | |
| static inline void rspq_next(struct sge_rspq *q)
 | |
| {
 | |
| 	q->cur_desc = (void *)q->cur_desc + q->iqe_len;
 | |
| 	if (unlikely(++q->cidx == q->size)) {
 | |
| 		q->cidx = 0;
 | |
| 		q->gen ^= 1;
 | |
| 		q->cur_desc = q->desc;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	process_responses - process responses from an SGE response queue
 | |
|  *	@q: the ingress queue to process
 | |
|  *	@budget: how many responses can be processed in this round
 | |
|  *
 | |
|  *	Process responses from an SGE response queue up to the supplied budget.
 | |
|  *	Responses include received packets as well as control messages from FW
 | |
|  *	or HW.
 | |
|  *
 | |
|  *	Additionally choose the interrupt holdoff time for the next interrupt
 | |
|  *	on this queue.  If the system is under memory shortage use a fairly
 | |
|  *	long delay to help recovery.
 | |
|  */
 | |
| static int process_responses(struct sge_rspq *q, int budget)
 | |
| {
 | |
| 	int ret, rsp_type;
 | |
| 	int budget_left = budget;
 | |
| 	const struct rsp_ctrl *rc;
 | |
| 	struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
 | |
| 	struct adapter *adapter = q->adap;
 | |
| 	struct sge *s = &adapter->sge;
 | |
| 
 | |
| 	while (likely(budget_left)) {
 | |
| 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
 | |
| 		if (!is_new_response(rc, q)) {
 | |
| 			if (q->flush_handler)
 | |
| 				q->flush_handler(q);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		dma_rmb();
 | |
| 		rsp_type = RSPD_TYPE_G(rc->type_gen);
 | |
| 		if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
 | |
| 			struct page_frag *fp;
 | |
| 			struct pkt_gl si;
 | |
| 			const struct rx_sw_desc *rsd;
 | |
| 			u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
 | |
| 
 | |
| 			if (len & RSPD_NEWBUF_F) {
 | |
| 				if (likely(q->offset > 0)) {
 | |
| 					free_rx_bufs(q->adap, &rxq->fl, 1);
 | |
| 					q->offset = 0;
 | |
| 				}
 | |
| 				len = RSPD_LEN_G(len);
 | |
| 			}
 | |
| 			si.tot_len = len;
 | |
| 
 | |
| 			/* gather packet fragments */
 | |
| 			for (frags = 0, fp = si.frags; ; frags++, fp++) {
 | |
| 				rsd = &rxq->fl.sdesc[rxq->fl.cidx];
 | |
| 				bufsz = get_buf_size(adapter, rsd);
 | |
| 				fp->page = rsd->page;
 | |
| 				fp->offset = q->offset;
 | |
| 				fp->size = min(bufsz, len);
 | |
| 				len -= fp->size;
 | |
| 				if (!len)
 | |
| 					break;
 | |
| 				unmap_rx_buf(q->adap, &rxq->fl);
 | |
| 			}
 | |
| 
 | |
| 			si.sgetstamp = SGE_TIMESTAMP_G(
 | |
| 					be64_to_cpu(rc->last_flit));
 | |
| 			/*
 | |
| 			 * Last buffer remains mapped so explicitly make it
 | |
| 			 * coherent for CPU access.
 | |
| 			 */
 | |
| 			dma_sync_single_for_cpu(q->adap->pdev_dev,
 | |
| 						get_buf_addr(rsd),
 | |
| 						fp->size, DMA_FROM_DEVICE);
 | |
| 
 | |
| 			si.va = page_address(si.frags[0].page) +
 | |
| 				si.frags[0].offset;
 | |
| 			prefetch(si.va);
 | |
| 
 | |
| 			si.nfrags = frags + 1;
 | |
| 			ret = q->handler(q, q->cur_desc, &si);
 | |
| 			if (likely(ret == 0))
 | |
| 				q->offset += ALIGN(fp->size, s->fl_align);
 | |
| 			else
 | |
| 				restore_rx_bufs(&si, &rxq->fl, frags);
 | |
| 		} else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
 | |
| 			ret = q->handler(q, q->cur_desc, NULL);
 | |
| 		} else {
 | |
| 			ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(ret)) {
 | |
| 			/* couldn't process descriptor, back off for recovery */
 | |
| 			q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		rspq_next(q);
 | |
| 		budget_left--;
 | |
| 	}
 | |
| 
 | |
| 	if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
 | |
| 		__refill_fl(q->adap, &rxq->fl);
 | |
| 	return budget - budget_left;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	napi_rx_handler - the NAPI handler for Rx processing
 | |
|  *	@napi: the napi instance
 | |
|  *	@budget: how many packets we can process in this round
 | |
|  *
 | |
|  *	Handler for new data events when using NAPI.  This does not need any
 | |
|  *	locking or protection from interrupts as data interrupts are off at
 | |
|  *	this point and other adapter interrupts do not interfere (the latter
 | |
|  *	in not a concern at all with MSI-X as non-data interrupts then have
 | |
|  *	a separate handler).
 | |
|  */
 | |
| static int napi_rx_handler(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	unsigned int params;
 | |
| 	struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
 | |
| 	int work_done;
 | |
| 	u32 val;
 | |
| 
 | |
| 	work_done = process_responses(q, budget);
 | |
| 	if (likely(work_done < budget)) {
 | |
| 		int timer_index;
 | |
| 
 | |
| 		napi_complete_done(napi, work_done);
 | |
| 		timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
 | |
| 
 | |
| 		if (q->adaptive_rx) {
 | |
| 			if (work_done > max(timer_pkt_quota[timer_index],
 | |
| 					    MIN_NAPI_WORK))
 | |
| 				timer_index = (timer_index + 1);
 | |
| 			else
 | |
| 				timer_index = timer_index - 1;
 | |
| 
 | |
| 			timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
 | |
| 			q->next_intr_params =
 | |
| 					QINTR_TIMER_IDX_V(timer_index) |
 | |
| 					QINTR_CNT_EN_V(0);
 | |
| 			params = q->next_intr_params;
 | |
| 		} else {
 | |
| 			params = q->next_intr_params;
 | |
| 			q->next_intr_params = q->intr_params;
 | |
| 		}
 | |
| 	} else
 | |
| 		params = QINTR_TIMER_IDX_V(7);
 | |
| 
 | |
| 	val = CIDXINC_V(work_done) | SEINTARM_V(params);
 | |
| 
 | |
| 	/* If we don't have access to the new User GTS (T5+), use the old
 | |
| 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
 | |
| 	 */
 | |
| 	if (unlikely(q->bar2_addr == NULL)) {
 | |
| 		t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
 | |
| 			     val | INGRESSQID_V((u32)q->cntxt_id));
 | |
| 	} else {
 | |
| 		writel(val | INGRESSQID_V(q->bar2_qid),
 | |
| 		       q->bar2_addr + SGE_UDB_GTS);
 | |
| 		wmb();
 | |
| 	}
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| void cxgb4_ethofld_restart(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
 | |
| 						     qresume_tsk);
 | |
| 	int pktcount;
 | |
| 
 | |
| 	spin_lock(&eosw_txq->lock);
 | |
| 	pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
 | |
| 	if (pktcount < 0)
 | |
| 		pktcount += eosw_txq->ndesc;
 | |
| 
 | |
| 	if (pktcount) {
 | |
| 		cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
 | |
| 					 eosw_txq, pktcount);
 | |
| 		eosw_txq->inuse -= pktcount;
 | |
| 	}
 | |
| 
 | |
| 	/* There may be some packets waiting for completions. So,
 | |
| 	 * attempt to send these packets now.
 | |
| 	 */
 | |
| 	ethofld_xmit(eosw_txq->netdev, eosw_txq);
 | |
| 	spin_unlock(&eosw_txq->lock);
 | |
| }
 | |
| 
 | |
| /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
 | |
|  * @q: the response queue that received the packet
 | |
|  * @rsp: the response queue descriptor holding the CPL message
 | |
|  * @si: the gather list of packet fragments
 | |
|  *
 | |
|  * Process a ETHOFLD Tx completion. Increment the cidx here, but
 | |
|  * free up the descriptors in a tasklet later.
 | |
|  */
 | |
| int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
 | |
| 			     const struct pkt_gl *si)
 | |
| {
 | |
| 	u8 opcode = ((const struct rss_header *)rsp)->opcode;
 | |
| 
 | |
| 	/* skip RSS header */
 | |
| 	rsp++;
 | |
| 
 | |
| 	if (opcode == CPL_FW4_ACK) {
 | |
| 		const struct cpl_fw4_ack *cpl;
 | |
| 		struct sge_eosw_txq *eosw_txq;
 | |
| 		struct eotid_entry *entry;
 | |
| 		struct sk_buff *skb;
 | |
| 		u32 hdr_len, eotid;
 | |
| 		u8 flits, wrlen16;
 | |
| 		int credits;
 | |
| 
 | |
| 		cpl = (const struct cpl_fw4_ack *)rsp;
 | |
| 		eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
 | |
| 			q->adap->tids.eotid_base;
 | |
| 		entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
 | |
| 		if (!entry)
 | |
| 			goto out_done;
 | |
| 
 | |
| 		eosw_txq = (struct sge_eosw_txq *)entry->data;
 | |
| 		if (!eosw_txq)
 | |
| 			goto out_done;
 | |
| 
 | |
| 		spin_lock(&eosw_txq->lock);
 | |
| 		credits = cpl->credits;
 | |
| 		while (credits > 0) {
 | |
| 			skb = eosw_txq->desc[eosw_txq->cidx].skb;
 | |
| 			if (!skb)
 | |
| 				break;
 | |
| 
 | |
| 			if (unlikely((eosw_txq->state ==
 | |
| 				      CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
 | |
| 				      eosw_txq->state ==
 | |
| 				      CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
 | |
| 				     eosw_txq->cidx == eosw_txq->flowc_idx)) {
 | |
| 				flits = DIV_ROUND_UP(skb->len, 8);
 | |
| 				if (eosw_txq->state ==
 | |
| 				    CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
 | |
| 					eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
 | |
| 				else
 | |
| 					eosw_txq->state = CXGB4_EO_STATE_CLOSED;
 | |
| 				complete(&eosw_txq->completion);
 | |
| 			} else {
 | |
| 				hdr_len = eth_get_headlen(eosw_txq->netdev,
 | |
| 							  skb->data,
 | |
| 							  skb_headlen(skb));
 | |
| 				flits = ethofld_calc_tx_flits(q->adap, skb,
 | |
| 							      hdr_len);
 | |
| 			}
 | |
| 			eosw_txq_advance_index(&eosw_txq->cidx, 1,
 | |
| 					       eosw_txq->ndesc);
 | |
| 			wrlen16 = DIV_ROUND_UP(flits * 8, 16);
 | |
| 			credits -= wrlen16;
 | |
| 		}
 | |
| 
 | |
| 		eosw_txq->cred += cpl->credits;
 | |
| 		eosw_txq->ncompl--;
 | |
| 
 | |
| 		spin_unlock(&eosw_txq->lock);
 | |
| 
 | |
| 		/* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
 | |
| 		 * if there were packets waiting for completion.
 | |
| 		 */
 | |
| 		tasklet_schedule(&eosw_txq->qresume_tsk);
 | |
| 	}
 | |
| 
 | |
| out_done:
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The MSI-X interrupt handler for an SGE response queue.
 | |
|  */
 | |
| irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
 | |
| {
 | |
| 	struct sge_rspq *q = cookie;
 | |
| 
 | |
| 	napi_schedule(&q->napi);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process the indirect interrupt entries in the interrupt queue and kick off
 | |
|  * NAPI for each queue that has generated an entry.
 | |
|  */
 | |
| static unsigned int process_intrq(struct adapter *adap)
 | |
| {
 | |
| 	unsigned int credits;
 | |
| 	const struct rsp_ctrl *rc;
 | |
| 	struct sge_rspq *q = &adap->sge.intrq;
 | |
| 	u32 val;
 | |
| 
 | |
| 	spin_lock(&adap->sge.intrq_lock);
 | |
| 	for (credits = 0; ; credits++) {
 | |
| 		rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
 | |
| 		if (!is_new_response(rc, q))
 | |
| 			break;
 | |
| 
 | |
| 		dma_rmb();
 | |
| 		if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
 | |
| 			unsigned int qid = ntohl(rc->pldbuflen_qid);
 | |
| 
 | |
| 			qid -= adap->sge.ingr_start;
 | |
| 			napi_schedule(&adap->sge.ingr_map[qid]->napi);
 | |
| 		}
 | |
| 
 | |
| 		rspq_next(q);
 | |
| 	}
 | |
| 
 | |
| 	val =  CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
 | |
| 
 | |
| 	/* If we don't have access to the new User GTS (T5+), use the old
 | |
| 	 * doorbell mechanism; otherwise use the new BAR2 mechanism.
 | |
| 	 */
 | |
| 	if (unlikely(q->bar2_addr == NULL)) {
 | |
| 		t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
 | |
| 			     val | INGRESSQID_V(q->cntxt_id));
 | |
| 	} else {
 | |
| 		writel(val | INGRESSQID_V(q->bar2_qid),
 | |
| 		       q->bar2_addr + SGE_UDB_GTS);
 | |
| 		wmb();
 | |
| 	}
 | |
| 	spin_unlock(&adap->sge.intrq_lock);
 | |
| 	return credits;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The MSI interrupt handler, which handles data events from SGE response queues
 | |
|  * as well as error and other async events as they all use the same MSI vector.
 | |
|  */
 | |
| static irqreturn_t t4_intr_msi(int irq, void *cookie)
 | |
| {
 | |
| 	struct adapter *adap = cookie;
 | |
| 
 | |
| 	if (adap->flags & CXGB4_MASTER_PF)
 | |
| 		t4_slow_intr_handler(adap);
 | |
| 	process_intrq(adap);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt handler for legacy INTx interrupts.
 | |
|  * Handles data events from SGE response queues as well as error and other
 | |
|  * async events as they all use the same interrupt line.
 | |
|  */
 | |
| static irqreturn_t t4_intr_intx(int irq, void *cookie)
 | |
| {
 | |
| 	struct adapter *adap = cookie;
 | |
| 
 | |
| 	t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
 | |
| 	if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
 | |
| 	    process_intrq(adap))
 | |
| 		return IRQ_HANDLED;
 | |
| 	return IRQ_NONE;             /* probably shared interrupt */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_intr_handler - select the top-level interrupt handler
 | |
|  *	@adap: the adapter
 | |
|  *
 | |
|  *	Selects the top-level interrupt handler based on the type of interrupts
 | |
|  *	(MSI-X, MSI, or INTx).
 | |
|  */
 | |
| irq_handler_t t4_intr_handler(struct adapter *adap)
 | |
| {
 | |
| 	if (adap->flags & CXGB4_USING_MSIX)
 | |
| 		return t4_sge_intr_msix;
 | |
| 	if (adap->flags & CXGB4_USING_MSI)
 | |
| 		return t4_intr_msi;
 | |
| 	return t4_intr_intx;
 | |
| }
 | |
| 
 | |
| static void sge_rx_timer_cb(struct timer_list *t)
 | |
| {
 | |
| 	unsigned long m;
 | |
| 	unsigned int i;
 | |
| 	struct adapter *adap = from_timer(adap, t, sge.rx_timer);
 | |
| 	struct sge *s = &adap->sge;
 | |
| 
 | |
| 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
 | |
| 		for (m = s->starving_fl[i]; m; m &= m - 1) {
 | |
| 			struct sge_eth_rxq *rxq;
 | |
| 			unsigned int id = __ffs(m) + i * BITS_PER_LONG;
 | |
| 			struct sge_fl *fl = s->egr_map[id];
 | |
| 
 | |
| 			clear_bit(id, s->starving_fl);
 | |
| 			smp_mb__after_atomic();
 | |
| 
 | |
| 			if (fl_starving(adap, fl)) {
 | |
| 				rxq = container_of(fl, struct sge_eth_rxq, fl);
 | |
| 				if (napi_schedule(&rxq->rspq.napi))
 | |
| 					fl->starving++;
 | |
| 				else
 | |
| 					set_bit(id, s->starving_fl);
 | |
| 			}
 | |
| 		}
 | |
| 	/* The remainder of the SGE RX Timer Callback routine is dedicated to
 | |
| 	 * global Master PF activities like checking for chip ingress stalls,
 | |
| 	 * etc.
 | |
| 	 */
 | |
| 	if (!(adap->flags & CXGB4_MASTER_PF))
 | |
| 		goto done;
 | |
| 
 | |
| 	t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
 | |
| 
 | |
| done:
 | |
| 	mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
 | |
| }
 | |
| 
 | |
| static void sge_tx_timer_cb(struct timer_list *t)
 | |
| {
 | |
| 	struct adapter *adap = from_timer(adap, t, sge.tx_timer);
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	unsigned long m, period;
 | |
| 	unsigned int i, budget;
 | |
| 
 | |
| 	for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
 | |
| 		for (m = s->txq_maperr[i]; m; m &= m - 1) {
 | |
| 			unsigned long id = __ffs(m) + i * BITS_PER_LONG;
 | |
| 			struct sge_uld_txq *txq = s->egr_map[id];
 | |
| 
 | |
| 			clear_bit(id, s->txq_maperr);
 | |
| 			tasklet_schedule(&txq->qresume_tsk);
 | |
| 		}
 | |
| 
 | |
| 	if (!is_t4(adap->params.chip)) {
 | |
| 		struct sge_eth_txq *q = &s->ptptxq;
 | |
| 		int avail;
 | |
| 
 | |
| 		spin_lock(&adap->ptp_lock);
 | |
| 		avail = reclaimable(&q->q);
 | |
| 
 | |
| 		if (avail) {
 | |
| 			free_tx_desc(adap, &q->q, avail, false);
 | |
| 			q->q.in_use -= avail;
 | |
| 		}
 | |
| 		spin_unlock(&adap->ptp_lock);
 | |
| 	}
 | |
| 
 | |
| 	budget = MAX_TIMER_TX_RECLAIM;
 | |
| 	i = s->ethtxq_rover;
 | |
| 	do {
 | |
| 		budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
 | |
| 						       budget);
 | |
| 		if (!budget)
 | |
| 			break;
 | |
| 
 | |
| 		if (++i >= s->ethqsets)
 | |
| 			i = 0;
 | |
| 	} while (i != s->ethtxq_rover);
 | |
| 	s->ethtxq_rover = i;
 | |
| 
 | |
| 	if (budget == 0) {
 | |
| 		/* If we found too many reclaimable packets schedule a timer
 | |
| 		 * in the near future to continue where we left off.
 | |
| 		 */
 | |
| 		period = 2;
 | |
| 	} else {
 | |
| 		/* We reclaimed all reclaimable TX Descriptors, so reschedule
 | |
| 		 * at the normal period.
 | |
| 		 */
 | |
| 		period = TX_QCHECK_PERIOD;
 | |
| 	}
 | |
| 
 | |
| 	mod_timer(&s->tx_timer, jiffies + period);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	bar2_address - return the BAR2 address for an SGE Queue's Registers
 | |
|  *	@adapter: the adapter
 | |
|  *	@qid: the SGE Queue ID
 | |
|  *	@qtype: the SGE Queue Type (Egress or Ingress)
 | |
|  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
 | |
|  *
 | |
|  *	Returns the BAR2 address for the SGE Queue Registers associated with
 | |
|  *	@qid.  If BAR2 SGE Registers aren't available, returns NULL.  Also
 | |
|  *	returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
 | |
|  *	Queue Registers.  If the BAR2 Queue ID is 0, then "Inferred Queue ID"
 | |
|  *	Registers are supported (e.g. the Write Combining Doorbell Buffer).
 | |
|  */
 | |
| static void __iomem *bar2_address(struct adapter *adapter,
 | |
| 				  unsigned int qid,
 | |
| 				  enum t4_bar2_qtype qtype,
 | |
| 				  unsigned int *pbar2_qid)
 | |
| {
 | |
| 	u64 bar2_qoffset;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
 | |
| 				&bar2_qoffset, pbar2_qid);
 | |
| 	if (ret)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return adapter->bar2 + bar2_qoffset;
 | |
| }
 | |
| 
 | |
| /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
 | |
|  * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
 | |
|  */
 | |
| int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
 | |
| 		     struct net_device *dev, int intr_idx,
 | |
| 		     struct sge_fl *fl, rspq_handler_t hnd,
 | |
| 		     rspq_flush_handler_t flush_hnd, int cong)
 | |
| {
 | |
| 	int ret, flsz = 0;
 | |
| 	struct fw_iq_cmd c;
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
 | |
| 
 | |
| 	/* Size needs to be multiple of 16, including status entry. */
 | |
| 	iq->size = roundup(iq->size, 16);
 | |
| 
 | |
| 	iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
 | |
| 			      &iq->phys_addr, NULL, 0,
 | |
| 			      dev_to_node(adap->pdev_dev));
 | |
| 	if (!iq->desc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
 | |
| 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
 | |
| 			    FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
 | |
| 	c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
 | |
| 				 FW_LEN16(c));
 | |
| 	c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
 | |
| 		FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
 | |
| 		FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
 | |
| 		FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
 | |
| 		FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
 | |
| 							-intr_idx - 1));
 | |
| 	c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
 | |
| 		FW_IQ_CMD_IQGTSMODE_F |
 | |
| 		FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
 | |
| 		FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
 | |
| 	c.iqsize = htons(iq->size);
 | |
| 	c.iqaddr = cpu_to_be64(iq->phys_addr);
 | |
| 	if (cong >= 0)
 | |
| 		c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
 | |
| 				FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
 | |
| 							:  FW_IQ_IQTYPE_OFLD));
 | |
| 
 | |
| 	if (fl) {
 | |
| 		unsigned int chip_ver =
 | |
| 			CHELSIO_CHIP_VERSION(adap->params.chip);
 | |
| 
 | |
| 		/* Allocate the ring for the hardware free list (with space
 | |
| 		 * for its status page) along with the associated software
 | |
| 		 * descriptor ring.  The free list size needs to be a multiple
 | |
| 		 * of the Egress Queue Unit and at least 2 Egress Units larger
 | |
| 		 * than the SGE's Egress Congrestion Threshold
 | |
| 		 * (fl_starve_thres - 1).
 | |
| 		 */
 | |
| 		if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
 | |
| 			fl->size = s->fl_starve_thres - 1 + 2 * 8;
 | |
| 		fl->size = roundup(fl->size, 8);
 | |
| 		fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
 | |
| 				      sizeof(struct rx_sw_desc), &fl->addr,
 | |
| 				      &fl->sdesc, s->stat_len,
 | |
| 				      dev_to_node(adap->pdev_dev));
 | |
| 		if (!fl->desc)
 | |
| 			goto fl_nomem;
 | |
| 
 | |
| 		flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
 | |
| 		c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
 | |
| 					     FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
 | |
| 					     FW_IQ_CMD_FL0DATARO_V(relaxed) |
 | |
| 					     FW_IQ_CMD_FL0PADEN_F);
 | |
| 		if (cong >= 0)
 | |
| 			c.iqns_to_fl0congen |=
 | |
| 				htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
 | |
| 				      FW_IQ_CMD_FL0CONGCIF_F |
 | |
| 				      FW_IQ_CMD_FL0CONGEN_F);
 | |
| 		/* In T6, for egress queue type FL there is internal overhead
 | |
| 		 * of 16B for header going into FLM module.  Hence the maximum
 | |
| 		 * allowed burst size is 448 bytes.  For T4/T5, the hardware
 | |
| 		 * doesn't coalesce fetch requests if more than 64 bytes of
 | |
| 		 * Free List pointers are provided, so we use a 128-byte Fetch
 | |
| 		 * Burst Minimum there (T6 implements coalescing so we can use
 | |
| 		 * the smaller 64-byte value there).
 | |
| 		 */
 | |
| 		c.fl0dcaen_to_fl0cidxfthresh =
 | |
| 			htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
 | |
| 						   FETCHBURSTMIN_128B_X :
 | |
| 						   FETCHBURSTMIN_64B_T6_X) |
 | |
| 			      FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
 | |
| 						   FETCHBURSTMAX_512B_X :
 | |
| 						   FETCHBURSTMAX_256B_X));
 | |
| 		c.fl0size = htons(flsz);
 | |
| 		c.fl0addr = cpu_to_be64(fl->addr);
 | |
| 	}
 | |
| 
 | |
| 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	netif_napi_add(dev, &iq->napi, napi_rx_handler);
 | |
| 	iq->cur_desc = iq->desc;
 | |
| 	iq->cidx = 0;
 | |
| 	iq->gen = 1;
 | |
| 	iq->next_intr_params = iq->intr_params;
 | |
| 	iq->cntxt_id = ntohs(c.iqid);
 | |
| 	iq->abs_id = ntohs(c.physiqid);
 | |
| 	iq->bar2_addr = bar2_address(adap,
 | |
| 				     iq->cntxt_id,
 | |
| 				     T4_BAR2_QTYPE_INGRESS,
 | |
| 				     &iq->bar2_qid);
 | |
| 	iq->size--;                           /* subtract status entry */
 | |
| 	iq->netdev = dev;
 | |
| 	iq->handler = hnd;
 | |
| 	iq->flush_handler = flush_hnd;
 | |
| 
 | |
| 	memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
 | |
| 	skb_queue_head_init(&iq->lro_mgr.lroq);
 | |
| 
 | |
| 	/* set offset to -1 to distinguish ingress queues without FL */
 | |
| 	iq->offset = fl ? 0 : -1;
 | |
| 
 | |
| 	adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
 | |
| 
 | |
| 	if (fl) {
 | |
| 		fl->cntxt_id = ntohs(c.fl0id);
 | |
| 		fl->avail = fl->pend_cred = 0;
 | |
| 		fl->pidx = fl->cidx = 0;
 | |
| 		fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
 | |
| 		adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
 | |
| 
 | |
| 		/* Note, we must initialize the BAR2 Free List User Doorbell
 | |
| 		 * information before refilling the Free List!
 | |
| 		 */
 | |
| 		fl->bar2_addr = bar2_address(adap,
 | |
| 					     fl->cntxt_id,
 | |
| 					     T4_BAR2_QTYPE_EGRESS,
 | |
| 					     &fl->bar2_qid);
 | |
| 		refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
 | |
| 	}
 | |
| 
 | |
| 	/* For T5 and later we attempt to set up the Congestion Manager values
 | |
| 	 * of the new RX Ethernet Queue.  This should really be handled by
 | |
| 	 * firmware because it's more complex than any host driver wants to
 | |
| 	 * get involved with and it's different per chip and this is almost
 | |
| 	 * certainly wrong.  Firmware would be wrong as well, but it would be
 | |
| 	 * a lot easier to fix in one place ...  For now we do something very
 | |
| 	 * simple (and hopefully less wrong).
 | |
| 	 */
 | |
| 	if (!is_t4(adap->params.chip) && cong >= 0) {
 | |
| 		u32 param, val, ch_map = 0;
 | |
| 		int i;
 | |
| 		u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
 | |
| 
 | |
| 		param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 | |
| 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
 | |
| 			 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
 | |
| 		if (cong == 0) {
 | |
| 			val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
 | |
| 		} else {
 | |
| 			val =
 | |
| 			    CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
 | |
| 			for (i = 0; i < 4; i++) {
 | |
| 				if (cong & (1 << i))
 | |
| 					ch_map |= 1 << (i << cng_ch_bits_log);
 | |
| 			}
 | |
| 			val |= CONMCTXT_CNGCHMAP_V(ch_map);
 | |
| 		}
 | |
| 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
 | |
| 				    ¶m, &val);
 | |
| 		if (ret)
 | |
| 			dev_warn(adap->pdev_dev, "Failed to set Congestion"
 | |
| 				 " Manager Context for Ingress Queue %d: %d\n",
 | |
| 				 iq->cntxt_id, -ret);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fl_nomem:
 | |
| 	ret = -ENOMEM;
 | |
| err:
 | |
| 	if (iq->desc) {
 | |
| 		dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
 | |
| 				  iq->desc, iq->phys_addr);
 | |
| 		iq->desc = NULL;
 | |
| 	}
 | |
| 	if (fl && fl->desc) {
 | |
| 		kfree(fl->sdesc);
 | |
| 		fl->sdesc = NULL;
 | |
| 		dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
 | |
| 				  fl->desc, fl->addr);
 | |
| 		fl->desc = NULL;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
 | |
| {
 | |
| 	q->cntxt_id = id;
 | |
| 	q->bar2_addr = bar2_address(adap,
 | |
| 				    q->cntxt_id,
 | |
| 				    T4_BAR2_QTYPE_EGRESS,
 | |
| 				    &q->bar2_qid);
 | |
| 	q->in_use = 0;
 | |
| 	q->cidx = q->pidx = 0;
 | |
| 	q->stops = q->restarts = 0;
 | |
| 	q->stat = (void *)&q->desc[q->size];
 | |
| 	spin_lock_init(&q->db_lock);
 | |
| 	adap->sge.egr_map[id - adap->sge.egr_start] = q;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
 | |
|  *	@adap: the adapter
 | |
|  *	@txq: the SGE Ethernet TX Queue to initialize
 | |
|  *	@dev: the Linux Network Device
 | |
|  *	@netdevq: the corresponding Linux TX Queue
 | |
|  *	@iqid: the Ingress Queue to which to deliver CIDX Update messages
 | |
|  *	@dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
 | |
|  */
 | |
| int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
 | |
| 			 struct net_device *dev, struct netdev_queue *netdevq,
 | |
| 			 unsigned int iqid, u8 dbqt)
 | |
| {
 | |
| 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	struct fw_eq_eth_cmd c;
 | |
| 	int ret, nentries;
 | |
| 
 | |
| 	/* Add status entries */
 | |
| 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
 | |
| 
 | |
| 	txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
 | |
| 			sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
 | |
| 			&txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
 | |
| 			netdev_queue_numa_node_read(netdevq));
 | |
| 	if (!txq->q.desc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
 | |
| 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
 | |
| 			    FW_EQ_ETH_CMD_PFN_V(adap->pf) |
 | |
| 			    FW_EQ_ETH_CMD_VFN_V(0));
 | |
| 	c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
 | |
| 				 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
 | |
| 
 | |
| 	/* For TX Ethernet Queues using the SGE Doorbell Queue Timer
 | |
| 	 * mechanism, we use Ingress Queue messages for Hardware Consumer
 | |
| 	 * Index Updates on the TX Queue.  Otherwise we have the Hardware
 | |
| 	 * write the CIDX Updates into the Status Page at the end of the
 | |
| 	 * TX Queue.
 | |
| 	 */
 | |
| 	c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
 | |
| 				      FW_EQ_ETH_CMD_AUTOEQUIQE_F :
 | |
| 				      FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
 | |
| 				     FW_EQ_ETH_CMD_VIID_V(pi->viid));
 | |
| 
 | |
| 	c.fetchszm_to_iqid =
 | |
| 		htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
 | |
| 						 HOSTFCMODE_INGRESS_QUEUE_X :
 | |
| 						 HOSTFCMODE_STATUS_PAGE_X) |
 | |
| 		      FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
 | |
| 		      FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
 | |
| 
 | |
| 	/* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
 | |
| 	c.dcaen_to_eqsize =
 | |
| 		htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
 | |
| 					    ? FETCHBURSTMIN_64B_X
 | |
| 					    : FETCHBURSTMIN_64B_T6_X) |
 | |
| 		      FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
 | |
| 		      FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
 | |
| 		      FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
 | |
| 		      FW_EQ_ETH_CMD_EQSIZE_V(nentries));
 | |
| 
 | |
| 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
 | |
| 
 | |
| 	/* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
 | |
| 	 * currently configured Timer Index.  THis can be changed later via an
 | |
| 	 * ethtool -C tx-usecs {Timer Val} command.  Note that the SGE
 | |
| 	 * Doorbell Queue mode is currently automatically enabled in the
 | |
| 	 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
 | |
| 	 */
 | |
| 	if (dbqt)
 | |
| 		c.timeren_timerix =
 | |
| 			cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
 | |
| 				    FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
 | |
| 
 | |
| 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
 | |
| 	if (ret) {
 | |
| 		kfree(txq->q.sdesc);
 | |
| 		txq->q.sdesc = NULL;
 | |
| 		dma_free_coherent(adap->pdev_dev,
 | |
| 				  nentries * sizeof(struct tx_desc),
 | |
| 				  txq->q.desc, txq->q.phys_addr);
 | |
| 		txq->q.desc = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	txq->q.q_type = CXGB4_TXQ_ETH;
 | |
| 	init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
 | |
| 	txq->txq = netdevq;
 | |
| 	txq->tso = 0;
 | |
| 	txq->uso = 0;
 | |
| 	txq->tx_cso = 0;
 | |
| 	txq->vlan_ins = 0;
 | |
| 	txq->mapping_err = 0;
 | |
| 	txq->dbqt = dbqt;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
 | |
| 			  struct net_device *dev, unsigned int iqid,
 | |
| 			  unsigned int cmplqid)
 | |
| {
 | |
| 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	struct fw_eq_ctrl_cmd c;
 | |
| 	int ret, nentries;
 | |
| 
 | |
| 	/* Add status entries */
 | |
| 	nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
 | |
| 
 | |
| 	txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
 | |
| 				 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
 | |
| 				 NULL, 0, dev_to_node(adap->pdev_dev));
 | |
| 	if (!txq->q.desc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
 | |
| 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
 | |
| 			    FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
 | |
| 			    FW_EQ_CTRL_CMD_VFN_V(0));
 | |
| 	c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
 | |
| 				 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
 | |
| 	c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
 | |
| 	c.physeqid_pkd = htonl(0);
 | |
| 	c.fetchszm_to_iqid =
 | |
| 		htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
 | |
| 		      FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
 | |
| 		      FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
 | |
| 	c.dcaen_to_eqsize =
 | |
| 		htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
 | |
| 					     ? FETCHBURSTMIN_64B_X
 | |
| 					     : FETCHBURSTMIN_64B_T6_X) |
 | |
| 		      FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
 | |
| 		      FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
 | |
| 		      FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
 | |
| 	c.eqaddr = cpu_to_be64(txq->q.phys_addr);
 | |
| 
 | |
| 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
 | |
| 	if (ret) {
 | |
| 		dma_free_coherent(adap->pdev_dev,
 | |
| 				  nentries * sizeof(struct tx_desc),
 | |
| 				  txq->q.desc, txq->q.phys_addr);
 | |
| 		txq->q.desc = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	txq->q.q_type = CXGB4_TXQ_CTRL;
 | |
| 	init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
 | |
| 	txq->adap = adap;
 | |
| 	skb_queue_head_init(&txq->sendq);
 | |
| 	tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
 | |
| 	txq->full = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
 | |
| 			unsigned int cmplqid)
 | |
| {
 | |
| 	u32 param, val;
 | |
| 
 | |
| 	param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 | |
| 		 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
 | |
| 		 FW_PARAMS_PARAM_YZ_V(eqid));
 | |
| 	val = cmplqid;
 | |
| 	return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
 | |
| }
 | |
| 
 | |
| static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
 | |
| 				 struct net_device *dev, u32 cmd, u32 iqid)
 | |
| {
 | |
| 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
 | |
| 	struct port_info *pi = netdev_priv(dev);
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	struct fw_eq_ofld_cmd c;
 | |
| 	u32 fb_min, nentries;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Add status entries */
 | |
| 	nentries = q->size + s->stat_len / sizeof(struct tx_desc);
 | |
| 	q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
 | |
| 			     sizeof(struct tx_sw_desc), &q->phys_addr,
 | |
| 			     &q->sdesc, s->stat_len, NUMA_NO_NODE);
 | |
| 	if (!q->desc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (chip_ver <= CHELSIO_T5)
 | |
| 		fb_min = FETCHBURSTMIN_64B_X;
 | |
| 	else
 | |
| 		fb_min = FETCHBURSTMIN_64B_T6_X;
 | |
| 
 | |
| 	memset(&c, 0, sizeof(c));
 | |
| 	c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
 | |
| 			    FW_CMD_WRITE_F | FW_CMD_EXEC_F |
 | |
| 			    FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
 | |
| 			    FW_EQ_OFLD_CMD_VFN_V(0));
 | |
| 	c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
 | |
| 				 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
 | |
| 	c.fetchszm_to_iqid =
 | |
| 		htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
 | |
| 		      FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
 | |
| 		      FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
 | |
| 	c.dcaen_to_eqsize =
 | |
| 		htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
 | |
| 		      FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
 | |
| 		      FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
 | |
| 		      FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
 | |
| 	c.eqaddr = cpu_to_be64(q->phys_addr);
 | |
| 
 | |
| 	ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
 | |
| 	if (ret) {
 | |
| 		kfree(q->sdesc);
 | |
| 		q->sdesc = NULL;
 | |
| 		dma_free_coherent(adap->pdev_dev,
 | |
| 				  nentries * sizeof(struct tx_desc),
 | |
| 				  q->desc, q->phys_addr);
 | |
| 		q->desc = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
 | |
| 			 struct net_device *dev, unsigned int iqid,
 | |
| 			 unsigned int uld_type)
 | |
| {
 | |
| 	u32 cmd = FW_EQ_OFLD_CMD;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (unlikely(uld_type == CXGB4_TX_CRYPTO))
 | |
| 		cmd = FW_EQ_CTRL_CMD;
 | |
| 
 | |
| 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	txq->q.q_type = CXGB4_TXQ_ULD;
 | |
| 	txq->adap = adap;
 | |
| 	skb_queue_head_init(&txq->sendq);
 | |
| 	tasklet_setup(&txq->qresume_tsk, restart_ofldq);
 | |
| 	txq->full = 0;
 | |
| 	txq->mapping_err = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
 | |
| 			     struct net_device *dev, u32 iqid)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	txq->q.q_type = CXGB4_TXQ_ULD;
 | |
| 	spin_lock_init(&txq->lock);
 | |
| 	txq->adap = adap;
 | |
| 	txq->tso = 0;
 | |
| 	txq->uso = 0;
 | |
| 	txq->tx_cso = 0;
 | |
| 	txq->vlan_ins = 0;
 | |
| 	txq->mapping_err = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void free_txq(struct adapter *adap, struct sge_txq *q)
 | |
| {
 | |
| 	struct sge *s = &adap->sge;
 | |
| 
 | |
| 	dma_free_coherent(adap->pdev_dev,
 | |
| 			  q->size * sizeof(struct tx_desc) + s->stat_len,
 | |
| 			  q->desc, q->phys_addr);
 | |
| 	q->cntxt_id = 0;
 | |
| 	q->sdesc = NULL;
 | |
| 	q->desc = NULL;
 | |
| }
 | |
| 
 | |
| void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
 | |
| 		  struct sge_fl *fl)
 | |
| {
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
 | |
| 
 | |
| 	adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
 | |
| 	t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
 | |
| 		   rq->cntxt_id, fl_id, 0xffff);
 | |
| 	dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
 | |
| 			  rq->desc, rq->phys_addr);
 | |
| 	netif_napi_del(&rq->napi);
 | |
| 	rq->netdev = NULL;
 | |
| 	rq->cntxt_id = rq->abs_id = 0;
 | |
| 	rq->desc = NULL;
 | |
| 
 | |
| 	if (fl) {
 | |
| 		free_rx_bufs(adap, fl, fl->avail);
 | |
| 		dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
 | |
| 				  fl->desc, fl->addr);
 | |
| 		kfree(fl->sdesc);
 | |
| 		fl->sdesc = NULL;
 | |
| 		fl->cntxt_id = 0;
 | |
| 		fl->desc = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *      t4_free_ofld_rxqs - free a block of consecutive Rx queues
 | |
|  *      @adap: the adapter
 | |
|  *      @n: number of queues
 | |
|  *      @q: pointer to first queue
 | |
|  *
 | |
|  *      Release the resources of a consecutive block of offload Rx queues.
 | |
|  */
 | |
| void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
 | |
| {
 | |
| 	for ( ; n; n--, q++)
 | |
| 		if (q->rspq.desc)
 | |
| 			free_rspq_fl(adap, &q->rspq,
 | |
| 				     q->fl.size ? &q->fl : NULL);
 | |
| }
 | |
| 
 | |
| void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
 | |
| {
 | |
| 	if (txq->q.desc) {
 | |
| 		t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
 | |
| 				txq->q.cntxt_id);
 | |
| 		free_tx_desc(adap, &txq->q, txq->q.in_use, false);
 | |
| 		kfree(txq->q.sdesc);
 | |
| 		free_txq(adap, &txq->q);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_free_sge_resources - free SGE resources
 | |
|  *	@adap: the adapter
 | |
|  *
 | |
|  *	Frees resources used by the SGE queue sets.
 | |
|  */
 | |
| void t4_free_sge_resources(struct adapter *adap)
 | |
| {
 | |
| 	int i;
 | |
| 	struct sge_eth_rxq *eq;
 | |
| 	struct sge_eth_txq *etq;
 | |
| 
 | |
| 	/* stop all Rx queues in order to start them draining */
 | |
| 	for (i = 0; i < adap->sge.ethqsets; i++) {
 | |
| 		eq = &adap->sge.ethrxq[i];
 | |
| 		if (eq->rspq.desc)
 | |
| 			t4_iq_stop(adap, adap->mbox, adap->pf, 0,
 | |
| 				   FW_IQ_TYPE_FL_INT_CAP,
 | |
| 				   eq->rspq.cntxt_id,
 | |
| 				   eq->fl.size ? eq->fl.cntxt_id : 0xffff,
 | |
| 				   0xffff);
 | |
| 	}
 | |
| 
 | |
| 	/* clean up Ethernet Tx/Rx queues */
 | |
| 	for (i = 0; i < adap->sge.ethqsets; i++) {
 | |
| 		eq = &adap->sge.ethrxq[i];
 | |
| 		if (eq->rspq.desc)
 | |
| 			free_rspq_fl(adap, &eq->rspq,
 | |
| 				     eq->fl.size ? &eq->fl : NULL);
 | |
| 		if (eq->msix) {
 | |
| 			cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
 | |
| 			eq->msix = NULL;
 | |
| 		}
 | |
| 
 | |
| 		etq = &adap->sge.ethtxq[i];
 | |
| 		if (etq->q.desc) {
 | |
| 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
 | |
| 				       etq->q.cntxt_id);
 | |
| 			__netif_tx_lock_bh(etq->txq);
 | |
| 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
 | |
| 			__netif_tx_unlock_bh(etq->txq);
 | |
| 			kfree(etq->q.sdesc);
 | |
| 			free_txq(adap, &etq->q);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* clean up control Tx queues */
 | |
| 	for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
 | |
| 		struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
 | |
| 
 | |
| 		if (cq->q.desc) {
 | |
| 			tasklet_kill(&cq->qresume_tsk);
 | |
| 			t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
 | |
| 					cq->q.cntxt_id);
 | |
| 			__skb_queue_purge(&cq->sendq);
 | |
| 			free_txq(adap, &cq->q);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (adap->sge.fw_evtq.desc) {
 | |
| 		free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
 | |
| 		if (adap->sge.fwevtq_msix_idx >= 0)
 | |
| 			cxgb4_free_msix_idx_in_bmap(adap,
 | |
| 						    adap->sge.fwevtq_msix_idx);
 | |
| 	}
 | |
| 
 | |
| 	if (adap->sge.nd_msix_idx >= 0)
 | |
| 		cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
 | |
| 
 | |
| 	if (adap->sge.intrq.desc)
 | |
| 		free_rspq_fl(adap, &adap->sge.intrq, NULL);
 | |
| 
 | |
| 	if (!is_t4(adap->params.chip)) {
 | |
| 		etq = &adap->sge.ptptxq;
 | |
| 		if (etq->q.desc) {
 | |
| 			t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
 | |
| 				       etq->q.cntxt_id);
 | |
| 			spin_lock_bh(&adap->ptp_lock);
 | |
| 			free_tx_desc(adap, &etq->q, etq->q.in_use, true);
 | |
| 			spin_unlock_bh(&adap->ptp_lock);
 | |
| 			kfree(etq->q.sdesc);
 | |
| 			free_txq(adap, &etq->q);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* clear the reverse egress queue map */
 | |
| 	memset(adap->sge.egr_map, 0,
 | |
| 	       adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
 | |
| }
 | |
| 
 | |
| void t4_sge_start(struct adapter *adap)
 | |
| {
 | |
| 	adap->sge.ethtxq_rover = 0;
 | |
| 	mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
 | |
| 	mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_sge_stop - disable SGE operation
 | |
|  *	@adap: the adapter
 | |
|  *
 | |
|  *	Stop tasklets and timers associated with the DMA engine.  Note that
 | |
|  *	this is effective only if measures have been taken to disable any HW
 | |
|  *	events that may restart them.
 | |
|  */
 | |
| void t4_sge_stop(struct adapter *adap)
 | |
| {
 | |
| 	int i;
 | |
| 	struct sge *s = &adap->sge;
 | |
| 
 | |
| 	if (s->rx_timer.function)
 | |
| 		del_timer_sync(&s->rx_timer);
 | |
| 	if (s->tx_timer.function)
 | |
| 		del_timer_sync(&s->tx_timer);
 | |
| 
 | |
| 	if (is_offload(adap)) {
 | |
| 		struct sge_uld_txq_info *txq_info;
 | |
| 
 | |
| 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
 | |
| 		if (txq_info) {
 | |
| 			struct sge_uld_txq *txq = txq_info->uldtxq;
 | |
| 
 | |
| 			for_each_ofldtxq(&adap->sge, i) {
 | |
| 				if (txq->q.desc)
 | |
| 					tasklet_kill(&txq->qresume_tsk);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (is_pci_uld(adap)) {
 | |
| 		struct sge_uld_txq_info *txq_info;
 | |
| 
 | |
| 		txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
 | |
| 		if (txq_info) {
 | |
| 			struct sge_uld_txq *txq = txq_info->uldtxq;
 | |
| 
 | |
| 			for_each_ofldtxq(&adap->sge, i) {
 | |
| 				if (txq->q.desc)
 | |
| 					tasklet_kill(&txq->qresume_tsk);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
 | |
| 		struct sge_ctrl_txq *cq = &s->ctrlq[i];
 | |
| 
 | |
| 		if (cq->q.desc)
 | |
| 			tasklet_kill(&cq->qresume_tsk);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	t4_sge_init_soft - grab core SGE values needed by SGE code
 | |
|  *	@adap: the adapter
 | |
|  *
 | |
|  *	We need to grab the SGE operating parameters that we need to have
 | |
|  *	in order to do our job and make sure we can live with them.
 | |
|  */
 | |
| 
 | |
| static int t4_sge_init_soft(struct adapter *adap)
 | |
| {
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
 | |
| 	u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
 | |
| 	u32 ingress_rx_threshold;
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that CPL messages are going to the Ingress Queue for
 | |
| 	 * process_responses() and that only packet data is going to the
 | |
| 	 * Free Lists.
 | |
| 	 */
 | |
| 	if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
 | |
| 	    RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
 | |
| 		dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the Host Buffer Register Array indices that we want to
 | |
| 	 * use ...
 | |
| 	 *
 | |
| 	 * XXX Note that we should really read through the Host Buffer Size
 | |
| 	 * XXX register array and find the indices of the Buffer Sizes which
 | |
| 	 * XXX meet our needs!
 | |
| 	 */
 | |
| 	#define READ_FL_BUF(x) \
 | |
| 		t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
 | |
| 
 | |
| 	fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
 | |
| 	fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
 | |
| 	fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
 | |
| 	fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
 | |
| 
 | |
| 	/* We only bother using the Large Page logic if the Large Page Buffer
 | |
| 	 * is larger than our Page Size Buffer.
 | |
| 	 */
 | |
| 	if (fl_large_pg <= fl_small_pg)
 | |
| 		fl_large_pg = 0;
 | |
| 
 | |
| 	#undef READ_FL_BUF
 | |
| 
 | |
| 	/* The Page Size Buffer must be exactly equal to our Page Size and the
 | |
| 	 * Large Page Size Buffer should be 0 (per above) or a power of 2.
 | |
| 	 */
 | |
| 	if (fl_small_pg != PAGE_SIZE ||
 | |
| 	    (fl_large_pg & (fl_large_pg-1)) != 0) {
 | |
| 		dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
 | |
| 			fl_small_pg, fl_large_pg);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (fl_large_pg)
 | |
| 		s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
 | |
| 
 | |
| 	if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
 | |
| 	    fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
 | |
| 		dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
 | |
| 			fl_small_mtu, fl_large_mtu);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Retrieve our RX interrupt holdoff timer values and counter
 | |
| 	 * threshold values from the SGE parameters.
 | |
| 	 */
 | |
| 	timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
 | |
| 	timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
 | |
| 	timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
 | |
| 	s->timer_val[0] = core_ticks_to_us(adap,
 | |
| 		TIMERVALUE0_G(timer_value_0_and_1));
 | |
| 	s->timer_val[1] = core_ticks_to_us(adap,
 | |
| 		TIMERVALUE1_G(timer_value_0_and_1));
 | |
| 	s->timer_val[2] = core_ticks_to_us(adap,
 | |
| 		TIMERVALUE2_G(timer_value_2_and_3));
 | |
| 	s->timer_val[3] = core_ticks_to_us(adap,
 | |
| 		TIMERVALUE3_G(timer_value_2_and_3));
 | |
| 	s->timer_val[4] = core_ticks_to_us(adap,
 | |
| 		TIMERVALUE4_G(timer_value_4_and_5));
 | |
| 	s->timer_val[5] = core_ticks_to_us(adap,
 | |
| 		TIMERVALUE5_G(timer_value_4_and_5));
 | |
| 
 | |
| 	ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
 | |
| 	s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
 | |
| 	s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
 | |
| 	s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
 | |
| 	s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *     t4_sge_init - initialize SGE
 | |
|  *     @adap: the adapter
 | |
|  *
 | |
|  *     Perform low-level SGE code initialization needed every time after a
 | |
|  *     chip reset.
 | |
|  */
 | |
| int t4_sge_init(struct adapter *adap)
 | |
| {
 | |
| 	struct sge *s = &adap->sge;
 | |
| 	u32 sge_control, sge_conm_ctrl;
 | |
| 	int ret, egress_threshold;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ingress Padding Boundary and Egress Status Page Size are set up by
 | |
| 	 * t4_fixup_host_params().
 | |
| 	 */
 | |
| 	sge_control = t4_read_reg(adap, SGE_CONTROL_A);
 | |
| 	s->pktshift = PKTSHIFT_G(sge_control);
 | |
| 	s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
 | |
| 
 | |
| 	s->fl_align = t4_fl_pkt_align(adap);
 | |
| 	ret = t4_sge_init_soft(adap);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * A FL with <= fl_starve_thres buffers is starving and a periodic
 | |
| 	 * timer will attempt to refill it.  This needs to be larger than the
 | |
| 	 * SGE's Egress Congestion Threshold.  If it isn't, then we can get
 | |
| 	 * stuck waiting for new packets while the SGE is waiting for us to
 | |
| 	 * give it more Free List entries.  (Note that the SGE's Egress
 | |
| 	 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
 | |
| 	 * there was only a single field to control this.  For T5 there's the
 | |
| 	 * original field which now only applies to Unpacked Mode Free List
 | |
| 	 * buffers and a new field which only applies to Packed Mode Free List
 | |
| 	 * buffers.
 | |
| 	 */
 | |
| 	sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
 | |
| 	switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
 | |
| 	case CHELSIO_T4:
 | |
| 		egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
 | |
| 		break;
 | |
| 	case CHELSIO_T5:
 | |
| 		egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
 | |
| 		break;
 | |
| 	case CHELSIO_T6:
 | |
| 		egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
 | |
| 			CHELSIO_CHIP_VERSION(adap->params.chip));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	s->fl_starve_thres = 2*egress_threshold + 1;
 | |
| 
 | |
| 	t4_idma_monitor_init(adap, &s->idma_monitor);
 | |
| 
 | |
| 	/* Set up timers used for recuring callbacks to process RX and TX
 | |
| 	 * administrative tasks.
 | |
| 	 */
 | |
| 	timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
 | |
| 	timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
 | |
| 
 | |
| 	spin_lock_init(&s->intrq_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |