480 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			480 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef __LINUX_UACCESS_H__
 | |
| #define __LINUX_UACCESS_H__
 | |
| 
 | |
| #include <linux/fault-inject-usercopy.h>
 | |
| #include <linux/instrumented.h>
 | |
| #include <linux/minmax.h>
 | |
| #include <linux/nospec.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/thread_info.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| /*
 | |
|  * Architectures that support memory tagging (assigning tags to memory regions,
 | |
|  * embedding these tags into addresses that point to these memory regions, and
 | |
|  * checking that the memory and the pointer tags match on memory accesses)
 | |
|  * redefine this macro to strip tags from pointers.
 | |
|  *
 | |
|  * Passing down mm_struct allows to define untagging rules on per-process
 | |
|  * basis.
 | |
|  *
 | |
|  * It's defined as noop for architectures that don't support memory tagging.
 | |
|  */
 | |
| #ifndef untagged_addr
 | |
| #define untagged_addr(addr) (addr)
 | |
| #endif
 | |
| 
 | |
| #ifndef untagged_addr_remote
 | |
| #define untagged_addr_remote(mm, addr)	({		\
 | |
| 	mmap_assert_locked(mm);				\
 | |
| 	untagged_addr(addr);				\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifdef masked_user_access_begin
 | |
|  #define can_do_masked_user_access() 1
 | |
| #else
 | |
|  #define can_do_masked_user_access() 0
 | |
|  #define masked_user_access_begin(src) NULL
 | |
|  #define mask_user_address(src) (src)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Architectures should provide two primitives (raw_copy_{to,from}_user())
 | |
|  * and get rid of their private instances of copy_{to,from}_user() and
 | |
|  * __copy_{to,from}_user{,_inatomic}().
 | |
|  *
 | |
|  * raw_copy_{to,from}_user(to, from, size) should copy up to size bytes and
 | |
|  * return the amount left to copy.  They should assume that access_ok() has
 | |
|  * already been checked (and succeeded); they should *not* zero-pad anything.
 | |
|  * No KASAN or object size checks either - those belong here.
 | |
|  *
 | |
|  * Both of these functions should attempt to copy size bytes starting at from
 | |
|  * into the area starting at to.  They must not fetch or store anything
 | |
|  * outside of those areas.  Return value must be between 0 (everything
 | |
|  * copied successfully) and size (nothing copied).
 | |
|  *
 | |
|  * If raw_copy_{to,from}_user(to, from, size) returns N, size - N bytes starting
 | |
|  * at to must become equal to the bytes fetched from the corresponding area
 | |
|  * starting at from.  All data past to + size - N must be left unmodified.
 | |
|  *
 | |
|  * If copying succeeds, the return value must be 0.  If some data cannot be
 | |
|  * fetched, it is permitted to copy less than had been fetched; the only
 | |
|  * hard requirement is that not storing anything at all (i.e. returning size)
 | |
|  * should happen only when nothing could be copied.  In other words, you don't
 | |
|  * have to squeeze as much as possible - it is allowed, but not necessary.
 | |
|  *
 | |
|  * For raw_copy_from_user() to always points to kernel memory and no faults
 | |
|  * on store should happen.  Interpretation of from is affected by set_fs().
 | |
|  * For raw_copy_to_user() it's the other way round.
 | |
|  *
 | |
|  * Both can be inlined - it's up to architectures whether it wants to bother
 | |
|  * with that.  They should not be used directly; they are used to implement
 | |
|  * the 6 functions (copy_{to,from}_user(), __copy_{to,from}_user_inatomic())
 | |
|  * that are used instead.  Out of those, __... ones are inlined.  Plain
 | |
|  * copy_{to,from}_user() might or might not be inlined.  If you want them
 | |
|  * inlined, have asm/uaccess.h define INLINE_COPY_{TO,FROM}_USER.
 | |
|  *
 | |
|  * NOTE: only copy_from_user() zero-pads the destination in case of short copy.
 | |
|  * Neither __copy_from_user() nor __copy_from_user_inatomic() zero anything
 | |
|  * at all; their callers absolutely must check the return value.
 | |
|  *
 | |
|  * Biarch ones should also provide raw_copy_in_user() - similar to the above,
 | |
|  * but both source and destination are __user pointers (affected by set_fs()
 | |
|  * as usual) and both source and destination can trigger faults.
 | |
|  */
 | |
| 
 | |
| static __always_inline __must_check unsigned long
 | |
| __copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
 | |
| {
 | |
| 	unsigned long res;
 | |
| 
 | |
| 	instrument_copy_from_user_before(to, from, n);
 | |
| 	check_object_size(to, n, false);
 | |
| 	res = raw_copy_from_user(to, from, n);
 | |
| 	instrument_copy_from_user_after(to, from, n, res);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static __always_inline __must_check unsigned long
 | |
| __copy_from_user(void *to, const void __user *from, unsigned long n)
 | |
| {
 | |
| 	unsigned long res;
 | |
| 
 | |
| 	might_fault();
 | |
| 	instrument_copy_from_user_before(to, from, n);
 | |
| 	if (should_fail_usercopy())
 | |
| 		return n;
 | |
| 	check_object_size(to, n, false);
 | |
| 	res = raw_copy_from_user(to, from, n);
 | |
| 	instrument_copy_from_user_after(to, from, n, res);
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __copy_to_user_inatomic: - Copy a block of data into user space, with less checking.
 | |
|  * @to:   Destination address, in user space.
 | |
|  * @from: Source address, in kernel space.
 | |
|  * @n:    Number of bytes to copy.
 | |
|  *
 | |
|  * Context: User context only.
 | |
|  *
 | |
|  * Copy data from kernel space to user space.  Caller must check
 | |
|  * the specified block with access_ok() before calling this function.
 | |
|  * The caller should also make sure he pins the user space address
 | |
|  * so that we don't result in page fault and sleep.
 | |
|  */
 | |
| static __always_inline __must_check unsigned long
 | |
| __copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
 | |
| {
 | |
| 	if (should_fail_usercopy())
 | |
| 		return n;
 | |
| 	instrument_copy_to_user(to, from, n);
 | |
| 	check_object_size(from, n, true);
 | |
| 	return raw_copy_to_user(to, from, n);
 | |
| }
 | |
| 
 | |
| static __always_inline __must_check unsigned long
 | |
| __copy_to_user(void __user *to, const void *from, unsigned long n)
 | |
| {
 | |
| 	might_fault();
 | |
| 	if (should_fail_usercopy())
 | |
| 		return n;
 | |
| 	instrument_copy_to_user(to, from, n);
 | |
| 	check_object_size(from, n, true);
 | |
| 	return raw_copy_to_user(to, from, n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Architectures that #define INLINE_COPY_TO_USER use this function
 | |
|  * directly in the normal copy_to/from_user(), the other ones go
 | |
|  * through an extern _copy_to/from_user(), which expands the same code
 | |
|  * here.
 | |
|  *
 | |
|  * Rust code always uses the extern definition.
 | |
|  */
 | |
| static inline __must_check unsigned long
 | |
| _inline_copy_from_user(void *to, const void __user *from, unsigned long n)
 | |
| {
 | |
| 	unsigned long res = n;
 | |
| 	might_fault();
 | |
| 	if (should_fail_usercopy())
 | |
| 		goto fail;
 | |
| 	if (can_do_masked_user_access())
 | |
| 		from = mask_user_address(from);
 | |
| 	else {
 | |
| 		if (!access_ok(from, n))
 | |
| 			goto fail;
 | |
| 		/*
 | |
| 		 * Ensure that bad access_ok() speculation will not
 | |
| 		 * lead to nasty side effects *after* the copy is
 | |
| 		 * finished:
 | |
| 		 */
 | |
| 		barrier_nospec();
 | |
| 	}
 | |
| 	instrument_copy_from_user_before(to, from, n);
 | |
| 	res = raw_copy_from_user(to, from, n);
 | |
| 	instrument_copy_from_user_after(to, from, n, res);
 | |
| 	if (likely(!res))
 | |
| 		return 0;
 | |
| fail:
 | |
| 	memset(to + (n - res), 0, res);
 | |
| 	return res;
 | |
| }
 | |
| extern __must_check unsigned long
 | |
| _copy_from_user(void *, const void __user *, unsigned long);
 | |
| 
 | |
| static inline __must_check unsigned long
 | |
| _inline_copy_to_user(void __user *to, const void *from, unsigned long n)
 | |
| {
 | |
| 	might_fault();
 | |
| 	if (should_fail_usercopy())
 | |
| 		return n;
 | |
| 	if (access_ok(to, n)) {
 | |
| 		instrument_copy_to_user(to, from, n);
 | |
| 		n = raw_copy_to_user(to, from, n);
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| extern __must_check unsigned long
 | |
| _copy_to_user(void __user *, const void *, unsigned long);
 | |
| 
 | |
| static __always_inline unsigned long __must_check
 | |
| copy_from_user(void *to, const void __user *from, unsigned long n)
 | |
| {
 | |
| 	if (!check_copy_size(to, n, false))
 | |
| 		return n;
 | |
| #ifdef INLINE_COPY_FROM_USER
 | |
| 	return _inline_copy_from_user(to, from, n);
 | |
| #else
 | |
| 	return _copy_from_user(to, from, n);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static __always_inline unsigned long __must_check
 | |
| copy_to_user(void __user *to, const void *from, unsigned long n)
 | |
| {
 | |
| 	if (!check_copy_size(from, n, true))
 | |
| 		return n;
 | |
| 
 | |
| #ifdef INLINE_COPY_TO_USER
 | |
| 	return _inline_copy_to_user(to, from, n);
 | |
| #else
 | |
| 	return _copy_to_user(to, from, n);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef copy_mc_to_kernel
 | |
| /*
 | |
|  * Without arch opt-in this generic copy_mc_to_kernel() will not handle
 | |
|  * #MC (or arch equivalent) during source read.
 | |
|  */
 | |
| static inline unsigned long __must_check
 | |
| copy_mc_to_kernel(void *dst, const void *src, size_t cnt)
 | |
| {
 | |
| 	memcpy(dst, src, cnt);
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static __always_inline void pagefault_disabled_inc(void)
 | |
| {
 | |
| 	current->pagefault_disabled++;
 | |
| }
 | |
| 
 | |
| static __always_inline void pagefault_disabled_dec(void)
 | |
| {
 | |
| 	current->pagefault_disabled--;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * These routines enable/disable the pagefault handler. If disabled, it will
 | |
|  * not take any locks and go straight to the fixup table.
 | |
|  *
 | |
|  * User access methods will not sleep when called from a pagefault_disabled()
 | |
|  * environment.
 | |
|  */
 | |
| static inline void pagefault_disable(void)
 | |
| {
 | |
| 	pagefault_disabled_inc();
 | |
| 	/*
 | |
| 	 * make sure to have issued the store before a pagefault
 | |
| 	 * can hit.
 | |
| 	 */
 | |
| 	barrier();
 | |
| }
 | |
| 
 | |
| static inline void pagefault_enable(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * make sure to issue those last loads/stores before enabling
 | |
| 	 * the pagefault handler again.
 | |
| 	 */
 | |
| 	barrier();
 | |
| 	pagefault_disabled_dec();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Is the pagefault handler disabled? If so, user access methods will not sleep.
 | |
|  */
 | |
| static inline bool pagefault_disabled(void)
 | |
| {
 | |
| 	return current->pagefault_disabled != 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The pagefault handler is in general disabled by pagefault_disable() or
 | |
|  * when in irq context (via in_atomic()).
 | |
|  *
 | |
|  * This function should only be used by the fault handlers. Other users should
 | |
|  * stick to pagefault_disabled().
 | |
|  * Please NEVER use preempt_disable() to disable the fault handler. With
 | |
|  * !CONFIG_PREEMPT_COUNT, this is like a NOP. So the handler won't be disabled.
 | |
|  * in_atomic() will report different values based on !CONFIG_PREEMPT_COUNT.
 | |
|  */
 | |
| #define faulthandler_disabled() (pagefault_disabled() || in_atomic())
 | |
| 
 | |
| #ifndef CONFIG_ARCH_HAS_SUBPAGE_FAULTS
 | |
| 
 | |
| /**
 | |
|  * probe_subpage_writeable: probe the user range for write faults at sub-page
 | |
|  *			    granularity (e.g. arm64 MTE)
 | |
|  * @uaddr: start of address range
 | |
|  * @size: size of address range
 | |
|  *
 | |
|  * Returns 0 on success, the number of bytes not probed on fault.
 | |
|  *
 | |
|  * It is expected that the caller checked for the write permission of each
 | |
|  * page in the range either by put_user() or GUP. The architecture port can
 | |
|  * implement a more efficient get_user() probing if the same sub-page faults
 | |
|  * are triggered by either a read or a write.
 | |
|  */
 | |
| static inline size_t probe_subpage_writeable(char __user *uaddr, size_t size)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_ARCH_HAS_SUBPAGE_FAULTS */
 | |
| 
 | |
| #ifndef ARCH_HAS_NOCACHE_UACCESS
 | |
| 
 | |
| static inline __must_check unsigned long
 | |
| __copy_from_user_inatomic_nocache(void *to, const void __user *from,
 | |
| 				  unsigned long n)
 | |
| {
 | |
| 	return __copy_from_user_inatomic(to, from, n);
 | |
| }
 | |
| 
 | |
| #endif		/* ARCH_HAS_NOCACHE_UACCESS */
 | |
| 
 | |
| extern __must_check int check_zeroed_user(const void __user *from, size_t size);
 | |
| 
 | |
| /**
 | |
|  * copy_struct_from_user: copy a struct from userspace
 | |
|  * @dst:   Destination address, in kernel space. This buffer must be @ksize
 | |
|  *         bytes long.
 | |
|  * @ksize: Size of @dst struct.
 | |
|  * @src:   Source address, in userspace.
 | |
|  * @usize: (Alleged) size of @src struct.
 | |
|  *
 | |
|  * Copies a struct from userspace to kernel space, in a way that guarantees
 | |
|  * backwards-compatibility for struct syscall arguments (as long as future
 | |
|  * struct extensions are made such that all new fields are *appended* to the
 | |
|  * old struct, and zeroed-out new fields have the same meaning as the old
 | |
|  * struct).
 | |
|  *
 | |
|  * @ksize is just sizeof(*dst), and @usize should've been passed by userspace.
 | |
|  * The recommended usage is something like the following:
 | |
|  *
 | |
|  *   SYSCALL_DEFINE2(foobar, const struct foo __user *, uarg, size_t, usize)
 | |
|  *   {
 | |
|  *      int err;
 | |
|  *      struct foo karg = {};
 | |
|  *
 | |
|  *      if (usize > PAGE_SIZE)
 | |
|  *        return -E2BIG;
 | |
|  *      if (usize < FOO_SIZE_VER0)
 | |
|  *        return -EINVAL;
 | |
|  *
 | |
|  *      err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
 | |
|  *      if (err)
 | |
|  *        return err;
 | |
|  *
 | |
|  *      // ...
 | |
|  *   }
 | |
|  *
 | |
|  * There are three cases to consider:
 | |
|  *  * If @usize == @ksize, then it's copied verbatim.
 | |
|  *  * If @usize < @ksize, then the userspace has passed an old struct to a
 | |
|  *    newer kernel. The rest of the trailing bytes in @dst (@ksize - @usize)
 | |
|  *    are to be zero-filled.
 | |
|  *  * If @usize > @ksize, then the userspace has passed a new struct to an
 | |
|  *    older kernel. The trailing bytes unknown to the kernel (@usize - @ksize)
 | |
|  *    are checked to ensure they are zeroed, otherwise -E2BIG is returned.
 | |
|  *
 | |
|  * Returns (in all cases, some data may have been copied):
 | |
|  *  * -E2BIG:  (@usize > @ksize) and there are non-zero trailing bytes in @src.
 | |
|  *  * -EFAULT: access to userspace failed.
 | |
|  */
 | |
| static __always_inline __must_check int
 | |
| copy_struct_from_user(void *dst, size_t ksize, const void __user *src,
 | |
| 		      size_t usize)
 | |
| {
 | |
| 	size_t size = min(ksize, usize);
 | |
| 	size_t rest = max(ksize, usize) - size;
 | |
| 
 | |
| 	/* Double check if ksize is larger than a known object size. */
 | |
| 	if (WARN_ON_ONCE(ksize > __builtin_object_size(dst, 1)))
 | |
| 		return -E2BIG;
 | |
| 
 | |
| 	/* Deal with trailing bytes. */
 | |
| 	if (usize < ksize) {
 | |
| 		memset(dst + size, 0, rest);
 | |
| 	} else if (usize > ksize) {
 | |
| 		int ret = check_zeroed_user(src + size, rest);
 | |
| 		if (ret <= 0)
 | |
| 			return ret ?: -E2BIG;
 | |
| 	}
 | |
| 	/* Copy the interoperable parts of the struct. */
 | |
| 	if (copy_from_user(dst, src, size))
 | |
| 		return -EFAULT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| bool copy_from_kernel_nofault_allowed(const void *unsafe_src, size_t size);
 | |
| 
 | |
| long copy_from_kernel_nofault(void *dst, const void *src, size_t size);
 | |
| long notrace copy_to_kernel_nofault(void *dst, const void *src, size_t size);
 | |
| 
 | |
| long copy_from_user_nofault(void *dst, const void __user *src, size_t size);
 | |
| long notrace copy_to_user_nofault(void __user *dst, const void *src,
 | |
| 		size_t size);
 | |
| 
 | |
| long strncpy_from_kernel_nofault(char *dst, const void *unsafe_addr,
 | |
| 		long count);
 | |
| 
 | |
| long strncpy_from_user_nofault(char *dst, const void __user *unsafe_addr,
 | |
| 		long count);
 | |
| long strnlen_user_nofault(const void __user *unsafe_addr, long count);
 | |
| 
 | |
| #ifndef __get_kernel_nofault
 | |
| #define __get_kernel_nofault(dst, src, type, label)	\
 | |
| do {							\
 | |
| 	type __user *p = (type __force __user *)(src);	\
 | |
| 	type data;					\
 | |
| 	if (__get_user(data, p))			\
 | |
| 		goto label;				\
 | |
| 	*(type *)dst = data;				\
 | |
| } while (0)
 | |
| 
 | |
| #define __put_kernel_nofault(dst, src, type, label)	\
 | |
| do {							\
 | |
| 	type __user *p = (type __force __user *)(dst);	\
 | |
| 	type data = *(type *)src;			\
 | |
| 	if (__put_user(data, p))			\
 | |
| 		goto label;				\
 | |
| } while (0)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * get_kernel_nofault(): safely attempt to read from a location
 | |
|  * @val: read into this variable
 | |
|  * @ptr: address to read from
 | |
|  *
 | |
|  * Returns 0 on success, or -EFAULT.
 | |
|  */
 | |
| #define get_kernel_nofault(val, ptr) ({				\
 | |
| 	const typeof(val) *__gk_ptr = (ptr);			\
 | |
| 	copy_from_kernel_nofault(&(val), __gk_ptr, sizeof(val));\
 | |
| })
 | |
| 
 | |
| #ifndef user_access_begin
 | |
| #define user_access_begin(ptr,len) access_ok(ptr, len)
 | |
| #define user_access_end() do { } while (0)
 | |
| #define unsafe_op_wrap(op, err) do { if (unlikely(op)) goto err; } while (0)
 | |
| #define unsafe_get_user(x,p,e) unsafe_op_wrap(__get_user(x,p),e)
 | |
| #define unsafe_put_user(x,p,e) unsafe_op_wrap(__put_user(x,p),e)
 | |
| #define unsafe_copy_to_user(d,s,l,e) unsafe_op_wrap(__copy_to_user(d,s,l),e)
 | |
| #define unsafe_copy_from_user(d,s,l,e) unsafe_op_wrap(__copy_from_user(d,s,l),e)
 | |
| static inline unsigned long user_access_save(void) { return 0UL; }
 | |
| static inline void user_access_restore(unsigned long flags) { }
 | |
| #endif
 | |
| #ifndef user_write_access_begin
 | |
| #define user_write_access_begin user_access_begin
 | |
| #define user_write_access_end user_access_end
 | |
| #endif
 | |
| #ifndef user_read_access_begin
 | |
| #define user_read_access_begin user_access_begin
 | |
| #define user_read_access_end user_access_end
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HARDENED_USERCOPY
 | |
| void __noreturn usercopy_abort(const char *name, const char *detail,
 | |
| 			       bool to_user, unsigned long offset,
 | |
| 			       unsigned long len);
 | |
| #endif
 | |
| 
 | |
| #endif		/* __LINUX_UACCESS_H__ */
 |