1083 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1083 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| /*
 | |
|  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 | |
|  *
 | |
|  * (C) SGI 2006, Christoph Lameter
 | |
|  * 	Cleaned up and restructured to ease the addition of alternative
 | |
|  * 	implementations of SLAB allocators.
 | |
|  * (C) Linux Foundation 2008-2013
 | |
|  *      Unified interface for all slab allocators
 | |
|  */
 | |
| 
 | |
| #ifndef _LINUX_SLAB_H
 | |
| #define	_LINUX_SLAB_H
 | |
| 
 | |
| #include <linux/cache.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/overflow.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/percpu-refcount.h>
 | |
| #include <linux/cleanup.h>
 | |
| #include <linux/hash.h>
 | |
| 
 | |
| enum _slab_flag_bits {
 | |
| 	_SLAB_CONSISTENCY_CHECKS,
 | |
| 	_SLAB_RED_ZONE,
 | |
| 	_SLAB_POISON,
 | |
| 	_SLAB_KMALLOC,
 | |
| 	_SLAB_HWCACHE_ALIGN,
 | |
| 	_SLAB_CACHE_DMA,
 | |
| 	_SLAB_CACHE_DMA32,
 | |
| 	_SLAB_STORE_USER,
 | |
| 	_SLAB_PANIC,
 | |
| 	_SLAB_TYPESAFE_BY_RCU,
 | |
| 	_SLAB_TRACE,
 | |
| #ifdef CONFIG_DEBUG_OBJECTS
 | |
| 	_SLAB_DEBUG_OBJECTS,
 | |
| #endif
 | |
| 	_SLAB_NOLEAKTRACE,
 | |
| 	_SLAB_NO_MERGE,
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| 	_SLAB_FAILSLAB,
 | |
| #endif
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	_SLAB_ACCOUNT,
 | |
| #endif
 | |
| #ifdef CONFIG_KASAN_GENERIC
 | |
| 	_SLAB_KASAN,
 | |
| #endif
 | |
| 	_SLAB_NO_USER_FLAGS,
 | |
| #ifdef CONFIG_KFENCE
 | |
| 	_SLAB_SKIP_KFENCE,
 | |
| #endif
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| 	_SLAB_RECLAIM_ACCOUNT,
 | |
| #endif
 | |
| 	_SLAB_OBJECT_POISON,
 | |
| 	_SLAB_CMPXCHG_DOUBLE,
 | |
| #ifdef CONFIG_SLAB_OBJ_EXT
 | |
| 	_SLAB_NO_OBJ_EXT,
 | |
| #endif
 | |
| 	_SLAB_FLAGS_LAST_BIT
 | |
| };
 | |
| 
 | |
| #define __SLAB_FLAG_BIT(nr)	((slab_flags_t __force)(1U << (nr)))
 | |
| #define __SLAB_FLAG_UNUSED	((slab_flags_t __force)(0U))
 | |
| 
 | |
| /*
 | |
|  * Flags to pass to kmem_cache_create().
 | |
|  * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
 | |
|  */
 | |
| /* DEBUG: Perform (expensive) checks on alloc/free */
 | |
| #define SLAB_CONSISTENCY_CHECKS	__SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
 | |
| /* DEBUG: Red zone objs in a cache */
 | |
| #define SLAB_RED_ZONE		__SLAB_FLAG_BIT(_SLAB_RED_ZONE)
 | |
| /* DEBUG: Poison objects */
 | |
| #define SLAB_POISON		__SLAB_FLAG_BIT(_SLAB_POISON)
 | |
| /* Indicate a kmalloc slab */
 | |
| #define SLAB_KMALLOC		__SLAB_FLAG_BIT(_SLAB_KMALLOC)
 | |
| /* Align objs on cache lines */
 | |
| #define SLAB_HWCACHE_ALIGN	__SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
 | |
| /* Use GFP_DMA memory */
 | |
| #define SLAB_CACHE_DMA		__SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
 | |
| /* Use GFP_DMA32 memory */
 | |
| #define SLAB_CACHE_DMA32	__SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
 | |
| /* DEBUG: Store the last owner for bug hunting */
 | |
| #define SLAB_STORE_USER		__SLAB_FLAG_BIT(_SLAB_STORE_USER)
 | |
| /* Panic if kmem_cache_create() fails */
 | |
| #define SLAB_PANIC		__SLAB_FLAG_BIT(_SLAB_PANIC)
 | |
| /*
 | |
|  * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
 | |
|  *
 | |
|  * This delays freeing the SLAB page by a grace period, it does _NOT_
 | |
|  * delay object freeing. This means that if you do kmem_cache_free()
 | |
|  * that memory location is free to be reused at any time. Thus it may
 | |
|  * be possible to see another object there in the same RCU grace period.
 | |
|  *
 | |
|  * This feature only ensures the memory location backing the object
 | |
|  * stays valid, the trick to using this is relying on an independent
 | |
|  * object validation pass. Something like:
 | |
|  *
 | |
|  * begin:
 | |
|  *  rcu_read_lock();
 | |
|  *  obj = lockless_lookup(key);
 | |
|  *  if (obj) {
 | |
|  *    if (!try_get_ref(obj)) // might fail for free objects
 | |
|  *      rcu_read_unlock();
 | |
|  *      goto begin;
 | |
|  *
 | |
|  *    if (obj->key != key) { // not the object we expected
 | |
|  *      put_ref(obj);
 | |
|  *      rcu_read_unlock();
 | |
|  *      goto begin;
 | |
|  *    }
 | |
|  *  }
 | |
|  *  rcu_read_unlock();
 | |
|  *
 | |
|  * This is useful if we need to approach a kernel structure obliquely,
 | |
|  * from its address obtained without the usual locking. We can lock
 | |
|  * the structure to stabilize it and check it's still at the given address,
 | |
|  * only if we can be sure that the memory has not been meanwhile reused
 | |
|  * for some other kind of object (which our subsystem's lock might corrupt).
 | |
|  *
 | |
|  * rcu_read_lock before reading the address, then rcu_read_unlock after
 | |
|  * taking the spinlock within the structure expected at that address.
 | |
|  *
 | |
|  * Note that it is not possible to acquire a lock within a structure
 | |
|  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
 | |
|  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
 | |
|  * are not zeroed before being given to the slab, which means that any
 | |
|  * locks must be initialized after each and every kmem_struct_alloc().
 | |
|  * Alternatively, make the ctor passed to kmem_cache_create() initialize
 | |
|  * the locks at page-allocation time, as is done in __i915_request_ctor(),
 | |
|  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
 | |
|  * to safely acquire those ctor-initialized locks under rcu_read_lock()
 | |
|  * protection.
 | |
|  *
 | |
|  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
 | |
|  */
 | |
| /* Defer freeing slabs to RCU */
 | |
| #define SLAB_TYPESAFE_BY_RCU	__SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
 | |
| /* Trace allocations and frees */
 | |
| #define SLAB_TRACE		__SLAB_FLAG_BIT(_SLAB_TRACE)
 | |
| 
 | |
| /* Flag to prevent checks on free */
 | |
| #ifdef CONFIG_DEBUG_OBJECTS
 | |
| # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
 | |
| #else
 | |
| # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_UNUSED
 | |
| #endif
 | |
| 
 | |
| /* Avoid kmemleak tracing */
 | |
| #define SLAB_NOLEAKTRACE	__SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
 | |
| 
 | |
| /*
 | |
|  * Prevent merging with compatible kmem caches. This flag should be used
 | |
|  * cautiously. Valid use cases:
 | |
|  *
 | |
|  * - caches created for self-tests (e.g. kunit)
 | |
|  * - general caches created and used by a subsystem, only when a
 | |
|  *   (subsystem-specific) debug option is enabled
 | |
|  * - performance critical caches, should be very rare and consulted with slab
 | |
|  *   maintainers, and not used together with CONFIG_SLUB_TINY
 | |
|  */
 | |
| #define SLAB_NO_MERGE		__SLAB_FLAG_BIT(_SLAB_NO_MERGE)
 | |
| 
 | |
| /* Fault injection mark */
 | |
| #ifdef CONFIG_FAILSLAB
 | |
| # define SLAB_FAILSLAB		__SLAB_FLAG_BIT(_SLAB_FAILSLAB)
 | |
| #else
 | |
| # define SLAB_FAILSLAB		__SLAB_FLAG_UNUSED
 | |
| #endif
 | |
| /* Account to memcg */
 | |
| #ifdef CONFIG_MEMCG
 | |
| # define SLAB_ACCOUNT		__SLAB_FLAG_BIT(_SLAB_ACCOUNT)
 | |
| #else
 | |
| # define SLAB_ACCOUNT		__SLAB_FLAG_UNUSED
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KASAN_GENERIC
 | |
| #define SLAB_KASAN		__SLAB_FLAG_BIT(_SLAB_KASAN)
 | |
| #else
 | |
| #define SLAB_KASAN		__SLAB_FLAG_UNUSED
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Ignore user specified debugging flags.
 | |
|  * Intended for caches created for self-tests so they have only flags
 | |
|  * specified in the code and other flags are ignored.
 | |
|  */
 | |
| #define SLAB_NO_USER_FLAGS	__SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
 | |
| 
 | |
| #ifdef CONFIG_KFENCE
 | |
| #define SLAB_SKIP_KFENCE	__SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
 | |
| #else
 | |
| #define SLAB_SKIP_KFENCE	__SLAB_FLAG_UNUSED
 | |
| #endif
 | |
| 
 | |
| /* The following flags affect the page allocator grouping pages by mobility */
 | |
| /* Objects are reclaimable */
 | |
| #ifndef CONFIG_SLUB_TINY
 | |
| #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
 | |
| #else
 | |
| #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_UNUSED
 | |
| #endif
 | |
| #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
 | |
| 
 | |
| /* Slab created using create_boot_cache */
 | |
| #ifdef CONFIG_SLAB_OBJ_EXT
 | |
| #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
 | |
| #else
 | |
| #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_UNUSED
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * freeptr_t represents a SLUB freelist pointer, which might be encoded
 | |
|  * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
 | |
|  */
 | |
| typedef struct { unsigned long v; } freeptr_t;
 | |
| 
 | |
| /*
 | |
|  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 | |
|  *
 | |
|  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 | |
|  *
 | |
|  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 | |
|  * Both make kfree a no-op.
 | |
|  */
 | |
| #define ZERO_SIZE_PTR ((void *)16)
 | |
| 
 | |
| #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
 | |
| 				(unsigned long)ZERO_SIZE_PTR)
 | |
| 
 | |
| #include <linux/kasan.h>
 | |
| 
 | |
| struct list_lru;
 | |
| struct mem_cgroup;
 | |
| /*
 | |
|  * struct kmem_cache related prototypes
 | |
|  */
 | |
| bool slab_is_available(void);
 | |
| 
 | |
| /**
 | |
|  * struct kmem_cache_args - Less common arguments for kmem_cache_create()
 | |
|  *
 | |
|  * Any uninitialized fields of the structure are interpreted as unused. The
 | |
|  * exception is @freeptr_offset where %0 is a valid value, so
 | |
|  * @use_freeptr_offset must be also set to %true in order to interpret the field
 | |
|  * as used. For @useroffset %0 is also valid, but only with non-%0
 | |
|  * @usersize.
 | |
|  *
 | |
|  * When %NULL args is passed to kmem_cache_create(), it is equivalent to all
 | |
|  * fields unused.
 | |
|  */
 | |
| struct kmem_cache_args {
 | |
| 	/**
 | |
| 	 * @align: The required alignment for the objects.
 | |
| 	 *
 | |
| 	 * %0 means no specific alignment is requested.
 | |
| 	 */
 | |
| 	unsigned int align;
 | |
| 	/**
 | |
| 	 * @useroffset: Usercopy region offset.
 | |
| 	 *
 | |
| 	 * %0 is a valid offset, when @usersize is non-%0
 | |
| 	 */
 | |
| 	unsigned int useroffset;
 | |
| 	/**
 | |
| 	 * @usersize: Usercopy region size.
 | |
| 	 *
 | |
| 	 * %0 means no usercopy region is specified.
 | |
| 	 */
 | |
| 	unsigned int usersize;
 | |
| 	/**
 | |
| 	 * @freeptr_offset: Custom offset for the free pointer
 | |
| 	 * in &SLAB_TYPESAFE_BY_RCU caches
 | |
| 	 *
 | |
| 	 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
 | |
| 	 * outside of the object. This might cause the object to grow in size.
 | |
| 	 * Cache creators that have a reason to avoid this can specify a custom
 | |
| 	 * free pointer offset in their struct where the free pointer will be
 | |
| 	 * placed.
 | |
| 	 *
 | |
| 	 * Note that placing the free pointer inside the object requires the
 | |
| 	 * caller to ensure that no fields are invalidated that are required to
 | |
| 	 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
 | |
| 	 * details).
 | |
| 	 *
 | |
| 	 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
 | |
| 	 * is specified, %use_freeptr_offset must be set %true.
 | |
| 	 *
 | |
| 	 * Note that @ctor currently isn't supported with custom free pointers
 | |
| 	 * as a @ctor requires an external free pointer.
 | |
| 	 */
 | |
| 	unsigned int freeptr_offset;
 | |
| 	/**
 | |
| 	 * @use_freeptr_offset: Whether a @freeptr_offset is used.
 | |
| 	 */
 | |
| 	bool use_freeptr_offset;
 | |
| 	/**
 | |
| 	 * @ctor: A constructor for the objects.
 | |
| 	 *
 | |
| 	 * The constructor is invoked for each object in a newly allocated slab
 | |
| 	 * page. It is the cache user's responsibility to free object in the
 | |
| 	 * same state as after calling the constructor, or deal appropriately
 | |
| 	 * with any differences between a freshly constructed and a reallocated
 | |
| 	 * object.
 | |
| 	 *
 | |
| 	 * %NULL means no constructor.
 | |
| 	 */
 | |
| 	void (*ctor)(void *);
 | |
| 	RH_KABI_RESERVE(1)
 | |
| 	RH_KABI_RESERVE(2)
 | |
| };
 | |
| 
 | |
| struct kmem_cache *__kmem_cache_create_args(const char *name,
 | |
| 					    unsigned int object_size,
 | |
| 					    struct kmem_cache_args *args,
 | |
| 					    slab_flags_t flags);
 | |
| static inline struct kmem_cache *
 | |
| __kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 | |
| 		    slab_flags_t flags, void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache_args kmem_args = {
 | |
| 		.align	= align,
 | |
| 		.ctor	= ctor,
 | |
| 	};
 | |
| 
 | |
| 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_create_usercopy - Create a kmem cache with a region suitable
 | |
|  * for copying to userspace.
 | |
|  * @name: A string which is used in /proc/slabinfo to identify this cache.
 | |
|  * @size: The size of objects to be created in this cache.
 | |
|  * @align: The required alignment for the objects.
 | |
|  * @flags: SLAB flags
 | |
|  * @useroffset: Usercopy region offset
 | |
|  * @usersize: Usercopy region size
 | |
|  * @ctor: A constructor for the objects, or %NULL.
 | |
|  *
 | |
|  * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
 | |
|  * if whitelisting a single field is sufficient, or kmem_cache_create() with
 | |
|  * the necessary parameters passed via the args parameter (see
 | |
|  * &struct kmem_cache_args)
 | |
|  *
 | |
|  * Return: a pointer to the cache on success, NULL on failure.
 | |
|  */
 | |
| static inline struct kmem_cache *
 | |
| kmem_cache_create_usercopy(const char *name, unsigned int size,
 | |
| 			   unsigned int align, slab_flags_t flags,
 | |
| 			   unsigned int useroffset, unsigned int usersize,
 | |
| 			   void (*ctor)(void *))
 | |
| {
 | |
| 	struct kmem_cache_args kmem_args = {
 | |
| 		.align		= align,
 | |
| 		.ctor		= ctor,
 | |
| 		.useroffset	= useroffset,
 | |
| 		.usersize	= usersize,
 | |
| 	};
 | |
| 
 | |
| 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
 | |
| }
 | |
| 
 | |
| /* If NULL is passed for @args, use this variant with default arguments. */
 | |
| static inline struct kmem_cache *
 | |
| __kmem_cache_default_args(const char *name, unsigned int size,
 | |
| 			  struct kmem_cache_args *args,
 | |
| 			  slab_flags_t flags)
 | |
| {
 | |
| 	struct kmem_cache_args kmem_default_args = {};
 | |
| 
 | |
| 	/* Make sure we don't get passed garbage. */
 | |
| 	if (WARN_ON_ONCE(args))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_create - Create a kmem cache.
 | |
|  * @__name: A string which is used in /proc/slabinfo to identify this cache.
 | |
|  * @__object_size: The size of objects to be created in this cache.
 | |
|  * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
 | |
|  *	    means defaults will be used for all the arguments.
 | |
|  *
 | |
|  * This is currently implemented as a macro using ``_Generic()`` to call
 | |
|  * either the new variant of the function, or a legacy one.
 | |
|  *
 | |
|  * The new variant has 4 parameters:
 | |
|  * ``kmem_cache_create(name, object_size, args, flags)``
 | |
|  *
 | |
|  * See __kmem_cache_create_args() which implements this.
 | |
|  *
 | |
|  * The legacy variant has 5 parameters:
 | |
|  * ``kmem_cache_create(name, object_size, align, flags, ctor)``
 | |
|  *
 | |
|  * The align and ctor parameters map to the respective fields of
 | |
|  * &struct kmem_cache_args
 | |
|  *
 | |
|  * Context: Cannot be called within a interrupt, but can be interrupted.
 | |
|  *
 | |
|  * Return: a pointer to the cache on success, NULL on failure.
 | |
|  */
 | |
| #define kmem_cache_create(__name, __object_size, __args, ...)           \
 | |
| 	_Generic((__args),                                              \
 | |
| 		struct kmem_cache_args *: __kmem_cache_create_args,	\
 | |
| 		void *: __kmem_cache_default_args,			\
 | |
| 		default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
 | |
| 
 | |
| void kmem_cache_destroy(struct kmem_cache *s);
 | |
| int kmem_cache_shrink(struct kmem_cache *s);
 | |
| 
 | |
| /*
 | |
|  * Please use this macro to create slab caches. Simply specify the
 | |
|  * name of the structure and maybe some flags that are listed above.
 | |
|  *
 | |
|  * The alignment of the struct determines object alignment. If you
 | |
|  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 | |
|  * then the objects will be properly aligned in SMP configurations.
 | |
|  */
 | |
| #define KMEM_CACHE(__struct, __flags)                                   \
 | |
| 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),    \
 | |
| 			&(struct kmem_cache_args) {			\
 | |
| 				.align	= __alignof__(struct __struct), \
 | |
| 			}, (__flags))
 | |
| 
 | |
| /*
 | |
|  * To whitelist a single field for copying to/from usercopy, use this
 | |
|  * macro instead for KMEM_CACHE() above.
 | |
|  */
 | |
| #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)						\
 | |
| 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),				\
 | |
| 			&(struct kmem_cache_args) {						\
 | |
| 				.align		= __alignof__(struct __struct),			\
 | |
| 				.useroffset	= offsetof(struct __struct, __field),		\
 | |
| 				.usersize	= sizeof_field(struct __struct, __field),	\
 | |
| 			}, (__flags))
 | |
| 
 | |
| /*
 | |
|  * Common kmalloc functions provided by all allocators
 | |
|  */
 | |
| void * __must_check krealloc_noprof(const void *objp, size_t new_size,
 | |
| 				    gfp_t flags) __realloc_size(2);
 | |
| #define krealloc(...)				alloc_hooks(krealloc_noprof(__VA_ARGS__))
 | |
| 
 | |
| void kfree(const void *objp);
 | |
| void kfree_sensitive(const void *objp);
 | |
| size_t __ksize(const void *objp);
 | |
| 
 | |
| DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
 | |
| 
 | |
| /**
 | |
|  * ksize - Report actual allocation size of associated object
 | |
|  *
 | |
|  * @objp: Pointer returned from a prior kmalloc()-family allocation.
 | |
|  *
 | |
|  * This should not be used for writing beyond the originally requested
 | |
|  * allocation size. Either use krealloc() or round up the allocation size
 | |
|  * with kmalloc_size_roundup() prior to allocation. If this is used to
 | |
|  * access beyond the originally requested allocation size, UBSAN_BOUNDS
 | |
|  * and/or FORTIFY_SOURCE may trip, since they only know about the
 | |
|  * originally allocated size via the __alloc_size attribute.
 | |
|  */
 | |
| size_t ksize(const void *objp);
 | |
| 
 | |
| #ifdef CONFIG_PRINTK
 | |
| bool kmem_dump_obj(void *object);
 | |
| #else
 | |
| static inline bool kmem_dump_obj(void *object) { return false; }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 | |
|  * alignment larger than the alignment of a 64-bit integer.
 | |
|  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
 | |
|  */
 | |
| #ifdef ARCH_HAS_DMA_MINALIGN
 | |
| #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
 | |
| #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef ARCH_KMALLOC_MINALIGN
 | |
| #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 | |
| #elif ARCH_KMALLOC_MINALIGN > 8
 | |
| #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
 | |
| #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
 | |
|  * Intended for arches that get misalignment faults even for 64 bit integer
 | |
|  * aligned buffers.
 | |
|  */
 | |
| #ifndef ARCH_SLAB_MINALIGN
 | |
| #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Arches can define this function if they want to decide the minimum slab
 | |
|  * alignment at runtime. The value returned by the function must be a power
 | |
|  * of two and >= ARCH_SLAB_MINALIGN.
 | |
|  */
 | |
| #ifndef arch_slab_minalign
 | |
| static inline unsigned int arch_slab_minalign(void)
 | |
| {
 | |
| 	return ARCH_SLAB_MINALIGN;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
 | |
|  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
 | |
|  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
 | |
|  */
 | |
| #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
 | |
| #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
 | |
| #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
 | |
| 
 | |
| /*
 | |
|  * Kmalloc array related definitions
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * SLUB directly allocates requests fitting in to an order-1 page
 | |
|  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
 | |
|  */
 | |
| #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
 | |
| #define KMALLOC_SHIFT_MAX	(MAX_PAGE_ORDER + PAGE_SHIFT)
 | |
| #ifndef KMALLOC_SHIFT_LOW
 | |
| #define KMALLOC_SHIFT_LOW	3
 | |
| #endif
 | |
| 
 | |
| /* Maximum allocatable size */
 | |
| #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
 | |
| /* Maximum size for which we actually use a slab cache */
 | |
| #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
 | |
| /* Maximum order allocatable via the slab allocator */
 | |
| #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * Kmalloc subsystem.
 | |
|  */
 | |
| #ifndef KMALLOC_MIN_SIZE
 | |
| #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This restriction comes from byte sized index implementation.
 | |
|  * Page size is normally 2^12 bytes and, in this case, if we want to use
 | |
|  * byte sized index which can represent 2^8 entries, the size of the object
 | |
|  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 | |
|  * If minimum size of kmalloc is less than 16, we use it as minimum object
 | |
|  * size and give up to use byte sized index.
 | |
|  */
 | |
| #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
 | |
|                                (KMALLOC_MIN_SIZE) : 16)
 | |
| 
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| #define RANDOM_KMALLOC_CACHES_NR	15 // # of cache copies
 | |
| #else
 | |
| #define RANDOM_KMALLOC_CACHES_NR	0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Whenever changing this, take care of that kmalloc_type() and
 | |
|  * create_kmalloc_caches() still work as intended.
 | |
|  *
 | |
|  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
 | |
|  * is for accounted but unreclaimable and non-dma objects. All the other
 | |
|  * kmem caches can have both accounted and unaccounted objects.
 | |
|  */
 | |
| enum kmalloc_cache_type {
 | |
| 	KMALLOC_NORMAL = 0,
 | |
| #ifndef CONFIG_ZONE_DMA
 | |
| 	KMALLOC_DMA = KMALLOC_NORMAL,
 | |
| #endif
 | |
| #ifndef CONFIG_MEMCG
 | |
| 	KMALLOC_CGROUP = KMALLOC_NORMAL,
 | |
| #endif
 | |
| 	KMALLOC_RANDOM_START = KMALLOC_NORMAL,
 | |
| 	KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
 | |
| #ifdef CONFIG_SLUB_TINY
 | |
| 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
 | |
| #else
 | |
| 	KMALLOC_RECLAIM,
 | |
| #endif
 | |
| #ifdef CONFIG_ZONE_DMA
 | |
| 	KMALLOC_DMA,
 | |
| #endif
 | |
| #ifdef CONFIG_MEMCG
 | |
| 	KMALLOC_CGROUP,
 | |
| #endif
 | |
| 	NR_KMALLOC_TYPES
 | |
| };
 | |
| 
 | |
| typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
 | |
| 
 | |
| extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
 | |
| 
 | |
| /*
 | |
|  * Define gfp bits that should not be set for KMALLOC_NORMAL.
 | |
|  */
 | |
| #define KMALLOC_NOT_NORMAL_BITS					\
 | |
| 	(__GFP_RECLAIMABLE |					\
 | |
| 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
 | |
| 	(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
 | |
| 
 | |
| extern unsigned long random_kmalloc_seed;
 | |
| 
 | |
| static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
 | |
| {
 | |
| 	/*
 | |
| 	 * The most common case is KMALLOC_NORMAL, so test for it
 | |
| 	 * with a single branch for all the relevant flags.
 | |
| 	 */
 | |
| 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
 | |
| #ifdef CONFIG_RANDOM_KMALLOC_CACHES
 | |
| 		/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
 | |
| 		return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
 | |
| 						      ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
 | |
| #else
 | |
| 		return KMALLOC_NORMAL;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * At least one of the flags has to be set. Their priorities in
 | |
| 	 * decreasing order are:
 | |
| 	 *  1) __GFP_DMA
 | |
| 	 *  2) __GFP_RECLAIMABLE
 | |
| 	 *  3) __GFP_ACCOUNT
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
 | |
| 		return KMALLOC_DMA;
 | |
| 	if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
 | |
| 		return KMALLOC_RECLAIM;
 | |
| 	else
 | |
| 		return KMALLOC_CGROUP;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Figure out which kmalloc slab an allocation of a certain size
 | |
|  * belongs to.
 | |
|  * 0 = zero alloc
 | |
|  * 1 =  65 .. 96 bytes
 | |
|  * 2 = 129 .. 192 bytes
 | |
|  * n = 2^(n-1)+1 .. 2^n
 | |
|  *
 | |
|  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
 | |
|  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
 | |
|  * Callers where !size_is_constant should only be test modules, where runtime
 | |
|  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
 | |
|  */
 | |
| static __always_inline unsigned int __kmalloc_index(size_t size,
 | |
| 						    bool size_is_constant)
 | |
| {
 | |
| 	if (!size)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (size <= KMALLOC_MIN_SIZE)
 | |
| 		return KMALLOC_SHIFT_LOW;
 | |
| 
 | |
| 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
 | |
| 		return 1;
 | |
| 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
 | |
| 		return 2;
 | |
| 	if (size <=          8) return 3;
 | |
| 	if (size <=         16) return 4;
 | |
| 	if (size <=         32) return 5;
 | |
| 	if (size <=         64) return 6;
 | |
| 	if (size <=        128) return 7;
 | |
| 	if (size <=        256) return 8;
 | |
| 	if (size <=        512) return 9;
 | |
| 	if (size <=       1024) return 10;
 | |
| 	if (size <=   2 * 1024) return 11;
 | |
| 	if (size <=   4 * 1024) return 12;
 | |
| 	if (size <=   8 * 1024) return 13;
 | |
| 	if (size <=  16 * 1024) return 14;
 | |
| 	if (size <=  32 * 1024) return 15;
 | |
| 	if (size <=  64 * 1024) return 16;
 | |
| 	if (size <= 128 * 1024) return 17;
 | |
| 	if (size <= 256 * 1024) return 18;
 | |
| 	if (size <= 512 * 1024) return 19;
 | |
| 	if (size <= 1024 * 1024) return 20;
 | |
| 	if (size <=  2 * 1024 * 1024) return 21;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
 | |
| 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	/* Will never be reached. Needed because the compiler may complain */
 | |
| 	return -1;
 | |
| }
 | |
| static_assert(PAGE_SHIFT <= 20);
 | |
| #define kmalloc_index(s) __kmalloc_index(s, true)
 | |
| 
 | |
| #include <linux/alloc_tag.h>
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_alloc - Allocate an object
 | |
|  * @cachep: The cache to allocate from.
 | |
|  * @flags: See kmalloc().
 | |
|  *
 | |
|  * Allocate an object from this cache.
 | |
|  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
 | |
|  *
 | |
|  * Return: pointer to the new object or %NULL in case of error
 | |
|  */
 | |
| void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
 | |
| 			      gfp_t flags) __assume_slab_alignment __malloc;
 | |
| #define kmem_cache_alloc(...)			alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
 | |
| 
 | |
| void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
 | |
| 			    gfp_t gfpflags) __assume_slab_alignment __malloc;
 | |
| #define kmem_cache_alloc_lru(...)	alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
 | |
| 
 | |
| /**
 | |
|  * kmem_cache_charge - memcg charge an already allocated slab memory
 | |
|  * @objp: address of the slab object to memcg charge
 | |
|  * @gfpflags: describe the allocation context
 | |
|  *
 | |
|  * kmem_cache_charge allows charging a slab object to the current memcg,
 | |
|  * primarily in cases where charging at allocation time might not be possible
 | |
|  * because the target memcg is not known (i.e. softirq context)
 | |
|  *
 | |
|  * The objp should be pointer returned by the slab allocator functions like
 | |
|  * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge
 | |
|  * behavior can be controlled through gfpflags parameter, which affects how the
 | |
|  * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes
 | |
|  * that overcharging is requested instead of failure, but is not applied for the
 | |
|  * internal metadata allocation.
 | |
|  *
 | |
|  * There are several cases where it will return true even if the charging was
 | |
|  * not done:
 | |
|  * More specifically:
 | |
|  *
 | |
|  * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems.
 | |
|  * 2. Already charged slab objects.
 | |
|  * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc()
 | |
|  *    without __GFP_ACCOUNT
 | |
|  * 4. Allocating internal metadata has failed
 | |
|  *
 | |
|  * Return: true if charge was successful otherwise false.
 | |
|  */
 | |
| bool kmem_cache_charge(void *objp, gfp_t gfpflags);
 | |
| void kmem_cache_free(struct kmem_cache *s, void *objp);
 | |
| 
 | |
| kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
 | |
| 				  unsigned int useroffset, unsigned int usersize,
 | |
| 				  void (*ctor)(void *));
 | |
| 
 | |
| /*
 | |
|  * Bulk allocation and freeing operations. These are accelerated in an
 | |
|  * allocator specific way to avoid taking locks repeatedly or building
 | |
|  * metadata structures unnecessarily.
 | |
|  *
 | |
|  * Note that interrupts must be enabled when calling these functions.
 | |
|  */
 | |
| void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
 | |
| 
 | |
| int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
 | |
| #define kmem_cache_alloc_bulk(...)	alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
 | |
| 
 | |
| static __always_inline void kfree_bulk(size_t size, void **p)
 | |
| {
 | |
| 	kmem_cache_free_bulk(NULL, size, p);
 | |
| }
 | |
| 
 | |
| void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
 | |
| 				   int node) __assume_slab_alignment __malloc;
 | |
| #define kmem_cache_alloc_node(...)	alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
 | |
| 
 | |
| /*
 | |
|  * These macros allow declaring a kmem_buckets * parameter alongside size, which
 | |
|  * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
 | |
|  * sites don't have to pass NULL.
 | |
|  */
 | |
| #ifdef CONFIG_SLAB_BUCKETS
 | |
| #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size), kmem_buckets *(_b)
 | |
| #define PASS_BUCKET_PARAMS(_size, _b)	(_size), (_b)
 | |
| #define PASS_BUCKET_PARAM(_b)		(_b)
 | |
| #else
 | |
| #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size)
 | |
| #define PASS_BUCKET_PARAMS(_size, _b)	(_size)
 | |
| #define PASS_BUCKET_PARAM(_b)		NULL
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The following functions are not to be used directly and are intended only
 | |
|  * for internal use from kmalloc() and kmalloc_node()
 | |
|  * with the exception of kunit tests
 | |
|  */
 | |
| 
 | |
| void *__kmalloc_noprof(size_t size, gfp_t flags)
 | |
| 				__assume_kmalloc_alignment __alloc_size(1);
 | |
| 
 | |
| void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
 | |
| 				__assume_kmalloc_alignment __alloc_size(1);
 | |
| 
 | |
| void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
 | |
| 				__assume_kmalloc_alignment __alloc_size(3);
 | |
| 
 | |
| void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
 | |
| 				  int node, size_t size)
 | |
| 				__assume_kmalloc_alignment __alloc_size(4);
 | |
| 
 | |
| void *__kmalloc_large_noprof(size_t size, gfp_t flags)
 | |
| 				__assume_page_alignment __alloc_size(1);
 | |
| 
 | |
| void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
 | |
| 				__assume_page_alignment __alloc_size(1);
 | |
| 
 | |
| /**
 | |
|  * kmalloc - allocate kernel memory
 | |
|  * @size: how many bytes of memory are required.
 | |
|  * @flags: describe the allocation context
 | |
|  *
 | |
|  * kmalloc is the normal method of allocating memory
 | |
|  * for objects smaller than page size in the kernel.
 | |
|  *
 | |
|  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
 | |
|  * bytes. For @size of power of two bytes, the alignment is also guaranteed
 | |
|  * to be at least to the size. For other sizes, the alignment is guaranteed to
 | |
|  * be at least the largest power-of-two divisor of @size.
 | |
|  *
 | |
|  * The @flags argument may be one of the GFP flags defined at
 | |
|  * include/linux/gfp_types.h and described at
 | |
|  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
 | |
|  *
 | |
|  * The recommended usage of the @flags is described at
 | |
|  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
 | |
|  *
 | |
|  * Below is a brief outline of the most useful GFP flags
 | |
|  *
 | |
|  * %GFP_KERNEL
 | |
|  *	Allocate normal kernel ram. May sleep.
 | |
|  *
 | |
|  * %GFP_NOWAIT
 | |
|  *	Allocation will not sleep.
 | |
|  *
 | |
|  * %GFP_ATOMIC
 | |
|  *	Allocation will not sleep.  May use emergency pools.
 | |
|  *
 | |
|  * Also it is possible to set different flags by OR'ing
 | |
|  * in one or more of the following additional @flags:
 | |
|  *
 | |
|  * %__GFP_ZERO
 | |
|  *	Zero the allocated memory before returning. Also see kzalloc().
 | |
|  *
 | |
|  * %__GFP_HIGH
 | |
|  *	This allocation has high priority and may use emergency pools.
 | |
|  *
 | |
|  * %__GFP_NOFAIL
 | |
|  *	Indicate that this allocation is in no way allowed to fail
 | |
|  *	(think twice before using).
 | |
|  *
 | |
|  * %__GFP_NORETRY
 | |
|  *	If memory is not immediately available,
 | |
|  *	then give up at once.
 | |
|  *
 | |
|  * %__GFP_NOWARN
 | |
|  *	If allocation fails, don't issue any warnings.
 | |
|  *
 | |
|  * %__GFP_RETRY_MAYFAIL
 | |
|  *	Try really hard to succeed the allocation but fail
 | |
|  *	eventually.
 | |
|  */
 | |
| static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
 | |
| {
 | |
| 	if (__builtin_constant_p(size) && size) {
 | |
| 		unsigned int index;
 | |
| 
 | |
| 		if (size > KMALLOC_MAX_CACHE_SIZE)
 | |
| 			return __kmalloc_large_noprof(size, flags);
 | |
| 
 | |
| 		index = kmalloc_index(size);
 | |
| 		return __kmalloc_cache_noprof(
 | |
| 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
 | |
| 				flags, size);
 | |
| 	}
 | |
| 	return __kmalloc_noprof(size, flags);
 | |
| }
 | |
| #define kmalloc(...)				alloc_hooks(kmalloc_noprof(__VA_ARGS__))
 | |
| 
 | |
| #define kmem_buckets_alloc(_b, _size, _flags)	\
 | |
| 	alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
 | |
| 
 | |
| #define kmem_buckets_alloc_track_caller(_b, _size, _flags)	\
 | |
| 	alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
 | |
| 
 | |
| static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	if (__builtin_constant_p(size) && size) {
 | |
| 		unsigned int index;
 | |
| 
 | |
| 		if (size > KMALLOC_MAX_CACHE_SIZE)
 | |
| 			return __kmalloc_large_node_noprof(size, flags, node);
 | |
| 
 | |
| 		index = kmalloc_index(size);
 | |
| 		return __kmalloc_cache_node_noprof(
 | |
| 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
 | |
| 				flags, node, size);
 | |
| 	}
 | |
| 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
 | |
| }
 | |
| #define kmalloc_node(...)			alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
 | |
| 
 | |
| /**
 | |
|  * kmalloc_array - allocate memory for an array.
 | |
|  * @n: number of elements.
 | |
|  * @size: element size.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  */
 | |
| static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
 | |
| 		return kmalloc_noprof(bytes, flags);
 | |
| 	return kmalloc_noprof(bytes, flags);
 | |
| }
 | |
| #define kmalloc_array(...)			alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
 | |
| 
 | |
| /**
 | |
|  * krealloc_array - reallocate memory for an array.
 | |
|  * @p: pointer to the memory chunk to reallocate
 | |
|  * @new_n: new number of elements to alloc
 | |
|  * @new_size: new size of a single member of the array
 | |
|  * @flags: the type of memory to allocate (see kmalloc)
 | |
|  *
 | |
|  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
 | |
|  * initial memory allocation, every subsequent call to this API for the same
 | |
|  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
 | |
|  * __GFP_ZERO is not fully honored by this API.
 | |
|  *
 | |
|  * See krealloc_noprof() for further details.
 | |
|  *
 | |
|  * In any case, the contents of the object pointed to are preserved up to the
 | |
|  * lesser of the new and old sizes.
 | |
|  */
 | |
| static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
 | |
| 								       size_t new_n,
 | |
| 								       size_t new_size,
 | |
| 								       gfp_t flags)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return krealloc_noprof(p, bytes, flags);
 | |
| }
 | |
| #define krealloc_array(...)			alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
 | |
| 
 | |
| /**
 | |
|  * kcalloc - allocate memory for an array. The memory is set to zero.
 | |
|  * @n: number of elements.
 | |
|  * @size: element size.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  */
 | |
| #define kcalloc(n, size, flags)		kmalloc_array(n, size, (flags) | __GFP_ZERO)
 | |
| 
 | |
| void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
 | |
| 					 unsigned long caller) __alloc_size(1);
 | |
| #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
 | |
| 	__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
 | |
| #define kmalloc_node_track_caller(...)		\
 | |
| 	alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
 | |
| 
 | |
| /*
 | |
|  * kmalloc_track_caller is a special version of kmalloc that records the
 | |
|  * calling function of the routine calling it for slab leak tracking instead
 | |
|  * of just the calling function (confusing, eh?).
 | |
|  * It's useful when the call to kmalloc comes from a widely-used standard
 | |
|  * allocator where we care about the real place the memory allocation
 | |
|  * request comes from.
 | |
|  */
 | |
| #define kmalloc_track_caller(...)		kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
 | |
| 
 | |
| #define kmalloc_track_caller_noprof(...)	\
 | |
| 		kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
 | |
| 
 | |
| static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
 | |
| 							  int node)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
 | |
| 		return kmalloc_node_noprof(bytes, flags, node);
 | |
| 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
 | |
| }
 | |
| #define kmalloc_array_node(...)			alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
 | |
| 
 | |
| #define kcalloc_node(_n, _size, _flags, _node)	\
 | |
| 	kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
 | |
| 
 | |
| /*
 | |
|  * Shortcuts
 | |
|  */
 | |
| #define kmem_cache_zalloc(_k, _flags)		kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
 | |
| 
 | |
| /**
 | |
|  * kzalloc - allocate memory. The memory is set to zero.
 | |
|  * @size: how many bytes of memory are required.
 | |
|  * @flags: the type of memory to allocate (see kmalloc).
 | |
|  */
 | |
| static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
 | |
| {
 | |
| 	return kmalloc_noprof(size, flags | __GFP_ZERO);
 | |
| }
 | |
| #define kzalloc(...)				alloc_hooks(kzalloc_noprof(__VA_ARGS__))
 | |
| #define kzalloc_node(_size, _flags, _node)	kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
 | |
| 
 | |
| void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
 | |
| #define kvmalloc_node_noprof(size, flags, node)	\
 | |
| 	__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
 | |
| #define kvmalloc_node(...)			alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
 | |
| 
 | |
| #define kvmalloc(_size, _flags)			kvmalloc_node(_size, _flags, NUMA_NO_NODE)
 | |
| #define kvmalloc_noprof(_size, _flags)		kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
 | |
| #define kvzalloc(_size, _flags)			kvmalloc(_size, (_flags)|__GFP_ZERO)
 | |
| 
 | |
| #define kvzalloc_node(_size, _flags, _node)	kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
 | |
| #define kmem_buckets_valloc(_b, _size, _flags)	\
 | |
| 	alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
 | |
| 
 | |
| static inline __alloc_size(1, 2) void *
 | |
| kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
 | |
| {
 | |
| 	size_t bytes;
 | |
| 
 | |
| 	if (unlikely(check_mul_overflow(n, size, &bytes)))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return kvmalloc_node_noprof(bytes, flags, node);
 | |
| }
 | |
| 
 | |
| #define kvmalloc_array_noprof(...)		kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
 | |
| #define kvcalloc_node_noprof(_n,_s,_f,_node)	kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
 | |
| #define kvcalloc_noprof(...)			kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
 | |
| 
 | |
| #define kvmalloc_array(...)			alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
 | |
| #define kvcalloc_node(...)			alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
 | |
| #define kvcalloc(...)				alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
 | |
| 
 | |
| void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
 | |
| 		__realloc_size(2);
 | |
| #define kvrealloc(...)				alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
 | |
| 
 | |
| extern void kvfree(const void *addr);
 | |
| DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
 | |
| 
 | |
| extern void kvfree_sensitive(const void *addr, size_t len);
 | |
| 
 | |
| unsigned int kmem_cache_size(struct kmem_cache *s);
 | |
| 
 | |
| /**
 | |
|  * kmalloc_size_roundup - Report allocation bucket size for the given size
 | |
|  *
 | |
|  * @size: Number of bytes to round up from.
 | |
|  *
 | |
|  * This returns the number of bytes that would be available in a kmalloc()
 | |
|  * allocation of @size bytes. For example, a 126 byte request would be
 | |
|  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
 | |
|  * for the general-purpose kmalloc()-based allocations, and is not for the
 | |
|  * pre-sized kmem_cache_alloc()-based allocations.)
 | |
|  *
 | |
|  * Use this to kmalloc() the full bucket size ahead of time instead of using
 | |
|  * ksize() to query the size after an allocation.
 | |
|  */
 | |
| size_t kmalloc_size_roundup(size_t size);
 | |
| 
 | |
| void __init kmem_cache_init_late(void);
 | |
| 
 | |
| #endif	/* _LINUX_SLAB_H */
 |