566 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			566 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_SCHED_MM_H
 | |
| #define _LINUX_SCHED_MM_H
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/mm_types.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/sync_core.h>
 | |
| #include <linux/sched/coredump.h>
 | |
| 
 | |
| /*
 | |
|  * Routines for handling mm_structs
 | |
|  */
 | |
| extern struct mm_struct *mm_alloc(void);
 | |
| 
 | |
| /**
 | |
|  * mmgrab() - Pin a &struct mm_struct.
 | |
|  * @mm: The &struct mm_struct to pin.
 | |
|  *
 | |
|  * Make sure that @mm will not get freed even after the owning task
 | |
|  * exits. This doesn't guarantee that the associated address space
 | |
|  * will still exist later on and mmget_not_zero() has to be used before
 | |
|  * accessing it.
 | |
|  *
 | |
|  * This is a preferred way to pin @mm for a longer/unbounded amount
 | |
|  * of time.
 | |
|  *
 | |
|  * Use mmdrop() to release the reference acquired by mmgrab().
 | |
|  *
 | |
|  * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
 | |
|  * of &mm_struct.mm_count vs &mm_struct.mm_users.
 | |
|  */
 | |
| static inline void mmgrab(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_inc(&mm->mm_count);
 | |
| }
 | |
| 
 | |
| static inline void smp_mb__after_mmgrab(void)
 | |
| {
 | |
| 	smp_mb__after_atomic();
 | |
| }
 | |
| 
 | |
| extern void __mmdrop(struct mm_struct *mm);
 | |
| 
 | |
| static inline void mmdrop(struct mm_struct *mm)
 | |
| {
 | |
| 	/*
 | |
| 	 * The implicit full barrier implied by atomic_dec_and_test() is
 | |
| 	 * required by the membarrier system call before returning to
 | |
| 	 * user-space, after storing to rq->curr.
 | |
| 	 */
 | |
| 	if (unlikely(atomic_dec_and_test(&mm->mm_count)))
 | |
| 		__mmdrop(mm);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PREEMPT_RT
 | |
| /*
 | |
|  * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
 | |
|  * by far the least expensive way to do that.
 | |
|  */
 | |
| static inline void __mmdrop_delayed(struct rcu_head *rhp)
 | |
| {
 | |
| 	struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
 | |
| 
 | |
| 	__mmdrop(mm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invoked from finish_task_switch(). Delegates the heavy lifting on RT
 | |
|  * kernels via RCU.
 | |
|  */
 | |
| static inline void mmdrop_sched(struct mm_struct *mm)
 | |
| {
 | |
| 	/* Provides a full memory barrier. See mmdrop() */
 | |
| 	if (atomic_dec_and_test(&mm->mm_count))
 | |
| 		call_rcu(&mm->delayed_drop, __mmdrop_delayed);
 | |
| }
 | |
| #else
 | |
| static inline void mmdrop_sched(struct mm_struct *mm)
 | |
| {
 | |
| 	mmdrop(mm);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Helpers for lazy TLB mm refcounting */
 | |
| static inline void mmgrab_lazy_tlb(struct mm_struct *mm)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
 | |
| 		mmgrab(mm);
 | |
| }
 | |
| 
 | |
| static inline void mmdrop_lazy_tlb(struct mm_struct *mm)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) {
 | |
| 		mmdrop(mm);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * mmdrop_lazy_tlb must provide a full memory barrier, see the
 | |
| 		 * membarrier comment finish_task_switch which relies on this.
 | |
| 		 */
 | |
| 		smp_mb();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
 | |
| 		mmdrop_sched(mm);
 | |
| 	else
 | |
| 		smp_mb(); /* see mmdrop_lazy_tlb() above */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mmget() - Pin the address space associated with a &struct mm_struct.
 | |
|  * @mm: The address space to pin.
 | |
|  *
 | |
|  * Make sure that the address space of the given &struct mm_struct doesn't
 | |
|  * go away. This does not protect against parts of the address space being
 | |
|  * modified or freed, however.
 | |
|  *
 | |
|  * Never use this function to pin this address space for an
 | |
|  * unbounded/indefinite amount of time.
 | |
|  *
 | |
|  * Use mmput() to release the reference acquired by mmget().
 | |
|  *
 | |
|  * See also <Documentation/mm/active_mm.rst> for an in-depth explanation
 | |
|  * of &mm_struct.mm_count vs &mm_struct.mm_users.
 | |
|  */
 | |
| static inline void mmget(struct mm_struct *mm)
 | |
| {
 | |
| 	atomic_inc(&mm->mm_users);
 | |
| }
 | |
| 
 | |
| static inline bool mmget_not_zero(struct mm_struct *mm)
 | |
| {
 | |
| 	return atomic_inc_not_zero(&mm->mm_users);
 | |
| }
 | |
| 
 | |
| /* mmput gets rid of the mappings and all user-space */
 | |
| extern void mmput(struct mm_struct *);
 | |
| #ifdef CONFIG_MMU
 | |
| /* same as above but performs the slow path from the async context. Can
 | |
|  * be called from the atomic context as well
 | |
|  */
 | |
| void mmput_async(struct mm_struct *);
 | |
| #endif
 | |
| 
 | |
| /* Grab a reference to a task's mm, if it is not already going away */
 | |
| extern struct mm_struct *get_task_mm(struct task_struct *task);
 | |
| /*
 | |
|  * Grab a reference to a task's mm, if it is not already going away
 | |
|  * and ptrace_may_access with the mode parameter passed to it
 | |
|  * succeeds.
 | |
|  */
 | |
| extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
 | |
| /* Remove the current tasks stale references to the old mm_struct on exit() */
 | |
| extern void exit_mm_release(struct task_struct *, struct mm_struct *);
 | |
| /* Remove the current tasks stale references to the old mm_struct on exec() */
 | |
| extern void exec_mm_release(struct task_struct *, struct mm_struct *);
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| extern void mm_update_next_owner(struct mm_struct *mm);
 | |
| #else
 | |
| static inline void mm_update_next_owner(struct mm_struct *mm)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_MEMCG */
 | |
| 
 | |
| #ifdef CONFIG_MMU
 | |
| #ifndef arch_get_mmap_end
 | |
| #define arch_get_mmap_end(addr, len, flags)	(TASK_SIZE)
 | |
| #endif
 | |
| 
 | |
| #ifndef arch_get_mmap_base
 | |
| #define arch_get_mmap_base(addr, base) (base)
 | |
| #endif
 | |
| 
 | |
| extern void arch_pick_mmap_layout(struct mm_struct *mm,
 | |
| 				  struct rlimit *rlim_stack);
 | |
| 
 | |
| unsigned long
 | |
| arch_get_unmapped_area(struct file *filp, unsigned long addr,
 | |
| 		       unsigned long len, unsigned long pgoff,
 | |
| 		       unsigned long flags, vm_flags_t vm_flags);
 | |
| unsigned long
 | |
| arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 | |
| 			       unsigned long len, unsigned long pgoff,
 | |
| 			       unsigned long flags, vm_flags_t);
 | |
| 
 | |
| unsigned long mm_get_unmapped_area(struct mm_struct *mm, struct file *filp,
 | |
| 				   unsigned long addr, unsigned long len,
 | |
| 				   unsigned long pgoff, unsigned long flags);
 | |
| 
 | |
| unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm,
 | |
| 					   struct file *filp,
 | |
| 					   unsigned long addr,
 | |
| 					   unsigned long len,
 | |
| 					   unsigned long pgoff,
 | |
| 					   unsigned long flags,
 | |
| 					   vm_flags_t vm_flags);
 | |
| 
 | |
| unsigned long
 | |
| generic_get_unmapped_area(struct file *filp, unsigned long addr,
 | |
| 			  unsigned long len, unsigned long pgoff,
 | |
| 			  unsigned long flags, vm_flags_t vm_flags);
 | |
| unsigned long
 | |
| generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 | |
| 				  unsigned long len, unsigned long pgoff,
 | |
| 				  unsigned long flags, vm_flags_t vm_flags);
 | |
| #else
 | |
| static inline void arch_pick_mmap_layout(struct mm_struct *mm,
 | |
| 					 struct rlimit *rlim_stack) {}
 | |
| #endif
 | |
| 
 | |
| static inline bool in_vfork(struct task_struct *tsk)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * need RCU to access ->real_parent if CLONE_VM was used along with
 | |
| 	 * CLONE_PARENT.
 | |
| 	 *
 | |
| 	 * We check real_parent->mm == tsk->mm because CLONE_VFORK does not
 | |
| 	 * imply CLONE_VM
 | |
| 	 *
 | |
| 	 * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
 | |
| 	 * ->real_parent is not necessarily the task doing vfork(), so in
 | |
| 	 * theory we can't rely on task_lock() if we want to dereference it.
 | |
| 	 *
 | |
| 	 * And in this case we can't trust the real_parent->mm == tsk->mm
 | |
| 	 * check, it can be false negative. But we do not care, if init or
 | |
| 	 * another oom-unkillable task does this it should blame itself.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 	ret = tsk->vfork_done &&
 | |
| 			rcu_dereference(tsk->real_parent)->mm == tsk->mm;
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Applies per-task gfp context to the given allocation flags.
 | |
|  * PF_MEMALLOC_NOIO implies GFP_NOIO
 | |
|  * PF_MEMALLOC_NOFS implies GFP_NOFS
 | |
|  * PF_MEMALLOC_PIN  implies !GFP_MOVABLE
 | |
|  */
 | |
| static inline gfp_t current_gfp_context(gfp_t flags)
 | |
| {
 | |
| 	unsigned int pflags = READ_ONCE(current->flags);
 | |
| 
 | |
| 	if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
 | |
| 		/*
 | |
| 		 * NOIO implies both NOIO and NOFS and it is a weaker context
 | |
| 		 * so always make sure it makes precedence
 | |
| 		 */
 | |
| 		if (pflags & PF_MEMALLOC_NOIO)
 | |
| 			flags &= ~(__GFP_IO | __GFP_FS);
 | |
| 		else if (pflags & PF_MEMALLOC_NOFS)
 | |
| 			flags &= ~__GFP_FS;
 | |
| 
 | |
| 		if (pflags & PF_MEMALLOC_PIN)
 | |
| 			flags &= ~__GFP_MOVABLE;
 | |
| 	}
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_LOCKDEP
 | |
| extern void __fs_reclaim_acquire(unsigned long ip);
 | |
| extern void __fs_reclaim_release(unsigned long ip);
 | |
| extern void fs_reclaim_acquire(gfp_t gfp_mask);
 | |
| extern void fs_reclaim_release(gfp_t gfp_mask);
 | |
| #else
 | |
| static inline void __fs_reclaim_acquire(unsigned long ip) { }
 | |
| static inline void __fs_reclaim_release(unsigned long ip) { }
 | |
| static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
 | |
| static inline void fs_reclaim_release(gfp_t gfp_mask) { }
 | |
| #endif
 | |
| 
 | |
| /* Any memory-allocation retry loop should use
 | |
|  * memalloc_retry_wait(), and pass the flags for the most
 | |
|  * constrained allocation attempt that might have failed.
 | |
|  * This provides useful documentation of where loops are,
 | |
|  * and a central place to fine tune the waiting as the MM
 | |
|  * implementation changes.
 | |
|  */
 | |
| static inline void memalloc_retry_wait(gfp_t gfp_flags)
 | |
| {
 | |
| 	/* We use io_schedule_timeout because waiting for memory
 | |
| 	 * typically included waiting for dirty pages to be
 | |
| 	 * written out, which requires IO.
 | |
| 	 */
 | |
| 	__set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 	gfp_flags = current_gfp_context(gfp_flags);
 | |
| 	if (gfpflags_allow_blocking(gfp_flags) &&
 | |
| 	    !(gfp_flags & __GFP_NORETRY))
 | |
| 		/* Probably waited already, no need for much more */
 | |
| 		io_schedule_timeout(1);
 | |
| 	else
 | |
| 		/* Probably didn't wait, and has now released a lock,
 | |
| 		 * so now is a good time to wait
 | |
| 		 */
 | |
| 		io_schedule_timeout(HZ/50);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * might_alloc - Mark possible allocation sites
 | |
|  * @gfp_mask: gfp_t flags that would be used to allocate
 | |
|  *
 | |
|  * Similar to might_sleep() and other annotations, this can be used in functions
 | |
|  * that might allocate, but often don't. Compiles to nothing without
 | |
|  * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
 | |
|  */
 | |
| static inline void might_alloc(gfp_t gfp_mask)
 | |
| {
 | |
| 	fs_reclaim_acquire(gfp_mask);
 | |
| 	fs_reclaim_release(gfp_mask);
 | |
| 
 | |
| 	might_sleep_if(gfpflags_allow_blocking(gfp_mask));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_flags_save - Add a PF_* flag to current->flags, save old value
 | |
|  *
 | |
|  * This allows PF_* flags to be conveniently added, irrespective of current
 | |
|  * value, and then the old version restored with memalloc_flags_restore().
 | |
|  */
 | |
| static inline unsigned memalloc_flags_save(unsigned flags)
 | |
| {
 | |
| 	unsigned oldflags = ~current->flags & flags;
 | |
| 	current->flags |= flags;
 | |
| 	return oldflags;
 | |
| }
 | |
| 
 | |
| static inline void memalloc_flags_restore(unsigned flags)
 | |
| {
 | |
| 	current->flags &= ~flags;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
 | |
|  *
 | |
|  * This functions marks the beginning of the GFP_NOIO allocation scope.
 | |
|  * All further allocations will implicitly drop __GFP_IO flag and so
 | |
|  * they are safe for the IO critical section from the allocation recursion
 | |
|  * point of view. Use memalloc_noio_restore to end the scope with flags
 | |
|  * returned by this function.
 | |
|  *
 | |
|  * Context: This function is safe to be used from any context.
 | |
|  * Return: The saved flags to be passed to memalloc_noio_restore.
 | |
|  */
 | |
| static inline unsigned int memalloc_noio_save(void)
 | |
| {
 | |
| 	return memalloc_flags_save(PF_MEMALLOC_NOIO);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
 | |
|  * @flags: Flags to restore.
 | |
|  *
 | |
|  * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
 | |
|  * Always make sure that the given flags is the return value from the
 | |
|  * pairing memalloc_noio_save call.
 | |
|  */
 | |
| static inline void memalloc_noio_restore(unsigned int flags)
 | |
| {
 | |
| 	memalloc_flags_restore(flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
 | |
|  *
 | |
|  * This functions marks the beginning of the GFP_NOFS allocation scope.
 | |
|  * All further allocations will implicitly drop __GFP_FS flag and so
 | |
|  * they are safe for the FS critical section from the allocation recursion
 | |
|  * point of view. Use memalloc_nofs_restore to end the scope with flags
 | |
|  * returned by this function.
 | |
|  *
 | |
|  * Context: This function is safe to be used from any context.
 | |
|  * Return: The saved flags to be passed to memalloc_nofs_restore.
 | |
|  */
 | |
| static inline unsigned int memalloc_nofs_save(void)
 | |
| {
 | |
| 	return memalloc_flags_save(PF_MEMALLOC_NOFS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
 | |
|  * @flags: Flags to restore.
 | |
|  *
 | |
|  * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
 | |
|  * Always make sure that the given flags is the return value from the
 | |
|  * pairing memalloc_nofs_save call.
 | |
|  */
 | |
| static inline void memalloc_nofs_restore(unsigned int flags)
 | |
| {
 | |
| 	memalloc_flags_restore(flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_noreclaim_save - Marks implicit __GFP_MEMALLOC scope.
 | |
|  *
 | |
|  * This function marks the beginning of the __GFP_MEMALLOC allocation scope.
 | |
|  * All further allocations will implicitly add the __GFP_MEMALLOC flag, which
 | |
|  * prevents entering reclaim and allows access to all memory reserves. This
 | |
|  * should only be used when the caller guarantees the allocation will allow more
 | |
|  * memory to be freed very shortly, i.e. it needs to allocate some memory in
 | |
|  * the process of freeing memory, and cannot reclaim due to potential recursion.
 | |
|  *
 | |
|  * Users of this scope have to be extremely careful to not deplete the reserves
 | |
|  * completely and implement a throttling mechanism which controls the
 | |
|  * consumption of the reserve based on the amount of freed memory. Usage of a
 | |
|  * pre-allocated pool (e.g. mempool) should be always considered before using
 | |
|  * this scope.
 | |
|  *
 | |
|  * Individual allocations under the scope can opt out using __GFP_NOMEMALLOC
 | |
|  *
 | |
|  * Context: This function should not be used in an interrupt context as that one
 | |
|  *          does not give PF_MEMALLOC access to reserves.
 | |
|  *          See __gfp_pfmemalloc_flags().
 | |
|  * Return: The saved flags to be passed to memalloc_noreclaim_restore.
 | |
|  */
 | |
| static inline unsigned int memalloc_noreclaim_save(void)
 | |
| {
 | |
| 	return memalloc_flags_save(PF_MEMALLOC);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_noreclaim_restore - Ends the implicit __GFP_MEMALLOC scope.
 | |
|  * @flags: Flags to restore.
 | |
|  *
 | |
|  * Ends the implicit __GFP_MEMALLOC scope started by memalloc_noreclaim_save
 | |
|  * function. Always make sure that the given flags is the return value from the
 | |
|  * pairing memalloc_noreclaim_save call.
 | |
|  */
 | |
| static inline void memalloc_noreclaim_restore(unsigned int flags)
 | |
| {
 | |
| 	memalloc_flags_restore(flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_pin_save - Marks implicit ~__GFP_MOVABLE scope.
 | |
|  *
 | |
|  * This function marks the beginning of the ~__GFP_MOVABLE allocation scope.
 | |
|  * All further allocations will implicitly remove the __GFP_MOVABLE flag, which
 | |
|  * will constraint the allocations to zones that allow long term pinning, i.e.
 | |
|  * not ZONE_MOVABLE zones.
 | |
|  *
 | |
|  * Return: The saved flags to be passed to memalloc_pin_restore.
 | |
|  */
 | |
| static inline unsigned int memalloc_pin_save(void)
 | |
| {
 | |
| 	return memalloc_flags_save(PF_MEMALLOC_PIN);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memalloc_pin_restore - Ends the implicit ~__GFP_MOVABLE scope.
 | |
|  * @flags: Flags to restore.
 | |
|  *
 | |
|  * Ends the implicit ~__GFP_MOVABLE scope started by memalloc_pin_save function.
 | |
|  * Always make sure that the given flags is the return value from the pairing
 | |
|  * memalloc_pin_save call.
 | |
|  */
 | |
| static inline void memalloc_pin_restore(unsigned int flags)
 | |
| {
 | |
| 	memalloc_flags_restore(flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMCG
 | |
| DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
 | |
| /**
 | |
|  * set_active_memcg - Starts the remote memcg charging scope.
 | |
|  * @memcg: memcg to charge.
 | |
|  *
 | |
|  * This function marks the beginning of the remote memcg charging scope. All the
 | |
|  * __GFP_ACCOUNT allocations till the end of the scope will be charged to the
 | |
|  * given memcg.
 | |
|  *
 | |
|  * Please, make sure that caller has a reference to the passed memcg structure,
 | |
|  * so its lifetime is guaranteed to exceed the scope between two
 | |
|  * set_active_memcg() calls.
 | |
|  *
 | |
|  * NOTE: This function can nest. Users must save the return value and
 | |
|  * reset the previous value after their own charging scope is over.
 | |
|  */
 | |
| static inline struct mem_cgroup *
 | |
| set_active_memcg(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	struct mem_cgroup *old;
 | |
| 
 | |
| 	if (!in_task()) {
 | |
| 		old = this_cpu_read(int_active_memcg);
 | |
| 		this_cpu_write(int_active_memcg, memcg);
 | |
| 	} else {
 | |
| 		old = current->active_memcg;
 | |
| 		current->active_memcg = memcg;
 | |
| 	}
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| #else
 | |
| static inline struct mem_cgroup *
 | |
| set_active_memcg(struct mem_cgroup *memcg)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_MEMBARRIER
 | |
| enum {
 | |
| 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY		= (1U << 0),
 | |
| 	MEMBARRIER_STATE_PRIVATE_EXPEDITED			= (1U << 1),
 | |
| 	MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY			= (1U << 2),
 | |
| 	MEMBARRIER_STATE_GLOBAL_EXPEDITED			= (1U << 3),
 | |
| 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY	= (1U << 4),
 | |
| 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE		= (1U << 5),
 | |
| 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY		= (1U << 6),
 | |
| 	MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ			= (1U << 7),
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	MEMBARRIER_FLAG_SYNC_CORE	= (1U << 0),
 | |
| 	MEMBARRIER_FLAG_RSEQ		= (1U << 1),
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
 | |
| #include <asm/membarrier.h>
 | |
| #endif
 | |
| 
 | |
| static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
 | |
| {
 | |
| 	if (current->mm != mm)
 | |
| 		return;
 | |
| 	if (likely(!(atomic_read(&mm->membarrier_state) &
 | |
| 		     MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
 | |
| 		return;
 | |
| 	sync_core_before_usermode();
 | |
| }
 | |
| 
 | |
| extern void membarrier_exec_mmap(struct mm_struct *mm);
 | |
| 
 | |
| extern void membarrier_update_current_mm(struct mm_struct *next_mm);
 | |
| 
 | |
| #else
 | |
| #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
 | |
| static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
 | |
| 					     struct mm_struct *next,
 | |
| 					     struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| static inline void membarrier_exec_mmap(struct mm_struct *mm)
 | |
| {
 | |
| }
 | |
| static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
 | |
| {
 | |
| }
 | |
| static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif /* _LINUX_SCHED_MM_H */
 |