237 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			237 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _LINUX_MIN_HEAP_H
 | |
| #define _LINUX_MIN_HEAP_H
 | |
| 
 | |
| #include <linux/bug.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| /**
 | |
|  * Data structure to hold a min-heap.
 | |
|  * @nr: Number of elements currently in the heap.
 | |
|  * @size: Maximum number of elements that can be held in current storage.
 | |
|  * @data: Pointer to the start of array holding the heap elements.
 | |
|  * @preallocated: Start of the static preallocated array holding the heap elements.
 | |
|  */
 | |
| #define MIN_HEAP_PREALLOCATED(_type, _name, _nr)	\
 | |
| struct _name {	\
 | |
| 	int nr;	\
 | |
| 	int size;	\
 | |
| 	_type *data;	\
 | |
| 	_type preallocated[_nr];	\
 | |
| }
 | |
| 
 | |
| #define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0)
 | |
| 
 | |
| typedef DEFINE_MIN_HEAP(char, min_heap_char) min_heap_char;
 | |
| 
 | |
| #define __minheap_cast(_heap)		(typeof((_heap)->data[0]) *)
 | |
| #define __minheap_obj_size(_heap)	sizeof((_heap)->data[0])
 | |
| 
 | |
| /**
 | |
|  * struct min_heap_callbacks - Data/functions to customise the min_heap.
 | |
|  * @less: Partial order function for this heap.
 | |
|  * @swp: Swap elements function.
 | |
|  */
 | |
| struct min_heap_callbacks {
 | |
| 	bool (*less)(const void *lhs, const void *rhs, void *args);
 | |
| 	void (*swp)(void *lhs, void *rhs, void *args);
 | |
| };
 | |
| 
 | |
| /* Initialize a min-heap. */
 | |
| static __always_inline
 | |
| void __min_heap_init(min_heap_char *heap, void *data, int size)
 | |
| {
 | |
| 	heap->nr = 0;
 | |
| 	heap->size = size;
 | |
| 	if (data)
 | |
| 		heap->data = data;
 | |
| 	else
 | |
| 		heap->data = heap->preallocated;
 | |
| }
 | |
| 
 | |
| #define min_heap_init(_heap, _data, _size)	\
 | |
| 	__min_heap_init((min_heap_char *)_heap, _data, _size)
 | |
| 
 | |
| /* Get the minimum element from the heap. */
 | |
| static __always_inline
 | |
| void *__min_heap_peek(struct min_heap_char *heap)
 | |
| {
 | |
| 	return heap->nr ? heap->data : NULL;
 | |
| }
 | |
| 
 | |
| #define min_heap_peek(_heap)	\
 | |
| 	(__minheap_cast(_heap) __min_heap_peek((min_heap_char *)_heap))
 | |
| 
 | |
| /* Check if the heap is full. */
 | |
| static __always_inline
 | |
| bool __min_heap_full(min_heap_char *heap)
 | |
| {
 | |
| 	return heap->nr == heap->size;
 | |
| }
 | |
| 
 | |
| #define min_heap_full(_heap)	\
 | |
| 	__min_heap_full((min_heap_char *)_heap)
 | |
| 
 | |
| /* Sift the element at pos down the heap. */
 | |
| static __always_inline
 | |
| void __min_heap_sift_down(min_heap_char *heap, int pos, size_t elem_size,
 | |
| 		const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	void *left, *right;
 | |
| 	void *data = heap->data;
 | |
| 	void *root = data + pos * elem_size;
 | |
| 	int i = pos, j;
 | |
| 
 | |
| 	/* Find the sift-down path all the way to the leaves. */
 | |
| 	for (;;) {
 | |
| 		if (i * 2 + 2 >= heap->nr)
 | |
| 			break;
 | |
| 		left = data + (i * 2 + 1) * elem_size;
 | |
| 		right = data + (i * 2 + 2) * elem_size;
 | |
| 		i = func->less(left, right, args) ? i * 2 + 1 : i * 2 + 2;
 | |
| 	}
 | |
| 
 | |
| 	/* Special case for the last leaf with no sibling. */
 | |
| 	if (i * 2 + 2 == heap->nr)
 | |
| 		i = i * 2 + 1;
 | |
| 
 | |
| 	/* Backtrack to the correct location. */
 | |
| 	while (i != pos && func->less(root, data + i * elem_size, args))
 | |
| 		i = (i - 1) / 2;
 | |
| 
 | |
| 	/* Shift the element into its correct place. */
 | |
| 	j = i;
 | |
| 	while (i != pos) {
 | |
| 		i = (i - 1) / 2;
 | |
| 		func->swp(data + i * elem_size, data + j * elem_size, args);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define min_heap_sift_down(_heap, _pos, _func, _args)	\
 | |
| 	__min_heap_sift_down((min_heap_char *)_heap, _pos, __minheap_obj_size(_heap), _func, _args)
 | |
| 
 | |
| /* Sift up ith element from the heap, O(log2(nr)). */
 | |
| static __always_inline
 | |
| void __min_heap_sift_up(min_heap_char *heap, size_t elem_size, size_t idx,
 | |
| 		const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	void *data = heap->data;
 | |
| 	size_t parent;
 | |
| 
 | |
| 	while (idx) {
 | |
| 		parent = (idx - 1) / 2;
 | |
| 		if (func->less(data + parent * elem_size, data + idx * elem_size, args))
 | |
| 			break;
 | |
| 		func->swp(data + parent * elem_size, data + idx * elem_size, args);
 | |
| 		idx = parent;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define min_heap_sift_up(_heap, _idx, _func, _args)	\
 | |
| 	__min_heap_sift_up((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
 | |
| 
 | |
| /* Floyd's approach to heapification that is O(nr). */
 | |
| static __always_inline
 | |
| void __min_heapify_all(min_heap_char *heap, size_t elem_size,
 | |
| 		const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = heap->nr / 2 - 1; i >= 0; i--)
 | |
| 		__min_heap_sift_down(heap, i, elem_size, func, args);
 | |
| }
 | |
| 
 | |
| #define min_heapify_all(_heap, _func, _args)	\
 | |
| 	__min_heapify_all((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
 | |
| 
 | |
| /* Remove minimum element from the heap, O(log2(nr)). */
 | |
| static __always_inline
 | |
| bool __min_heap_pop(min_heap_char *heap, size_t elem_size,
 | |
| 		const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	void *data = heap->data;
 | |
| 
 | |
| 	if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Place last element at the root (position 0) and then sift down. */
 | |
| 	heap->nr--;
 | |
| 	memcpy(data, data + (heap->nr * elem_size), elem_size);
 | |
| 	__min_heap_sift_down(heap, 0, elem_size, func, args);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define min_heap_pop(_heap, _func, _args)	\
 | |
| 	__min_heap_pop((min_heap_char *)_heap, __minheap_obj_size(_heap), _func, _args)
 | |
| 
 | |
| /*
 | |
|  * Remove the minimum element and then push the given element. The
 | |
|  * implementation performs 1 sift (O(log2(nr))) and is therefore more
 | |
|  * efficient than a pop followed by a push that does 2.
 | |
|  */
 | |
| static __always_inline
 | |
| void __min_heap_pop_push(min_heap_char *heap,
 | |
| 		const void *element, size_t elem_size,
 | |
| 		const struct min_heap_callbacks *func,
 | |
| 		void *args)
 | |
| {
 | |
| 	memcpy(heap->data, element, elem_size);
 | |
| 	__min_heap_sift_down(heap, 0, elem_size, func, args);
 | |
| }
 | |
| 
 | |
| #define min_heap_pop_push(_heap, _element, _func, _args)	\
 | |
| 	__min_heap_pop_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
 | |
| 
 | |
| /* Push an element on to the heap, O(log2(nr)). */
 | |
| static __always_inline
 | |
| bool __min_heap_push(min_heap_char *heap, const void *element, size_t elem_size,
 | |
| 		const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	void *data = heap->data;
 | |
| 	int pos;
 | |
| 
 | |
| 	if (WARN_ONCE(heap->nr >= heap->size, "Pushing on a full heap"))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Place at the end of data. */
 | |
| 	pos = heap->nr;
 | |
| 	memcpy(data + (pos * elem_size), element, elem_size);
 | |
| 	heap->nr++;
 | |
| 
 | |
| 	/* Sift child at pos up. */
 | |
| 	__min_heap_sift_up(heap, elem_size, pos, func, args);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define min_heap_push(_heap, _element, _func, _args)	\
 | |
| 	__min_heap_push((min_heap_char *)_heap, _element, __minheap_obj_size(_heap), _func, _args)
 | |
| 
 | |
| /* Remove ith element from the heap, O(log2(nr)). */
 | |
| static __always_inline
 | |
| bool __min_heap_del(min_heap_char *heap, size_t elem_size, size_t idx,
 | |
| 		const struct min_heap_callbacks *func, void *args)
 | |
| {
 | |
| 	void *data = heap->data;
 | |
| 
 | |
| 	if (WARN_ONCE(heap->nr <= 0, "Popping an empty heap"))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Place last element at the root (position 0) and then sift down. */
 | |
| 	heap->nr--;
 | |
| 	if (idx == heap->nr)
 | |
| 		return true;
 | |
| 	func->swp(data + (idx * elem_size), data + (heap->nr * elem_size), args);
 | |
| 	__min_heap_sift_up(heap, elem_size, idx, func, args);
 | |
| 	__min_heap_sift_down(heap, idx, elem_size, func, args);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define min_heap_del(_heap, _idx, _func, _args)	\
 | |
| 	__min_heap_del((min_heap_char *)_heap, __minheap_obj_size(_heap), _idx, _func, _args)
 | |
| 
 | |
| #endif /* _LINUX_MIN_HEAP_H */
 |