1484 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1484 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | |
|  * Copyright (c) 2016-2018 Christoph Hellwig.
 | |
|  * All Rights Reserved.
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_bmap_util.h"
 | |
| #include "xfs_errortag.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_trans_space.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_iomap.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_dquot_item.h"
 | |
| #include "xfs_dquot.h"
 | |
| #include "xfs_reflink.h"
 | |
| #include "xfs_health.h"
 | |
| #include "xfs_rtbitmap.h"
 | |
| 
 | |
| #define XFS_ALLOC_ALIGN(mp, off) \
 | |
| 	(((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
 | |
| 
 | |
| static int
 | |
| xfs_alert_fsblock_zero(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_bmbt_irec_t	*imap)
 | |
| {
 | |
| 	xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
 | |
| 			"Access to block zero in inode %llu "
 | |
| 			"start_block: %llx start_off: %llx "
 | |
| 			"blkcnt: %llx extent-state: %x",
 | |
| 		(unsigned long long)ip->i_ino,
 | |
| 		(unsigned long long)imap->br_startblock,
 | |
| 		(unsigned long long)imap->br_startoff,
 | |
| 		(unsigned long long)imap->br_blockcount,
 | |
| 		imap->br_state);
 | |
| 	xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
 | |
| 	return -EFSCORRUPTED;
 | |
| }
 | |
| 
 | |
| u64
 | |
| xfs_iomap_inode_sequence(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	u16			iomap_flags)
 | |
| {
 | |
| 	u64			cookie = 0;
 | |
| 
 | |
| 	if (iomap_flags & IOMAP_F_XATTR)
 | |
| 		return READ_ONCE(ip->i_af.if_seq);
 | |
| 	if ((iomap_flags & IOMAP_F_SHARED) && ip->i_cowfp)
 | |
| 		cookie = (u64)READ_ONCE(ip->i_cowfp->if_seq) << 32;
 | |
| 	return cookie | READ_ONCE(ip->i_df.if_seq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the iomap passed to us is still valid for the given offset and
 | |
|  * length.
 | |
|  */
 | |
| static bool
 | |
| xfs_iomap_valid(
 | |
| 	struct inode		*inode,
 | |
| 	const struct iomap	*iomap)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 
 | |
| 	if (iomap->validity_cookie !=
 | |
| 			xfs_iomap_inode_sequence(ip, iomap->flags)) {
 | |
| 		trace_xfs_iomap_invalid(ip, iomap);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	XFS_ERRORTAG_DELAY(ip->i_mount, XFS_ERRTAG_WRITE_DELAY_MS);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static const struct iomap_folio_ops xfs_iomap_folio_ops = {
 | |
| 	.iomap_valid		= xfs_iomap_valid,
 | |
| };
 | |
| 
 | |
| int
 | |
| xfs_bmbt_to_iomap(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct iomap		*iomap,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	unsigned int		mapping_flags,
 | |
| 	u16			iomap_flags,
 | |
| 	u64			sequence_cookie)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
 | |
| 
 | |
| 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
 | |
| 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
 | |
| 		return xfs_alert_fsblock_zero(ip, imap);
 | |
| 	}
 | |
| 
 | |
| 	if (imap->br_startblock == HOLESTARTBLOCK) {
 | |
| 		iomap->addr = IOMAP_NULL_ADDR;
 | |
| 		iomap->type = IOMAP_HOLE;
 | |
| 	} else if (imap->br_startblock == DELAYSTARTBLOCK ||
 | |
| 		   isnullstartblock(imap->br_startblock)) {
 | |
| 		iomap->addr = IOMAP_NULL_ADDR;
 | |
| 		iomap->type = IOMAP_DELALLOC;
 | |
| 	} else {
 | |
| 		iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
 | |
| 		if (mapping_flags & IOMAP_DAX)
 | |
| 			iomap->addr += target->bt_dax_part_off;
 | |
| 
 | |
| 		if (imap->br_state == XFS_EXT_UNWRITTEN)
 | |
| 			iomap->type = IOMAP_UNWRITTEN;
 | |
| 		else
 | |
| 			iomap->type = IOMAP_MAPPED;
 | |
| 
 | |
| 	}
 | |
| 	iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
 | |
| 	iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
 | |
| 	if (mapping_flags & IOMAP_DAX)
 | |
| 		iomap->dax_dev = target->bt_daxdev;
 | |
| 	else
 | |
| 		iomap->bdev = target->bt_bdev;
 | |
| 	iomap->flags = iomap_flags;
 | |
| 
 | |
| 	if (xfs_ipincount(ip) &&
 | |
| 	    (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
 | |
| 		iomap->flags |= IOMAP_F_DIRTY;
 | |
| 
 | |
| 	iomap->validity_cookie = sequence_cookie;
 | |
| 	iomap->folio_ops = &xfs_iomap_folio_ops;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_hole_to_iomap(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct iomap		*iomap,
 | |
| 	xfs_fileoff_t		offset_fsb,
 | |
| 	xfs_fileoff_t		end_fsb)
 | |
| {
 | |
| 	struct xfs_buftarg	*target = xfs_inode_buftarg(ip);
 | |
| 
 | |
| 	iomap->addr = IOMAP_NULL_ADDR;
 | |
| 	iomap->type = IOMAP_HOLE;
 | |
| 	iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
 | |
| 	iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
 | |
| 	iomap->bdev = target->bt_bdev;
 | |
| 	iomap->dax_dev = target->bt_daxdev;
 | |
| }
 | |
| 
 | |
| static inline xfs_fileoff_t
 | |
| xfs_iomap_end_fsb(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			count)
 | |
| {
 | |
| 	ASSERT(offset <= mp->m_super->s_maxbytes);
 | |
| 	return min(XFS_B_TO_FSB(mp, offset + count),
 | |
| 		   XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
 | |
| }
 | |
| 
 | |
| static xfs_extlen_t
 | |
| xfs_eof_alignment(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	xfs_extlen_t		align = 0;
 | |
| 
 | |
| 	if (!XFS_IS_REALTIME_INODE(ip)) {
 | |
| 		/*
 | |
| 		 * Round up the allocation request to a stripe unit
 | |
| 		 * (m_dalign) boundary if the file size is >= stripe unit
 | |
| 		 * size, and we are allocating past the allocation eof.
 | |
| 		 *
 | |
| 		 * If mounted with the "-o swalloc" option the alignment is
 | |
| 		 * increased from the strip unit size to the stripe width.
 | |
| 		 */
 | |
| 		if (mp->m_swidth && xfs_has_swalloc(mp))
 | |
| 			align = mp->m_swidth;
 | |
| 		else if (mp->m_dalign)
 | |
| 			align = mp->m_dalign;
 | |
| 
 | |
| 		if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
 | |
| 			align = 0;
 | |
| 	}
 | |
| 
 | |
| 	return align;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if last_fsb is outside the last extent, and if so grow it to the next
 | |
|  * stripe unit boundary.
 | |
|  */
 | |
| xfs_fileoff_t
 | |
| xfs_iomap_eof_align_last_fsb(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	xfs_fileoff_t		end_fsb)
 | |
| {
 | |
| 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
 | |
| 	xfs_extlen_t		extsz = xfs_get_extsz_hint(ip);
 | |
| 	xfs_extlen_t		align = xfs_eof_alignment(ip);
 | |
| 	struct xfs_bmbt_irec	irec;
 | |
| 	struct xfs_iext_cursor	icur;
 | |
| 
 | |
| 	ASSERT(!xfs_need_iread_extents(ifp));
 | |
| 
 | |
| 	/*
 | |
| 	 * Always round up the allocation request to the extent hint boundary.
 | |
| 	 */
 | |
| 	if (extsz) {
 | |
| 		if (align)
 | |
| 			align = roundup_64(align, extsz);
 | |
| 		else
 | |
| 			align = extsz;
 | |
| 	}
 | |
| 
 | |
| 	if (align) {
 | |
| 		xfs_fileoff_t	aligned_end_fsb = roundup_64(end_fsb, align);
 | |
| 
 | |
| 		xfs_iext_last(ifp, &icur);
 | |
| 		if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
 | |
| 		    aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
 | |
| 			return aligned_end_fsb;
 | |
| 	}
 | |
| 
 | |
| 	return end_fsb;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_iomap_write_direct(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	xfs_fileoff_t		offset_fsb,
 | |
| 	xfs_fileoff_t		count_fsb,
 | |
| 	unsigned int		flags,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	u64			*seq)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_trans	*tp;
 | |
| 	xfs_filblks_t		resaligned;
 | |
| 	int			nimaps;
 | |
| 	unsigned int		dblocks, rblocks;
 | |
| 	bool			force = false;
 | |
| 	int			error;
 | |
| 	int			bmapi_flags = XFS_BMAPI_PREALLOC;
 | |
| 	int			nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
 | |
| 
 | |
| 	ASSERT(count_fsb > 0);
 | |
| 
 | |
| 	resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
 | |
| 					   xfs_get_extsz_hint(ip));
 | |
| 	if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
 | |
| 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
 | |
| 		rblocks = resaligned;
 | |
| 	} else {
 | |
| 		dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
 | |
| 		rblocks = 0;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_qm_dqattach(ip);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * For DAX, we do not allocate unwritten extents, but instead we zero
 | |
| 	 * the block before we commit the transaction.  Ideally we'd like to do
 | |
| 	 * this outside the transaction context, but if we commit and then crash
 | |
| 	 * we may not have zeroed the blocks and this will be exposed on
 | |
| 	 * recovery of the allocation. Hence we must zero before commit.
 | |
| 	 *
 | |
| 	 * Further, if we are mapping unwritten extents here, we need to zero
 | |
| 	 * and convert them to written so that we don't need an unwritten extent
 | |
| 	 * callback for DAX. This also means that we need to be able to dip into
 | |
| 	 * the reserve block pool for bmbt block allocation if there is no space
 | |
| 	 * left but we need to do unwritten extent conversion.
 | |
| 	 */
 | |
| 	if (flags & IOMAP_DAX) {
 | |
| 		bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
 | |
| 		if (imap->br_state == XFS_EXT_UNWRITTEN) {
 | |
| 			force = true;
 | |
| 			nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
 | |
| 			dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
 | |
| 			rblocks, force, &tp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK, nr_exts);
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	/*
 | |
| 	 * From this point onwards we overwrite the imap pointer that the
 | |
| 	 * caller gave to us.
 | |
| 	 */
 | |
| 	nimaps = 1;
 | |
| 	error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
 | |
| 				imap, &nimaps);
 | |
| 	if (error)
 | |
| 		goto out_trans_cancel;
 | |
| 
 | |
| 	/*
 | |
| 	 * Complete the transaction
 | |
| 	 */
 | |
| 	error = xfs_trans_commit(tp);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock))) {
 | |
| 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
 | |
| 		error = xfs_alert_fsblock_zero(ip, imap);
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	*seq = xfs_iomap_inode_sequence(ip, 0);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	return error;
 | |
| 
 | |
| out_trans_cancel:
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	goto out_unlock;
 | |
| }
 | |
| 
 | |
| STATIC bool
 | |
| xfs_quota_need_throttle(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	xfs_dqtype_t		type,
 | |
| 	xfs_fsblock_t		alloc_blocks)
 | |
| {
 | |
| 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
 | |
| 
 | |
| 	if (!dq || !xfs_this_quota_on(ip->i_mount, type))
 | |
| 		return false;
 | |
| 
 | |
| 	/* no hi watermark, no throttle */
 | |
| 	if (!dq->q_prealloc_hi_wmark)
 | |
| 		return false;
 | |
| 
 | |
| 	/* under the lo watermark, no throttle */
 | |
| 	if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_quota_calc_throttle(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	xfs_dqtype_t		type,
 | |
| 	xfs_fsblock_t		*qblocks,
 | |
| 	int			*qshift,
 | |
| 	int64_t			*qfreesp)
 | |
| {
 | |
| 	struct xfs_dquot	*dq = xfs_inode_dquot(ip, type);
 | |
| 	int64_t			freesp;
 | |
| 	int			shift = 0;
 | |
| 
 | |
| 	/* no dq, or over hi wmark, squash the prealloc completely */
 | |
| 	if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
 | |
| 		*qblocks = 0;
 | |
| 		*qfreesp = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
 | |
| 	if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
 | |
| 		shift = 2;
 | |
| 		if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
 | |
| 			shift += 2;
 | |
| 		if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
 | |
| 			shift += 2;
 | |
| 	}
 | |
| 
 | |
| 	if (freesp < *qfreesp)
 | |
| 		*qfreesp = freesp;
 | |
| 
 | |
| 	/* only overwrite the throttle values if we are more aggressive */
 | |
| 	if ((freesp >> shift) < (*qblocks >> *qshift)) {
 | |
| 		*qblocks = freesp;
 | |
| 		*qshift = shift;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int64_t
 | |
| xfs_iomap_freesp(
 | |
| 	struct percpu_counter	*counter,
 | |
| 	uint64_t		low_space[XFS_LOWSP_MAX],
 | |
| 	int			*shift)
 | |
| {
 | |
| 	int64_t			freesp;
 | |
| 
 | |
| 	freesp = percpu_counter_read_positive(counter);
 | |
| 	if (freesp < low_space[XFS_LOWSP_5_PCNT]) {
 | |
| 		*shift = 2;
 | |
| 		if (freesp < low_space[XFS_LOWSP_4_PCNT])
 | |
| 			(*shift)++;
 | |
| 		if (freesp < low_space[XFS_LOWSP_3_PCNT])
 | |
| 			(*shift)++;
 | |
| 		if (freesp < low_space[XFS_LOWSP_2_PCNT])
 | |
| 			(*shift)++;
 | |
| 		if (freesp < low_space[XFS_LOWSP_1_PCNT])
 | |
| 			(*shift)++;
 | |
| 	}
 | |
| 	return freesp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we don't have a user specified preallocation size, dynamically increase
 | |
|  * the preallocation size as the size of the file grows.  Cap the maximum size
 | |
|  * at a single extent or less if the filesystem is near full. The closer the
 | |
|  * filesystem is to being full, the smaller the maximum preallocation.
 | |
|  */
 | |
| STATIC xfs_fsblock_t
 | |
| xfs_iomap_prealloc_size(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	int			whichfork,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			count,
 | |
| 	struct xfs_iext_cursor	*icur)
 | |
| {
 | |
| 	struct xfs_iext_cursor	ncur = *icur;
 | |
| 	struct xfs_bmbt_irec	prev, got;
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
 | |
| 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	int64_t			freesp;
 | |
| 	xfs_fsblock_t		qblocks;
 | |
| 	xfs_fsblock_t		alloc_blocks = 0;
 | |
| 	xfs_extlen_t		plen;
 | |
| 	int			shift = 0;
 | |
| 	int			qshift = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * As an exception we don't do any preallocation at all if the file is
 | |
| 	 * smaller than the minimum preallocation and we are using the default
 | |
| 	 * dynamic preallocation scheme, as it is likely this is the only write
 | |
| 	 * to the file that is going to be done.
 | |
| 	 */
 | |
| 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the minimum preallocation size for small files or if we are
 | |
| 	 * writing right after a hole.
 | |
| 	 */
 | |
| 	if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
 | |
| 	    !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
 | |
| 	    prev.br_startoff + prev.br_blockcount < offset_fsb)
 | |
| 		return mp->m_allocsize_blocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the size of the preceding data extents as the basis for the
 | |
| 	 * preallocation size. Note that we don't care if the previous extents
 | |
| 	 * are written or not.
 | |
| 	 */
 | |
| 	plen = prev.br_blockcount;
 | |
| 	while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
 | |
| 		if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
 | |
| 		    isnullstartblock(got.br_startblock) ||
 | |
| 		    got.br_startoff + got.br_blockcount != prev.br_startoff ||
 | |
| 		    got.br_startblock + got.br_blockcount != prev.br_startblock)
 | |
| 			break;
 | |
| 		plen += got.br_blockcount;
 | |
| 		prev = got;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the size of the extents is greater than half the maximum extent
 | |
| 	 * length, then use the current offset as the basis.  This ensures that
 | |
| 	 * for large files the preallocation size always extends to
 | |
| 	 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
 | |
| 	 * unit/width alignment of real extents.
 | |
| 	 */
 | |
| 	alloc_blocks = plen * 2;
 | |
| 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
 | |
| 		alloc_blocks = XFS_B_TO_FSB(mp, offset);
 | |
| 	qblocks = alloc_blocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
 | |
| 	 * down to the nearest power of two value after throttling. To prevent
 | |
| 	 * the round down from unconditionally reducing the maximum supported
 | |
| 	 * prealloc size, we round up first, apply appropriate throttling, round
 | |
| 	 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
 | |
| 	 */
 | |
| 	alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
 | |
| 				       alloc_blocks);
 | |
| 
 | |
| 	if (unlikely(XFS_IS_REALTIME_INODE(ip)))
 | |
| 		freesp = xfs_rtx_to_rtb(mp,
 | |
| 			xfs_iomap_freesp(&mp->m_frextents,
 | |
| 					mp->m_low_rtexts, &shift));
 | |
| 	else
 | |
| 		freesp = xfs_iomap_freesp(&mp->m_fdblocks, mp->m_low_space,
 | |
| 				&shift);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check each quota to cap the prealloc size, provide a shift value to
 | |
| 	 * throttle with and adjust amount of available space.
 | |
| 	 */
 | |
| 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
 | |
| 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
 | |
| 					&freesp);
 | |
| 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
 | |
| 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
 | |
| 					&freesp);
 | |
| 	if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
 | |
| 		xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
 | |
| 					&freesp);
 | |
| 
 | |
| 	/*
 | |
| 	 * The final prealloc size is set to the minimum of free space available
 | |
| 	 * in each of the quotas and the overall filesystem.
 | |
| 	 *
 | |
| 	 * The shift throttle value is set to the maximum value as determined by
 | |
| 	 * the global low free space values and per-quota low free space values.
 | |
| 	 */
 | |
| 	alloc_blocks = min(alloc_blocks, qblocks);
 | |
| 	shift = max(shift, qshift);
 | |
| 
 | |
| 	if (shift)
 | |
| 		alloc_blocks >>= shift;
 | |
| 	/*
 | |
| 	 * rounddown_pow_of_two() returns an undefined result if we pass in
 | |
| 	 * alloc_blocks = 0.
 | |
| 	 */
 | |
| 	if (alloc_blocks)
 | |
| 		alloc_blocks = rounddown_pow_of_two(alloc_blocks);
 | |
| 	if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
 | |
| 		alloc_blocks = XFS_MAX_BMBT_EXTLEN;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are still trying to allocate more space than is
 | |
| 	 * available, squash the prealloc hard. This can happen if we
 | |
| 	 * have a large file on a small filesystem and the above
 | |
| 	 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
 | |
| 	 */
 | |
| 	while (alloc_blocks && alloc_blocks >= freesp)
 | |
| 		alloc_blocks >>= 4;
 | |
| 	if (alloc_blocks < mp->m_allocsize_blocks)
 | |
| 		alloc_blocks = mp->m_allocsize_blocks;
 | |
| 	trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
 | |
| 				      mp->m_allocsize_blocks);
 | |
| 	return alloc_blocks;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_iomap_write_unwritten(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_off_t	offset,
 | |
| 	xfs_off_t	count,
 | |
| 	bool		update_isize)
 | |
| {
 | |
| 	xfs_mount_t	*mp = ip->i_mount;
 | |
| 	xfs_fileoff_t	offset_fsb;
 | |
| 	xfs_filblks_t	count_fsb;
 | |
| 	xfs_filblks_t	numblks_fsb;
 | |
| 	int		nimaps;
 | |
| 	xfs_trans_t	*tp;
 | |
| 	xfs_bmbt_irec_t imap;
 | |
| 	struct inode	*inode = VFS_I(ip);
 | |
| 	xfs_fsize_t	i_size;
 | |
| 	uint		resblks;
 | |
| 	int		error;
 | |
| 
 | |
| 	trace_xfs_unwritten_convert(ip, offset, count);
 | |
| 
 | |
| 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 | |
| 	count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve enough blocks in this transaction for two complete extent
 | |
| 	 * btree splits.  We may be converting the middle part of an unwritten
 | |
| 	 * extent and in this case we will insert two new extents in the btree
 | |
| 	 * each of which could cause a full split.
 | |
| 	 *
 | |
| 	 * This reservation amount will be used in the first call to
 | |
| 	 * xfs_bmbt_split() to select an AG with enough space to satisfy the
 | |
| 	 * rest of the operation.
 | |
| 	 */
 | |
| 	resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
 | |
| 
 | |
| 	/* Attach dquots so that bmbt splits are accounted correctly. */
 | |
| 	error = xfs_qm_dqattach(ip);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * Set up a transaction to convert the range of extents
 | |
| 		 * from unwritten to real. Do allocations in a loop until
 | |
| 		 * we have covered the range passed in.
 | |
| 		 *
 | |
| 		 * Note that we can't risk to recursing back into the filesystem
 | |
| 		 * here as we might be asked to write out the same inode that we
 | |
| 		 * complete here and might deadlock on the iolock.
 | |
| 		 */
 | |
| 		error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
 | |
| 				0, true, &tp);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		error = xfs_iext_count_extend(tp, ip, XFS_DATA_FORK,
 | |
| 				XFS_IEXT_WRITE_UNWRITTEN_CNT);
 | |
| 		if (error)
 | |
| 			goto error_on_bmapi_transaction;
 | |
| 
 | |
| 		/*
 | |
| 		 * Modify the unwritten extent state of the buffer.
 | |
| 		 */
 | |
| 		nimaps = 1;
 | |
| 		error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
 | |
| 					XFS_BMAPI_CONVERT, resblks, &imap,
 | |
| 					&nimaps);
 | |
| 		if (error)
 | |
| 			goto error_on_bmapi_transaction;
 | |
| 
 | |
| 		/*
 | |
| 		 * Log the updated inode size as we go.  We have to be careful
 | |
| 		 * to only log it up to the actual write offset if it is
 | |
| 		 * halfway into a block.
 | |
| 		 */
 | |
| 		i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
 | |
| 		if (i_size > offset + count)
 | |
| 			i_size = offset + count;
 | |
| 		if (update_isize && i_size > i_size_read(inode))
 | |
| 			i_size_write(inode, i_size);
 | |
| 		i_size = xfs_new_eof(ip, i_size);
 | |
| 		if (i_size) {
 | |
| 			ip->i_disk_size = i_size;
 | |
| 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 		}
 | |
| 
 | |
| 		error = xfs_trans_commit(tp);
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock))) {
 | |
| 			xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
 | |
| 			return xfs_alert_fsblock_zero(ip, &imap);
 | |
| 		}
 | |
| 
 | |
| 		if ((numblks_fsb = imap.br_blockcount) == 0) {
 | |
| 			/*
 | |
| 			 * The numblks_fsb value should always get
 | |
| 			 * smaller, otherwise the loop is stuck.
 | |
| 			 */
 | |
| 			ASSERT(imap.br_blockcount);
 | |
| 			break;
 | |
| 		}
 | |
| 		offset_fsb += numblks_fsb;
 | |
| 		count_fsb -= numblks_fsb;
 | |
| 	} while (count_fsb > 0);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_on_bmapi_transaction:
 | |
| 	xfs_trans_cancel(tp);
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| imap_needs_alloc(
 | |
| 	struct inode		*inode,
 | |
| 	unsigned		flags,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	int			nimaps)
 | |
| {
 | |
| 	/* don't allocate blocks when just zeroing */
 | |
| 	if (flags & IOMAP_ZERO)
 | |
| 		return false;
 | |
| 	if (!nimaps ||
 | |
| 	    imap->br_startblock == HOLESTARTBLOCK ||
 | |
| 	    imap->br_startblock == DELAYSTARTBLOCK)
 | |
| 		return true;
 | |
| 	/* we convert unwritten extents before copying the data for DAX */
 | |
| 	if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| imap_needs_cow(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned int		flags,
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	int			nimaps)
 | |
| {
 | |
| 	if (!xfs_is_cow_inode(ip))
 | |
| 		return false;
 | |
| 
 | |
| 	/* when zeroing we don't have to COW holes or unwritten extents */
 | |
| 	if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
 | |
| 		if (!nimaps ||
 | |
| 		    imap->br_startblock == HOLESTARTBLOCK ||
 | |
| 		    imap->br_state == XFS_EXT_UNWRITTEN)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extents not yet cached requires exclusive access, don't block for
 | |
|  * IOMAP_NOWAIT.
 | |
|  *
 | |
|  * This is basically an opencoded xfs_ilock_data_map_shared() call, but with
 | |
|  * support for IOMAP_NOWAIT.
 | |
|  */
 | |
| static int
 | |
| xfs_ilock_for_iomap(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	unsigned		flags,
 | |
| 	unsigned		*lockmode)
 | |
| {
 | |
| 	if (flags & IOMAP_NOWAIT) {
 | |
| 		if (xfs_need_iread_extents(&ip->i_df))
 | |
| 			return -EAGAIN;
 | |
| 		if (!xfs_ilock_nowait(ip, *lockmode))
 | |
| 			return -EAGAIN;
 | |
| 	} else {
 | |
| 		if (xfs_need_iread_extents(&ip->i_df))
 | |
| 			*lockmode = XFS_ILOCK_EXCL;
 | |
| 		xfs_ilock(ip, *lockmode);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check that the imap we are going to return to the caller spans the entire
 | |
|  * range that the caller requested for the IO.
 | |
|  */
 | |
| static bool
 | |
| imap_spans_range(
 | |
| 	struct xfs_bmbt_irec	*imap,
 | |
| 	xfs_fileoff_t		offset_fsb,
 | |
| 	xfs_fileoff_t		end_fsb)
 | |
| {
 | |
| 	if (imap->br_startoff > offset_fsb)
 | |
| 		return false;
 | |
| 	if (imap->br_startoff + imap->br_blockcount < end_fsb)
 | |
| 		return false;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_direct_write_iomap_begin(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			length,
 | |
| 	unsigned		flags,
 | |
| 	struct iomap		*iomap,
 | |
| 	struct iomap		*srcmap)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_bmbt_irec	imap, cmap;
 | |
| 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
 | |
| 	int			nimaps = 1, error = 0;
 | |
| 	bool			shared = false;
 | |
| 	u16			iomap_flags = 0;
 | |
| 	unsigned int		lockmode;
 | |
| 	u64			seq;
 | |
| 
 | |
| 	ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
 | |
| 
 | |
| 	if (xfs_is_shutdown(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Writes that span EOF might trigger an IO size update on completion,
 | |
| 	 * so consider them to be dirty for the purposes of O_DSYNC even if
 | |
| 	 * there is no other metadata changes pending or have been made here.
 | |
| 	 */
 | |
| 	if (offset + length > i_size_read(inode))
 | |
| 		iomap_flags |= IOMAP_F_DIRTY;
 | |
| 
 | |
| 	/*
 | |
| 	 * COW writes may allocate delalloc space or convert unwritten COW
 | |
| 	 * extents, so we need to make sure to take the lock exclusively here.
 | |
| 	 */
 | |
| 	if (xfs_is_cow_inode(ip))
 | |
| 		lockmode = XFS_ILOCK_EXCL;
 | |
| 	else
 | |
| 		lockmode = XFS_ILOCK_SHARED;
 | |
| 
 | |
| relock:
 | |
| 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * The reflink iflag could have changed since the earlier unlocked
 | |
| 	 * check, check if it again and relock if needed.
 | |
| 	 */
 | |
| 	if (xfs_is_cow_inode(ip) && lockmode == XFS_ILOCK_SHARED) {
 | |
| 		xfs_iunlock(ip, lockmode);
 | |
| 		lockmode = XFS_ILOCK_EXCL;
 | |
| 		goto relock;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
 | |
| 			       &nimaps, 0);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (imap_needs_cow(ip, flags, &imap, nimaps)) {
 | |
| 		error = -EAGAIN;
 | |
| 		if (flags & IOMAP_NOWAIT)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/* may drop and re-acquire the ilock */
 | |
| 		error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
 | |
| 				&lockmode,
 | |
| 				(flags & IOMAP_DIRECT) || IS_DAX(inode));
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 		if (shared)
 | |
| 			goto out_found_cow;
 | |
| 		end_fsb = imap.br_startoff + imap.br_blockcount;
 | |
| 		length = XFS_FSB_TO_B(mp, end_fsb) - offset;
 | |
| 	}
 | |
| 
 | |
| 	if (imap_needs_alloc(inode, flags, &imap, nimaps))
 | |
| 		goto allocate_blocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
 | |
| 	 * a single map so that we avoid partial IO failures due to the rest of
 | |
| 	 * the I/O range not covered by this map triggering an EAGAIN condition
 | |
| 	 * when it is subsequently mapped and aborting the I/O.
 | |
| 	 */
 | |
| 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
 | |
| 		error = -EAGAIN;
 | |
| 		if (!imap_spans_range(&imap, offset_fsb, end_fsb))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For overwrite only I/O, we cannot convert unwritten extents without
 | |
| 	 * requiring sub-block zeroing.  This can only be done under an
 | |
| 	 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
 | |
| 	 * extent to tell the caller to try again.
 | |
| 	 */
 | |
| 	if (flags & IOMAP_OVERWRITE_ONLY) {
 | |
| 		error = -EAGAIN;
 | |
| 		if (imap.br_state != XFS_EXT_NORM &&
 | |
| 	            ((offset | length) & mp->m_blockmask))
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
 | |
| 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
 | |
| 
 | |
| allocate_blocks:
 | |
| 	error = -EAGAIN;
 | |
| 	if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * We cap the maximum length we map to a sane size  to keep the chunks
 | |
| 	 * of work done where somewhat symmetric with the work writeback does.
 | |
| 	 * This is a completely arbitrary number pulled out of thin air as a
 | |
| 	 * best guess for initial testing.
 | |
| 	 *
 | |
| 	 * Note that the values needs to be less than 32-bits wide until the
 | |
| 	 * lower level functions are updated.
 | |
| 	 */
 | |
| 	length = min_t(loff_t, length, 1024 * PAGE_SIZE);
 | |
| 	end_fsb = xfs_iomap_end_fsb(mp, offset, length);
 | |
| 
 | |
| 	if (offset + length > XFS_ISIZE(ip))
 | |
| 		end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
 | |
| 	else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
 | |
| 		end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 
 | |
| 	error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
 | |
| 			flags, &imap, &seq);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
 | |
| 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
 | |
| 				 iomap_flags | IOMAP_F_NEW, seq);
 | |
| 
 | |
| out_found_cow:
 | |
| 	length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
 | |
| 	trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
 | |
| 	if (imap.br_startblock != HOLESTARTBLOCK) {
 | |
| 		seq = xfs_iomap_inode_sequence(ip, 0);
 | |
| 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0, seq);
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 	}
 | |
| 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED, seq);
 | |
| 
 | |
| out_unlock:
 | |
| 	if (lockmode)
 | |
| 		xfs_iunlock(ip, lockmode);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| const struct iomap_ops xfs_direct_write_iomap_ops = {
 | |
| 	.iomap_begin		= xfs_direct_write_iomap_begin,
 | |
| };
 | |
| 
 | |
| static int
 | |
| xfs_dax_write_iomap_end(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			pos,
 | |
| 	loff_t			length,
 | |
| 	ssize_t			written,
 | |
| 	unsigned		flags,
 | |
| 	struct iomap		*iomap)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 
 | |
| 	if (!xfs_is_cow_inode(ip))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!written) {
 | |
| 		xfs_reflink_cancel_cow_range(ip, pos, length, true);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return xfs_reflink_end_cow(ip, pos, written);
 | |
| }
 | |
| 
 | |
| const struct iomap_ops xfs_dax_write_iomap_ops = {
 | |
| 	.iomap_begin	= xfs_direct_write_iomap_begin,
 | |
| 	.iomap_end	= xfs_dax_write_iomap_end,
 | |
| };
 | |
| 
 | |
| static int
 | |
| xfs_buffered_write_iomap_begin(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			count,
 | |
| 	unsigned		flags,
 | |
| 	struct iomap		*iomap,
 | |
| 	struct iomap		*srcmap)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
 | |
| 	struct xfs_bmbt_irec	imap, cmap;
 | |
| 	struct xfs_iext_cursor	icur, ccur;
 | |
| 	xfs_fsblock_t		prealloc_blocks = 0;
 | |
| 	bool			eof = false, cow_eof = false, shared = false;
 | |
| 	int			allocfork = XFS_DATA_FORK;
 | |
| 	int			error = 0;
 | |
| 	unsigned int		lockmode = XFS_ILOCK_EXCL;
 | |
| 	unsigned int		iomap_flags = 0;
 | |
| 	u64			seq;
 | |
| 
 | |
| 	if (xfs_is_shutdown(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* we can't use delayed allocations when using extent size hints */
 | |
| 	if (xfs_get_extsz_hint(ip))
 | |
| 		return xfs_direct_write_iomap_begin(inode, offset, count,
 | |
| 				flags, iomap, srcmap);
 | |
| 
 | |
| 	error = xfs_qm_dqattach(ip);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
 | |
| 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
 | |
| 		xfs_bmap_mark_sick(ip, XFS_DATA_FORK);
 | |
| 		error = -EFSCORRUPTED;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	XFS_STATS_INC(mp, xs_blk_mapw);
 | |
| 
 | |
| 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Search the data fork first to look up our source mapping.  We
 | |
| 	 * always need the data fork map, as we have to return it to the
 | |
| 	 * iomap code so that the higher level write code can read data in to
 | |
| 	 * perform read-modify-write cycles for unaligned writes.
 | |
| 	 */
 | |
| 	eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
 | |
| 	if (eof)
 | |
| 		imap.br_startoff = end_fsb; /* fake hole until the end */
 | |
| 
 | |
| 	/* We never need to allocate blocks for zeroing or unsharing a hole. */
 | |
| 	if ((flags & (IOMAP_UNSHARE | IOMAP_ZERO)) &&
 | |
| 	    imap.br_startoff > offset_fsb) {
 | |
| 		xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For zeroing, trim a delalloc extent that extends beyond the EOF
 | |
| 	 * block.  If it starts beyond the EOF block, convert it to an
 | |
| 	 * unwritten extent.
 | |
| 	 */
 | |
| 	if ((flags & IOMAP_ZERO) && imap.br_startoff <= offset_fsb &&
 | |
| 	    isnullstartblock(imap.br_startblock)) {
 | |
| 		xfs_fileoff_t eof_fsb = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
 | |
| 
 | |
| 		if (offset_fsb >= eof_fsb)
 | |
| 			goto convert_delay;
 | |
| 		if (end_fsb > eof_fsb) {
 | |
| 			end_fsb = eof_fsb;
 | |
| 			xfs_trim_extent(&imap, offset_fsb,
 | |
| 					end_fsb - offset_fsb);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Search the COW fork extent list even if we did not find a data fork
 | |
| 	 * extent.  This serves two purposes: first this implements the
 | |
| 	 * speculative preallocation using cowextsize, so that we also unshare
 | |
| 	 * block adjacent to shared blocks instead of just the shared blocks
 | |
| 	 * themselves.  Second the lookup in the extent list is generally faster
 | |
| 	 * than going out to the shared extent tree.
 | |
| 	 */
 | |
| 	if (xfs_is_cow_inode(ip)) {
 | |
| 		if (!ip->i_cowfp) {
 | |
| 			ASSERT(!xfs_is_reflink_inode(ip));
 | |
| 			xfs_ifork_init_cow(ip);
 | |
| 		}
 | |
| 		cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
 | |
| 				&ccur, &cmap);
 | |
| 		if (!cow_eof && cmap.br_startoff <= offset_fsb) {
 | |
| 			trace_xfs_reflink_cow_found(ip, &cmap);
 | |
| 			goto found_cow;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (imap.br_startoff <= offset_fsb) {
 | |
| 		/*
 | |
| 		 * For reflink files we may need a delalloc reservation when
 | |
| 		 * overwriting shared extents.   This includes zeroing of
 | |
| 		 * existing extents that contain data.
 | |
| 		 */
 | |
| 		if (!xfs_is_cow_inode(ip) ||
 | |
| 		    ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
 | |
| 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
 | |
| 					&imap);
 | |
| 			goto found_imap;
 | |
| 		}
 | |
| 
 | |
| 		xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
 | |
| 
 | |
| 		/* Trim the mapping to the nearest shared extent boundary. */
 | |
| 		error = xfs_bmap_trim_cow(ip, &imap, &shared);
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/* Not shared?  Just report the (potentially capped) extent. */
 | |
| 		if (!shared) {
 | |
| 			trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
 | |
| 					&imap);
 | |
| 			goto found_imap;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Fork all the shared blocks from our write offset until the
 | |
| 		 * end of the extent.
 | |
| 		 */
 | |
| 		allocfork = XFS_COW_FORK;
 | |
| 		end_fsb = imap.br_startoff + imap.br_blockcount;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
 | |
| 		 * pages to keep the chunks of work done where somewhat
 | |
| 		 * symmetric with the work writeback does.  This is a completely
 | |
| 		 * arbitrary number pulled out of thin air.
 | |
| 		 *
 | |
| 		 * Note that the values needs to be less than 32-bits wide until
 | |
| 		 * the lower level functions are updated.
 | |
| 		 */
 | |
| 		count = min_t(loff_t, count, 1024 * PAGE_SIZE);
 | |
| 		end_fsb = xfs_iomap_end_fsb(mp, offset, count);
 | |
| 
 | |
| 		if (xfs_is_always_cow_inode(ip))
 | |
| 			allocfork = XFS_COW_FORK;
 | |
| 	}
 | |
| 
 | |
| 	if (eof && offset + count > XFS_ISIZE(ip)) {
 | |
| 		/*
 | |
| 		 * Determine the initial size of the preallocation.
 | |
| 		 * We clean up any extra preallocation when the file is closed.
 | |
| 		 */
 | |
| 		if (xfs_has_allocsize(mp))
 | |
| 			prealloc_blocks = mp->m_allocsize_blocks;
 | |
| 		else if (allocfork == XFS_DATA_FORK)
 | |
| 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
 | |
| 						offset, count, &icur);
 | |
| 		else
 | |
| 			prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
 | |
| 						offset, count, &ccur);
 | |
| 		if (prealloc_blocks) {
 | |
| 			xfs_extlen_t	align;
 | |
| 			xfs_off_t	end_offset;
 | |
| 			xfs_fileoff_t	p_end_fsb;
 | |
| 
 | |
| 			end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
 | |
| 			p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
 | |
| 					prealloc_blocks;
 | |
| 
 | |
| 			align = xfs_eof_alignment(ip);
 | |
| 			if (align)
 | |
| 				p_end_fsb = roundup_64(p_end_fsb, align);
 | |
| 
 | |
| 			p_end_fsb = min(p_end_fsb,
 | |
| 				XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
 | |
| 			ASSERT(p_end_fsb > offset_fsb);
 | |
| 			prealloc_blocks = p_end_fsb - end_fsb;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
 | |
| 	 * them out if the write happens to fail.
 | |
| 	 */
 | |
| 	iomap_flags |= IOMAP_F_NEW;
 | |
| 	if (allocfork == XFS_COW_FORK) {
 | |
| 		error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
 | |
| 				end_fsb - offset_fsb, prealloc_blocks, &cmap,
 | |
| 				&ccur, cow_eof);
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
 | |
| 		goto found_cow;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
 | |
| 			end_fsb - offset_fsb, prealloc_blocks, &imap, &icur,
 | |
| 			eof);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
 | |
| found_imap:
 | |
| 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags, seq);
 | |
| 
 | |
| convert_delay:
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	truncate_pagecache(inode, offset);
 | |
| 	error = xfs_bmapi_convert_delalloc(ip, XFS_DATA_FORK, offset,
 | |
| 					   iomap, NULL);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	trace_xfs_iomap_alloc(ip, offset, count, XFS_DATA_FORK, &imap);
 | |
| 	return 0;
 | |
| 
 | |
| found_cow:
 | |
| 	if (imap.br_startoff <= offset_fsb) {
 | |
| 		error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0,
 | |
| 				xfs_iomap_inode_sequence(ip, 0));
 | |
| 		if (error)
 | |
| 			goto out_unlock;
 | |
| 	} else {
 | |
| 		xfs_trim_extent(&cmap, offset_fsb,
 | |
| 				imap.br_startoff - offset_fsb);
 | |
| 	}
 | |
| 
 | |
| 	iomap_flags |= IOMAP_F_SHARED;
 | |
| 	seq = xfs_iomap_inode_sequence(ip, iomap_flags);
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, iomap_flags, seq);
 | |
| 
 | |
| out_unlock:
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static void
 | |
| xfs_buffered_write_delalloc_punch(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			length,
 | |
| 	struct iomap		*iomap)
 | |
| {
 | |
| 	xfs_bmap_punch_delalloc_range(XFS_I(inode),
 | |
| 			(iomap->flags & IOMAP_F_SHARED) ?
 | |
| 				XFS_COW_FORK : XFS_DATA_FORK,
 | |
| 			offset, offset + length);
 | |
| }
 | |
| 
 | |
| static int
 | |
| xfs_buffered_write_iomap_end(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			length,
 | |
| 	ssize_t			written,
 | |
| 	unsigned		flags,
 | |
| 	struct iomap		*iomap)
 | |
| {
 | |
| 	loff_t			start_byte, end_byte;
 | |
| 
 | |
| 	/* If we didn't reserve the blocks, we're not allowed to punch them. */
 | |
| 	if (iomap->type != IOMAP_DELALLOC || !(iomap->flags & IOMAP_F_NEW))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Nothing to do if we've written the entire delalloc extent */
 | |
| 	start_byte = iomap_last_written_block(inode, offset, written);
 | |
| 	end_byte = round_up(offset + length, i_blocksize(inode));
 | |
| 	if (start_byte >= end_byte)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* For zeroing operations the callers already hold invalidate_lock. */
 | |
| 	if (flags & (IOMAP_UNSHARE | IOMAP_ZERO)) {
 | |
| 		rwsem_assert_held_write(&inode->i_mapping->invalidate_lock);
 | |
| 		iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
 | |
| 				iomap, xfs_buffered_write_delalloc_punch);
 | |
| 	} else {
 | |
| 		filemap_invalidate_lock(inode->i_mapping);
 | |
| 		iomap_write_delalloc_release(inode, start_byte, end_byte, flags,
 | |
| 				iomap, xfs_buffered_write_delalloc_punch);
 | |
| 		filemap_invalidate_unlock(inode->i_mapping);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct iomap_ops xfs_buffered_write_iomap_ops = {
 | |
| 	.iomap_begin		= xfs_buffered_write_iomap_begin,
 | |
| 	.iomap_end		= xfs_buffered_write_iomap_end,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * iomap_page_mkwrite() will never fail in a way that requires delalloc extents
 | |
|  * that it allocated to be revoked. Hence we do not need an .iomap_end method
 | |
|  * for this operation.
 | |
|  */
 | |
| const struct iomap_ops xfs_page_mkwrite_iomap_ops = {
 | |
| 	.iomap_begin		= xfs_buffered_write_iomap_begin,
 | |
| };
 | |
| 
 | |
| static int
 | |
| xfs_read_iomap_begin(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			length,
 | |
| 	unsigned		flags,
 | |
| 	struct iomap		*iomap,
 | |
| 	struct iomap		*srcmap)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	struct xfs_bmbt_irec	imap;
 | |
| 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	xfs_fileoff_t		end_fsb = xfs_iomap_end_fsb(mp, offset, length);
 | |
| 	int			nimaps = 1, error = 0;
 | |
| 	bool			shared = false;
 | |
| 	unsigned int		lockmode = XFS_ILOCK_SHARED;
 | |
| 	u64			seq;
 | |
| 
 | |
| 	ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
 | |
| 
 | |
| 	if (xfs_is_shutdown(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	error = xfs_ilock_for_iomap(ip, flags, &lockmode);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
 | |
| 			       &nimaps, 0);
 | |
| 	if (!error && ((flags & IOMAP_REPORT) || IS_DAX(inode)))
 | |
| 		error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
 | |
| 	seq = xfs_iomap_inode_sequence(ip, shared ? IOMAP_F_SHARED : 0);
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
 | |
| 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
 | |
| 				 shared ? IOMAP_F_SHARED : 0, seq);
 | |
| }
 | |
| 
 | |
| const struct iomap_ops xfs_read_iomap_ops = {
 | |
| 	.iomap_begin		= xfs_read_iomap_begin,
 | |
| };
 | |
| 
 | |
| static int
 | |
| xfs_seek_iomap_begin(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			length,
 | |
| 	unsigned		flags,
 | |
| 	struct iomap		*iomap,
 | |
| 	struct iomap		*srcmap)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
 | |
| 	xfs_fileoff_t		cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
 | |
| 	struct xfs_iext_cursor	icur;
 | |
| 	struct xfs_bmbt_irec	imap, cmap;
 | |
| 	int			error = 0;
 | |
| 	unsigned		lockmode;
 | |
| 	u64			seq;
 | |
| 
 | |
| 	if (xfs_is_shutdown(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	lockmode = xfs_ilock_data_map_shared(ip);
 | |
| 	error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
 | |
| 	if (error)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
 | |
| 		/*
 | |
| 		 * If we found a data extent we are done.
 | |
| 		 */
 | |
| 		if (imap.br_startoff <= offset_fsb)
 | |
| 			goto done;
 | |
| 		data_fsb = imap.br_startoff;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Fake a hole until the end of the file.
 | |
| 		 */
 | |
| 		data_fsb = xfs_iomap_end_fsb(mp, offset, length);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If a COW fork extent covers the hole, report it - capped to the next
 | |
| 	 * data fork extent:
 | |
| 	 */
 | |
| 	if (xfs_inode_has_cow_data(ip) &&
 | |
| 	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
 | |
| 		cow_fsb = cmap.br_startoff;
 | |
| 	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
 | |
| 		if (data_fsb < cow_fsb + cmap.br_blockcount)
 | |
| 			end_fsb = min(end_fsb, data_fsb);
 | |
| 		xfs_trim_extent(&cmap, offset_fsb, end_fsb - offset_fsb);
 | |
| 		seq = xfs_iomap_inode_sequence(ip, IOMAP_F_SHARED);
 | |
| 		error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
 | |
| 				IOMAP_F_SHARED, seq);
 | |
| 		/*
 | |
| 		 * This is a COW extent, so we must probe the page cache
 | |
| 		 * because there could be dirty page cache being backed
 | |
| 		 * by this extent.
 | |
| 		 */
 | |
| 		iomap->type = IOMAP_UNWRITTEN;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Else report a hole, capped to the next found data or COW extent.
 | |
| 	 */
 | |
| 	if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
 | |
| 		imap.br_blockcount = cow_fsb - offset_fsb;
 | |
| 	else
 | |
| 		imap.br_blockcount = data_fsb - offset_fsb;
 | |
| 	imap.br_startoff = offset_fsb;
 | |
| 	imap.br_startblock = HOLESTARTBLOCK;
 | |
| 	imap.br_state = XFS_EXT_NORM;
 | |
| done:
 | |
| 	seq = xfs_iomap_inode_sequence(ip, 0);
 | |
| 	xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
 | |
| 	error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0, seq);
 | |
| out_unlock:
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| const struct iomap_ops xfs_seek_iomap_ops = {
 | |
| 	.iomap_begin		= xfs_seek_iomap_begin,
 | |
| };
 | |
| 
 | |
| static int
 | |
| xfs_xattr_iomap_begin(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	loff_t			length,
 | |
| 	unsigned		flags,
 | |
| 	struct iomap		*iomap,
 | |
| 	struct iomap		*srcmap)
 | |
| {
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
 | |
| 	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + length);
 | |
| 	struct xfs_bmbt_irec	imap;
 | |
| 	int			nimaps = 1, error = 0;
 | |
| 	unsigned		lockmode;
 | |
| 	int			seq;
 | |
| 
 | |
| 	if (xfs_is_shutdown(mp))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	lockmode = xfs_ilock_attr_map_shared(ip);
 | |
| 
 | |
| 	/* if there are no attribute fork or extents, return ENOENT */
 | |
| 	if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
 | |
| 		error = -ENOENT;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
 | |
| 	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
 | |
| 			       &nimaps, XFS_BMAPI_ATTRFORK);
 | |
| out_unlock:
 | |
| 
 | |
| 	seq = xfs_iomap_inode_sequence(ip, IOMAP_F_XATTR);
 | |
| 	xfs_iunlock(ip, lockmode);
 | |
| 
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	ASSERT(nimaps);
 | |
| 	return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_XATTR, seq);
 | |
| }
 | |
| 
 | |
| const struct iomap_ops xfs_xattr_iomap_ops = {
 | |
| 	.iomap_begin		= xfs_xattr_iomap_begin,
 | |
| };
 | |
| 
 | |
| int
 | |
| xfs_zero_range(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	loff_t			pos,
 | |
| 	loff_t			len,
 | |
| 	bool			*did_zero)
 | |
| {
 | |
| 	struct inode		*inode = VFS_I(ip);
 | |
| 
 | |
| 	xfs_assert_ilocked(ip, XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL);
 | |
| 
 | |
| 	if (IS_DAX(inode))
 | |
| 		return dax_zero_range(inode, pos, len, did_zero,
 | |
| 				      &xfs_dax_write_iomap_ops);
 | |
| 	return iomap_zero_range(inode, pos, len, did_zero,
 | |
| 				&xfs_buffered_write_iomap_ops);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_truncate_page(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	loff_t			pos,
 | |
| 	bool			*did_zero)
 | |
| {
 | |
| 	struct inode		*inode = VFS_I(ip);
 | |
| 
 | |
| 	if (IS_DAX(inode))
 | |
| 		return dax_truncate_page(inode, pos, did_zero,
 | |
| 					&xfs_dax_write_iomap_ops);
 | |
| 	return iomap_truncate_page(inode, pos, did_zero,
 | |
| 				   &xfs_buffered_write_iomap_ops);
 | |
| }
 |