1152 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1152 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (C) 2017 Oracle.  All Rights Reserved.
 | |
|  * Author: Darrick J. Wong <darrick.wong@oracle.com>
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_rmap_btree.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_rmap.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_bit.h"
 | |
| #include <linux/fsmap.h>
 | |
| #include "xfs_fsmap.h"
 | |
| #include "xfs_refcount.h"
 | |
| #include "xfs_refcount_btree.h"
 | |
| #include "xfs_alloc_btree.h"
 | |
| #include "xfs_rtbitmap.h"
 | |
| #include "xfs_ag.h"
 | |
| 
 | |
| /* Convert an xfs_fsmap to an fsmap. */
 | |
| static void
 | |
| xfs_fsmap_from_internal(
 | |
| 	struct fsmap		*dest,
 | |
| 	struct xfs_fsmap	*src)
 | |
| {
 | |
| 	dest->fmr_device = src->fmr_device;
 | |
| 	dest->fmr_flags = src->fmr_flags;
 | |
| 	dest->fmr_physical = BBTOB(src->fmr_physical);
 | |
| 	dest->fmr_owner = src->fmr_owner;
 | |
| 	dest->fmr_offset = BBTOB(src->fmr_offset);
 | |
| 	dest->fmr_length = BBTOB(src->fmr_length);
 | |
| 	dest->fmr_reserved[0] = 0;
 | |
| 	dest->fmr_reserved[1] = 0;
 | |
| 	dest->fmr_reserved[2] = 0;
 | |
| }
 | |
| 
 | |
| /* Convert an fsmap to an xfs_fsmap. */
 | |
| static void
 | |
| xfs_fsmap_to_internal(
 | |
| 	struct xfs_fsmap	*dest,
 | |
| 	struct fsmap		*src)
 | |
| {
 | |
| 	dest->fmr_device = src->fmr_device;
 | |
| 	dest->fmr_flags = src->fmr_flags;
 | |
| 	dest->fmr_physical = BTOBBT(src->fmr_physical);
 | |
| 	dest->fmr_owner = src->fmr_owner;
 | |
| 	dest->fmr_offset = BTOBBT(src->fmr_offset);
 | |
| 	dest->fmr_length = BTOBBT(src->fmr_length);
 | |
| }
 | |
| 
 | |
| /* Convert an fsmap owner into an rmapbt owner. */
 | |
| static int
 | |
| xfs_fsmap_owner_to_rmap(
 | |
| 	struct xfs_rmap_irec	*dest,
 | |
| 	const struct xfs_fsmap	*src)
 | |
| {
 | |
| 	if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
 | |
| 		dest->rm_owner = src->fmr_owner;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	switch (src->fmr_owner) {
 | |
| 	case 0:			/* "lowest owner id possible" */
 | |
| 	case -1ULL:		/* "highest owner id possible" */
 | |
| 		dest->rm_owner = src->fmr_owner;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_FREE:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_NULL;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_UNKNOWN:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_FS:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_FS;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_LOG:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_LOG;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_AG:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_AG;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_INOBT:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_INOBT;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_INODES:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_INODES;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_REFC:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_REFC;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_COW:
 | |
| 		dest->rm_owner = XFS_RMAP_OWN_COW;
 | |
| 		break;
 | |
| 	case XFS_FMR_OWN_DEFECTIVE:	/* not implemented */
 | |
| 		/* fall through */
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Convert an rmapbt owner into an fsmap owner. */
 | |
| static int
 | |
| xfs_fsmap_owner_from_rmap(
 | |
| 	struct xfs_fsmap		*dest,
 | |
| 	const struct xfs_rmap_irec	*src)
 | |
| {
 | |
| 	dest->fmr_flags = 0;
 | |
| 	if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
 | |
| 		dest->fmr_owner = src->rm_owner;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
 | |
| 
 | |
| 	switch (src->rm_owner) {
 | |
| 	case XFS_RMAP_OWN_FS:
 | |
| 		dest->fmr_owner = XFS_FMR_OWN_FS;
 | |
| 		break;
 | |
| 	case XFS_RMAP_OWN_LOG:
 | |
| 		dest->fmr_owner = XFS_FMR_OWN_LOG;
 | |
| 		break;
 | |
| 	case XFS_RMAP_OWN_AG:
 | |
| 		dest->fmr_owner = XFS_FMR_OWN_AG;
 | |
| 		break;
 | |
| 	case XFS_RMAP_OWN_INOBT:
 | |
| 		dest->fmr_owner = XFS_FMR_OWN_INOBT;
 | |
| 		break;
 | |
| 	case XFS_RMAP_OWN_INODES:
 | |
| 		dest->fmr_owner = XFS_FMR_OWN_INODES;
 | |
| 		break;
 | |
| 	case XFS_RMAP_OWN_REFC:
 | |
| 		dest->fmr_owner = XFS_FMR_OWN_REFC;
 | |
| 		break;
 | |
| 	case XFS_RMAP_OWN_COW:
 | |
| 		dest->fmr_owner = XFS_FMR_OWN_COW;
 | |
| 		break;
 | |
| 	case XFS_RMAP_OWN_NULL:	/* "free" */
 | |
| 		dest->fmr_owner = XFS_FMR_OWN_FREE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		return -EFSCORRUPTED;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* getfsmap query state */
 | |
| struct xfs_getfsmap_info {
 | |
| 	struct xfs_fsmap_head	*head;
 | |
| 	struct fsmap		*fsmap_recs;	/* mapping records */
 | |
| 	struct xfs_buf		*agf_bp;	/* AGF, for refcount queries */
 | |
| 	struct xfs_perag	*pag;		/* AG info, if applicable */
 | |
| 	xfs_daddr_t		next_daddr;	/* next daddr we expect */
 | |
| 	/* daddr of low fsmap key when we're using the rtbitmap */
 | |
| 	xfs_daddr_t		low_daddr;
 | |
| 	xfs_daddr_t		end_daddr;	/* daddr of high fsmap key */
 | |
| 	u64			missing_owner;	/* owner of holes */
 | |
| 	u32			dev;		/* device id */
 | |
| 	/*
 | |
| 	 * Low rmap key for the query.  If low.rm_blockcount is nonzero, this
 | |
| 	 * is the second (or later) call to retrieve the recordset in pieces.
 | |
| 	 * xfs_getfsmap_rec_before_start will compare all records retrieved
 | |
| 	 * by the rmapbt query to filter out any records that start before
 | |
| 	 * the last record.
 | |
| 	 */
 | |
| 	struct xfs_rmap_irec	low;
 | |
| 	struct xfs_rmap_irec	high;		/* high rmap key */
 | |
| 	bool			last;		/* last extent? */
 | |
| };
 | |
| 
 | |
| /* Associate a device with a getfsmap handler. */
 | |
| struct xfs_getfsmap_dev {
 | |
| 	u32			dev;
 | |
| 	int			(*fn)(struct xfs_trans *tp,
 | |
| 				      const struct xfs_fsmap *keys,
 | |
| 				      struct xfs_getfsmap_info *info);
 | |
| 	sector_t		nr_sectors;
 | |
| };
 | |
| 
 | |
| /* Compare two getfsmap device handlers. */
 | |
| static int
 | |
| xfs_getfsmap_dev_compare(
 | |
| 	const void			*p1,
 | |
| 	const void			*p2)
 | |
| {
 | |
| 	const struct xfs_getfsmap_dev	*d1 = p1;
 | |
| 	const struct xfs_getfsmap_dev	*d2 = p2;
 | |
| 
 | |
| 	return d1->dev - d2->dev;
 | |
| }
 | |
| 
 | |
| /* Decide if this mapping is shared. */
 | |
| STATIC int
 | |
| xfs_getfsmap_is_shared(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	struct xfs_getfsmap_info	*info,
 | |
| 	const struct xfs_rmap_irec	*rec,
 | |
| 	bool				*stat)
 | |
| {
 | |
| 	struct xfs_mount		*mp = tp->t_mountp;
 | |
| 	struct xfs_btree_cur		*cur;
 | |
| 	xfs_agblock_t			fbno;
 | |
| 	xfs_extlen_t			flen;
 | |
| 	int				error;
 | |
| 
 | |
| 	*stat = false;
 | |
| 	if (!xfs_has_reflink(mp))
 | |
| 		return 0;
 | |
| 	/* rt files will have no perag structure */
 | |
| 	if (!info->pag)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Are there any shared blocks here? */
 | |
| 	flen = 0;
 | |
| 	cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag);
 | |
| 
 | |
| 	error = xfs_refcount_find_shared(cur, rec->rm_startblock,
 | |
| 			rec->rm_blockcount, &fbno, &flen, false);
 | |
| 
 | |
| 	xfs_btree_del_cursor(cur, error);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	*stat = flen > 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| xfs_getfsmap_format(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xfs_fsmap		*xfm,
 | |
| 	struct xfs_getfsmap_info	*info)
 | |
| {
 | |
| 	struct fsmap			*rec;
 | |
| 
 | |
| 	trace_xfs_getfsmap_mapping(mp, xfm);
 | |
| 
 | |
| 	rec = &info->fsmap_recs[info->head->fmh_entries++];
 | |
| 	xfs_fsmap_from_internal(rec, xfm);
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| xfs_getfsmap_rec_before_start(
 | |
| 	struct xfs_getfsmap_info	*info,
 | |
| 	const struct xfs_rmap_irec	*rec,
 | |
| 	xfs_daddr_t			rec_daddr)
 | |
| {
 | |
| 	if (info->low_daddr != XFS_BUF_DADDR_NULL)
 | |
| 		return rec_daddr < info->low_daddr;
 | |
| 	if (info->low.rm_blockcount)
 | |
| 		return xfs_rmap_compare(rec, &info->low) < 0;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Format a reverse mapping for getfsmap, having translated rm_startblock
 | |
|  * into the appropriate daddr units.  Pass in a nonzero @len_daddr if the
 | |
|  * length could be larger than rm_blockcount in struct xfs_rmap_irec.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_getfsmap_helper(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	struct xfs_getfsmap_info	*info,
 | |
| 	const struct xfs_rmap_irec	*rec,
 | |
| 	xfs_daddr_t			rec_daddr,
 | |
| 	xfs_daddr_t			len_daddr)
 | |
| {
 | |
| 	struct xfs_fsmap		fmr;
 | |
| 	struct xfs_mount		*mp = tp->t_mountp;
 | |
| 	bool				shared;
 | |
| 	int				error;
 | |
| 
 | |
| 	if (fatal_signal_pending(current))
 | |
| 		return -EINTR;
 | |
| 
 | |
| 	if (len_daddr == 0)
 | |
| 		len_daddr = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
 | |
| 
 | |
| 	/*
 | |
| 	 * Filter out records that start before our startpoint, if the
 | |
| 	 * caller requested that.
 | |
| 	 */
 | |
| 	if (xfs_getfsmap_rec_before_start(info, rec, rec_daddr)) {
 | |
| 		rec_daddr += len_daddr;
 | |
| 		if (info->next_daddr < rec_daddr)
 | |
| 			info->next_daddr = rec_daddr;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For an info->last query, we're looking for a gap between the last
 | |
| 	 * mapping emitted and the high key specified by userspace.  If the
 | |
| 	 * user's query spans less than 1 fsblock, then info->high and
 | |
| 	 * info->low will have the same rm_startblock, which causes rec_daddr
 | |
| 	 * and next_daddr to be the same.  Therefore, use the end_daddr that
 | |
| 	 * we calculated from userspace's high key to synthesize the record.
 | |
| 	 * Note that if the btree query found a mapping, there won't be a gap.
 | |
| 	 */
 | |
| 	if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL)
 | |
| 		rec_daddr = info->end_daddr;
 | |
| 
 | |
| 	/* Are we just counting mappings? */
 | |
| 	if (info->head->fmh_count == 0) {
 | |
| 		if (info->head->fmh_entries == UINT_MAX)
 | |
| 			return -ECANCELED;
 | |
| 
 | |
| 		if (rec_daddr > info->next_daddr)
 | |
| 			info->head->fmh_entries++;
 | |
| 
 | |
| 		if (info->last)
 | |
| 			return 0;
 | |
| 
 | |
| 		info->head->fmh_entries++;
 | |
| 
 | |
| 		rec_daddr += len_daddr;
 | |
| 		if (info->next_daddr < rec_daddr)
 | |
| 			info->next_daddr = rec_daddr;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the record starts past the last physical block we saw,
 | |
| 	 * then we've found a gap.  Report the gap as being owned by
 | |
| 	 * whatever the caller specified is the missing owner.
 | |
| 	 */
 | |
| 	if (rec_daddr > info->next_daddr) {
 | |
| 		if (info->head->fmh_entries >= info->head->fmh_count)
 | |
| 			return -ECANCELED;
 | |
| 
 | |
| 		fmr.fmr_device = info->dev;
 | |
| 		fmr.fmr_physical = info->next_daddr;
 | |
| 		fmr.fmr_owner = info->missing_owner;
 | |
| 		fmr.fmr_offset = 0;
 | |
| 		fmr.fmr_length = rec_daddr - info->next_daddr;
 | |
| 		fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
 | |
| 		xfs_getfsmap_format(mp, &fmr, info);
 | |
| 	}
 | |
| 
 | |
| 	if (info->last)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Fill out the extent we found */
 | |
| 	if (info->head->fmh_entries >= info->head->fmh_count)
 | |
| 		return -ECANCELED;
 | |
| 
 | |
| 	trace_xfs_fsmap_mapping(mp, info->dev,
 | |
| 			info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec);
 | |
| 
 | |
| 	fmr.fmr_device = info->dev;
 | |
| 	fmr.fmr_physical = rec_daddr;
 | |
| 	error = xfs_fsmap_owner_from_rmap(&fmr, rec);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
 | |
| 	fmr.fmr_length = len_daddr;
 | |
| 	if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
 | |
| 		fmr.fmr_flags |= FMR_OF_PREALLOC;
 | |
| 	if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
 | |
| 		fmr.fmr_flags |= FMR_OF_ATTR_FORK;
 | |
| 	if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
 | |
| 		fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
 | |
| 	if (fmr.fmr_flags == 0) {
 | |
| 		error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		if (shared)
 | |
| 			fmr.fmr_flags |= FMR_OF_SHARED;
 | |
| 	}
 | |
| 
 | |
| 	xfs_getfsmap_format(mp, &fmr, info);
 | |
| out:
 | |
| 	rec_daddr += len_daddr;
 | |
| 	if (info->next_daddr < rec_daddr)
 | |
| 		info->next_daddr = rec_daddr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Transform a rmapbt irec into a fsmap */
 | |
| STATIC int
 | |
| xfs_getfsmap_datadev_helper(
 | |
| 	struct xfs_btree_cur		*cur,
 | |
| 	const struct xfs_rmap_irec	*rec,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_mount		*mp = cur->bc_mp;
 | |
| 	struct xfs_getfsmap_info	*info = priv;
 | |
| 	xfs_fsblock_t			fsb;
 | |
| 	xfs_daddr_t			rec_daddr;
 | |
| 
 | |
| 	fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock);
 | |
| 	rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
 | |
| 
 | |
| 	return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr, 0);
 | |
| }
 | |
| 
 | |
| /* Transform a bnobt irec into a fsmap */
 | |
| STATIC int
 | |
| xfs_getfsmap_datadev_bnobt_helper(
 | |
| 	struct xfs_btree_cur		*cur,
 | |
| 	const struct xfs_alloc_rec_incore *rec,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_mount		*mp = cur->bc_mp;
 | |
| 	struct xfs_getfsmap_info	*info = priv;
 | |
| 	struct xfs_rmap_irec		irec;
 | |
| 	xfs_daddr_t			rec_daddr;
 | |
| 
 | |
| 	rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno,
 | |
| 			rec->ar_startblock);
 | |
| 
 | |
| 	irec.rm_startblock = rec->ar_startblock;
 | |
| 	irec.rm_blockcount = rec->ar_blockcount;
 | |
| 	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
 | |
| 	irec.rm_offset = 0;
 | |
| 	irec.rm_flags = 0;
 | |
| 
 | |
| 	return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr, 0);
 | |
| }
 | |
| 
 | |
| /* Set rmap flags based on the getfsmap flags */
 | |
| static void
 | |
| xfs_getfsmap_set_irec_flags(
 | |
| 	struct xfs_rmap_irec	*irec,
 | |
| 	const struct xfs_fsmap	*fmr)
 | |
| {
 | |
| 	irec->rm_flags = 0;
 | |
| 	if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
 | |
| 		irec->rm_flags |= XFS_RMAP_ATTR_FORK;
 | |
| 	if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
 | |
| 		irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
 | |
| 	if (fmr->fmr_flags & FMR_OF_PREALLOC)
 | |
| 		irec->rm_flags |= XFS_RMAP_UNWRITTEN;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
 | |
| {
 | |
| 	if (!xfs_has_reflink(mp))
 | |
| 		return true;
 | |
| 	if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
 | |
| 		return true;
 | |
| 	if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
 | |
| 			   XFS_RMAP_UNWRITTEN))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Execute a getfsmap query against the regular data device. */
 | |
| STATIC int
 | |
| __xfs_getfsmap_datadev(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	const struct xfs_fsmap		*keys,
 | |
| 	struct xfs_getfsmap_info	*info,
 | |
| 	int				(*query_fn)(struct xfs_trans *,
 | |
| 						    struct xfs_getfsmap_info *,
 | |
| 						    struct xfs_btree_cur **,
 | |
| 						    void *),
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_mount		*mp = tp->t_mountp;
 | |
| 	struct xfs_perag		*pag;
 | |
| 	struct xfs_btree_cur		*bt_cur = NULL;
 | |
| 	xfs_fsblock_t			start_fsb;
 | |
| 	xfs_fsblock_t			end_fsb;
 | |
| 	xfs_agnumber_t			start_ag;
 | |
| 	xfs_agnumber_t			end_ag;
 | |
| 	uint64_t			eofs;
 | |
| 	int				error = 0;
 | |
| 
 | |
| 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 | |
| 	if (keys[0].fmr_physical >= eofs)
 | |
| 		return 0;
 | |
| 	start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
 | |
| 	end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert the fsmap low/high keys to AG based keys.  Initialize
 | |
| 	 * low to the fsmap low key and max out the high key to the end
 | |
| 	 * of the AG.
 | |
| 	 */
 | |
| 	info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
 | |
| 	error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
 | |
| 	xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
 | |
| 
 | |
| 	/* Adjust the low key if we are continuing from where we left off. */
 | |
| 	if (info->low.rm_blockcount == 0) {
 | |
| 		/* No previous record from which to continue */
 | |
| 	} else if (rmap_not_shareable(mp, &info->low)) {
 | |
| 		/* Last record seen was an unshareable extent */
 | |
| 		info->low.rm_owner = 0;
 | |
| 		info->low.rm_offset = 0;
 | |
| 
 | |
| 		start_fsb += info->low.rm_blockcount;
 | |
| 		if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		/* Last record seen was a shareable file data extent */
 | |
| 		info->low.rm_offset += info->low.rm_blockcount;
 | |
| 	}
 | |
| 	info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
 | |
| 
 | |
| 	info->high.rm_startblock = -1U;
 | |
| 	info->high.rm_owner = ULLONG_MAX;
 | |
| 	info->high.rm_offset = ULLONG_MAX;
 | |
| 	info->high.rm_blockcount = 0;
 | |
| 	info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
 | |
| 
 | |
| 	start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
 | |
| 	end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
 | |
| 
 | |
| 	for_each_perag_range(mp, start_ag, end_ag, pag) {
 | |
| 		/*
 | |
| 		 * Set the AG high key from the fsmap high key if this
 | |
| 		 * is the last AG that we're querying.
 | |
| 		 */
 | |
| 		info->pag = pag;
 | |
| 		if (pag->pag_agno == end_ag) {
 | |
| 			info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
 | |
| 					end_fsb);
 | |
| 			info->high.rm_offset = XFS_BB_TO_FSBT(mp,
 | |
| 					keys[1].fmr_offset);
 | |
| 			error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
 | |
| 			if (error)
 | |
| 				break;
 | |
| 			xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
 | |
| 		}
 | |
| 
 | |
| 		if (bt_cur) {
 | |
| 			xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
 | |
| 			bt_cur = NULL;
 | |
| 			xfs_trans_brelse(tp, info->agf_bp);
 | |
| 			info->agf_bp = NULL;
 | |
| 		}
 | |
| 
 | |
| 		error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno,
 | |
| 				&info->low);
 | |
| 		trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno,
 | |
| 				&info->high);
 | |
| 
 | |
| 		error = query_fn(tp, info, &bt_cur, priv);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the AG low key to the start of the AG prior to
 | |
| 		 * moving on to the next AG.
 | |
| 		 */
 | |
| 		if (pag->pag_agno == start_ag)
 | |
| 			memset(&info->low, 0, sizeof(info->low));
 | |
| 
 | |
| 		/*
 | |
| 		 * If this is the last AG, report any gap at the end of it
 | |
| 		 * before we drop the reference to the perag when the loop
 | |
| 		 * terminates.
 | |
| 		 */
 | |
| 		if (pag->pag_agno == end_ag) {
 | |
| 			info->last = true;
 | |
| 			error = query_fn(tp, info, &bt_cur, priv);
 | |
| 			if (error)
 | |
| 				break;
 | |
| 		}
 | |
| 		info->pag = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (bt_cur)
 | |
| 		xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
 | |
| 							 XFS_BTREE_NOERROR);
 | |
| 	if (info->agf_bp) {
 | |
| 		xfs_trans_brelse(tp, info->agf_bp);
 | |
| 		info->agf_bp = NULL;
 | |
| 	}
 | |
| 	if (info->pag) {
 | |
| 		xfs_perag_rele(info->pag);
 | |
| 		info->pag = NULL;
 | |
| 	} else if (pag) {
 | |
| 		/* loop termination case */
 | |
| 		xfs_perag_rele(pag);
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* Actually query the rmap btree. */
 | |
| STATIC int
 | |
| xfs_getfsmap_datadev_rmapbt_query(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	struct xfs_getfsmap_info	*info,
 | |
| 	struct xfs_btree_cur		**curpp,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	/* Report any gap at the end of the last AG. */
 | |
| 	if (info->last)
 | |
| 		return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
 | |
| 
 | |
| 	/* Allocate cursor for this AG and query_range it. */
 | |
| 	*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
 | |
| 			info->pag);
 | |
| 	return xfs_rmap_query_range(*curpp, &info->low, &info->high,
 | |
| 			xfs_getfsmap_datadev_helper, info);
 | |
| }
 | |
| 
 | |
| /* Execute a getfsmap query against the regular data device rmapbt. */
 | |
| STATIC int
 | |
| xfs_getfsmap_datadev_rmapbt(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	const struct xfs_fsmap		*keys,
 | |
| 	struct xfs_getfsmap_info	*info)
 | |
| {
 | |
| 	info->missing_owner = XFS_FMR_OWN_FREE;
 | |
| 	return __xfs_getfsmap_datadev(tp, keys, info,
 | |
| 			xfs_getfsmap_datadev_rmapbt_query, NULL);
 | |
| }
 | |
| 
 | |
| /* Actually query the bno btree. */
 | |
| STATIC int
 | |
| xfs_getfsmap_datadev_bnobt_query(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	struct xfs_getfsmap_info	*info,
 | |
| 	struct xfs_btree_cur		**curpp,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_alloc_rec_incore	*key = priv;
 | |
| 
 | |
| 	/* Report any gap at the end of the last AG. */
 | |
| 	if (info->last)
 | |
| 		return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
 | |
| 
 | |
| 	/* Allocate cursor for this AG and query_range it. */
 | |
| 	*curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
 | |
| 			info->pag);
 | |
| 	key->ar_startblock = info->low.rm_startblock;
 | |
| 	key[1].ar_startblock = info->high.rm_startblock;
 | |
| 	return xfs_alloc_query_range(*curpp, key, &key[1],
 | |
| 			xfs_getfsmap_datadev_bnobt_helper, info);
 | |
| }
 | |
| 
 | |
| /* Execute a getfsmap query against the regular data device's bnobt. */
 | |
| STATIC int
 | |
| xfs_getfsmap_datadev_bnobt(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	const struct xfs_fsmap		*keys,
 | |
| 	struct xfs_getfsmap_info	*info)
 | |
| {
 | |
| 	struct xfs_alloc_rec_incore	akeys[2];
 | |
| 
 | |
| 	memset(akeys, 0, sizeof(akeys));
 | |
| 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
 | |
| 	return __xfs_getfsmap_datadev(tp, keys, info,
 | |
| 			xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
 | |
| }
 | |
| 
 | |
| /* Execute a getfsmap query against the log device. */
 | |
| STATIC int
 | |
| xfs_getfsmap_logdev(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	const struct xfs_fsmap		*keys,
 | |
| 	struct xfs_getfsmap_info	*info)
 | |
| {
 | |
| 	struct xfs_mount		*mp = tp->t_mountp;
 | |
| 	struct xfs_rmap_irec		rmap;
 | |
| 	xfs_daddr_t			rec_daddr, len_daddr;
 | |
| 	xfs_fsblock_t			start_fsb, end_fsb;
 | |
| 	uint64_t			eofs;
 | |
| 
 | |
| 	eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
 | |
| 	if (keys[0].fmr_physical >= eofs)
 | |
| 		return 0;
 | |
| 	start_fsb = XFS_BB_TO_FSBT(mp,
 | |
| 				keys[0].fmr_physical + keys[0].fmr_length);
 | |
| 	end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
 | |
| 
 | |
| 	/* Adjust the low key if we are continuing from where we left off. */
 | |
| 	if (keys[0].fmr_length > 0)
 | |
| 		info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
 | |
| 
 | |
| 	trace_xfs_fsmap_low_key_linear(mp, info->dev, start_fsb);
 | |
| 	trace_xfs_fsmap_high_key_linear(mp, info->dev, end_fsb);
 | |
| 
 | |
| 	if (start_fsb > 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Fabricate an rmap entry for the external log device. */
 | |
| 	rmap.rm_startblock = 0;
 | |
| 	rmap.rm_blockcount = mp->m_sb.sb_logblocks;
 | |
| 	rmap.rm_owner = XFS_RMAP_OWN_LOG;
 | |
| 	rmap.rm_offset = 0;
 | |
| 	rmap.rm_flags = 0;
 | |
| 
 | |
| 	rec_daddr = XFS_FSB_TO_BB(mp, rmap.rm_startblock);
 | |
| 	len_daddr = XFS_FSB_TO_BB(mp, rmap.rm_blockcount);
 | |
| 	return xfs_getfsmap_helper(tp, info, &rmap, rec_daddr, len_daddr);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_XFS_RT
 | |
| /* Transform a rtbitmap "record" into a fsmap */
 | |
| STATIC int
 | |
| xfs_getfsmap_rtdev_rtbitmap_helper(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xfs_trans		*tp,
 | |
| 	const struct xfs_rtalloc_rec	*rec,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_getfsmap_info	*info = priv;
 | |
| 	struct xfs_rmap_irec		irec;
 | |
| 	xfs_rtblock_t			rtbno;
 | |
| 	xfs_daddr_t			rec_daddr, len_daddr;
 | |
| 
 | |
| 	rtbno = xfs_rtx_to_rtb(mp, rec->ar_startext);
 | |
| 	rec_daddr = XFS_FSB_TO_BB(mp, rtbno);
 | |
| 	irec.rm_startblock = rtbno;
 | |
| 
 | |
| 	rtbno = xfs_rtx_to_rtb(mp, rec->ar_extcount);
 | |
| 	len_daddr = XFS_FSB_TO_BB(mp, rtbno);
 | |
| 	irec.rm_blockcount = rtbno;
 | |
| 
 | |
| 	irec.rm_owner = XFS_RMAP_OWN_NULL;	/* "free" */
 | |
| 	irec.rm_offset = 0;
 | |
| 	irec.rm_flags = 0;
 | |
| 
 | |
| 	return xfs_getfsmap_helper(tp, info, &irec, rec_daddr, len_daddr);
 | |
| }
 | |
| 
 | |
| /* Execute a getfsmap query against the realtime device rtbitmap. */
 | |
| STATIC int
 | |
| xfs_getfsmap_rtdev_rtbitmap(
 | |
| 	struct xfs_trans		*tp,
 | |
| 	const struct xfs_fsmap		*keys,
 | |
| 	struct xfs_getfsmap_info	*info)
 | |
| {
 | |
| 
 | |
| 	struct xfs_rtalloc_rec		ahigh = { 0 };
 | |
| 	struct xfs_mount		*mp = tp->t_mountp;
 | |
| 	xfs_rtblock_t			start_rtb;
 | |
| 	xfs_rtblock_t			end_rtb;
 | |
| 	xfs_rtxnum_t			high;
 | |
| 	uint64_t			eofs;
 | |
| 	int				error;
 | |
| 
 | |
| 	eofs = XFS_FSB_TO_BB(mp, xfs_rtx_to_rtb(mp, mp->m_sb.sb_rextents));
 | |
| 	if (keys[0].fmr_physical >= eofs)
 | |
| 		return 0;
 | |
| 	start_rtb = XFS_BB_TO_FSBT(mp,
 | |
| 				keys[0].fmr_physical + keys[0].fmr_length);
 | |
| 	end_rtb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
 | |
| 
 | |
| 	info->missing_owner = XFS_FMR_OWN_UNKNOWN;
 | |
| 
 | |
| 	/* Adjust the low key if we are continuing from where we left off. */
 | |
| 	if (keys[0].fmr_length > 0) {
 | |
| 		info->low_daddr = XFS_FSB_TO_BB(mp, start_rtb);
 | |
| 		if (info->low_daddr >= eofs)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_fsmap_low_key_linear(mp, info->dev, start_rtb);
 | |
| 	trace_xfs_fsmap_high_key_linear(mp, info->dev, end_rtb);
 | |
| 
 | |
| 	xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up query parameters to return free rtextents covering the range
 | |
| 	 * we want.
 | |
| 	 */
 | |
| 	high = xfs_rtb_to_rtxup(mp, end_rtb);
 | |
| 	error = xfs_rtalloc_query_range(mp, tp, xfs_rtb_to_rtx(mp, start_rtb),
 | |
| 			high, xfs_getfsmap_rtdev_rtbitmap_helper, info);
 | |
| 	if (error)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Report any gaps at the end of the rtbitmap by simulating a null
 | |
| 	 * rmap starting at the block after the end of the query range.
 | |
| 	 */
 | |
| 	info->last = true;
 | |
| 	ahigh.ar_startext = min(mp->m_sb.sb_rextents, high);
 | |
| 
 | |
| 	error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info);
 | |
| 	if (error)
 | |
| 		goto err;
 | |
| err:
 | |
| 	xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP);
 | |
| 	return error;
 | |
| }
 | |
| #endif /* CONFIG_XFS_RT */
 | |
| 
 | |
| /* Do we recognize the device? */
 | |
| STATIC bool
 | |
| xfs_getfsmap_is_valid_device(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_fsmap	*fm)
 | |
| {
 | |
| 	if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
 | |
| 	    fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
 | |
| 		return true;
 | |
| 	if (mp->m_logdev_targp &&
 | |
| 	    fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
 | |
| 		return true;
 | |
| 	if (mp->m_rtdev_targp &&
 | |
| 	    fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
 | |
| 		return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* Ensure that the low key is less than the high key. */
 | |
| STATIC bool
 | |
| xfs_getfsmap_check_keys(
 | |
| 	struct xfs_fsmap		*low_key,
 | |
| 	struct xfs_fsmap		*high_key)
 | |
| {
 | |
| 	if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
 | |
| 		if (low_key->fmr_offset)
 | |
| 			return false;
 | |
| 	}
 | |
| 	if (high_key->fmr_flags != -1U &&
 | |
| 	    (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
 | |
| 				    FMR_OF_EXTENT_MAP))) {
 | |
| 		if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
 | |
| 			return false;
 | |
| 	}
 | |
| 	if (high_key->fmr_length && high_key->fmr_length != -1ULL)
 | |
| 		return false;
 | |
| 
 | |
| 	if (low_key->fmr_device > high_key->fmr_device)
 | |
| 		return false;
 | |
| 	if (low_key->fmr_device < high_key->fmr_device)
 | |
| 		return true;
 | |
| 
 | |
| 	if (low_key->fmr_physical > high_key->fmr_physical)
 | |
| 		return false;
 | |
| 	if (low_key->fmr_physical < high_key->fmr_physical)
 | |
| 		return true;
 | |
| 
 | |
| 	if (low_key->fmr_owner > high_key->fmr_owner)
 | |
| 		return false;
 | |
| 	if (low_key->fmr_owner < high_key->fmr_owner)
 | |
| 		return true;
 | |
| 
 | |
| 	if (low_key->fmr_offset > high_key->fmr_offset)
 | |
| 		return false;
 | |
| 	if (low_key->fmr_offset < high_key->fmr_offset)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are only two devices if we didn't configure RT devices at build time.
 | |
|  */
 | |
| #ifdef CONFIG_XFS_RT
 | |
| #define XFS_GETFSMAP_DEVS	3
 | |
| #else
 | |
| #define XFS_GETFSMAP_DEVS	2
 | |
| #endif /* CONFIG_XFS_RT */
 | |
| 
 | |
| /*
 | |
|  * Get filesystem's extents as described in head, and format for output. Fills
 | |
|  * in the supplied records array until there are no more reverse mappings to
 | |
|  * return or head.fmh_entries == head.fmh_count.  In the second case, this
 | |
|  * function returns -ECANCELED to indicate that more records would have been
 | |
|  * returned.
 | |
|  *
 | |
|  * Key to Confusion
 | |
|  * ----------------
 | |
|  * There are multiple levels of keys and counters at work here:
 | |
|  * xfs_fsmap_head.fmh_keys	-- low and high fsmap keys passed in;
 | |
|  *				   these reflect fs-wide sector addrs.
 | |
|  * dkeys			-- fmh_keys used to query each device;
 | |
|  *				   these are fmh_keys but w/ the low key
 | |
|  *				   bumped up by fmr_length.
 | |
|  * xfs_getfsmap_info.next_daddr	-- next disk addr we expect to see; this
 | |
|  *				   is how we detect gaps in the fsmap
 | |
| 				   records and report them.
 | |
|  * xfs_getfsmap_info.low/high	-- per-AG low/high keys computed from
 | |
|  *				   dkeys; used to query the metadata.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_getfsmap(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xfs_fsmap_head		*head,
 | |
| 	struct fsmap			*fsmap_recs)
 | |
| {
 | |
| 	struct xfs_trans		*tp = NULL;
 | |
| 	struct xfs_fsmap		dkeys[2];	/* per-dev keys */
 | |
| 	struct xfs_getfsmap_dev		handlers[XFS_GETFSMAP_DEVS];
 | |
| 	struct xfs_getfsmap_info	info = { NULL };
 | |
| 	bool				use_rmap;
 | |
| 	int				i;
 | |
| 	int				error = 0;
 | |
| 
 | |
| 	if (head->fmh_iflags & ~FMH_IF_VALID)
 | |
| 		return -EINVAL;
 | |
| 	if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
 | |
| 	    !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
 | |
| 		return -EINVAL;
 | |
| 	if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	use_rmap = xfs_has_rmapbt(mp) &&
 | |
| 		   has_capability_noaudit(current, CAP_SYS_ADMIN);
 | |
| 	head->fmh_entries = 0;
 | |
| 
 | |
| 	/* Set up our device handlers. */
 | |
| 	memset(handlers, 0, sizeof(handlers));
 | |
| 	handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
 | |
| 	handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
 | |
| 	if (use_rmap)
 | |
| 		handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
 | |
| 	else
 | |
| 		handlers[0].fn = xfs_getfsmap_datadev_bnobt;
 | |
| 	if (mp->m_logdev_targp != mp->m_ddev_targp) {
 | |
| 		handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
 | |
| 						       mp->m_sb.sb_logblocks);
 | |
| 		handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
 | |
| 		handlers[1].fn = xfs_getfsmap_logdev;
 | |
| 	}
 | |
| #ifdef CONFIG_XFS_RT
 | |
| 	if (mp->m_rtdev_targp) {
 | |
| 		handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
 | |
| 		handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
 | |
| 		handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
 | |
| 	}
 | |
| #endif /* CONFIG_XFS_RT */
 | |
| 
 | |
| 	xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
 | |
| 			xfs_getfsmap_dev_compare);
 | |
| 
 | |
| 	/*
 | |
| 	 * To continue where we left off, we allow userspace to use the
 | |
| 	 * last mapping from a previous call as the low key of the next.
 | |
| 	 * This is identified by a non-zero length in the low key. We
 | |
| 	 * have to increment the low key in this scenario to ensure we
 | |
| 	 * don't return the same mapping again, and instead return the
 | |
| 	 * very next mapping.
 | |
| 	 *
 | |
| 	 * If the low key mapping refers to file data, the same physical
 | |
| 	 * blocks could be mapped to several other files/offsets.
 | |
| 	 * According to rmapbt record ordering, the minimal next
 | |
| 	 * possible record for the block range is the next starting
 | |
| 	 * offset in the same inode. Therefore, each fsmap backend bumps
 | |
| 	 * the file offset to continue the search appropriately.  For
 | |
| 	 * all other low key mapping types (attr blocks, metadata), each
 | |
| 	 * fsmap backend bumps the physical offset as there can be no
 | |
| 	 * other mapping for the same physical block range.
 | |
| 	 */
 | |
| 	dkeys[0] = head->fmh_keys[0];
 | |
| 	memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
 | |
| 
 | |
| 	info.next_daddr = head->fmh_keys[0].fmr_physical +
 | |
| 			  head->fmh_keys[0].fmr_length;
 | |
| 	info.end_daddr = XFS_BUF_DADDR_NULL;
 | |
| 	info.fsmap_recs = fsmap_recs;
 | |
| 	info.head = head;
 | |
| 
 | |
| 	/* For each device we support... */
 | |
| 	for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
 | |
| 		/* Is this device within the range the user asked for? */
 | |
| 		if (!handlers[i].fn)
 | |
| 			continue;
 | |
| 		if (head->fmh_keys[0].fmr_device > handlers[i].dev)
 | |
| 			continue;
 | |
| 		if (head->fmh_keys[1].fmr_device < handlers[i].dev)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * If this device number matches the high key, we have
 | |
| 		 * to pass the high key to the handler to limit the
 | |
| 		 * query results.  If the device number exceeds the
 | |
| 		 * low key, zero out the low key so that we get
 | |
| 		 * everything from the beginning.
 | |
| 		 */
 | |
| 		if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
 | |
| 			dkeys[1] = head->fmh_keys[1];
 | |
| 			info.end_daddr = min(handlers[i].nr_sectors - 1,
 | |
| 					     dkeys[1].fmr_physical);
 | |
| 		}
 | |
| 		if (handlers[i].dev > head->fmh_keys[0].fmr_device)
 | |
| 			memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
 | |
| 
 | |
| 		/*
 | |
| 		 * Grab an empty transaction so that we can use its recursive
 | |
| 		 * buffer locking abilities to detect cycles in the rmapbt
 | |
| 		 * without deadlocking.
 | |
| 		 */
 | |
| 		error = xfs_trans_alloc_empty(mp, &tp);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		info.dev = handlers[i].dev;
 | |
| 		info.last = false;
 | |
| 		info.pag = NULL;
 | |
| 		info.low_daddr = XFS_BUF_DADDR_NULL;
 | |
| 		info.low.rm_blockcount = 0;
 | |
| 		error = handlers[i].fn(tp, dkeys, &info);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 		xfs_trans_cancel(tp);
 | |
| 		tp = NULL;
 | |
| 		info.next_daddr = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (tp)
 | |
| 		xfs_trans_cancel(tp);
 | |
| 	head->fmh_oflags = FMH_OF_DEV_T;
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_ioc_getfsmap(
 | |
| 	struct xfs_inode	*ip,
 | |
| 	struct fsmap_head	__user *arg)
 | |
| {
 | |
| 	struct xfs_fsmap_head	xhead = {0};
 | |
| 	struct fsmap_head	head;
 | |
| 	struct fsmap		*recs;
 | |
| 	unsigned int		count;
 | |
| 	__u32			last_flags = 0;
 | |
| 	bool			done = false;
 | |
| 	int			error;
 | |
| 
 | |
| 	if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
 | |
| 		return -EFAULT;
 | |
| 	if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
 | |
| 	    memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
 | |
| 		       sizeof(head.fmh_keys[0].fmr_reserved)) ||
 | |
| 	    memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
 | |
| 		       sizeof(head.fmh_keys[1].fmr_reserved)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use an internal memory buffer so that we don't have to copy fsmap
 | |
| 	 * data to userspace while holding locks.  Start by trying to allocate
 | |
| 	 * up to 128k for the buffer, but fall back to a single page if needed.
 | |
| 	 */
 | |
| 	count = min_t(unsigned int, head.fmh_count,
 | |
| 			131072 / sizeof(struct fsmap));
 | |
| 	recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
 | |
| 	if (!recs) {
 | |
| 		count = min_t(unsigned int, head.fmh_count,
 | |
| 				PAGE_SIZE / sizeof(struct fsmap));
 | |
| 		recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
 | |
| 		if (!recs)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	xhead.fmh_iflags = head.fmh_iflags;
 | |
| 	xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
 | |
| 	xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
 | |
| 
 | |
| 	trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
 | |
| 	trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
 | |
| 
 | |
| 	head.fmh_entries = 0;
 | |
| 	do {
 | |
| 		struct fsmap __user	*user_recs;
 | |
| 		struct fsmap		*last_rec;
 | |
| 
 | |
| 		user_recs = &arg->fmh_recs[head.fmh_entries];
 | |
| 		xhead.fmh_entries = 0;
 | |
| 		xhead.fmh_count = min_t(unsigned int, count,
 | |
| 					head.fmh_count - head.fmh_entries);
 | |
| 
 | |
| 		/* Run query, record how many entries we got. */
 | |
| 		error = xfs_getfsmap(ip->i_mount, &xhead, recs);
 | |
| 		switch (error) {
 | |
| 		case 0:
 | |
| 			/*
 | |
| 			 * There are no more records in the result set.  Copy
 | |
| 			 * whatever we got to userspace and break out.
 | |
| 			 */
 | |
| 			done = true;
 | |
| 			break;
 | |
| 		case -ECANCELED:
 | |
| 			/*
 | |
| 			 * The internal memory buffer is full.  Copy whatever
 | |
| 			 * records we got to userspace and go again if we have
 | |
| 			 * not yet filled the userspace buffer.
 | |
| 			 */
 | |
| 			error = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		head.fmh_entries += xhead.fmh_entries;
 | |
| 		head.fmh_oflags = xhead.fmh_oflags;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the caller wanted a record count or there aren't any
 | |
| 		 * new records to return, we're done.
 | |
| 		 */
 | |
| 		if (head.fmh_count == 0 || xhead.fmh_entries == 0)
 | |
| 			break;
 | |
| 
 | |
| 		/* Copy all the records we got out to userspace. */
 | |
| 		if (copy_to_user(user_recs, recs,
 | |
| 				 xhead.fmh_entries * sizeof(struct fsmap))) {
 | |
| 			error = -EFAULT;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 
 | |
| 		/* Remember the last record flags we copied to userspace. */
 | |
| 		last_rec = &recs[xhead.fmh_entries - 1];
 | |
| 		last_flags = last_rec->fmr_flags;
 | |
| 
 | |
| 		/* Set up the low key for the next iteration. */
 | |
| 		xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
 | |
| 		trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
 | |
| 	} while (!done && head.fmh_entries < head.fmh_count);
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are no more records in the query result set and we're not
 | |
| 	 * in counting mode, mark the last record returned with the LAST flag.
 | |
| 	 */
 | |
| 	if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
 | |
| 		struct fsmap __user	*user_rec;
 | |
| 
 | |
| 		last_flags |= FMR_OF_LAST;
 | |
| 		user_rec = &arg->fmh_recs[head.fmh_entries - 1];
 | |
| 
 | |
| 		if (copy_to_user(&user_rec->fmr_flags, &last_flags,
 | |
| 					sizeof(last_flags))) {
 | |
| 			error = -EFAULT;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* copy back header */
 | |
| 	if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
 | |
| 		error = -EFAULT;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| out_free:
 | |
| 	kvfree(recs);
 | |
| 	return error;
 | |
| }
 |