1142 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1142 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_buf_item.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_trace.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_log_priv.h"
 | |
| #include "xfs_log_recover.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_sb.h"
 | |
| 
 | |
| /*
 | |
|  * This is the number of entries in the l_buf_cancel_table used during
 | |
|  * recovery.
 | |
|  */
 | |
| #define	XLOG_BC_TABLE_SIZE	64
 | |
| 
 | |
| #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
 | |
| 	((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
 | |
| 
 | |
| /*
 | |
|  * This structure is used during recovery to record the buf log items which
 | |
|  * have been canceled and should not be replayed.
 | |
|  */
 | |
| struct xfs_buf_cancel {
 | |
| 	xfs_daddr_t		bc_blkno;
 | |
| 	uint			bc_len;
 | |
| 	int			bc_refcount;
 | |
| 	struct list_head	bc_list;
 | |
| };
 | |
| 
 | |
| static struct xfs_buf_cancel *
 | |
| xlog_find_buffer_cancelled(
 | |
| 	struct xlog		*log,
 | |
| 	xfs_daddr_t		blkno,
 | |
| 	uint			len)
 | |
| {
 | |
| 	struct list_head	*bucket;
 | |
| 	struct xfs_buf_cancel	*bcp;
 | |
| 
 | |
| 	if (!log->l_buf_cancel_table)
 | |
| 		return NULL;
 | |
| 
 | |
| 	bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
 | |
| 	list_for_each_entry(bcp, bucket, bc_list) {
 | |
| 		if (bcp->bc_blkno == blkno && bcp->bc_len == len)
 | |
| 			return bcp;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| xlog_add_buffer_cancelled(
 | |
| 	struct xlog		*log,
 | |
| 	xfs_daddr_t		blkno,
 | |
| 	uint			len)
 | |
| {
 | |
| 	struct xfs_buf_cancel	*bcp;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we find an existing cancel record, this indicates that the buffer
 | |
| 	 * was cancelled multiple times.  To ensure that during pass 2 we keep
 | |
| 	 * the record in the table until we reach its last occurrence in the
 | |
| 	 * log, a reference count is kept to tell how many times we expect to
 | |
| 	 * see this record during the second pass.
 | |
| 	 */
 | |
| 	bcp = xlog_find_buffer_cancelled(log, blkno, len);
 | |
| 	if (bcp) {
 | |
| 		bcp->bc_refcount++;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	bcp = kmalloc(sizeof(struct xfs_buf_cancel), GFP_KERNEL | __GFP_NOFAIL);
 | |
| 	bcp->bc_blkno = blkno;
 | |
| 	bcp->bc_len = len;
 | |
| 	bcp->bc_refcount = 1;
 | |
| 	list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if there is and entry for blkno, len in the buffer cancel record table.
 | |
|  */
 | |
| bool
 | |
| xlog_is_buffer_cancelled(
 | |
| 	struct xlog		*log,
 | |
| 	xfs_daddr_t		blkno,
 | |
| 	uint			len)
 | |
| {
 | |
| 	return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if there is and entry for blkno, len in the buffer cancel record table,
 | |
|  * and decremented the reference count on it if there is one.
 | |
|  *
 | |
|  * Remove the cancel record once the refcount hits zero, so that if the same
 | |
|  * buffer is re-used again after its last cancellation we actually replay the
 | |
|  * changes made at that point.
 | |
|  */
 | |
| static bool
 | |
| xlog_put_buffer_cancelled(
 | |
| 	struct xlog		*log,
 | |
| 	xfs_daddr_t		blkno,
 | |
| 	uint			len)
 | |
| {
 | |
| 	struct xfs_buf_cancel	*bcp;
 | |
| 
 | |
| 	bcp = xlog_find_buffer_cancelled(log, blkno, len);
 | |
| 	if (!bcp) {
 | |
| 		ASSERT(0);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (--bcp->bc_refcount == 0) {
 | |
| 		list_del(&bcp->bc_list);
 | |
| 		kfree(bcp);
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /* log buffer item recovery */
 | |
| 
 | |
| /*
 | |
|  * Sort buffer items for log recovery.  Most buffer items should end up on the
 | |
|  * buffer list and are recovered first, with the following exceptions:
 | |
|  *
 | |
|  * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
 | |
|  *    might depend on the incor ecancellation record, and replaying a cancelled
 | |
|  *    buffer item can remove the incore record.
 | |
|  *
 | |
|  * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
 | |
|  *    we replay di_next_unlinked only after flushing the inode 'free' state
 | |
|  *    to the inode buffer.
 | |
|  *
 | |
|  * See xlog_recover_reorder_trans for more details.
 | |
|  */
 | |
| STATIC enum xlog_recover_reorder
 | |
| xlog_recover_buf_reorder(
 | |
| 	struct xlog_recover_item	*item)
 | |
| {
 | |
| 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
 | |
| 
 | |
| 	if (buf_f->blf_flags & XFS_BLF_CANCEL)
 | |
| 		return XLOG_REORDER_CANCEL_LIST;
 | |
| 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
 | |
| 		return XLOG_REORDER_INODE_BUFFER_LIST;
 | |
| 	return XLOG_REORDER_BUFFER_LIST;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xlog_recover_buf_ra_pass2(
 | |
| 	struct xlog                     *log,
 | |
| 	struct xlog_recover_item        *item)
 | |
| {
 | |
| 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
 | |
| 
 | |
| 	xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build up the table of buf cancel records so that we don't replay cancelled
 | |
|  * data in the second pass.
 | |
|  */
 | |
| static int
 | |
| xlog_recover_buf_commit_pass1(
 | |
| 	struct xlog			*log,
 | |
| 	struct xlog_recover_item	*item)
 | |
| {
 | |
| 	struct xfs_buf_log_format	*bf = item->ri_buf[0].i_addr;
 | |
| 
 | |
| 	if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
 | |
| 		xfs_err(log->l_mp, "bad buffer log item size (%d)",
 | |
| 				item->ri_buf[0].i_len);
 | |
| 		return -EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bf->blf_flags & XFS_BLF_CANCEL))
 | |
| 		trace_xfs_log_recover_buf_not_cancel(log, bf);
 | |
| 	else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
 | |
| 		trace_xfs_log_recover_buf_cancel_add(log, bf);
 | |
| 	else
 | |
| 		trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Validate the recovered buffer is of the correct type and attach the
 | |
|  * appropriate buffer operations to them for writeback. Magic numbers are in a
 | |
|  * few places:
 | |
|  *	the first 16 bits of the buffer (inode buffer, dquot buffer),
 | |
|  *	the first 32 bits of the buffer (most blocks),
 | |
|  *	inside a struct xfs_da_blkinfo at the start of the buffer.
 | |
|  */
 | |
| static void
 | |
| xlog_recover_validate_buf_type(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xfs_buf			*bp,
 | |
| 	struct xfs_buf_log_format	*buf_f,
 | |
| 	xfs_lsn_t			current_lsn)
 | |
| {
 | |
| 	struct xfs_da_blkinfo		*info = bp->b_addr;
 | |
| 	uint32_t			magic32;
 | |
| 	uint16_t			magic16;
 | |
| 	uint16_t			magicda;
 | |
| 	char				*warnmsg = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can only do post recovery validation on items on CRC enabled
 | |
| 	 * fielsystems as we need to know when the buffer was written to be able
 | |
| 	 * to determine if we should have replayed the item. If we replay old
 | |
| 	 * metadata over a newer buffer, then it will enter a temporarily
 | |
| 	 * inconsistent state resulting in verification failures. Hence for now
 | |
| 	 * just avoid the verification stage for non-crc filesystems
 | |
| 	 */
 | |
| 	if (!xfs_has_crc(mp))
 | |
| 		return;
 | |
| 
 | |
| 	magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
 | |
| 	magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
 | |
| 	magicda = be16_to_cpu(info->magic);
 | |
| 	switch (xfs_blft_from_flags(buf_f)) {
 | |
| 	case XFS_BLFT_BTREE_BUF:
 | |
| 		switch (magic32) {
 | |
| 		case XFS_ABTB_CRC_MAGIC:
 | |
| 		case XFS_ABTB_MAGIC:
 | |
| 			bp->b_ops = &xfs_bnobt_buf_ops;
 | |
| 			break;
 | |
| 		case XFS_ABTC_CRC_MAGIC:
 | |
| 		case XFS_ABTC_MAGIC:
 | |
| 			bp->b_ops = &xfs_cntbt_buf_ops;
 | |
| 			break;
 | |
| 		case XFS_IBT_CRC_MAGIC:
 | |
| 		case XFS_IBT_MAGIC:
 | |
| 			bp->b_ops = &xfs_inobt_buf_ops;
 | |
| 			break;
 | |
| 		case XFS_FIBT_CRC_MAGIC:
 | |
| 		case XFS_FIBT_MAGIC:
 | |
| 			bp->b_ops = &xfs_finobt_buf_ops;
 | |
| 			break;
 | |
| 		case XFS_BMAP_CRC_MAGIC:
 | |
| 		case XFS_BMAP_MAGIC:
 | |
| 			bp->b_ops = &xfs_bmbt_buf_ops;
 | |
| 			break;
 | |
| 		case XFS_RMAP_CRC_MAGIC:
 | |
| 			bp->b_ops = &xfs_rmapbt_buf_ops;
 | |
| 			break;
 | |
| 		case XFS_REFC_CRC_MAGIC:
 | |
| 			bp->b_ops = &xfs_refcountbt_buf_ops;
 | |
| 			break;
 | |
| 		default:
 | |
| 			warnmsg = "Bad btree block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case XFS_BLFT_AGF_BUF:
 | |
| 		if (magic32 != XFS_AGF_MAGIC) {
 | |
| 			warnmsg = "Bad AGF block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_agf_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_AGFL_BUF:
 | |
| 		if (magic32 != XFS_AGFL_MAGIC) {
 | |
| 			warnmsg = "Bad AGFL block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_agfl_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_AGI_BUF:
 | |
| 		if (magic32 != XFS_AGI_MAGIC) {
 | |
| 			warnmsg = "Bad AGI block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_agi_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_UDQUOT_BUF:
 | |
| 	case XFS_BLFT_PDQUOT_BUF:
 | |
| 	case XFS_BLFT_GDQUOT_BUF:
 | |
| #ifdef CONFIG_XFS_QUOTA
 | |
| 		if (magic16 != XFS_DQUOT_MAGIC) {
 | |
| 			warnmsg = "Bad DQUOT block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_dquot_buf_ops;
 | |
| #else
 | |
| 		xfs_alert(mp,
 | |
| 	"Trying to recover dquots without QUOTA support built in!");
 | |
| 		ASSERT(0);
 | |
| #endif
 | |
| 		break;
 | |
| 	case XFS_BLFT_DINO_BUF:
 | |
| 		if (magic16 != XFS_DINODE_MAGIC) {
 | |
| 			warnmsg = "Bad INODE block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_inode_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_SYMLINK_BUF:
 | |
| 		if (magic32 != XFS_SYMLINK_MAGIC) {
 | |
| 			warnmsg = "Bad symlink block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_symlink_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_DIR_BLOCK_BUF:
 | |
| 		if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
 | |
| 		    magic32 != XFS_DIR3_BLOCK_MAGIC) {
 | |
| 			warnmsg = "Bad dir block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_dir3_block_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_DIR_DATA_BUF:
 | |
| 		if (magic32 != XFS_DIR2_DATA_MAGIC &&
 | |
| 		    magic32 != XFS_DIR3_DATA_MAGIC) {
 | |
| 			warnmsg = "Bad dir data magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_dir3_data_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_DIR_FREE_BUF:
 | |
| 		if (magic32 != XFS_DIR2_FREE_MAGIC &&
 | |
| 		    magic32 != XFS_DIR3_FREE_MAGIC) {
 | |
| 			warnmsg = "Bad dir3 free magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_dir3_free_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_DIR_LEAF1_BUF:
 | |
| 		if (magicda != XFS_DIR2_LEAF1_MAGIC &&
 | |
| 		    magicda != XFS_DIR3_LEAF1_MAGIC) {
 | |
| 			warnmsg = "Bad dir leaf1 magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_dir3_leaf1_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_DIR_LEAFN_BUF:
 | |
| 		if (magicda != XFS_DIR2_LEAFN_MAGIC &&
 | |
| 		    magicda != XFS_DIR3_LEAFN_MAGIC) {
 | |
| 			warnmsg = "Bad dir leafn magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_dir3_leafn_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_DA_NODE_BUF:
 | |
| 		if (magicda != XFS_DA_NODE_MAGIC &&
 | |
| 		    magicda != XFS_DA3_NODE_MAGIC) {
 | |
| 			warnmsg = "Bad da node magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_da3_node_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_ATTR_LEAF_BUF:
 | |
| 		if (magicda != XFS_ATTR_LEAF_MAGIC &&
 | |
| 		    magicda != XFS_ATTR3_LEAF_MAGIC) {
 | |
| 			warnmsg = "Bad attr leaf magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_attr3_leaf_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_ATTR_RMT_BUF:
 | |
| 		if (magic32 != XFS_ATTR3_RMT_MAGIC) {
 | |
| 			warnmsg = "Bad attr remote magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_attr3_rmt_buf_ops;
 | |
| 		break;
 | |
| 	case XFS_BLFT_SB_BUF:
 | |
| 		if (magic32 != XFS_SB_MAGIC) {
 | |
| 			warnmsg = "Bad SB block magic!";
 | |
| 			break;
 | |
| 		}
 | |
| 		bp->b_ops = &xfs_sb_buf_ops;
 | |
| 		break;
 | |
| #ifdef CONFIG_XFS_RT
 | |
| 	case XFS_BLFT_RTBITMAP_BUF:
 | |
| 	case XFS_BLFT_RTSUMMARY_BUF:
 | |
| 		/* no magic numbers for verification of RT buffers */
 | |
| 		bp->b_ops = &xfs_rtbuf_ops;
 | |
| 		break;
 | |
| #endif /* CONFIG_XFS_RT */
 | |
| 	default:
 | |
| 		xfs_warn(mp, "Unknown buffer type %d!",
 | |
| 			 xfs_blft_from_flags(buf_f));
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Nothing else to do in the case of a NULL current LSN as this means
 | |
| 	 * the buffer is more recent than the change in the log and will be
 | |
| 	 * skipped.
 | |
| 	 */
 | |
| 	if (current_lsn == NULLCOMMITLSN)
 | |
| 		return;
 | |
| 
 | |
| 	if (warnmsg) {
 | |
| 		xfs_warn(mp, warnmsg);
 | |
| 		ASSERT(0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We must update the metadata LSN of the buffer as it is written out to
 | |
| 	 * ensure that older transactions never replay over this one and corrupt
 | |
| 	 * the buffer. This can occur if log recovery is interrupted at some
 | |
| 	 * point after the current transaction completes, at which point a
 | |
| 	 * subsequent mount starts recovery from the beginning.
 | |
| 	 *
 | |
| 	 * Write verifiers update the metadata LSN from log items attached to
 | |
| 	 * the buffer. Therefore, initialize a bli purely to carry the LSN to
 | |
| 	 * the verifier.
 | |
| 	 */
 | |
| 	if (bp->b_ops) {
 | |
| 		struct xfs_buf_log_item	*bip;
 | |
| 
 | |
| 		bp->b_flags |= _XBF_LOGRECOVERY;
 | |
| 		xfs_buf_item_init(bp, mp);
 | |
| 		bip = bp->b_log_item;
 | |
| 		bip->bli_item.li_lsn = current_lsn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a 'normal' buffer recovery.  Each logged region of the
 | |
|  * buffer should be copied over the corresponding region in the
 | |
|  * given buffer.  The bitmap in the buf log format structure indicates
 | |
|  * where to place the logged data.
 | |
|  */
 | |
| STATIC void
 | |
| xlog_recover_do_reg_buffer(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xlog_recover_item	*item,
 | |
| 	struct xfs_buf			*bp,
 | |
| 	struct xfs_buf_log_format	*buf_f,
 | |
| 	xfs_lsn_t			current_lsn)
 | |
| {
 | |
| 	int			i;
 | |
| 	int			bit;
 | |
| 	int			nbits;
 | |
| 	xfs_failaddr_t		fa;
 | |
| 	const size_t		size_disk_dquot = sizeof(struct xfs_disk_dquot);
 | |
| 
 | |
| 	trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
 | |
| 
 | |
| 	bit = 0;
 | |
| 	i = 1;  /* 0 is the buf format structure */
 | |
| 	while (1) {
 | |
| 		bit = xfs_next_bit(buf_f->blf_data_map,
 | |
| 				   buf_f->blf_map_size, bit);
 | |
| 		if (bit == -1)
 | |
| 			break;
 | |
| 		nbits = xfs_contig_bits(buf_f->blf_data_map,
 | |
| 					buf_f->blf_map_size, bit);
 | |
| 		ASSERT(nbits > 0);
 | |
| 		ASSERT(item->ri_buf[i].i_addr != NULL);
 | |
| 		ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
 | |
| 		ASSERT(BBTOB(bp->b_length) >=
 | |
| 		       ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
 | |
| 
 | |
| 		/*
 | |
| 		 * The dirty regions logged in the buffer, even though
 | |
| 		 * contiguous, may span multiple chunks. This is because the
 | |
| 		 * dirty region may span a physical page boundary in a buffer
 | |
| 		 * and hence be split into two separate vectors for writing into
 | |
| 		 * the log. Hence we need to trim nbits back to the length of
 | |
| 		 * the current region being copied out of the log.
 | |
| 		 */
 | |
| 		if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
 | |
| 			nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
 | |
| 
 | |
| 		/*
 | |
| 		 * Do a sanity check if this is a dquot buffer. Just checking
 | |
| 		 * the first dquot in the buffer should do. XXXThis is
 | |
| 		 * probably a good thing to do for other buf types also.
 | |
| 		 */
 | |
| 		fa = NULL;
 | |
| 		if (buf_f->blf_flags &
 | |
| 		   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
 | |
| 			if (item->ri_buf[i].i_addr == NULL) {
 | |
| 				xfs_alert(mp,
 | |
| 					"XFS: NULL dquot in %s.", __func__);
 | |
| 				goto next;
 | |
| 			}
 | |
| 			if (item->ri_buf[i].i_len < size_disk_dquot) {
 | |
| 				xfs_alert(mp,
 | |
| 					"XFS: dquot too small (%d) in %s.",
 | |
| 					item->ri_buf[i].i_len, __func__);
 | |
| 				goto next;
 | |
| 			}
 | |
| 			fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
 | |
| 			if (fa) {
 | |
| 				xfs_alert(mp,
 | |
| 	"dquot corrupt at %pS trying to replay into block 0x%llx",
 | |
| 					fa, xfs_buf_daddr(bp));
 | |
| 				goto next;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		memcpy(xfs_buf_offset(bp,
 | |
| 			(uint)bit << XFS_BLF_SHIFT),	/* dest */
 | |
| 			item->ri_buf[i].i_addr,		/* source */
 | |
| 			nbits<<XFS_BLF_SHIFT);		/* length */
 | |
|  next:
 | |
| 		i++;
 | |
| 		bit += nbits;
 | |
| 	}
 | |
| 
 | |
| 	/* Shouldn't be any more regions */
 | |
| 	ASSERT(i == item->ri_total);
 | |
| 
 | |
| 	xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform a dquot buffer recovery.
 | |
|  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
 | |
|  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
 | |
|  * Else, treat it as a regular buffer and do recovery.
 | |
|  *
 | |
|  * Return false if the buffer was tossed and true if we recovered the buffer to
 | |
|  * indicate to the caller if the buffer needs writing.
 | |
|  */
 | |
| STATIC bool
 | |
| xlog_recover_do_dquot_buffer(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xlog			*log,
 | |
| 	struct xlog_recover_item	*item,
 | |
| 	struct xfs_buf			*bp,
 | |
| 	struct xfs_buf_log_format	*buf_f)
 | |
| {
 | |
| 	uint			type;
 | |
| 
 | |
| 	trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
 | |
| 
 | |
| 	/*
 | |
| 	 * Filesystems are required to send in quota flags at mount time.
 | |
| 	 */
 | |
| 	if (!mp->m_qflags)
 | |
| 		return false;
 | |
| 
 | |
| 	type = 0;
 | |
| 	if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
 | |
| 		type |= XFS_DQTYPE_USER;
 | |
| 	if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
 | |
| 		type |= XFS_DQTYPE_PROJ;
 | |
| 	if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
 | |
| 		type |= XFS_DQTYPE_GROUP;
 | |
| 	/*
 | |
| 	 * This type of quotas was turned off, so ignore this buffer
 | |
| 	 */
 | |
| 	if (log->l_quotaoffs_flag & type)
 | |
| 		return false;
 | |
| 
 | |
| 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Perform recovery for a buffer full of inodes.  In these buffers, the only
 | |
|  * data which should be recovered is that which corresponds to the
 | |
|  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
 | |
|  * data for the inodes is always logged through the inodes themselves rather
 | |
|  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
 | |
|  *
 | |
|  * The only time when buffers full of inodes are fully recovered is when the
 | |
|  * buffer is full of newly allocated inodes.  In this case the buffer will
 | |
|  * not be marked as an inode buffer and so will be sent to
 | |
|  * xlog_recover_do_reg_buffer() below during recovery.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_do_inode_buffer(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xlog_recover_item	*item,
 | |
| 	struct xfs_buf			*bp,
 | |
| 	struct xfs_buf_log_format	*buf_f)
 | |
| {
 | |
| 	int				i;
 | |
| 	int				item_index = 0;
 | |
| 	int				bit = 0;
 | |
| 	int				nbits = 0;
 | |
| 	int				reg_buf_offset = 0;
 | |
| 	int				reg_buf_bytes = 0;
 | |
| 	int				next_unlinked_offset;
 | |
| 	int				inodes_per_buf;
 | |
| 	xfs_agino_t			*logged_nextp;
 | |
| 	xfs_agino_t			*buffer_nextp;
 | |
| 
 | |
| 	trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
 | |
| 
 | |
| 	/*
 | |
| 	 * Post recovery validation only works properly on CRC enabled
 | |
| 	 * filesystems.
 | |
| 	 */
 | |
| 	if (xfs_has_crc(mp))
 | |
| 		bp->b_ops = &xfs_inode_buf_ops;
 | |
| 
 | |
| 	inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
 | |
| 	for (i = 0; i < inodes_per_buf; i++) {
 | |
| 		next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
 | |
| 			offsetof(struct xfs_dinode, di_next_unlinked);
 | |
| 
 | |
| 		while (next_unlinked_offset >=
 | |
| 		       (reg_buf_offset + reg_buf_bytes)) {
 | |
| 			/*
 | |
| 			 * The next di_next_unlinked field is beyond
 | |
| 			 * the current logged region.  Find the next
 | |
| 			 * logged region that contains or is beyond
 | |
| 			 * the current di_next_unlinked field.
 | |
| 			 */
 | |
| 			bit += nbits;
 | |
| 			bit = xfs_next_bit(buf_f->blf_data_map,
 | |
| 					   buf_f->blf_map_size, bit);
 | |
| 
 | |
| 			/*
 | |
| 			 * If there are no more logged regions in the
 | |
| 			 * buffer, then we're done.
 | |
| 			 */
 | |
| 			if (bit == -1)
 | |
| 				return 0;
 | |
| 
 | |
| 			nbits = xfs_contig_bits(buf_f->blf_data_map,
 | |
| 						buf_f->blf_map_size, bit);
 | |
| 			ASSERT(nbits > 0);
 | |
| 			reg_buf_offset = bit << XFS_BLF_SHIFT;
 | |
| 			reg_buf_bytes = nbits << XFS_BLF_SHIFT;
 | |
| 			item_index++;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If the current logged region starts after the current
 | |
| 		 * di_next_unlinked field, then move on to the next
 | |
| 		 * di_next_unlinked field.
 | |
| 		 */
 | |
| 		if (next_unlinked_offset < reg_buf_offset)
 | |
| 			continue;
 | |
| 
 | |
| 		ASSERT(item->ri_buf[item_index].i_addr != NULL);
 | |
| 		ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
 | |
| 		ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
 | |
| 
 | |
| 		/*
 | |
| 		 * The current logged region contains a copy of the
 | |
| 		 * current di_next_unlinked field.  Extract its value
 | |
| 		 * and copy it to the buffer copy.
 | |
| 		 */
 | |
| 		logged_nextp = item->ri_buf[item_index].i_addr +
 | |
| 				next_unlinked_offset - reg_buf_offset;
 | |
| 		if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
 | |
| 			xfs_alert(mp,
 | |
| 		"Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
 | |
| 		"Trying to replay bad (0) inode di_next_unlinked field.",
 | |
| 				item, bp);
 | |
| 			return -EFSCORRUPTED;
 | |
| 		}
 | |
| 
 | |
| 		buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
 | |
| 		*buffer_nextp = *logged_nextp;
 | |
| 
 | |
| 		/*
 | |
| 		 * If necessary, recalculate the CRC in the on-disk inode. We
 | |
| 		 * have to leave the inode in a consistent state for whoever
 | |
| 		 * reads it next....
 | |
| 		 */
 | |
| 		xfs_dinode_calc_crc(mp,
 | |
| 				xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the in-memory superblock and perag structures from the primary SB
 | |
|  * buffer.
 | |
|  *
 | |
|  * This is required because transactions running after growfs may require the
 | |
|  * updated values to be set in a previous fully commit transaction.
 | |
|  */
 | |
| static int
 | |
| xlog_recover_do_primary_sb_buffer(
 | |
| 	struct xfs_mount		*mp,
 | |
| 	struct xlog_recover_item	*item,
 | |
| 	struct xfs_buf			*bp,
 | |
| 	struct xfs_buf_log_format	*buf_f,
 | |
| 	xfs_lsn_t			current_lsn)
 | |
| {
 | |
| 	struct xfs_dsb			*dsb = bp->b_addr;
 | |
| 	xfs_agnumber_t			orig_agcount = mp->m_sb.sb_agcount;
 | |
| 	int				error;
 | |
| 
 | |
| 	xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
 | |
| 
 | |
| 	if (orig_agcount == 0) {
 | |
| 		xfs_alert(mp, "Trying to grow file system without AGs");
 | |
| 		return -EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the in-core super block from the freshly recovered on-disk one.
 | |
| 	 */
 | |
| 	xfs_sb_from_disk(&mp->m_sb, dsb);
 | |
| 
 | |
| 	if (mp->m_sb.sb_agcount < orig_agcount) {
 | |
| 		xfs_alert(mp, "Shrinking AG count in log recovery not supported");
 | |
| 		return -EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Growfs can also grow the last existing AG.  In this case we also need
 | |
| 	 * to update the length in the in-core perag structure and values
 | |
| 	 * depending on it.
 | |
| 	 */
 | |
| 	error = xfs_update_last_ag_size(mp, orig_agcount);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the new perags, and also update various block and inode
 | |
| 	 * allocator setting based off the number of AGs or total blocks.
 | |
| 	 * Because of the latter this also needs to happen if the agcount did
 | |
| 	 * not change.
 | |
| 	 */
 | |
| 	error = xfs_initialize_perag(mp, orig_agcount, mp->m_sb.sb_agcount,
 | |
| 			mp->m_sb.sb_dblocks, &mp->m_maxagi);
 | |
| 	if (error) {
 | |
| 		xfs_warn(mp, "Failed recovery per-ag init: %d", error);
 | |
| 		return error;
 | |
| 	}
 | |
| 	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * V5 filesystems know the age of the buffer on disk being recovered. We can
 | |
|  * have newer objects on disk than we are replaying, and so for these cases we
 | |
|  * don't want to replay the current change as that will make the buffer contents
 | |
|  * temporarily invalid on disk.
 | |
|  *
 | |
|  * The magic number might not match the buffer type we are going to recover
 | |
|  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
 | |
|  * extract the LSN of the existing object in the buffer based on it's current
 | |
|  * magic number.  If we don't recognise the magic number in the buffer, then
 | |
|  * return a LSN of -1 so that the caller knows it was an unrecognised block and
 | |
|  * so can recover the buffer.
 | |
|  *
 | |
|  * Note: we cannot rely solely on magic number matches to determine that the
 | |
|  * buffer has a valid LSN - we also need to verify that it belongs to this
 | |
|  * filesystem, so we need to extract the object's LSN and compare it to that
 | |
|  * which we read from the superblock. If the UUIDs don't match, then we've got a
 | |
|  * stale metadata block from an old filesystem instance that we need to recover
 | |
|  * over the top of.
 | |
|  */
 | |
| static xfs_lsn_t
 | |
| xlog_recover_get_buf_lsn(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_buf		*bp,
 | |
| 	struct xfs_buf_log_format *buf_f)
 | |
| {
 | |
| 	uint32_t		magic32;
 | |
| 	uint16_t		magic16;
 | |
| 	uint16_t		magicda;
 | |
| 	void			*blk = bp->b_addr;
 | |
| 	uuid_t			*uuid;
 | |
| 	xfs_lsn_t		lsn = -1;
 | |
| 	uint16_t		blft;
 | |
| 
 | |
| 	/* v4 filesystems always recover immediately */
 | |
| 	if (!xfs_has_crc(mp))
 | |
| 		goto recover_immediately;
 | |
| 
 | |
| 	/*
 | |
| 	 * realtime bitmap and summary file blocks do not have magic numbers or
 | |
| 	 * UUIDs, so we must recover them immediately.
 | |
| 	 */
 | |
| 	blft = xfs_blft_from_flags(buf_f);
 | |
| 	if (blft == XFS_BLFT_RTBITMAP_BUF || blft == XFS_BLFT_RTSUMMARY_BUF)
 | |
| 		goto recover_immediately;
 | |
| 
 | |
| 	magic32 = be32_to_cpu(*(__be32 *)blk);
 | |
| 	switch (magic32) {
 | |
| 	case XFS_ABTB_CRC_MAGIC:
 | |
| 	case XFS_ABTC_CRC_MAGIC:
 | |
| 	case XFS_ABTB_MAGIC:
 | |
| 	case XFS_ABTC_MAGIC:
 | |
| 	case XFS_RMAP_CRC_MAGIC:
 | |
| 	case XFS_REFC_CRC_MAGIC:
 | |
| 	case XFS_FIBT_CRC_MAGIC:
 | |
| 	case XFS_FIBT_MAGIC:
 | |
| 	case XFS_IBT_CRC_MAGIC:
 | |
| 	case XFS_IBT_MAGIC: {
 | |
| 		struct xfs_btree_block *btb = blk;
 | |
| 
 | |
| 		lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
 | |
| 		uuid = &btb->bb_u.s.bb_uuid;
 | |
| 		break;
 | |
| 	}
 | |
| 	case XFS_BMAP_CRC_MAGIC:
 | |
| 	case XFS_BMAP_MAGIC: {
 | |
| 		struct xfs_btree_block *btb = blk;
 | |
| 
 | |
| 		lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
 | |
| 		uuid = &btb->bb_u.l.bb_uuid;
 | |
| 		break;
 | |
| 	}
 | |
| 	case XFS_AGF_MAGIC:
 | |
| 		lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
 | |
| 		uuid = &((struct xfs_agf *)blk)->agf_uuid;
 | |
| 		break;
 | |
| 	case XFS_AGFL_MAGIC:
 | |
| 		lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
 | |
| 		uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
 | |
| 		break;
 | |
| 	case XFS_AGI_MAGIC:
 | |
| 		lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
 | |
| 		uuid = &((struct xfs_agi *)blk)->agi_uuid;
 | |
| 		break;
 | |
| 	case XFS_SYMLINK_MAGIC:
 | |
| 		lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
 | |
| 		uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
 | |
| 		break;
 | |
| 	case XFS_DIR3_BLOCK_MAGIC:
 | |
| 	case XFS_DIR3_DATA_MAGIC:
 | |
| 	case XFS_DIR3_FREE_MAGIC:
 | |
| 		lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
 | |
| 		uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
 | |
| 		break;
 | |
| 	case XFS_ATTR3_RMT_MAGIC:
 | |
| 		/*
 | |
| 		 * Remote attr blocks are written synchronously, rather than
 | |
| 		 * being logged. That means they do not contain a valid LSN
 | |
| 		 * (i.e. transactionally ordered) in them, and hence any time we
 | |
| 		 * see a buffer to replay over the top of a remote attribute
 | |
| 		 * block we should simply do so.
 | |
| 		 */
 | |
| 		goto recover_immediately;
 | |
| 	case XFS_SB_MAGIC:
 | |
| 		/*
 | |
| 		 * superblock uuids are magic. We may or may not have a
 | |
| 		 * sb_meta_uuid on disk, but it will be set in the in-core
 | |
| 		 * superblock. We set the uuid pointer for verification
 | |
| 		 * according to the superblock feature mask to ensure we check
 | |
| 		 * the relevant UUID in the superblock.
 | |
| 		 */
 | |
| 		lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
 | |
| 		if (xfs_has_metauuid(mp))
 | |
| 			uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
 | |
| 		else
 | |
| 			uuid = &((struct xfs_dsb *)blk)->sb_uuid;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (lsn != (xfs_lsn_t)-1) {
 | |
| 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
 | |
| 			goto recover_immediately;
 | |
| 		return lsn;
 | |
| 	}
 | |
| 
 | |
| 	magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
 | |
| 	switch (magicda) {
 | |
| 	case XFS_DIR3_LEAF1_MAGIC:
 | |
| 	case XFS_DIR3_LEAFN_MAGIC:
 | |
| 	case XFS_ATTR3_LEAF_MAGIC:
 | |
| 	case XFS_DA3_NODE_MAGIC:
 | |
| 		lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
 | |
| 		uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (lsn != (xfs_lsn_t)-1) {
 | |
| 		if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
 | |
| 			goto recover_immediately;
 | |
| 		return lsn;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We do individual object checks on dquot and inode buffers as they
 | |
| 	 * have their own individual LSN records. Also, we could have a stale
 | |
| 	 * buffer here, so we have to at least recognise these buffer types.
 | |
| 	 *
 | |
| 	 * A notd complexity here is inode unlinked list processing - it logs
 | |
| 	 * the inode directly in the buffer, but we don't know which inodes have
 | |
| 	 * been modified, and there is no global buffer LSN. Hence we need to
 | |
| 	 * recover all inode buffer types immediately. This problem will be
 | |
| 	 * fixed by logical logging of the unlinked list modifications.
 | |
| 	 */
 | |
| 	magic16 = be16_to_cpu(*(__be16 *)blk);
 | |
| 	switch (magic16) {
 | |
| 	case XFS_DQUOT_MAGIC:
 | |
| 	case XFS_DINODE_MAGIC:
 | |
| 		goto recover_immediately;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* unknown buffer contents, recover immediately */
 | |
| 
 | |
| recover_immediately:
 | |
| 	return (xfs_lsn_t)-1;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine replays a modification made to a buffer at runtime.
 | |
|  * There are actually two types of buffer, regular and inode, which
 | |
|  * are handled differently.  Inode buffers are handled differently
 | |
|  * in that we only recover a specific set of data from them, namely
 | |
|  * the inode di_next_unlinked fields.  This is because all other inode
 | |
|  * data is actually logged via inode records and any data we replay
 | |
|  * here which overlaps that may be stale.
 | |
|  *
 | |
|  * When meta-data buffers are freed at run time we log a buffer item
 | |
|  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
 | |
|  * of the buffer in the log should not be replayed at recovery time.
 | |
|  * This is so that if the blocks covered by the buffer are reused for
 | |
|  * file data before we crash we don't end up replaying old, freed
 | |
|  * meta-data into a user's file.
 | |
|  *
 | |
|  * To handle the cancellation of buffer log items, we make two passes
 | |
|  * over the log during recovery.  During the first we build a table of
 | |
|  * those buffers which have been cancelled, and during the second we
 | |
|  * only replay those buffers which do not have corresponding cancel
 | |
|  * records in the table.  See xlog_recover_buf_pass[1,2] above
 | |
|  * for more details on the implementation of the table of cancel records.
 | |
|  */
 | |
| STATIC int
 | |
| xlog_recover_buf_commit_pass2(
 | |
| 	struct xlog			*log,
 | |
| 	struct list_head		*buffer_list,
 | |
| 	struct xlog_recover_item	*item,
 | |
| 	xfs_lsn_t			current_lsn)
 | |
| {
 | |
| 	struct xfs_buf_log_format	*buf_f = item->ri_buf[0].i_addr;
 | |
| 	struct xfs_mount		*mp = log->l_mp;
 | |
| 	struct xfs_buf			*bp;
 | |
| 	int				error;
 | |
| 	uint				buf_flags;
 | |
| 	xfs_lsn_t			lsn;
 | |
| 
 | |
| 	/*
 | |
| 	 * In this pass we only want to recover all the buffers which have
 | |
| 	 * not been cancelled and are not cancellation buffers themselves.
 | |
| 	 */
 | |
| 	if (buf_f->blf_flags & XFS_BLF_CANCEL) {
 | |
| 		if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
 | |
| 				buf_f->blf_len))
 | |
| 			goto cancelled;
 | |
| 	} else {
 | |
| 
 | |
| 		if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
 | |
| 				buf_f->blf_len))
 | |
| 			goto cancelled;
 | |
| 	}
 | |
| 
 | |
| 	trace_xfs_log_recover_buf_recover(log, buf_f);
 | |
| 
 | |
| 	buf_flags = 0;
 | |
| 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
 | |
| 		buf_flags |= XBF_UNMAPPED;
 | |
| 
 | |
| 	error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
 | |
| 			  buf_flags, &bp, NULL);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Recover the buffer only if we get an LSN from it and it's less than
 | |
| 	 * the lsn of the transaction we are replaying.
 | |
| 	 *
 | |
| 	 * Note that we have to be extremely careful of readahead here.
 | |
| 	 * Readahead does not attach verfiers to the buffers so if we don't
 | |
| 	 * actually do any replay after readahead because of the LSN we found
 | |
| 	 * in the buffer if more recent than that current transaction then we
 | |
| 	 * need to attach the verifier directly. Failure to do so can lead to
 | |
| 	 * future recovery actions (e.g. EFI and unlinked list recovery) can
 | |
| 	 * operate on the buffers and they won't get the verifier attached. This
 | |
| 	 * can lead to blocks on disk having the correct content but a stale
 | |
| 	 * CRC.
 | |
| 	 *
 | |
| 	 * It is safe to assume these clean buffers are currently up to date.
 | |
| 	 * If the buffer is dirtied by a later transaction being replayed, then
 | |
| 	 * the verifier will be reset to match whatever recover turns that
 | |
| 	 * buffer into.
 | |
| 	 */
 | |
| 	lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
 | |
| 	if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
 | |
| 		trace_xfs_log_recover_buf_skip(log, buf_f);
 | |
| 		xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
 | |
| 
 | |
| 		/*
 | |
| 		 * We're skipping replay of this buffer log item due to the log
 | |
| 		 * item LSN being behind the ondisk buffer.  Verify the buffer
 | |
| 		 * contents since we aren't going to run the write verifier.
 | |
| 		 */
 | |
| 		if (bp->b_ops) {
 | |
| 			bp->b_ops->verify_read(bp);
 | |
| 			error = bp->b_error;
 | |
| 		}
 | |
| 		goto out_release;
 | |
| 	}
 | |
| 
 | |
| 	if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
 | |
| 		error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
 | |
| 		if (error)
 | |
| 			goto out_release;
 | |
| 	} else if (buf_f->blf_flags &
 | |
| 		  (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
 | |
| 		bool	dirty;
 | |
| 
 | |
| 		dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
 | |
| 		if (!dirty)
 | |
| 			goto out_release;
 | |
| 	} else if ((xfs_blft_from_flags(buf_f) & XFS_BLFT_SB_BUF) &&
 | |
| 			xfs_buf_daddr(bp) == 0) {
 | |
| 		error = xlog_recover_do_primary_sb_buffer(mp, item, bp, buf_f,
 | |
| 				current_lsn);
 | |
| 		if (error)
 | |
| 			goto out_release;
 | |
| 	} else {
 | |
| 		xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform delayed write on the buffer.  Asynchronous writes will be
 | |
| 	 * slower when taking into account all the buffers to be flushed.
 | |
| 	 *
 | |
| 	 * Also make sure that only inode buffers with good sizes stay in
 | |
| 	 * the buffer cache.  The kernel moves inodes in buffers of 1 block
 | |
| 	 * or inode_cluster_size bytes, whichever is bigger.  The inode
 | |
| 	 * buffers in the log can be a different size if the log was generated
 | |
| 	 * by an older kernel using unclustered inode buffers or a newer kernel
 | |
| 	 * running with a different inode cluster size.  Regardless, if
 | |
| 	 * the inode buffer size isn't max(blocksize, inode_cluster_size)
 | |
| 	 * for *our* value of inode_cluster_size, then we need to keep
 | |
| 	 * the buffer out of the buffer cache so that the buffer won't
 | |
| 	 * overlap with future reads of those inodes.
 | |
| 	 */
 | |
| 	if (XFS_DINODE_MAGIC ==
 | |
| 	    be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
 | |
| 	    (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
 | |
| 		xfs_buf_stale(bp);
 | |
| 		error = xfs_bwrite(bp);
 | |
| 	} else {
 | |
| 		ASSERT(bp->b_mount == mp);
 | |
| 		bp->b_flags |= _XBF_LOGRECOVERY;
 | |
| 		xfs_buf_delwri_queue(bp, buffer_list);
 | |
| 	}
 | |
| 
 | |
| out_release:
 | |
| 	xfs_buf_relse(bp);
 | |
| 	return error;
 | |
| cancelled:
 | |
| 	trace_xfs_log_recover_buf_cancel(log, buf_f);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct xlog_recover_item_ops xlog_buf_item_ops = {
 | |
| 	.item_type		= XFS_LI_BUF,
 | |
| 	.reorder		= xlog_recover_buf_reorder,
 | |
| 	.ra_pass2		= xlog_recover_buf_ra_pass2,
 | |
| 	.commit_pass1		= xlog_recover_buf_commit_pass1,
 | |
| 	.commit_pass2		= xlog_recover_buf_commit_pass2,
 | |
| };
 | |
| 
 | |
| #ifdef DEBUG
 | |
| void
 | |
| xlog_check_buf_cancel_table(
 | |
| 	struct xlog	*log)
 | |
| {
 | |
| 	int		i;
 | |
| 
 | |
| 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
 | |
| 		ASSERT(list_empty(&log->l_buf_cancel_table[i]));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| int
 | |
| xlog_alloc_buf_cancel_table(
 | |
| 	struct xlog	*log)
 | |
| {
 | |
| 	void		*p;
 | |
| 	int		i;
 | |
| 
 | |
| 	ASSERT(log->l_buf_cancel_table == NULL);
 | |
| 
 | |
| 	p = kmalloc_array(XLOG_BC_TABLE_SIZE, sizeof(struct list_head),
 | |
| 			  GFP_KERNEL);
 | |
| 	if (!p)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	log->l_buf_cancel_table = p;
 | |
| 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
 | |
| 		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void
 | |
| xlog_free_buf_cancel_table(
 | |
| 	struct xlog	*log)
 | |
| {
 | |
| 	int		i;
 | |
| 
 | |
| 	if (!log->l_buf_cancel_table)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) {
 | |
| 		struct xfs_buf_cancel	*bc;
 | |
| 
 | |
| 		while ((bc = list_first_entry_or_null(
 | |
| 				&log->l_buf_cancel_table[i],
 | |
| 				struct xfs_buf_cancel, bc_list))) {
 | |
| 			list_del(&bc->bc_list);
 | |
| 			kfree(bc);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(log->l_buf_cancel_table);
 | |
| 	log->l_buf_cancel_table = NULL;
 | |
| }
 |