934 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			934 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Copyright (C) 2018-2023 Oracle.  All Rights Reserved.
 | |
|  * Author: Darrick J. Wong <djwong@kernel.org>
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_shared.h"
 | |
| #include "xfs_format.h"
 | |
| #include "xfs_trans_resv.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_defer.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_btree_staging.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_log_format.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_alloc_btree.h"
 | |
| #include "xfs_rmap.h"
 | |
| #include "xfs_rmap_btree.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_refcount.h"
 | |
| #include "xfs_extent_busy.h"
 | |
| #include "xfs_health.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "scrub/xfs_scrub.h"
 | |
| #include "scrub/scrub.h"
 | |
| #include "scrub/common.h"
 | |
| #include "scrub/btree.h"
 | |
| #include "scrub/trace.h"
 | |
| #include "scrub/repair.h"
 | |
| #include "scrub/bitmap.h"
 | |
| #include "scrub/agb_bitmap.h"
 | |
| #include "scrub/xfile.h"
 | |
| #include "scrub/xfarray.h"
 | |
| #include "scrub/newbt.h"
 | |
| #include "scrub/reap.h"
 | |
| 
 | |
| /*
 | |
|  * Free Space Btree Repair
 | |
|  * =======================
 | |
|  *
 | |
|  * The reverse mappings are supposed to record all space usage for the entire
 | |
|  * AG.  Therefore, we can recreate the free extent records in an AG by looking
 | |
|  * for gaps in the physical extents recorded in the rmapbt.  These records are
 | |
|  * staged in @free_records.  Identifying the gaps is more difficult on a
 | |
|  * reflink filesystem because rmap records are allowed to overlap.
 | |
|  *
 | |
|  * Because the final step of building a new index is to free the space used by
 | |
|  * the old index, repair needs to find that space.  Unfortunately, all
 | |
|  * structures that live in the free space (bnobt, cntbt, rmapbt, agfl) share
 | |
|  * the same rmapbt owner code (OWN_AG), so this is not straightforward.
 | |
|  *
 | |
|  * The scan of the reverse mapping information records the space used by OWN_AG
 | |
|  * in @old_allocbt_blocks, which (at this stage) is somewhat misnamed.  While
 | |
|  * walking the rmapbt records, we create a second bitmap @not_allocbt_blocks to
 | |
|  * record all visited rmap btree blocks and all blocks owned by the AGFL.
 | |
|  *
 | |
|  * After that is where the definitions of old_allocbt_blocks shifts.  This
 | |
|  * expression identifies possible former bnobt/cntbt blocks:
 | |
|  *
 | |
|  *	(OWN_AG blocks) & ~(rmapbt blocks | agfl blocks);
 | |
|  *
 | |
|  * Substituting from above definitions, that becomes:
 | |
|  *
 | |
|  *	old_allocbt_blocks & ~not_allocbt_blocks
 | |
|  *
 | |
|  * The OWN_AG bitmap itself isn't needed after this point, so what we really do
 | |
|  * instead is:
 | |
|  *
 | |
|  *	old_allocbt_blocks &= ~not_allocbt_blocks;
 | |
|  *
 | |
|  * After this point, @old_allocbt_blocks is a bitmap of alleged former
 | |
|  * bnobt/cntbt blocks.  The xagb_bitmap_disunion operation modifies its first
 | |
|  * parameter in place to avoid copying records around.
 | |
|  *
 | |
|  * Next, some of the space described by @free_records are diverted to the newbt
 | |
|  * reservation and used to format new btree blocks.  The remaining records are
 | |
|  * written to the new btree indices.  We reconstruct both bnobt and cntbt at
 | |
|  * the same time since we've already done all the work.
 | |
|  *
 | |
|  * We use the prefix 'xrep_abt' here because we regenerate both free space
 | |
|  * allocation btrees at the same time.
 | |
|  */
 | |
| 
 | |
| struct xrep_abt {
 | |
| 	/* Blocks owned by the rmapbt or the agfl. */
 | |
| 	struct xagb_bitmap	not_allocbt_blocks;
 | |
| 
 | |
| 	/* All OWN_AG blocks. */
 | |
| 	struct xagb_bitmap	old_allocbt_blocks;
 | |
| 
 | |
| 	/*
 | |
| 	 * New bnobt information.  All btree block reservations are added to
 | |
| 	 * the reservation list in new_bnobt.
 | |
| 	 */
 | |
| 	struct xrep_newbt	new_bnobt;
 | |
| 
 | |
| 	/* new cntbt information */
 | |
| 	struct xrep_newbt	new_cntbt;
 | |
| 
 | |
| 	/* Free space extents. */
 | |
| 	struct xfarray		*free_records;
 | |
| 
 | |
| 	struct xfs_scrub	*sc;
 | |
| 
 | |
| 	/* Number of non-null records in @free_records. */
 | |
| 	uint64_t		nr_real_records;
 | |
| 
 | |
| 	/* get_records()'s position in the free space record array. */
 | |
| 	xfarray_idx_t		array_cur;
 | |
| 
 | |
| 	/*
 | |
| 	 * Next block we anticipate seeing in the rmap records.  If the next
 | |
| 	 * rmap record is greater than next_agbno, we have found unused space.
 | |
| 	 */
 | |
| 	xfs_agblock_t		next_agbno;
 | |
| 
 | |
| 	/* Number of free blocks in this AG. */
 | |
| 	xfs_agblock_t		nr_blocks;
 | |
| 
 | |
| 	/* Longest free extent we found in the AG. */
 | |
| 	xfs_agblock_t		longest;
 | |
| };
 | |
| 
 | |
| /* Set up to repair AG free space btrees. */
 | |
| int
 | |
| xrep_setup_ag_allocbt(
 | |
| 	struct xfs_scrub	*sc)
 | |
| {
 | |
| 	unsigned int		busy_gen;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the busy extent list is clear because we can't put extents
 | |
| 	 * on there twice.
 | |
| 	 */
 | |
| 	busy_gen = READ_ONCE(sc->sa.pag->pagb_gen);
 | |
| 	if (xfs_extent_busy_list_empty(sc->sa.pag))
 | |
| 		return 0;
 | |
| 
 | |
| 	return xfs_extent_busy_flush(sc->tp, sc->sa.pag, busy_gen, 0);
 | |
| }
 | |
| 
 | |
| /* Check for any obvious conflicts in the free extent. */
 | |
| STATIC int
 | |
| xrep_abt_check_free_ext(
 | |
| 	struct xfs_scrub	*sc,
 | |
| 	const struct xfs_alloc_rec_incore *rec)
 | |
| {
 | |
| 	enum xbtree_recpacking	outcome;
 | |
| 	int			error;
 | |
| 
 | |
| 	if (xfs_alloc_check_irec(sc->sa.pag, rec) != NULL)
 | |
| 		return -EFSCORRUPTED;
 | |
| 
 | |
| 	/* Must not be an inode chunk. */
 | |
| 	error = xfs_ialloc_has_inodes_at_extent(sc->sa.ino_cur,
 | |
| 			rec->ar_startblock, rec->ar_blockcount, &outcome);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	if (outcome != XBTREE_RECPACKING_EMPTY)
 | |
| 		return -EFSCORRUPTED;
 | |
| 
 | |
| 	/* Must not be shared or CoW staging. */
 | |
| 	if (sc->sa.refc_cur) {
 | |
| 		error = xfs_refcount_has_records(sc->sa.refc_cur,
 | |
| 				XFS_REFC_DOMAIN_SHARED, rec->ar_startblock,
 | |
| 				rec->ar_blockcount, &outcome);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		if (outcome != XBTREE_RECPACKING_EMPTY)
 | |
| 			return -EFSCORRUPTED;
 | |
| 
 | |
| 		error = xfs_refcount_has_records(sc->sa.refc_cur,
 | |
| 				XFS_REFC_DOMAIN_COW, rec->ar_startblock,
 | |
| 				rec->ar_blockcount, &outcome);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		if (outcome != XBTREE_RECPACKING_EMPTY)
 | |
| 			return -EFSCORRUPTED;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stash a free space record for all the space since the last bno we found
 | |
|  * all the way up to @end.
 | |
|  */
 | |
| static int
 | |
| xrep_abt_stash(
 | |
| 	struct xrep_abt		*ra,
 | |
| 	xfs_agblock_t		end)
 | |
| {
 | |
| 	struct xfs_alloc_rec_incore arec = {
 | |
| 		.ar_startblock	= ra->next_agbno,
 | |
| 		.ar_blockcount	= end - ra->next_agbno,
 | |
| 	};
 | |
| 	struct xfs_scrub	*sc = ra->sc;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	if (xchk_should_terminate(sc, &error))
 | |
| 		return error;
 | |
| 
 | |
| 	error = xrep_abt_check_free_ext(ra->sc, &arec);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	trace_xrep_abt_found(sc->mp, sc->sa.pag->pag_agno, &arec);
 | |
| 
 | |
| 	error = xfarray_append(ra->free_records, &arec);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	ra->nr_blocks += arec.ar_blockcount;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Record extents that aren't in use from gaps in the rmap records. */
 | |
| STATIC int
 | |
| xrep_abt_walk_rmap(
 | |
| 	struct xfs_btree_cur		*cur,
 | |
| 	const struct xfs_rmap_irec	*rec,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xrep_abt			*ra = priv;
 | |
| 	int				error;
 | |
| 
 | |
| 	/* Record all the OWN_AG blocks... */
 | |
| 	if (rec->rm_owner == XFS_RMAP_OWN_AG) {
 | |
| 		error = xagb_bitmap_set(&ra->old_allocbt_blocks,
 | |
| 				rec->rm_startblock, rec->rm_blockcount);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/* ...and all the rmapbt blocks... */
 | |
| 	error = xagb_bitmap_set_btcur_path(&ra->not_allocbt_blocks, cur);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/* ...and all the free space. */
 | |
| 	if (rec->rm_startblock > ra->next_agbno) {
 | |
| 		error = xrep_abt_stash(ra, rec->rm_startblock);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * rmap records can overlap on reflink filesystems, so project
 | |
| 	 * next_agbno as far out into the AG space as we currently know about.
 | |
| 	 */
 | |
| 	ra->next_agbno = max_t(xfs_agblock_t, ra->next_agbno,
 | |
| 			rec->rm_startblock + rec->rm_blockcount);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Collect an AGFL block for the not-to-release list. */
 | |
| static int
 | |
| xrep_abt_walk_agfl(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	xfs_agblock_t		agbno,
 | |
| 	void			*priv)
 | |
| {
 | |
| 	struct xrep_abt		*ra = priv;
 | |
| 
 | |
| 	return xagb_bitmap_set(&ra->not_allocbt_blocks, agbno, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare two free space extents by block number.  We want to sort in order of
 | |
|  * increasing block number.
 | |
|  */
 | |
| static int
 | |
| xrep_bnobt_extent_cmp(
 | |
| 	const void		*a,
 | |
| 	const void		*b)
 | |
| {
 | |
| 	const struct xfs_alloc_rec_incore *ap = a;
 | |
| 	const struct xfs_alloc_rec_incore *bp = b;
 | |
| 
 | |
| 	if (ap->ar_startblock > bp->ar_startblock)
 | |
| 		return 1;
 | |
| 	else if (ap->ar_startblock < bp->ar_startblock)
 | |
| 		return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Re-sort the free extents by block number so that we can put the records into
 | |
|  * the bnobt in the correct order.  Make sure the records do not overlap in
 | |
|  * physical space.
 | |
|  */
 | |
| STATIC int
 | |
| xrep_bnobt_sort_records(
 | |
| 	struct xrep_abt			*ra)
 | |
| {
 | |
| 	struct xfs_alloc_rec_incore	arec;
 | |
| 	xfarray_idx_t			cur = XFARRAY_CURSOR_INIT;
 | |
| 	xfs_agblock_t			next_agbno = 0;
 | |
| 	int				error;
 | |
| 
 | |
| 	error = xfarray_sort(ra->free_records, xrep_bnobt_extent_cmp, 0);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	while ((error = xfarray_iter(ra->free_records, &cur, &arec)) == 1) {
 | |
| 		if (arec.ar_startblock < next_agbno)
 | |
| 			return -EFSCORRUPTED;
 | |
| 
 | |
| 		next_agbno = arec.ar_startblock + arec.ar_blockcount;
 | |
| 	}
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Compare two free space extents by length and then block number.  We want
 | |
|  * to sort first in order of increasing length and then in order of increasing
 | |
|  * block number.
 | |
|  */
 | |
| static int
 | |
| xrep_cntbt_extent_cmp(
 | |
| 	const void			*a,
 | |
| 	const void			*b)
 | |
| {
 | |
| 	const struct xfs_alloc_rec_incore *ap = a;
 | |
| 	const struct xfs_alloc_rec_incore *bp = b;
 | |
| 
 | |
| 	if (ap->ar_blockcount > bp->ar_blockcount)
 | |
| 		return 1;
 | |
| 	else if (ap->ar_blockcount < bp->ar_blockcount)
 | |
| 		return -1;
 | |
| 	return xrep_bnobt_extent_cmp(a, b);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sort the free extents by length so so that we can put the records into the
 | |
|  * cntbt in the correct order.  Don't let userspace kill us if we're resorting
 | |
|  * after allocating btree blocks.
 | |
|  */
 | |
| STATIC int
 | |
| xrep_cntbt_sort_records(
 | |
| 	struct xrep_abt			*ra,
 | |
| 	bool				is_resort)
 | |
| {
 | |
| 	return xfarray_sort(ra->free_records, xrep_cntbt_extent_cmp,
 | |
| 			is_resort ? 0 : XFARRAY_SORT_KILLABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Iterate all reverse mappings to find (1) the gaps between rmap records (all
 | |
|  * unowned space), (2) the OWN_AG extents (which encompass the free space
 | |
|  * btrees, the rmapbt, and the agfl), (3) the rmapbt blocks, and (4) the AGFL
 | |
|  * blocks.  The free space is (1) + (2) - (3) - (4).
 | |
|  */
 | |
| STATIC int
 | |
| xrep_abt_find_freespace(
 | |
| 	struct xrep_abt		*ra)
 | |
| {
 | |
| 	struct xfs_scrub	*sc = ra->sc;
 | |
| 	struct xfs_mount	*mp = sc->mp;
 | |
| 	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
 | |
| 	struct xfs_buf		*agfl_bp;
 | |
| 	xfs_agblock_t		agend;
 | |
| 	int			error;
 | |
| 
 | |
| 	xagb_bitmap_init(&ra->not_allocbt_blocks);
 | |
| 
 | |
| 	xrep_ag_btcur_init(sc, &sc->sa);
 | |
| 
 | |
| 	/*
 | |
| 	 * Iterate all the reverse mappings to find gaps in the physical
 | |
| 	 * mappings, all the OWN_AG blocks, and all the rmapbt extents.
 | |
| 	 */
 | |
| 	error = xfs_rmap_query_all(sc->sa.rmap_cur, xrep_abt_walk_rmap, ra);
 | |
| 	if (error)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Insert a record for space between the last rmap and EOAG. */
 | |
| 	agend = be32_to_cpu(agf->agf_length);
 | |
| 	if (ra->next_agbno < agend) {
 | |
| 		error = xrep_abt_stash(ra, agend);
 | |
| 		if (error)
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* Collect all the AGFL blocks. */
 | |
| 	error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
 | |
| 	if (error)
 | |
| 		goto err;
 | |
| 
 | |
| 	error = xfs_agfl_walk(mp, agf, agfl_bp, xrep_abt_walk_agfl, ra);
 | |
| 	if (error)
 | |
| 		goto err_agfl;
 | |
| 
 | |
| 	/* Compute the old bnobt/cntbt blocks. */
 | |
| 	error = xagb_bitmap_disunion(&ra->old_allocbt_blocks,
 | |
| 			&ra->not_allocbt_blocks);
 | |
| 	if (error)
 | |
| 		goto err_agfl;
 | |
| 
 | |
| 	ra->nr_real_records = xfarray_length(ra->free_records);
 | |
| err_agfl:
 | |
| 	xfs_trans_brelse(sc->tp, agfl_bp);
 | |
| err:
 | |
| 	xchk_ag_btcur_free(&sc->sa);
 | |
| 	xagb_bitmap_destroy(&ra->not_allocbt_blocks);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're going to use the observed free space records to reserve blocks for the
 | |
|  * new free space btrees, so we play an iterative game where we try to converge
 | |
|  * on the number of blocks we need:
 | |
|  *
 | |
|  * 1. Estimate how many blocks we'll need to store the records.
 | |
|  * 2. If the first free record has more blocks than we need, we're done.
 | |
|  *    We will have to re-sort the records prior to building the cntbt.
 | |
|  * 3. If that record has exactly the number of blocks we need, null out the
 | |
|  *    record.  We're done.
 | |
|  * 4. Otherwise, we still need more blocks.  Null out the record, subtract its
 | |
|  *    length from the number of blocks we need, and go back to step 1.
 | |
|  *
 | |
|  * Fortunately, we don't have to do any transaction work to play this game, so
 | |
|  * we don't have to tear down the staging cursors.
 | |
|  */
 | |
| STATIC int
 | |
| xrep_abt_reserve_space(
 | |
| 	struct xrep_abt		*ra,
 | |
| 	struct xfs_btree_cur	*bno_cur,
 | |
| 	struct xfs_btree_cur	*cnt_cur,
 | |
| 	bool			*needs_resort)
 | |
| {
 | |
| 	struct xfs_scrub	*sc = ra->sc;
 | |
| 	xfarray_idx_t		record_nr;
 | |
| 	unsigned int		allocated = 0;
 | |
| 	int			error = 0;
 | |
| 
 | |
| 	record_nr = xfarray_length(ra->free_records) - 1;
 | |
| 	do {
 | |
| 		struct xfs_alloc_rec_incore arec;
 | |
| 		uint64_t		required;
 | |
| 		unsigned int		desired;
 | |
| 		unsigned int		len;
 | |
| 
 | |
| 		/* Compute how many blocks we'll need. */
 | |
| 		error = xfs_btree_bload_compute_geometry(cnt_cur,
 | |
| 				&ra->new_cntbt.bload, ra->nr_real_records);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		error = xfs_btree_bload_compute_geometry(bno_cur,
 | |
| 				&ra->new_bnobt.bload, ra->nr_real_records);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		/* How many btree blocks do we need to store all records? */
 | |
| 		required = ra->new_bnobt.bload.nr_blocks +
 | |
| 			   ra->new_cntbt.bload.nr_blocks;
 | |
| 		ASSERT(required < INT_MAX);
 | |
| 
 | |
| 		/* If we've reserved enough blocks, we're done. */
 | |
| 		if (allocated >= required)
 | |
| 			break;
 | |
| 
 | |
| 		desired = required - allocated;
 | |
| 
 | |
| 		/* We need space but there's none left; bye! */
 | |
| 		if (ra->nr_real_records == 0) {
 | |
| 			error = -ENOSPC;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* Grab the first record from the list. */
 | |
| 		error = xfarray_load(ra->free_records, record_nr, &arec);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 
 | |
| 		ASSERT(arec.ar_blockcount <= UINT_MAX);
 | |
| 		len = min_t(unsigned int, arec.ar_blockcount, desired);
 | |
| 
 | |
| 		trace_xrep_newbt_alloc_ag_blocks(sc->mp, sc->sa.pag->pag_agno,
 | |
| 				arec.ar_startblock, len, XFS_RMAP_OWN_AG);
 | |
| 
 | |
| 		error = xrep_newbt_add_extent(&ra->new_bnobt, sc->sa.pag,
 | |
| 				arec.ar_startblock, len);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 		allocated += len;
 | |
| 		ra->nr_blocks -= len;
 | |
| 
 | |
| 		if (arec.ar_blockcount > desired) {
 | |
| 			/*
 | |
| 			 * Record has more space than we need.  The number of
 | |
| 			 * free records doesn't change, so shrink the free
 | |
| 			 * record, inform the caller that the records are no
 | |
| 			 * longer sorted by length, and exit.
 | |
| 			 */
 | |
| 			arec.ar_startblock += desired;
 | |
| 			arec.ar_blockcount -= desired;
 | |
| 			error = xfarray_store(ra->free_records, record_nr,
 | |
| 					&arec);
 | |
| 			if (error)
 | |
| 				break;
 | |
| 
 | |
| 			*needs_resort = true;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We're going to use up the entire record, so unset it and
 | |
| 		 * move on to the next one.  This changes the number of free
 | |
| 		 * records (but doesn't break the sorting order), so we must
 | |
| 		 * go around the loop once more to re-run _bload_init.
 | |
| 		 */
 | |
| 		error = xfarray_unset(ra->free_records, record_nr);
 | |
| 		if (error)
 | |
| 			break;
 | |
| 		ra->nr_real_records--;
 | |
| 		record_nr--;
 | |
| 	} while (1);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xrep_abt_dispose_one(
 | |
| 	struct xrep_abt		*ra,
 | |
| 	struct xrep_newbt_resv	*resv)
 | |
| {
 | |
| 	struct xfs_scrub	*sc = ra->sc;
 | |
| 	struct xfs_perag	*pag = sc->sa.pag;
 | |
| 	xfs_agblock_t		free_agbno = resv->agbno + resv->used;
 | |
| 	xfs_extlen_t		free_aglen = resv->len - resv->used;
 | |
| 	int			error;
 | |
| 
 | |
| 	ASSERT(pag == resv->pag);
 | |
| 
 | |
| 	/* Add a deferred rmap for each extent we used. */
 | |
| 	if (resv->used > 0)
 | |
| 		xfs_rmap_alloc_extent(sc->tp, pag->pag_agno, resv->agbno,
 | |
| 				resv->used, XFS_RMAP_OWN_AG);
 | |
| 
 | |
| 	/*
 | |
| 	 * For each reserved btree block we didn't use, add it to the free
 | |
| 	 * space btree.  We didn't touch fdblocks when we reserved them, so
 | |
| 	 * we don't touch it now.
 | |
| 	 */
 | |
| 	if (free_aglen == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	trace_xrep_newbt_free_blocks(sc->mp, resv->pag->pag_agno, free_agbno,
 | |
| 			free_aglen, ra->new_bnobt.oinfo.oi_owner);
 | |
| 
 | |
| 	error = __xfs_free_extent(sc->tp, resv->pag, free_agbno, free_aglen,
 | |
| 			&ra->new_bnobt.oinfo, XFS_AG_RESV_IGNORE, true);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	return xrep_defer_finish(sc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deal with all the space we reserved.  Blocks that were allocated for the
 | |
|  * free space btrees need to have a (deferred) rmap added for the OWN_AG
 | |
|  * allocation, and blocks that didn't get used can be freed via the usual
 | |
|  * (deferred) means.
 | |
|  */
 | |
| STATIC void
 | |
| xrep_abt_dispose_reservations(
 | |
| 	struct xrep_abt		*ra,
 | |
| 	int			error)
 | |
| {
 | |
| 	struct xrep_newbt_resv	*resv, *n;
 | |
| 
 | |
| 	if (error)
 | |
| 		goto junkit;
 | |
| 
 | |
| 	list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
 | |
| 		error = xrep_abt_dispose_one(ra, resv);
 | |
| 		if (error)
 | |
| 			goto junkit;
 | |
| 	}
 | |
| 
 | |
| junkit:
 | |
| 	list_for_each_entry_safe(resv, n, &ra->new_bnobt.resv_list, list) {
 | |
| 		xfs_perag_put(resv->pag);
 | |
| 		list_del(&resv->list);
 | |
| 		kfree(resv);
 | |
| 	}
 | |
| 
 | |
| 	xrep_newbt_cancel(&ra->new_bnobt);
 | |
| 	xrep_newbt_cancel(&ra->new_cntbt);
 | |
| }
 | |
| 
 | |
| /* Retrieve free space data for bulk load. */
 | |
| STATIC int
 | |
| xrep_abt_get_records(
 | |
| 	struct xfs_btree_cur		*cur,
 | |
| 	unsigned int			idx,
 | |
| 	struct xfs_btree_block		*block,
 | |
| 	unsigned int			nr_wanted,
 | |
| 	void				*priv)
 | |
| {
 | |
| 	struct xfs_alloc_rec_incore	*arec = &cur->bc_rec.a;
 | |
| 	struct xrep_abt			*ra = priv;
 | |
| 	union xfs_btree_rec		*block_rec;
 | |
| 	unsigned int			loaded;
 | |
| 	int				error;
 | |
| 
 | |
| 	for (loaded = 0; loaded < nr_wanted; loaded++, idx++) {
 | |
| 		error = xfarray_load_next(ra->free_records, &ra->array_cur,
 | |
| 				arec);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		ra->longest = max(ra->longest, arec->ar_blockcount);
 | |
| 
 | |
| 		block_rec = xfs_btree_rec_addr(cur, idx, block);
 | |
| 		cur->bc_ops->init_rec_from_cur(cur, block_rec);
 | |
| 	}
 | |
| 
 | |
| 	return loaded;
 | |
| }
 | |
| 
 | |
| /* Feed one of the new btree blocks to the bulk loader. */
 | |
| STATIC int
 | |
| xrep_abt_claim_block(
 | |
| 	struct xfs_btree_cur	*cur,
 | |
| 	union xfs_btree_ptr	*ptr,
 | |
| 	void			*priv)
 | |
| {
 | |
| 	struct xrep_abt		*ra = priv;
 | |
| 
 | |
| 	return xrep_newbt_claim_block(cur, &ra->new_bnobt, ptr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reset the AGF counters to reflect the free space btrees that we just
 | |
|  * rebuilt, then reinitialize the per-AG data.
 | |
|  */
 | |
| STATIC int
 | |
| xrep_abt_reset_counters(
 | |
| 	struct xrep_abt		*ra)
 | |
| {
 | |
| 	struct xfs_scrub	*sc = ra->sc;
 | |
| 	struct xfs_perag	*pag = sc->sa.pag;
 | |
| 	struct xfs_agf		*agf = sc->sa.agf_bp->b_addr;
 | |
| 	unsigned int		freesp_btreeblks = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the contribution to agf_btreeblks for the new free space
 | |
| 	 * btrees.  This is the computed btree size minus anything we didn't
 | |
| 	 * use.
 | |
| 	 */
 | |
| 	freesp_btreeblks += ra->new_bnobt.bload.nr_blocks - 1;
 | |
| 	freesp_btreeblks += ra->new_cntbt.bload.nr_blocks - 1;
 | |
| 
 | |
| 	freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_bnobt);
 | |
| 	freesp_btreeblks -= xrep_newbt_unused_blocks(&ra->new_cntbt);
 | |
| 
 | |
| 	/*
 | |
| 	 * The AGF header contains extra information related to the free space
 | |
| 	 * btrees, so we must update those fields here.
 | |
| 	 */
 | |
| 	agf->agf_btreeblks = cpu_to_be32(freesp_btreeblks +
 | |
| 				(be32_to_cpu(agf->agf_rmap_blocks) - 1));
 | |
| 	agf->agf_freeblks = cpu_to_be32(ra->nr_blocks);
 | |
| 	agf->agf_longest = cpu_to_be32(ra->longest);
 | |
| 	xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_BTREEBLKS |
 | |
| 						 XFS_AGF_LONGEST |
 | |
| 						 XFS_AGF_FREEBLKS);
 | |
| 
 | |
| 	/*
 | |
| 	 * After we commit the new btree to disk, it is possible that the
 | |
| 	 * process to reap the old btree blocks will race with the AIL trying
 | |
| 	 * to checkpoint the old btree blocks into the filesystem.  If the new
 | |
| 	 * tree is shorter than the old one, the allocbt write verifier will
 | |
| 	 * fail and the AIL will shut down the filesystem.
 | |
| 	 *
 | |
| 	 * To avoid this, save the old incore btree height values as the alt
 | |
| 	 * height values before re-initializing the perag info from the updated
 | |
| 	 * AGF to capture all the new values.
 | |
| 	 */
 | |
| 	pag->pagf_repair_bno_level = pag->pagf_bno_level;
 | |
| 	pag->pagf_repair_cnt_level = pag->pagf_cnt_level;
 | |
| 
 | |
| 	/* Reinitialize with the values we just logged. */
 | |
| 	return xrep_reinit_pagf(sc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the collected free space information to stage new free space btrees.
 | |
|  * If this is successful we'll return with the new btree root
 | |
|  * information logged to the repair transaction but not yet committed.
 | |
|  */
 | |
| STATIC int
 | |
| xrep_abt_build_new_trees(
 | |
| 	struct xrep_abt		*ra)
 | |
| {
 | |
| 	struct xfs_scrub	*sc = ra->sc;
 | |
| 	struct xfs_btree_cur	*bno_cur;
 | |
| 	struct xfs_btree_cur	*cnt_cur;
 | |
| 	struct xfs_perag	*pag = sc->sa.pag;
 | |
| 	bool			needs_resort = false;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sort the free extents by length so that we can set up the free space
 | |
| 	 * btrees in as few extents as possible.  This reduces the amount of
 | |
| 	 * deferred rmap / free work we have to do at the end.
 | |
| 	 */
 | |
| 	error = xrep_cntbt_sort_records(ra, false);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare to construct the new btree by reserving disk space for the
 | |
| 	 * new btree and setting up all the accounting information we'll need
 | |
| 	 * to root the new btree while it's under construction and before we
 | |
| 	 * attach it to the AG header.
 | |
| 	 */
 | |
| 	xrep_newbt_init_bare(&ra->new_bnobt, sc);
 | |
| 	xrep_newbt_init_bare(&ra->new_cntbt, sc);
 | |
| 
 | |
| 	ra->new_bnobt.bload.get_records = xrep_abt_get_records;
 | |
| 	ra->new_cntbt.bload.get_records = xrep_abt_get_records;
 | |
| 
 | |
| 	ra->new_bnobt.bload.claim_block = xrep_abt_claim_block;
 | |
| 	ra->new_cntbt.bload.claim_block = xrep_abt_claim_block;
 | |
| 
 | |
| 	/* Allocate cursors for the staged btrees. */
 | |
| 	bno_cur = xfs_bnobt_init_cursor(sc->mp, NULL, NULL, pag);
 | |
| 	xfs_btree_stage_afakeroot(bno_cur, &ra->new_bnobt.afake);
 | |
| 
 | |
| 	cnt_cur = xfs_cntbt_init_cursor(sc->mp, NULL, NULL, pag);
 | |
| 	xfs_btree_stage_afakeroot(cnt_cur, &ra->new_cntbt.afake);
 | |
| 
 | |
| 	/* Last chance to abort before we start committing fixes. */
 | |
| 	if (xchk_should_terminate(sc, &error))
 | |
| 		goto err_cur;
 | |
| 
 | |
| 	/* Reserve the space we'll need for the new btrees. */
 | |
| 	error = xrep_abt_reserve_space(ra, bno_cur, cnt_cur, &needs_resort);
 | |
| 	if (error)
 | |
| 		goto err_cur;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need to re-sort the free extents by length, do so so that we
 | |
| 	 * can put the records into the cntbt in the correct order.
 | |
| 	 */
 | |
| 	if (needs_resort) {
 | |
| 		error = xrep_cntbt_sort_records(ra, needs_resort);
 | |
| 		if (error)
 | |
| 			goto err_cur;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to btree slack factors, it's possible for a new btree to be one
 | |
| 	 * level taller than the old btree.  Update the alternate incore btree
 | |
| 	 * height so that we don't trip the verifiers when writing the new
 | |
| 	 * btree blocks to disk.
 | |
| 	 */
 | |
| 	pag->pagf_repair_bno_level = ra->new_bnobt.bload.btree_height;
 | |
| 	pag->pagf_repair_cnt_level = ra->new_cntbt.bload.btree_height;
 | |
| 
 | |
| 	/* Load the free space by length tree. */
 | |
| 	ra->array_cur = XFARRAY_CURSOR_INIT;
 | |
| 	ra->longest = 0;
 | |
| 	error = xfs_btree_bload(cnt_cur, &ra->new_cntbt.bload, ra);
 | |
| 	if (error)
 | |
| 		goto err_levels;
 | |
| 
 | |
| 	error = xrep_bnobt_sort_records(ra);
 | |
| 	if (error)
 | |
| 		goto err_levels;
 | |
| 
 | |
| 	/* Load the free space by block number tree. */
 | |
| 	ra->array_cur = XFARRAY_CURSOR_INIT;
 | |
| 	error = xfs_btree_bload(bno_cur, &ra->new_bnobt.bload, ra);
 | |
| 	if (error)
 | |
| 		goto err_levels;
 | |
| 
 | |
| 	/*
 | |
| 	 * Install the new btrees in the AG header.  After this point the old
 | |
| 	 * btrees are no longer accessible and the new trees are live.
 | |
| 	 */
 | |
| 	xfs_allocbt_commit_staged_btree(bno_cur, sc->tp, sc->sa.agf_bp);
 | |
| 	xfs_btree_del_cursor(bno_cur, 0);
 | |
| 	xfs_allocbt_commit_staged_btree(cnt_cur, sc->tp, sc->sa.agf_bp);
 | |
| 	xfs_btree_del_cursor(cnt_cur, 0);
 | |
| 
 | |
| 	/* Reset the AGF counters now that we've changed the btree shape. */
 | |
| 	error = xrep_abt_reset_counters(ra);
 | |
| 	if (error)
 | |
| 		goto err_newbt;
 | |
| 
 | |
| 	/* Dispose of any unused blocks and the accounting information. */
 | |
| 	xrep_abt_dispose_reservations(ra, error);
 | |
| 
 | |
| 	return xrep_roll_ag_trans(sc);
 | |
| 
 | |
| err_levels:
 | |
| 	pag->pagf_repair_bno_level = 0;
 | |
| 	pag->pagf_repair_cnt_level = 0;
 | |
| err_cur:
 | |
| 	xfs_btree_del_cursor(cnt_cur, error);
 | |
| 	xfs_btree_del_cursor(bno_cur, error);
 | |
| err_newbt:
 | |
| 	xrep_abt_dispose_reservations(ra, error);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Now that we've logged the roots of the new btrees, invalidate all of the
 | |
|  * old blocks and free them.
 | |
|  */
 | |
| STATIC int
 | |
| xrep_abt_remove_old_trees(
 | |
| 	struct xrep_abt		*ra)
 | |
| {
 | |
| 	struct xfs_perag	*pag = ra->sc->sa.pag;
 | |
| 	int			error;
 | |
| 
 | |
| 	/* Free the old btree blocks if they're not in use. */
 | |
| 	error = xrep_reap_agblocks(ra->sc, &ra->old_allocbt_blocks,
 | |
| 			&XFS_RMAP_OINFO_AG, XFS_AG_RESV_IGNORE);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we've zapped all the old allocbt blocks we can turn off
 | |
| 	 * the alternate height mechanism.
 | |
| 	 */
 | |
| 	pag->pagf_repair_bno_level = 0;
 | |
| 	pag->pagf_repair_cnt_level = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Repair the freespace btrees for some AG. */
 | |
| int
 | |
| xrep_allocbt(
 | |
| 	struct xfs_scrub	*sc)
 | |
| {
 | |
| 	struct xrep_abt		*ra;
 | |
| 	struct xfs_mount	*mp = sc->mp;
 | |
| 	char			*descr;
 | |
| 	int			error;
 | |
| 
 | |
| 	/* We require the rmapbt to rebuild anything. */
 | |
| 	if (!xfs_has_rmapbt(mp))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	ra = kzalloc(sizeof(struct xrep_abt), XCHK_GFP_FLAGS);
 | |
| 	if (!ra)
 | |
| 		return -ENOMEM;
 | |
| 	ra->sc = sc;
 | |
| 
 | |
| 	/* We rebuild both data structures. */
 | |
| 	sc->sick_mask = XFS_SICK_AG_BNOBT | XFS_SICK_AG_CNTBT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the busy extent list is clear because we can't put extents
 | |
| 	 * on there twice.  In theory we cleared this before we started, but
 | |
| 	 * let's not risk the filesystem.
 | |
| 	 */
 | |
| 	if (!xfs_extent_busy_list_empty(sc->sa.pag)) {
 | |
| 		error = -EDEADLOCK;
 | |
| 		goto out_ra;
 | |
| 	}
 | |
| 
 | |
| 	/* Set up enough storage to handle maximally fragmented free space. */
 | |
| 	descr = xchk_xfile_ag_descr(sc, "free space records");
 | |
| 	error = xfarray_create(descr, mp->m_sb.sb_agblocks / 2,
 | |
| 			sizeof(struct xfs_alloc_rec_incore),
 | |
| 			&ra->free_records);
 | |
| 	kfree(descr);
 | |
| 	if (error)
 | |
| 		goto out_ra;
 | |
| 
 | |
| 	/* Collect the free space data and find the old btree blocks. */
 | |
| 	xagb_bitmap_init(&ra->old_allocbt_blocks);
 | |
| 	error = xrep_abt_find_freespace(ra);
 | |
| 	if (error)
 | |
| 		goto out_bitmap;
 | |
| 
 | |
| 	/* Rebuild the free space information. */
 | |
| 	error = xrep_abt_build_new_trees(ra);
 | |
| 	if (error)
 | |
| 		goto out_bitmap;
 | |
| 
 | |
| 	/* Kill the old trees. */
 | |
| 	error = xrep_abt_remove_old_trees(ra);
 | |
| 	if (error)
 | |
| 		goto out_bitmap;
 | |
| 
 | |
| out_bitmap:
 | |
| 	xagb_bitmap_destroy(&ra->old_allocbt_blocks);
 | |
| 	xfarray_destroy(ra->free_records);
 | |
| out_ra:
 | |
| 	kfree(ra);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /* Make sure both btrees are ok after we've rebuilt them. */
 | |
| int
 | |
| xrep_revalidate_allocbt(
 | |
| 	struct xfs_scrub	*sc)
 | |
| {
 | |
| 	__u32			old_type = sc->sm->sm_type;
 | |
| 	int			error;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must update sm_type temporarily so that the tree-to-tree cross
 | |
| 	 * reference checks will work in the correct direction, and also so
 | |
| 	 * that tracing will report correctly if there are more errors.
 | |
| 	 */
 | |
| 	sc->sm->sm_type = XFS_SCRUB_TYPE_BNOBT;
 | |
| 	error = xchk_allocbt(sc);
 | |
| 	if (error)
 | |
| 		goto out;
 | |
| 
 | |
| 	sc->sm->sm_type = XFS_SCRUB_TYPE_CNTBT;
 | |
| 	error = xchk_allocbt(sc);
 | |
| out:
 | |
| 	sc->sm->sm_type = old_type;
 | |
| 	return error;
 | |
| }
 |