387 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			387 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2024, SUSE LLC
 | |
|  *
 | |
|  * Authors: Enzo Matsumiya <ematsumiya@suse.de>
 | |
|  *
 | |
|  * This file implements I/O compression support for SMB2 messages (SMB 3.1.1 only).
 | |
|  * See compress/ for implementation details of each algorithm.
 | |
|  *
 | |
|  * References:
 | |
|  * MS-SMB2 "3.1.4.4 Compressing the Message"
 | |
|  * MS-SMB2 "3.1.5.3 Decompressing the Chained Message"
 | |
|  * MS-XCA - for details of the supported algorithms
 | |
|  */
 | |
| #include <linux/slab.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/sort.h>
 | |
| 
 | |
| #include "cifsglob.h"
 | |
| #include "../common/smb2pdu.h"
 | |
| #include "cifsproto.h"
 | |
| #include "smb2proto.h"
 | |
| 
 | |
| #include "compress/lz77.h"
 | |
| #include "compress.h"
 | |
| 
 | |
| /*
 | |
|  * The heuristic_*() functions below try to determine data compressibility.
 | |
|  *
 | |
|  * Derived from fs/btrfs/compression.c, changing coding style, some parameters, and removing
 | |
|  * unused parts.
 | |
|  *
 | |
|  * Read that file for better and more detailed explanation of the calculations.
 | |
|  *
 | |
|  * The algorithms are ran in a collected sample of the input (uncompressed) data.
 | |
|  * The sample is formed of 2K reads in PAGE_SIZE intervals, with a maximum size of 4M.
 | |
|  *
 | |
|  * Parsing the sample goes from "low-hanging fruits" (fastest algorithms, likely compressible)
 | |
|  * to "need more analysis" (likely uncompressible).
 | |
|  */
 | |
| 
 | |
| struct bucket {
 | |
| 	unsigned int count;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * has_low_entropy() - Compute Shannon entropy of the sampled data.
 | |
|  * @bkt:	Bytes counts of the sample.
 | |
|  * @slen:	Size of the sample.
 | |
|  *
 | |
|  * Return: true if the level (percentage of number of bits that would be required to
 | |
|  *	   compress the data) is below the minimum threshold.
 | |
|  *
 | |
|  * Note:
 | |
|  * There _is_ an entropy level here that's > 65 (minimum threshold) that would indicate a
 | |
|  * possibility of compression, but compressing, or even further analysing, it would waste so much
 | |
|  * resources that it's simply not worth it.
 | |
|  *
 | |
|  * Also Shannon entropy is the last computed heuristic; if we got this far and ended up
 | |
|  * with uncertainty, just stay on the safe side and call it uncompressible.
 | |
|  */
 | |
| static bool has_low_entropy(struct bucket *bkt, size_t slen)
 | |
| {
 | |
| 	const size_t threshold = 65, max_entropy = 8 * ilog2(16);
 | |
| 	size_t i, p, p2, len, sum = 0;
 | |
| 
 | |
| #define pow4(n) (n * n * n * n)
 | |
| 	len = ilog2(pow4(slen));
 | |
| 
 | |
| 	for (i = 0; i < 256 && bkt[i].count > 0; i++) {
 | |
| 		p = bkt[i].count;
 | |
| 		p2 = ilog2(pow4(p));
 | |
| 		sum += p * (len - p2);
 | |
| 	}
 | |
| 
 | |
| 	sum /= slen;
 | |
| 
 | |
| 	return ((sum * 100 / max_entropy) <= threshold);
 | |
| }
 | |
| 
 | |
| #define BYTE_DIST_BAD		0
 | |
| #define BYTE_DIST_GOOD		1
 | |
| #define BYTE_DIST_MAYBE		2
 | |
| /**
 | |
|  * calc_byte_distribution() - Compute byte distribution on the sampled data.
 | |
|  * @bkt:	Byte counts of the sample.
 | |
|  * @slen:	Size of the sample.
 | |
|  *
 | |
|  * Return:
 | |
|  * BYTE_DIST_BAD:	A "hard no" for compression -- a computed uniform distribution of
 | |
|  *			the bytes (e.g. random or encrypted data).
 | |
|  * BYTE_DIST_GOOD:	High probability (normal (Gaussian) distribution) of the data being
 | |
|  *			compressible.
 | |
|  * BYTE_DIST_MAYBE:	When computed byte distribution resulted in "low > n < high"
 | |
|  *			grounds.  has_low_entropy() should be used for a final decision.
 | |
|  */
 | |
| static int calc_byte_distribution(struct bucket *bkt, size_t slen)
 | |
| {
 | |
| 	const size_t low = 64, high = 200, threshold = slen * 90 / 100;
 | |
| 	size_t sum = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < low; i++)
 | |
| 		sum += bkt[i].count;
 | |
| 
 | |
| 	if (sum > threshold)
 | |
| 		return BYTE_DIST_BAD;
 | |
| 
 | |
| 	for (; i < high && bkt[i].count > 0; i++) {
 | |
| 		sum += bkt[i].count;
 | |
| 		if (sum > threshold)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (i <= low)
 | |
| 		return BYTE_DIST_GOOD;
 | |
| 
 | |
| 	if (i >= high)
 | |
| 		return BYTE_DIST_BAD;
 | |
| 
 | |
| 	return BYTE_DIST_MAYBE;
 | |
| }
 | |
| 
 | |
| static bool is_mostly_ascii(const struct bucket *bkt)
 | |
| {
 | |
| 	size_t count = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 256; i++)
 | |
| 		if (bkt[i].count > 0)
 | |
| 			/* Too many non-ASCII (0-63) bytes. */
 | |
| 			if (++count > 64)
 | |
| 				return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool has_repeated_data(const u8 *sample, size_t len)
 | |
| {
 | |
| 	size_t s = len / 2;
 | |
| 
 | |
| 	return (!memcmp(&sample[0], &sample[s], s));
 | |
| }
 | |
| 
 | |
| static int cmp_bkt(const void *_a, const void *_b)
 | |
| {
 | |
| 	const struct bucket *a = _a, *b = _b;
 | |
| 
 | |
| 	/* Reverse sort. */
 | |
| 	if (a->count > b->count)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * TODO:
 | |
|  * Support other iter types, if required.
 | |
|  * Only ITER_XARRAY is supported for now.
 | |
|  */
 | |
| static int collect_sample(const struct iov_iter *iter, ssize_t max, u8 *sample)
 | |
| {
 | |
| 	struct folio *folios[16], *folio;
 | |
| 	unsigned int nr, i, j, npages;
 | |
| 	loff_t start = iter->xarray_start + iter->iov_offset;
 | |
| 	pgoff_t last, index = start / PAGE_SIZE;
 | |
| 	size_t len, off, foff;
 | |
| 	void *p;
 | |
| 	int s = 0;
 | |
| 
 | |
| 	last = (start + max - 1) / PAGE_SIZE;
 | |
| 	do {
 | |
| 		nr = xa_extract(iter->xarray, (void **)folios, index, last, ARRAY_SIZE(folios),
 | |
| 				XA_PRESENT);
 | |
| 		if (nr == 0)
 | |
| 			return -EIO;
 | |
| 
 | |
| 		for (i = 0; i < nr; i++) {
 | |
| 			folio = folios[i];
 | |
| 			npages = folio_nr_pages(folio);
 | |
| 			foff = start - folio_pos(folio);
 | |
| 			off = foff % PAGE_SIZE;
 | |
| 
 | |
| 			for (j = foff / PAGE_SIZE; j < npages; j++) {
 | |
| 				size_t len2;
 | |
| 
 | |
| 				len = min_t(size_t, max, PAGE_SIZE - off);
 | |
| 				len2 = min_t(size_t, len, SZ_2K);
 | |
| 
 | |
| 				p = kmap_local_page(folio_page(folio, j));
 | |
| 				memcpy(&sample[s], p, len2);
 | |
| 				kunmap_local(p);
 | |
| 
 | |
| 				s += len2;
 | |
| 
 | |
| 				if (len2 < SZ_2K || s >= max - SZ_2K)
 | |
| 					return s;
 | |
| 
 | |
| 				max -= len;
 | |
| 				if (max <= 0)
 | |
| 					return s;
 | |
| 
 | |
| 				start += len;
 | |
| 				off = 0;
 | |
| 				index++;
 | |
| 			}
 | |
| 		}
 | |
| 	} while (nr == ARRAY_SIZE(folios));
 | |
| 
 | |
| 	return s;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * is_compressible() - Determines if a chunk of data is compressible.
 | |
|  * @data: Iterator containing uncompressed data.
 | |
|  *
 | |
|  * Return: true if @data is compressible, false otherwise.
 | |
|  *
 | |
|  * Tests shows that this function is quite reliable in predicting data compressibility,
 | |
|  * matching close to 1:1 with the behaviour of LZ77 compression success and failures.
 | |
|  */
 | |
| static bool is_compressible(const struct iov_iter *data)
 | |
| {
 | |
| 	const size_t read_size = SZ_2K, bkt_size = 256, max = SZ_4M;
 | |
| 	struct bucket *bkt = NULL;
 | |
| 	size_t len;
 | |
| 	u8 *sample;
 | |
| 	bool ret = false;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Preventive double check -- already checked in should_compress(). */
 | |
| 	len = iov_iter_count(data);
 | |
| 	if (unlikely(len < read_size))
 | |
| 		return ret;
 | |
| 
 | |
| 	if (len - read_size > max)
 | |
| 		len = max;
 | |
| 
 | |
| 	sample = kvzalloc(len, GFP_KERNEL);
 | |
| 	if (!sample) {
 | |
| 		WARN_ON_ONCE(1);
 | |
| 
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Sample 2K bytes per page of the uncompressed data. */
 | |
| 	i = collect_sample(data, len, sample);
 | |
| 	if (i <= 0) {
 | |
| 		WARN_ON_ONCE(1);
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	len = i;
 | |
| 	ret = true;
 | |
| 
 | |
| 	if (has_repeated_data(sample, len))
 | |
| 		goto out;
 | |
| 
 | |
| 	bkt = kcalloc(bkt_size, sizeof(*bkt), GFP_KERNEL);
 | |
| 	if (!bkt) {
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		ret = false;
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		bkt[sample[i]].count++;
 | |
| 
 | |
| 	if (is_mostly_ascii(bkt))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Sort in descending order */
 | |
| 	sort(bkt, bkt_size, sizeof(*bkt), cmp_bkt, NULL);
 | |
| 
 | |
| 	i = calc_byte_distribution(bkt, len);
 | |
| 	if (i != BYTE_DIST_MAYBE) {
 | |
| 		ret = !!i;
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = has_low_entropy(bkt, len);
 | |
| out:
 | |
| 	kvfree(sample);
 | |
| 	kfree(bkt);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| bool should_compress(const struct cifs_tcon *tcon, const struct smb_rqst *rq)
 | |
| {
 | |
| 	const struct smb2_hdr *shdr = rq->rq_iov->iov_base;
 | |
| 
 | |
| 	if (unlikely(!tcon || !tcon->ses || !tcon->ses->server))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!tcon->ses->server->compression.enabled)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!(tcon->share_flags & SMB2_SHAREFLAG_COMPRESS_DATA))
 | |
| 		return false;
 | |
| 
 | |
| 	if (shdr->Command == SMB2_WRITE) {
 | |
| 		const struct smb2_write_req *wreq = rq->rq_iov->iov_base;
 | |
| 
 | |
| 		if (le32_to_cpu(wreq->Length) < SMB_COMPRESS_MIN_LEN)
 | |
| 			return false;
 | |
| 
 | |
| 		return is_compressible(&rq->rq_iter);
 | |
| 	}
 | |
| 
 | |
| 	return (shdr->Command == SMB2_READ);
 | |
| }
 | |
| 
 | |
| int smb_compress(struct TCP_Server_Info *server, struct smb_rqst *rq, compress_send_fn send_fn)
 | |
| {
 | |
| 	struct iov_iter iter;
 | |
| 	u32 slen, dlen;
 | |
| 	void *src, *dst = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!server || !rq || !rq->rq_iov || !rq->rq_iov->iov_base)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (rq->rq_iov->iov_len != sizeof(struct smb2_write_req))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	slen = iov_iter_count(&rq->rq_iter);
 | |
| 	src = kvzalloc(slen, GFP_KERNEL);
 | |
| 	if (!src) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Keep the original iter intact. */
 | |
| 	iter = rq->rq_iter;
 | |
| 
 | |
| 	if (!copy_from_iter_full(src, slen, &iter)) {
 | |
| 		ret = -EIO;
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is just overprovisioning, as the algorithm will error out if @dst reaches 7/8
 | |
| 	 * of @slen.
 | |
| 	 */
 | |
| 	dlen = slen;
 | |
| 	dst = kvzalloc(dlen, GFP_KERNEL);
 | |
| 	if (!dst) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_free;
 | |
| 	}
 | |
| 
 | |
| 	ret = lz77_compress(src, slen, dst, &dlen);
 | |
| 	if (!ret) {
 | |
| 		struct smb2_compression_hdr hdr = { 0 };
 | |
| 		struct smb_rqst comp_rq = { .rq_nvec = 3, };
 | |
| 		struct kvec iov[3];
 | |
| 
 | |
| 		hdr.ProtocolId = SMB2_COMPRESSION_TRANSFORM_ID;
 | |
| 		hdr.OriginalCompressedSegmentSize = cpu_to_le32(slen);
 | |
| 		hdr.CompressionAlgorithm = SMB3_COMPRESS_LZ77;
 | |
| 		hdr.Flags = SMB2_COMPRESSION_FLAG_NONE;
 | |
| 		hdr.Offset = cpu_to_le32(rq->rq_iov[0].iov_len);
 | |
| 
 | |
| 		iov[0].iov_base = &hdr;
 | |
| 		iov[0].iov_len = sizeof(hdr);
 | |
| 		iov[1] = rq->rq_iov[0];
 | |
| 		iov[2].iov_base = dst;
 | |
| 		iov[2].iov_len = dlen;
 | |
| 
 | |
| 		comp_rq.rq_iov = iov;
 | |
| 
 | |
| 		ret = send_fn(server, 1, &comp_rq);
 | |
| 	} else if (ret == -EMSGSIZE || dlen >= slen) {
 | |
| 		ret = send_fn(server, 1, rq);
 | |
| 	}
 | |
| err_free:
 | |
| 	kvfree(dst);
 | |
| 	kvfree(src);
 | |
| 
 | |
| 	return ret;
 | |
| }
 |