2651 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2651 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include "ctree.h"
 | |
| #include "volumes.h"
 | |
| #include "zoned.h"
 | |
| #include "rcu-string.h"
 | |
| #include "disk-io.h"
 | |
| #include "block-group.h"
 | |
| #include "dev-replace.h"
 | |
| #include "space-info.h"
 | |
| #include "fs.h"
 | |
| #include "accessors.h"
 | |
| #include "bio.h"
 | |
| 
 | |
| /* Maximum number of zones to report per blkdev_report_zones() call */
 | |
| #define BTRFS_REPORT_NR_ZONES   4096
 | |
| /* Invalid allocation pointer value for missing devices */
 | |
| #define WP_MISSING_DEV ((u64)-1)
 | |
| /* Pseudo write pointer value for conventional zone */
 | |
| #define WP_CONVENTIONAL ((u64)-2)
 | |
| 
 | |
| /*
 | |
|  * Location of the first zone of superblock logging zone pairs.
 | |
|  *
 | |
|  * - primary superblock:    0B (zone 0)
 | |
|  * - first copy:          512G (zone starting at that offset)
 | |
|  * - second copy:           4T (zone starting at that offset)
 | |
|  */
 | |
| #define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
 | |
| #define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
 | |
| #define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
 | |
| 
 | |
| #define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
 | |
| #define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
 | |
| 
 | |
| /* Number of superblock log zones */
 | |
| #define BTRFS_NR_SB_LOG_ZONES 2
 | |
| 
 | |
| /*
 | |
|  * Minimum of active zones we need:
 | |
|  *
 | |
|  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
 | |
|  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
 | |
|  * - 1 zone for tree-log dedicated block group
 | |
|  * - 1 zone for relocation
 | |
|  */
 | |
| #define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
 | |
| 
 | |
| /*
 | |
|  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
 | |
|  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
 | |
|  * We do not expect the zone size to become larger than 8GiB or smaller than
 | |
|  * 4MiB in the near future.
 | |
|  */
 | |
| #define BTRFS_MAX_ZONE_SIZE		SZ_8G
 | |
| #define BTRFS_MIN_ZONE_SIZE		SZ_4M
 | |
| 
 | |
| #define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
 | |
| 
 | |
| static void wait_eb_writebacks(struct btrfs_block_group *block_group);
 | |
| static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
 | |
| 
 | |
| static inline bool sb_zone_is_full(const struct blk_zone *zone)
 | |
| {
 | |
| 	return (zone->cond == BLK_ZONE_COND_FULL) ||
 | |
| 		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
 | |
| }
 | |
| 
 | |
| static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
 | |
| {
 | |
| 	struct blk_zone *zones = data;
 | |
| 
 | |
| 	memcpy(&zones[idx], zone, sizeof(*zone));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
 | |
| 			    u64 *wp_ret)
 | |
| {
 | |
| 	bool empty[BTRFS_NR_SB_LOG_ZONES];
 | |
| 	bool full[BTRFS_NR_SB_LOG_ZONES];
 | |
| 	sector_t sector;
 | |
| 
 | |
| 	for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 | |
| 		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
 | |
| 		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
 | |
| 		full[i] = sb_zone_is_full(&zones[i]);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Possible states of log buffer zones
 | |
| 	 *
 | |
| 	 *           Empty[0]  In use[0]  Full[0]
 | |
| 	 * Empty[1]         *          0        1
 | |
| 	 * In use[1]        x          x        1
 | |
| 	 * Full[1]          0          0        C
 | |
| 	 *
 | |
| 	 * Log position:
 | |
| 	 *   *: Special case, no superblock is written
 | |
| 	 *   0: Use write pointer of zones[0]
 | |
| 	 *   1: Use write pointer of zones[1]
 | |
| 	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
 | |
| 	 *      one determined by generation
 | |
| 	 *   x: Invalid state
 | |
| 	 */
 | |
| 
 | |
| 	if (empty[0] && empty[1]) {
 | |
| 		/* Special case to distinguish no superblock to read */
 | |
| 		*wp_ret = zones[0].start << SECTOR_SHIFT;
 | |
| 		return -ENOENT;
 | |
| 	} else if (full[0] && full[1]) {
 | |
| 		/* Compare two super blocks */
 | |
| 		struct address_space *mapping = bdev->bd_mapping;
 | |
| 		struct page *page[BTRFS_NR_SB_LOG_ZONES];
 | |
| 		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
 | |
| 
 | |
| 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 | |
| 			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
 | |
| 			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
 | |
| 						BTRFS_SUPER_INFO_SIZE;
 | |
| 
 | |
| 			page[i] = read_cache_page_gfp(mapping,
 | |
| 					bytenr >> PAGE_SHIFT, GFP_NOFS);
 | |
| 			if (IS_ERR(page[i])) {
 | |
| 				if (i == 1)
 | |
| 					btrfs_release_disk_super(super[0]);
 | |
| 				return PTR_ERR(page[i]);
 | |
| 			}
 | |
| 			super[i] = page_address(page[i]);
 | |
| 		}
 | |
| 
 | |
| 		if (btrfs_super_generation(super[0]) >
 | |
| 		    btrfs_super_generation(super[1]))
 | |
| 			sector = zones[1].start;
 | |
| 		else
 | |
| 			sector = zones[0].start;
 | |
| 
 | |
| 		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
 | |
| 			btrfs_release_disk_super(super[i]);
 | |
| 	} else if (!full[0] && (empty[1] || full[1])) {
 | |
| 		sector = zones[0].wp;
 | |
| 	} else if (full[0]) {
 | |
| 		sector = zones[1].wp;
 | |
| 	} else {
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 	*wp_ret = sector << SECTOR_SHIFT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the first zone number of the superblock mirror
 | |
|  */
 | |
| static inline u32 sb_zone_number(int shift, int mirror)
 | |
| {
 | |
| 	u64 zone = U64_MAX;
 | |
| 
 | |
| 	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
 | |
| 	switch (mirror) {
 | |
| 	case 0: zone = 0; break;
 | |
| 	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
 | |
| 	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(zone <= U32_MAX);
 | |
| 
 | |
| 	return (u32)zone;
 | |
| }
 | |
| 
 | |
| static inline sector_t zone_start_sector(u32 zone_number,
 | |
| 					 struct block_device *bdev)
 | |
| {
 | |
| 	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
 | |
| }
 | |
| 
 | |
| static inline u64 zone_start_physical(u32 zone_number,
 | |
| 				      struct btrfs_zoned_device_info *zone_info)
 | |
| {
 | |
| 	return (u64)zone_number << zone_info->zone_size_shift;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
 | |
|  * device into static sized chunks and fake a conventional zone on each of
 | |
|  * them.
 | |
|  */
 | |
| static int emulate_report_zones(struct btrfs_device *device, u64 pos,
 | |
| 				struct blk_zone *zones, unsigned int nr_zones)
 | |
| {
 | |
| 	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
 | |
| 	sector_t bdev_size = bdev_nr_sectors(device->bdev);
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	pos >>= SECTOR_SHIFT;
 | |
| 	for (i = 0; i < nr_zones; i++) {
 | |
| 		zones[i].start = i * zone_sectors + pos;
 | |
| 		zones[i].len = zone_sectors;
 | |
| 		zones[i].capacity = zone_sectors;
 | |
| 		zones[i].wp = zones[i].start + zone_sectors;
 | |
| 		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
 | |
| 		zones[i].cond = BLK_ZONE_COND_NOT_WP;
 | |
| 
 | |
| 		if (zones[i].wp >= bdev_size) {
 | |
| 			i++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
 | |
| 			       struct blk_zone *zones, unsigned int *nr_zones)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!*nr_zones)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!bdev_is_zoned(device->bdev)) {
 | |
| 		ret = emulate_report_zones(device, pos, zones, *nr_zones);
 | |
| 		*nr_zones = ret;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check cache */
 | |
| 	if (zinfo->zone_cache) {
 | |
| 		unsigned int i;
 | |
| 		u32 zno;
 | |
| 
 | |
| 		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
 | |
| 		zno = pos >> zinfo->zone_size_shift;
 | |
| 		/*
 | |
| 		 * We cannot report zones beyond the zone end. So, it is OK to
 | |
| 		 * cap *nr_zones to at the end.
 | |
| 		 */
 | |
| 		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
 | |
| 
 | |
| 		for (i = 0; i < *nr_zones; i++) {
 | |
| 			struct blk_zone *zone_info;
 | |
| 
 | |
| 			zone_info = &zinfo->zone_cache[zno + i];
 | |
| 			if (!zone_info->len)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (i == *nr_zones) {
 | |
| 			/* Cache hit on all the zones */
 | |
| 			memcpy(zones, zinfo->zone_cache + zno,
 | |
| 			       sizeof(*zinfo->zone_cache) * *nr_zones);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
 | |
| 				  copy_zone_info_cb, zones);
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_err_in_rcu(device->fs_info,
 | |
| 				 "zoned: failed to read zone %llu on %s (devid %llu)",
 | |
| 				 pos, rcu_str_deref(device->name),
 | |
| 				 device->devid);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	*nr_zones = ret;
 | |
| 	if (!ret)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* Populate cache */
 | |
| 	if (zinfo->zone_cache) {
 | |
| 		u32 zno = pos >> zinfo->zone_size_shift;
 | |
| 
 | |
| 		memcpy(zinfo->zone_cache + zno, zones,
 | |
| 		       sizeof(*zinfo->zone_cache) * *nr_zones);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* The emulated zone size is determined from the size of device extent */
 | |
| static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 	struct btrfs_root *root = fs_info->dev_root;
 | |
| 	struct btrfs_key key;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_dev_extent *dext;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	key.objectid = 1;
 | |
| 	key.type = BTRFS_DEV_EXTENT_KEY;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 | |
| 		ret = btrfs_next_leaf(root, path);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		/* No dev extents at all? Not good */
 | |
| 		if (ret > 0)
 | |
| 			return -EUCLEAN;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
 | |
| 	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
 | |
| 	if (!btrfs_fs_incompat(fs_info, ZONED))
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		/* We can skip reading of zone info for missing devices */
 | |
| 		if (!device->bdev)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = btrfs_get_dev_zone_info(device, true);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = device->fs_info;
 | |
| 	struct btrfs_zoned_device_info *zone_info = NULL;
 | |
| 	struct block_device *bdev = device->bdev;
 | |
| 	unsigned int max_active_zones;
 | |
| 	unsigned int nactive;
 | |
| 	sector_t nr_sectors;
 | |
| 	sector_t sector = 0;
 | |
| 	struct blk_zone *zones = NULL;
 | |
| 	unsigned int i, nreported = 0, nr_zones;
 | |
| 	sector_t zone_sectors;
 | |
| 	char *model, *emulated;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
 | |
| 	 * yet be set.
 | |
| 	 */
 | |
| 	if (!btrfs_fs_incompat(fs_info, ZONED))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (device->zone_info)
 | |
| 		return 0;
 | |
| 
 | |
| 	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
 | |
| 	if (!zone_info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	device->zone_info = zone_info;
 | |
| 
 | |
| 	if (!bdev_is_zoned(bdev)) {
 | |
| 		if (!fs_info->zone_size) {
 | |
| 			ret = calculate_emulated_zone_size(fs_info);
 | |
| 			if (ret)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		ASSERT(fs_info->zone_size);
 | |
| 		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
 | |
| 	} else {
 | |
| 		zone_sectors = bdev_zone_sectors(bdev);
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(is_power_of_two_u64(zone_sectors));
 | |
| 	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
 | |
| 
 | |
| 	/* We reject devices with a zone size larger than 8GB */
 | |
| 	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
 | |
| 		btrfs_err_in_rcu(fs_info,
 | |
| 		"zoned: %s: zone size %llu larger than supported maximum %llu",
 | |
| 				 rcu_str_deref(device->name),
 | |
| 				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
 | |
| 		btrfs_err_in_rcu(fs_info,
 | |
| 		"zoned: %s: zone size %llu smaller than supported minimum %u",
 | |
| 				 rcu_str_deref(device->name),
 | |
| 				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nr_sectors = bdev_nr_sectors(bdev);
 | |
| 	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
 | |
| 	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
 | |
| 	if (!IS_ALIGNED(nr_sectors, zone_sectors))
 | |
| 		zone_info->nr_zones++;
 | |
| 
 | |
| 	max_active_zones = bdev_max_active_zones(bdev);
 | |
| 	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
 | |
| 		btrfs_err_in_rcu(fs_info,
 | |
| "zoned: %s: max active zones %u is too small, need at least %u active zones",
 | |
| 				 rcu_str_deref(device->name), max_active_zones,
 | |
| 				 BTRFS_MIN_ACTIVE_ZONES);
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	zone_info->max_active_zones = max_active_zones;
 | |
| 
 | |
| 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 | |
| 	if (!zone_info->seq_zones) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 | |
| 	if (!zone_info->empty_zones) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 | |
| 	if (!zone_info->active_zones) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
 | |
| 	if (!zones) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable zone cache only for a zoned device. On a non-zoned device, we
 | |
| 	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
 | |
| 	 * use the cache.
 | |
| 	 */
 | |
| 	if (populate_cache && bdev_is_zoned(device->bdev)) {
 | |
| 		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
 | |
| 						sizeof(struct blk_zone));
 | |
| 		if (!zone_info->zone_cache) {
 | |
| 			btrfs_err_in_rcu(device->fs_info,
 | |
| 				"zoned: failed to allocate zone cache for %s",
 | |
| 				rcu_str_deref(device->name));
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Get zones type */
 | |
| 	nactive = 0;
 | |
| 	while (sector < nr_sectors) {
 | |
| 		nr_zones = BTRFS_REPORT_NR_ZONES;
 | |
| 		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
 | |
| 					  &nr_zones);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		for (i = 0; i < nr_zones; i++) {
 | |
| 			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
 | |
| 				__set_bit(nreported, zone_info->seq_zones);
 | |
| 			switch (zones[i].cond) {
 | |
| 			case BLK_ZONE_COND_EMPTY:
 | |
| 				__set_bit(nreported, zone_info->empty_zones);
 | |
| 				break;
 | |
| 			case BLK_ZONE_COND_IMP_OPEN:
 | |
| 			case BLK_ZONE_COND_EXP_OPEN:
 | |
| 			case BLK_ZONE_COND_CLOSED:
 | |
| 				__set_bit(nreported, zone_info->active_zones);
 | |
| 				nactive++;
 | |
| 				break;
 | |
| 			}
 | |
| 			nreported++;
 | |
| 		}
 | |
| 		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
 | |
| 	}
 | |
| 
 | |
| 	if (nreported != zone_info->nr_zones) {
 | |
| 		btrfs_err_in_rcu(device->fs_info,
 | |
| 				 "inconsistent number of zones on %s (%u/%u)",
 | |
| 				 rcu_str_deref(device->name), nreported,
 | |
| 				 zone_info->nr_zones);
 | |
| 		ret = -EIO;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (max_active_zones) {
 | |
| 		if (nactive > max_active_zones) {
 | |
| 			btrfs_err_in_rcu(device->fs_info,
 | |
| 			"zoned: %u active zones on %s exceeds max_active_zones %u",
 | |
| 					 nactive, rcu_str_deref(device->name),
 | |
| 					 max_active_zones);
 | |
| 			ret = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		atomic_set(&zone_info->active_zones_left,
 | |
| 			   max_active_zones - nactive);
 | |
| 		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
 | |
| 	}
 | |
| 
 | |
| 	/* Validate superblock log */
 | |
| 	nr_zones = BTRFS_NR_SB_LOG_ZONES;
 | |
| 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 | |
| 		u32 sb_zone;
 | |
| 		u64 sb_wp;
 | |
| 		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
 | |
| 
 | |
| 		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
 | |
| 		if (sb_zone + 1 >= zone_info->nr_zones)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = btrfs_get_dev_zones(device,
 | |
| 					  zone_start_physical(sb_zone, zone_info),
 | |
| 					  &zone_info->sb_zones[sb_pos],
 | |
| 					  &nr_zones);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
 | |
| 			btrfs_err_in_rcu(device->fs_info,
 | |
| 	"zoned: failed to read super block log zone info at devid %llu zone %u",
 | |
| 					 device->devid, sb_zone);
 | |
| 			ret = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If zones[0] is conventional, always use the beginning of the
 | |
| 		 * zone to record superblock. No need to validate in that case.
 | |
| 		 */
 | |
| 		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
 | |
| 		    BLK_ZONE_TYPE_CONVENTIONAL)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = sb_write_pointer(device->bdev,
 | |
| 				       &zone_info->sb_zones[sb_pos], &sb_wp);
 | |
| 		if (ret != -ENOENT && ret) {
 | |
| 			btrfs_err_in_rcu(device->fs_info,
 | |
| 			"zoned: super block log zone corrupted devid %llu zone %u",
 | |
| 					 device->devid, sb_zone);
 | |
| 			ret = -EUCLEAN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	kvfree(zones);
 | |
| 
 | |
| 	if (bdev_is_zoned(bdev)) {
 | |
| 		model = "host-managed zoned";
 | |
| 		emulated = "";
 | |
| 	} else {
 | |
| 		model = "regular";
 | |
| 		emulated = "emulated ";
 | |
| 	}
 | |
| 
 | |
| 	btrfs_info_in_rcu(fs_info,
 | |
| 		"%s block device %s, %u %szones of %llu bytes",
 | |
| 		model, rcu_str_deref(device->name), zone_info->nr_zones,
 | |
| 		emulated, zone_info->zone_size);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	kvfree(zones);
 | |
| 	btrfs_destroy_dev_zone_info(device);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
 | |
| 
 | |
| 	if (!zone_info)
 | |
| 		return;
 | |
| 
 | |
| 	bitmap_free(zone_info->active_zones);
 | |
| 	bitmap_free(zone_info->seq_zones);
 | |
| 	bitmap_free(zone_info->empty_zones);
 | |
| 	vfree(zone_info->zone_cache);
 | |
| 	kfree(zone_info);
 | |
| 	device->zone_info = NULL;
 | |
| }
 | |
| 
 | |
| struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zone_info;
 | |
| 
 | |
| 	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
 | |
| 	if (!zone_info)
 | |
| 		return NULL;
 | |
| 
 | |
| 	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 | |
| 	if (!zone_info->seq_zones)
 | |
| 		goto out;
 | |
| 
 | |
| 	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
 | |
| 		    zone_info->nr_zones);
 | |
| 
 | |
| 	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 | |
| 	if (!zone_info->empty_zones)
 | |
| 		goto out;
 | |
| 
 | |
| 	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
 | |
| 		    zone_info->nr_zones);
 | |
| 
 | |
| 	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 | |
| 	if (!zone_info->active_zones)
 | |
| 		goto out;
 | |
| 
 | |
| 	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
 | |
| 		    zone_info->nr_zones);
 | |
| 	zone_info->zone_cache = NULL;
 | |
| 
 | |
| 	return zone_info;
 | |
| 
 | |
| out:
 | |
| 	bitmap_free(zone_info->seq_zones);
 | |
| 	bitmap_free(zone_info->empty_zones);
 | |
| 	bitmap_free(zone_info->active_zones);
 | |
| 	kfree(zone_info);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
 | |
| {
 | |
| 	unsigned int nr_zones = 1;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
 | |
| 	if (ret != 0 || !nr_zones)
 | |
| 		return ret ? ret : -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 | |
| 		if (device->bdev && bdev_is_zoned(device->bdev)) {
 | |
| 			btrfs_err(fs_info,
 | |
| 				"zoned: mode not enabled but zoned device found: %pg",
 | |
| 				device->bdev);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct queue_limits *lim = &fs_info->limits;
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 zone_size = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Host-Managed devices can't be used without the ZONED flag.  With the
 | |
| 	 * ZONED all devices can be used, using zone emulation if required.
 | |
| 	 */
 | |
| 	if (!btrfs_fs_incompat(fs_info, ZONED))
 | |
| 		return btrfs_check_for_zoned_device(fs_info);
 | |
| 
 | |
| 	blk_set_stacking_limits(lim);
 | |
| 
 | |
| 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 | |
| 		struct btrfs_zoned_device_info *zone_info = device->zone_info;
 | |
| 
 | |
| 		if (!device->bdev)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!zone_size) {
 | |
| 			zone_size = zone_info->zone_size;
 | |
| 		} else if (zone_info->zone_size != zone_size) {
 | |
| 			btrfs_err(fs_info,
 | |
| 		"zoned: unequal block device zone sizes: have %llu found %llu",
 | |
| 				  zone_info->zone_size, zone_size);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * With the zoned emulation, we can have non-zoned device on the
 | |
| 		 * zoned mode. In this case, we don't have a valid max zone
 | |
| 		 * append size.
 | |
| 		 */
 | |
| 		if (bdev_is_zoned(device->bdev)) {
 | |
| 			blk_stack_limits(lim,
 | |
| 					 &bdev_get_queue(device->bdev)->limits,
 | |
| 					 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
 | |
| 	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
 | |
| 	 * check the alignment here.
 | |
| 	 */
 | |
| 	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "zoned: zone size %llu not aligned to stripe %u",
 | |
| 			  zone_size, BTRFS_STRIPE_LEN);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 | |
| 		btrfs_err(fs_info, "zoned: mixed block groups not supported");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	fs_info->zone_size = zone_size;
 | |
| 	/*
 | |
| 	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
 | |
| 	 * Technically, we can have multiple pages per segment. But, since
 | |
| 	 * we add the pages one by one to a bio, and cannot increase the
 | |
| 	 * metadata reservation even if it increases the number of extents, it
 | |
| 	 * is safe to stick with the limit.
 | |
| 	 */
 | |
| 	fs_info->max_zone_append_size = ALIGN_DOWN(
 | |
| 		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
 | |
| 		     (u64)lim->max_sectors << SECTOR_SHIFT,
 | |
| 		     (u64)lim->max_segments << PAGE_SHIFT),
 | |
| 		fs_info->sectorsize);
 | |
| 	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
 | |
| 	if (fs_info->max_zone_append_size < fs_info->max_extent_size)
 | |
| 		fs_info->max_extent_size = fs_info->max_zone_append_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check mount options here, because we might change fs_info->zoned
 | |
| 	 * from fs_info->zone_size.
 | |
| 	 */
 | |
| 	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
 | |
| 				unsigned long long *mount_opt)
 | |
| {
 | |
| 	if (!btrfs_is_zoned(info))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Space cache writing is not COWed. Disable that to avoid write errors
 | |
| 	 * in sequential zones.
 | |
| 	 */
 | |
| 	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
 | |
| 		btrfs_err(info, "zoned: space cache v1 is not supported");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
 | |
| 		btrfs_err(info, "zoned: NODATACOW not supported");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
 | |
| 		btrfs_info(info,
 | |
| 			   "zoned: async discard ignored and disabled for zoned mode");
 | |
| 		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
 | |
| 			   int rw, u64 *bytenr_ret)
 | |
| {
 | |
| 	u64 wp;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
 | |
| 		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = sb_write_pointer(bdev, zones, &wp);
 | |
| 	if (ret != -ENOENT && ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (rw == WRITE) {
 | |
| 		struct blk_zone *reset = NULL;
 | |
| 
 | |
| 		if (wp == zones[0].start << SECTOR_SHIFT)
 | |
| 			reset = &zones[0];
 | |
| 		else if (wp == zones[1].start << SECTOR_SHIFT)
 | |
| 			reset = &zones[1];
 | |
| 
 | |
| 		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
 | |
| 			unsigned int nofs_flags;
 | |
| 
 | |
| 			ASSERT(sb_zone_is_full(reset));
 | |
| 
 | |
| 			nofs_flags = memalloc_nofs_save();
 | |
| 			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
 | |
| 					       reset->start, reset->len);
 | |
| 			memalloc_nofs_restore(nofs_flags);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			reset->cond = BLK_ZONE_COND_EMPTY;
 | |
| 			reset->wp = reset->start;
 | |
| 		}
 | |
| 	} else if (ret != -ENOENT) {
 | |
| 		/*
 | |
| 		 * For READ, we want the previous one. Move write pointer to
 | |
| 		 * the end of a zone, if it is at the head of a zone.
 | |
| 		 */
 | |
| 		u64 zone_end = 0;
 | |
| 
 | |
| 		if (wp == zones[0].start << SECTOR_SHIFT)
 | |
| 			zone_end = zones[1].start + zones[1].capacity;
 | |
| 		else if (wp == zones[1].start << SECTOR_SHIFT)
 | |
| 			zone_end = zones[0].start + zones[0].capacity;
 | |
| 		if (zone_end)
 | |
| 			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
 | |
| 					BTRFS_SUPER_INFO_SIZE);
 | |
| 
 | |
| 		wp -= BTRFS_SUPER_INFO_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	*bytenr_ret = wp;
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
 | |
| 			       u64 *bytenr_ret)
 | |
| {
 | |
| 	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
 | |
| 	sector_t zone_sectors;
 | |
| 	u32 sb_zone;
 | |
| 	int ret;
 | |
| 	u8 zone_sectors_shift;
 | |
| 	sector_t nr_sectors;
 | |
| 	u32 nr_zones;
 | |
| 
 | |
| 	if (!bdev_is_zoned(bdev)) {
 | |
| 		*bytenr_ret = btrfs_sb_offset(mirror);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(rw == READ || rw == WRITE);
 | |
| 
 | |
| 	zone_sectors = bdev_zone_sectors(bdev);
 | |
| 	if (!is_power_of_2(zone_sectors))
 | |
| 		return -EINVAL;
 | |
| 	zone_sectors_shift = ilog2(zone_sectors);
 | |
| 	nr_sectors = bdev_nr_sectors(bdev);
 | |
| 	nr_zones = nr_sectors >> zone_sectors_shift;
 | |
| 
 | |
| 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
 | |
| 	if (sb_zone + 1 >= nr_zones)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
 | |
| 				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
 | |
| 				  zones);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	if (ret != BTRFS_NR_SB_LOG_ZONES)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return sb_log_location(bdev, zones, rw, bytenr_ret);
 | |
| }
 | |
| 
 | |
| int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
 | |
| 			  u64 *bytenr_ret)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 | |
| 	u32 zone_num;
 | |
| 
 | |
| 	/*
 | |
| 	 * For a zoned filesystem on a non-zoned block device, use the same
 | |
| 	 * super block locations as regular filesystem. Doing so, the super
 | |
| 	 * block can always be retrieved and the zoned flag of the volume
 | |
| 	 * detected from the super block information.
 | |
| 	 */
 | |
| 	if (!bdev_is_zoned(device->bdev)) {
 | |
| 		*bytenr_ret = btrfs_sb_offset(mirror);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 | |
| 	if (zone_num + 1 >= zinfo->nr_zones)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return sb_log_location(device->bdev,
 | |
| 			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
 | |
| 			       rw, bytenr_ret);
 | |
| }
 | |
| 
 | |
| static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
 | |
| 				  int mirror)
 | |
| {
 | |
| 	u32 zone_num;
 | |
| 
 | |
| 	if (!zinfo)
 | |
| 		return false;
 | |
| 
 | |
| 	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 | |
| 	if (zone_num + 1 >= zinfo->nr_zones)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!test_bit(zone_num, zinfo->seq_zones))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 | |
| 	struct blk_zone *zone;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!is_sb_log_zone(zinfo, mirror))
 | |
| 		return 0;
 | |
| 
 | |
| 	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
 | |
| 	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 | |
| 		/* Advance the next zone */
 | |
| 		if (zone->cond == BLK_ZONE_COND_FULL) {
 | |
| 			zone++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (zone->cond == BLK_ZONE_COND_EMPTY)
 | |
| 			zone->cond = BLK_ZONE_COND_IMP_OPEN;
 | |
| 
 | |
| 		zone->wp += SUPER_INFO_SECTORS;
 | |
| 
 | |
| 		if (sb_zone_is_full(zone)) {
 | |
| 			/*
 | |
| 			 * No room left to write new superblock. Since
 | |
| 			 * superblock is written with REQ_SYNC, it is safe to
 | |
| 			 * finish the zone now.
 | |
| 			 *
 | |
| 			 * If the write pointer is exactly at the capacity,
 | |
| 			 * explicit ZONE_FINISH is not necessary.
 | |
| 			 */
 | |
| 			if (zone->wp != zone->start + zone->capacity) {
 | |
| 				unsigned int nofs_flags;
 | |
| 				int ret;
 | |
| 
 | |
| 				nofs_flags = memalloc_nofs_save();
 | |
| 				ret = blkdev_zone_mgmt(device->bdev,
 | |
| 						REQ_OP_ZONE_FINISH, zone->start,
 | |
| 						zone->len);
 | |
| 				memalloc_nofs_restore(nofs_flags);
 | |
| 				if (ret)
 | |
| 					return ret;
 | |
| 			}
 | |
| 
 | |
| 			zone->wp = zone->start + zone->len;
 | |
| 			zone->cond = BLK_ZONE_COND_FULL;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* All the zones are FULL. Should not reach here. */
 | |
| 	ASSERT(0);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
 | |
| {
 | |
| 	unsigned int nofs_flags;
 | |
| 	sector_t zone_sectors;
 | |
| 	sector_t nr_sectors;
 | |
| 	u8 zone_sectors_shift;
 | |
| 	u32 sb_zone;
 | |
| 	u32 nr_zones;
 | |
| 	int ret;
 | |
| 
 | |
| 	zone_sectors = bdev_zone_sectors(bdev);
 | |
| 	zone_sectors_shift = ilog2(zone_sectors);
 | |
| 	nr_sectors = bdev_nr_sectors(bdev);
 | |
| 	nr_zones = nr_sectors >> zone_sectors_shift;
 | |
| 
 | |
| 	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
 | |
| 	if (sb_zone + 1 >= nr_zones)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	nofs_flags = memalloc_nofs_save();
 | |
| 	ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
 | |
| 			       zone_start_sector(sb_zone, bdev),
 | |
| 			       zone_sectors * BTRFS_NR_SB_LOG_ZONES);
 | |
| 	memalloc_nofs_restore(nofs_flags);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find allocatable zones within a given region.
 | |
|  *
 | |
|  * @device:	the device to allocate a region on
 | |
|  * @hole_start: the position of the hole to allocate the region
 | |
|  * @num_bytes:	size of wanted region
 | |
|  * @hole_end:	the end of the hole
 | |
|  * @return:	position of allocatable zones
 | |
|  *
 | |
|  * Allocatable region should not contain any superblock locations.
 | |
|  */
 | |
| u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
 | |
| 				 u64 hole_end, u64 num_bytes)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 | |
| 	const u8 shift = zinfo->zone_size_shift;
 | |
| 	u64 nzones = num_bytes >> shift;
 | |
| 	u64 pos = hole_start;
 | |
| 	u64 begin, end;
 | |
| 	bool have_sb;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
 | |
| 	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
 | |
| 
 | |
| 	while (pos < hole_end) {
 | |
| 		begin = pos >> shift;
 | |
| 		end = begin + nzones;
 | |
| 
 | |
| 		if (end > zinfo->nr_zones)
 | |
| 			return hole_end;
 | |
| 
 | |
| 		/* Check if zones in the region are all empty */
 | |
| 		if (btrfs_dev_is_sequential(device, pos) &&
 | |
| 		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
 | |
| 			pos += zinfo->zone_size;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		have_sb = false;
 | |
| 		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 | |
| 			u32 sb_zone;
 | |
| 			u64 sb_pos;
 | |
| 
 | |
| 			sb_zone = sb_zone_number(shift, i);
 | |
| 			if (!(end <= sb_zone ||
 | |
| 			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
 | |
| 				have_sb = true;
 | |
| 				pos = zone_start_physical(
 | |
| 					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			/* We also need to exclude regular superblock positions */
 | |
| 			sb_pos = btrfs_sb_offset(i);
 | |
| 			if (!(pos + num_bytes <= sb_pos ||
 | |
| 			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
 | |
| 				have_sb = true;
 | |
| 				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
 | |
| 					    zinfo->zone_size);
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!have_sb)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return pos;
 | |
| }
 | |
| 
 | |
| static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
 | |
| 	unsigned int zno = (pos >> zone_info->zone_size_shift);
 | |
| 
 | |
| 	/* We can use any number of zones */
 | |
| 	if (zone_info->max_active_zones == 0)
 | |
| 		return true;
 | |
| 
 | |
| 	if (!test_bit(zno, zone_info->active_zones)) {
 | |
| 		/* Active zone left? */
 | |
| 		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
 | |
| 			return false;
 | |
| 		if (test_and_set_bit(zno, zone_info->active_zones)) {
 | |
| 			/* Someone already set the bit */
 | |
| 			atomic_inc(&zone_info->active_zones_left);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zone_info = device->zone_info;
 | |
| 	unsigned int zno = (pos >> zone_info->zone_size_shift);
 | |
| 
 | |
| 	/* We can use any number of zones */
 | |
| 	if (zone_info->max_active_zones == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (test_and_clear_bit(zno, zone_info->active_zones))
 | |
| 		atomic_inc(&zone_info->active_zones_left);
 | |
| }
 | |
| 
 | |
| int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
 | |
| 			    u64 length, u64 *bytes)
 | |
| {
 | |
| 	unsigned int nofs_flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	*bytes = 0;
 | |
| 	nofs_flags = memalloc_nofs_save();
 | |
| 	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
 | |
| 			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
 | |
| 	memalloc_nofs_restore(nofs_flags);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	*bytes = length;
 | |
| 	while (length) {
 | |
| 		btrfs_dev_set_zone_empty(device, physical);
 | |
| 		btrfs_dev_clear_active_zone(device, physical);
 | |
| 		physical += device->zone_info->zone_size;
 | |
| 		length -= device->zone_info->zone_size;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
 | |
| {
 | |
| 	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 | |
| 	const u8 shift = zinfo->zone_size_shift;
 | |
| 	unsigned long begin = start >> shift;
 | |
| 	unsigned long nbits = size >> shift;
 | |
| 	u64 pos;
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
 | |
| 	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
 | |
| 
 | |
| 	if (begin + nbits > zinfo->nr_zones)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	/* All the zones are conventional */
 | |
| 	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* All the zones are sequential and empty */
 | |
| 	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
 | |
| 	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
 | |
| 		u64 reset_bytes;
 | |
| 
 | |
| 		if (!btrfs_dev_is_sequential(device, pos) ||
 | |
| 		    btrfs_dev_is_empty_zone(device, pos))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Free regions should be empty */
 | |
| 		btrfs_warn_in_rcu(
 | |
| 			device->fs_info,
 | |
| 		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
 | |
| 			rcu_str_deref(device->name), device->devid, pos >> shift);
 | |
| 		WARN_ON_ONCE(1);
 | |
| 
 | |
| 		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
 | |
| 					      &reset_bytes);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate an allocation pointer from the extent allocation information
 | |
|  * for a block group consist of conventional zones. It is pointed to the
 | |
|  * end of the highest addressed extent in the block group as an allocation
 | |
|  * offset.
 | |
|  */
 | |
| static int calculate_alloc_pointer(struct btrfs_block_group *cache,
 | |
| 				   u64 *offset_ret, bool new)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = cache->fs_info;
 | |
| 	struct btrfs_root *root;
 | |
| 	BTRFS_PATH_AUTO_FREE(path);
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key found_key;
 | |
| 	int ret;
 | |
| 	u64 length;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid  tree lookups for a new block group, there's no use for it.
 | |
| 	 * It must always be 0.
 | |
| 	 *
 | |
| 	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
 | |
| 	 * For new a block group, this function is called from
 | |
| 	 * btrfs_make_block_group() which is already taking the chunk mutex.
 | |
| 	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
 | |
| 	 * buffer locks to avoid deadlock.
 | |
| 	 */
 | |
| 	if (new) {
 | |
| 		*offset_ret = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	key.objectid = cache->start + cache->length;
 | |
| 	key.type = 0;
 | |
| 	key.offset = 0;
 | |
| 
 | |
| 	root = btrfs_extent_root(fs_info, key.objectid);
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	/* We should not find the exact match */
 | |
| 	if (!ret)
 | |
| 		ret = -EUCLEAN;
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = btrfs_previous_extent_item(root, path, cache->start);
 | |
| 	if (ret) {
 | |
| 		if (ret == 1) {
 | |
| 			ret = 0;
 | |
| 			*offset_ret = 0;
 | |
| 		}
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
 | |
| 
 | |
| 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
 | |
| 		length = found_key.offset;
 | |
| 	else
 | |
| 		length = fs_info->nodesize;
 | |
| 
 | |
| 	if (!(found_key.objectid >= cache->start &&
 | |
| 	       found_key.objectid + length <= cache->start + cache->length)) {
 | |
| 		return -EUCLEAN;
 | |
| 	}
 | |
| 	*offset_ret = found_key.objectid + length - cache->start;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct zone_info {
 | |
| 	u64 physical;
 | |
| 	u64 capacity;
 | |
| 	u64 alloc_offset;
 | |
| };
 | |
| 
 | |
| static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
 | |
| 				struct zone_info *info, unsigned long *active,
 | |
| 				struct btrfs_chunk_map *map)
 | |
| {
 | |
| 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
 | |
| 	struct btrfs_device *device;
 | |
| 	int dev_replace_is_ongoing = 0;
 | |
| 	unsigned int nofs_flag;
 | |
| 	struct blk_zone zone;
 | |
| 	int ret;
 | |
| 
 | |
| 	info->physical = map->stripes[zone_idx].physical;
 | |
| 
 | |
| 	down_read(&dev_replace->rwsem);
 | |
| 	device = map->stripes[zone_idx].dev;
 | |
| 
 | |
| 	if (!device->bdev) {
 | |
| 		up_read(&dev_replace->rwsem);
 | |
| 		info->alloc_offset = WP_MISSING_DEV;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Consider a zone as active if we can allow any number of active zones. */
 | |
| 	if (!device->zone_info->max_active_zones)
 | |
| 		__set_bit(zone_idx, active);
 | |
| 
 | |
| 	if (!btrfs_dev_is_sequential(device, info->physical)) {
 | |
| 		up_read(&dev_replace->rwsem);
 | |
| 		info->alloc_offset = WP_CONVENTIONAL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* This zone will be used for allocation, so mark this zone non-empty. */
 | |
| 	btrfs_dev_clear_zone_empty(device, info->physical);
 | |
| 
 | |
| 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
 | |
| 	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
 | |
| 		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
 | |
| 
 | |
| 	/*
 | |
| 	 * The group is mapped to a sequential zone. Get the zone write pointer
 | |
| 	 * to determine the allocation offset within the zone.
 | |
| 	 */
 | |
| 	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	ret = btrfs_get_dev_zone(device, info->physical, &zone);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (ret) {
 | |
| 		up_read(&dev_replace->rwsem);
 | |
| 		if (ret != -EIO && ret != -EOPNOTSUPP)
 | |
| 			return ret;
 | |
| 		info->alloc_offset = WP_MISSING_DEV;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
 | |
| 		btrfs_err_in_rcu(fs_info,
 | |
| 		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
 | |
| 			zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
 | |
| 			device->devid);
 | |
| 		up_read(&dev_replace->rwsem);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	info->capacity = (zone.capacity << SECTOR_SHIFT);
 | |
| 
 | |
| 	switch (zone.cond) {
 | |
| 	case BLK_ZONE_COND_OFFLINE:
 | |
| 	case BLK_ZONE_COND_READONLY:
 | |
| 		btrfs_err_in_rcu(fs_info,
 | |
| 		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
 | |
| 			  (info->physical >> device->zone_info->zone_size_shift),
 | |
| 			  rcu_str_deref(device->name), device->devid);
 | |
| 		info->alloc_offset = WP_MISSING_DEV;
 | |
| 		break;
 | |
| 	case BLK_ZONE_COND_EMPTY:
 | |
| 		info->alloc_offset = 0;
 | |
| 		break;
 | |
| 	case BLK_ZONE_COND_FULL:
 | |
| 		info->alloc_offset = info->capacity;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* Partially used zone. */
 | |
| 		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
 | |
| 		__set_bit(zone_idx, active);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	up_read(&dev_replace->rwsem);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
 | |
| 					 struct zone_info *info,
 | |
| 					 unsigned long *active)
 | |
| {
 | |
| 	if (info->alloc_offset == WP_MISSING_DEV) {
 | |
| 		btrfs_err(bg->fs_info,
 | |
| 			"zoned: cannot recover write pointer for zone %llu",
 | |
| 			info->physical);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	bg->alloc_offset = info->alloc_offset;
 | |
| 	bg->zone_capacity = info->capacity;
 | |
| 	if (test_bit(0, active))
 | |
| 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
 | |
| 				      struct btrfs_chunk_map *map,
 | |
| 				      struct zone_info *zone_info,
 | |
| 				      unsigned long *active)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bg->fs_info;
 | |
| 
 | |
| 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
 | |
| 		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
 | |
| 
 | |
| 	if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
 | |
| 		btrfs_err(bg->fs_info,
 | |
| 			  "zoned: cannot recover write pointer for zone %llu",
 | |
| 			  zone_info[0].physical);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
 | |
| 		btrfs_err(bg->fs_info,
 | |
| 			  "zoned: cannot recover write pointer for zone %llu",
 | |
| 			  zone_info[1].physical);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
 | |
| 		btrfs_err(bg->fs_info,
 | |
| 			  "zoned: write pointer offset mismatch of zones in DUP profile");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (test_bit(0, active) != test_bit(1, active)) {
 | |
| 		if (!btrfs_zone_activate(bg))
 | |
| 			return -EIO;
 | |
| 	} else if (test_bit(0, active)) {
 | |
| 		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
 | |
| 	}
 | |
| 
 | |
| 	bg->alloc_offset = zone_info[0].alloc_offset;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
 | |
| 					struct btrfs_chunk_map *map,
 | |
| 					struct zone_info *zone_info,
 | |
| 					unsigned long *active)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bg->fs_info;
 | |
| 	int i;
 | |
| 
 | |
| 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
 | |
| 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
 | |
| 			  btrfs_bg_type_to_raid_name(map->type));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* In case a device is missing we have a cap of 0, so don't use it. */
 | |
| 	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
 | |
| 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
 | |
| 			continue;
 | |
| 
 | |
| 		if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
 | |
| 		    !btrfs_test_opt(fs_info, DEGRADED)) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			"zoned: write pointer offset mismatch of zones in %s profile",
 | |
| 				  btrfs_bg_type_to_raid_name(map->type));
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		if (test_bit(0, active) != test_bit(i, active)) {
 | |
| 			if (!btrfs_test_opt(fs_info, DEGRADED) &&
 | |
| 			    !btrfs_zone_activate(bg)) {
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (test_bit(0, active))
 | |
| 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
 | |
| 		bg->alloc_offset = zone_info[0].alloc_offset;
 | |
| 	else
 | |
| 		bg->alloc_offset = zone_info[i - 1].alloc_offset;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
 | |
| 					struct btrfs_chunk_map *map,
 | |
| 					struct zone_info *zone_info,
 | |
| 					unsigned long *active)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bg->fs_info;
 | |
| 
 | |
| 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
 | |
| 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
 | |
| 			  btrfs_bg_type_to_raid_name(map->type));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < map->num_stripes; i++) {
 | |
| 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
 | |
| 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
 | |
| 			continue;
 | |
| 
 | |
| 		if (test_bit(0, active) != test_bit(i, active)) {
 | |
| 			if (!btrfs_zone_activate(bg))
 | |
| 				return -EIO;
 | |
| 		} else {
 | |
| 			if (test_bit(0, active))
 | |
| 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
 | |
| 		}
 | |
| 		bg->zone_capacity += zone_info[i].capacity;
 | |
| 		bg->alloc_offset += zone_info[i].alloc_offset;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
 | |
| 					 struct btrfs_chunk_map *map,
 | |
| 					 struct zone_info *zone_info,
 | |
| 					 unsigned long *active)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bg->fs_info;
 | |
| 
 | |
| 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
 | |
| 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
 | |
| 			  btrfs_bg_type_to_raid_name(map->type));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (int i = 0; i < map->num_stripes; i++) {
 | |
| 		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
 | |
| 		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
 | |
| 			continue;
 | |
| 
 | |
| 		if (test_bit(0, active) != test_bit(i, active)) {
 | |
| 			if (!btrfs_zone_activate(bg))
 | |
| 				return -EIO;
 | |
| 		} else {
 | |
| 			if (test_bit(0, active))
 | |
| 				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
 | |
| 		}
 | |
| 
 | |
| 		if ((i % map->sub_stripes) == 0) {
 | |
| 			bg->zone_capacity += zone_info[i].capacity;
 | |
| 			bg->alloc_offset += zone_info[i].alloc_offset;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = cache->fs_info;
 | |
| 	struct btrfs_chunk_map *map;
 | |
| 	u64 logical = cache->start;
 | |
| 	u64 length = cache->length;
 | |
| 	struct zone_info *zone_info = NULL;
 | |
| 	int ret;
 | |
| 	int i;
 | |
| 	unsigned long *active = NULL;
 | |
| 	u64 last_alloc = 0;
 | |
| 	u32 num_sequential = 0, num_conventional = 0;
 | |
| 	u64 profile;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Sanity check */
 | |
| 	if (!IS_ALIGNED(length, fs_info->zone_size)) {
 | |
| 		btrfs_err(fs_info,
 | |
| 		"zoned: block group %llu len %llu unaligned to zone size %llu",
 | |
| 			  logical, length, fs_info->zone_size);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	map = btrfs_find_chunk_map(fs_info, logical, length);
 | |
| 	if (!map)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cache->physical_map = map;
 | |
| 
 | |
| 	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
 | |
| 	if (!zone_info) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
 | |
| 	if (!active) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
 | |
| 			num_conventional++;
 | |
| 		else
 | |
| 			num_sequential++;
 | |
| 	}
 | |
| 
 | |
| 	if (num_sequential > 0)
 | |
| 		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
 | |
| 
 | |
| 	if (num_conventional > 0) {
 | |
| 		/* Zone capacity is always zone size in emulation */
 | |
| 		cache->zone_capacity = cache->length;
 | |
| 		ret = calculate_alloc_pointer(cache, &last_alloc, new);
 | |
| 		if (ret) {
 | |
| 			btrfs_err(fs_info,
 | |
| 			"zoned: failed to determine allocation offset of bg %llu",
 | |
| 				  cache->start);
 | |
| 			goto out;
 | |
| 		} else if (map->num_stripes == num_conventional) {
 | |
| 			cache->alloc_offset = last_alloc;
 | |
| 			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
 | |
| 	switch (profile) {
 | |
| 	case 0: /* single */
 | |
| 		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_DUP:
 | |
| 		ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_RAID1:
 | |
| 	case BTRFS_BLOCK_GROUP_RAID1C3:
 | |
| 	case BTRFS_BLOCK_GROUP_RAID1C4:
 | |
| 		ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_RAID0:
 | |
| 		ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_RAID10:
 | |
| 		ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
 | |
| 		break;
 | |
| 	case BTRFS_BLOCK_GROUP_RAID5:
 | |
| 	case BTRFS_BLOCK_GROUP_RAID6:
 | |
| 	default:
 | |
| 		btrfs_err(fs_info, "zoned: profile %s not yet supported",
 | |
| 			  btrfs_bg_type_to_raid_name(map->type));
 | |
| 		ret = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
 | |
| 	    profile != BTRFS_BLOCK_GROUP_RAID10) {
 | |
| 		/*
 | |
| 		 * Detected broken write pointer.  Make this block group
 | |
| 		 * unallocatable by setting the allocation pointer at the end of
 | |
| 		 * allocatable region. Relocating this block group will fix the
 | |
| 		 * mismatch.
 | |
| 		 *
 | |
| 		 * Currently, we cannot handle RAID0 or RAID10 case like this
 | |
| 		 * because we don't have a proper zone_capacity value. But,
 | |
| 		 * reading from this block group won't work anyway by a missing
 | |
| 		 * stripe.
 | |
| 		 */
 | |
| 		cache->alloc_offset = cache->zone_capacity;
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	/* Reject non SINGLE data profiles without RST */
 | |
| 	if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
 | |
| 	    (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
 | |
| 	    !fs_info->stripe_root) {
 | |
| 		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
 | |
| 			  btrfs_bg_type_to_raid_name(map->type));
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (cache->alloc_offset > cache->zone_capacity) {
 | |
| 		btrfs_err(fs_info,
 | |
| "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
 | |
| 			  cache->alloc_offset, cache->zone_capacity,
 | |
| 			  cache->start);
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* An extent is allocated after the write pointer */
 | |
| 	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
 | |
| 			  logical, last_alloc, cache->alloc_offset);
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		cache->meta_write_pointer = cache->alloc_offset + cache->start;
 | |
| 		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
 | |
| 			btrfs_get_block_group(cache);
 | |
| 			spin_lock(&fs_info->zone_active_bgs_lock);
 | |
| 			list_add_tail(&cache->active_bg_list,
 | |
| 				      &fs_info->zone_active_bgs);
 | |
| 			spin_unlock(&fs_info->zone_active_bgs_lock);
 | |
| 		}
 | |
| 	} else {
 | |
| 		btrfs_free_chunk_map(cache->physical_map);
 | |
| 		cache->physical_map = NULL;
 | |
| 	}
 | |
| 	bitmap_free(active);
 | |
| 	kfree(zone_info);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
 | |
| {
 | |
| 	u64 unusable, free;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(cache->fs_info))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(cache->bytes_super != 0);
 | |
| 	unusable = (cache->alloc_offset - cache->used) +
 | |
| 		   (cache->length - cache->zone_capacity);
 | |
| 	free = cache->zone_capacity - cache->alloc_offset;
 | |
| 
 | |
| 	/* We only need ->free_space in ALLOC_SEQ block groups */
 | |
| 	cache->cached = BTRFS_CACHE_FINISHED;
 | |
| 	cache->free_space_ctl->free_space = free;
 | |
| 	cache->zone_unusable = unusable;
 | |
| }
 | |
| 
 | |
| bool btrfs_use_zone_append(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
 | |
| 	struct btrfs_inode *inode = bbio->inode;
 | |
| 	struct btrfs_fs_info *fs_info = bbio->fs_info;
 | |
| 	struct btrfs_block_group *cache;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!inode || !is_data_inode(inode))
 | |
| 		return false;
 | |
| 
 | |
| 	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
 | |
| 	 * extent layout the relocation code has.
 | |
| 	 * Furthermore we have set aside own block-group from which only the
 | |
| 	 * relocation "process" can allocate and make sure only one process at a
 | |
| 	 * time can add pages to an extent that gets relocated, so it's safe to
 | |
| 	 * use regular REQ_OP_WRITE for this special case.
 | |
| 	 */
 | |
| 	if (btrfs_is_data_reloc_root(inode->root))
 | |
| 		return false;
 | |
| 
 | |
| 	cache = btrfs_lookup_block_group(fs_info, start);
 | |
| 	ASSERT(cache);
 | |
| 	if (!cache)
 | |
| 		return false;
 | |
| 
 | |
| 	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
 | |
| 	btrfs_put_block_group(cache);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 	struct btrfs_ordered_sum *sum = bbio->sums;
 | |
| 
 | |
| 	if (physical < bbio->orig_physical)
 | |
| 		sum->logical -= bbio->orig_physical - physical;
 | |
| 	else
 | |
| 		sum->logical += physical - bbio->orig_physical;
 | |
| }
 | |
| 
 | |
| static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
 | |
| 					u64 logical)
 | |
| {
 | |
| 	struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
 | |
| 	struct extent_map *em;
 | |
| 
 | |
| 	ordered->disk_bytenr = logical;
 | |
| 
 | |
| 	write_lock(&em_tree->lock);
 | |
| 	em = search_extent_mapping(em_tree, ordered->file_offset,
 | |
| 				   ordered->num_bytes);
 | |
| 	/* The em should be a new COW extent, thus it should not have an offset. */
 | |
| 	ASSERT(em->offset == 0);
 | |
| 	em->disk_bytenr = logical;
 | |
| 	free_extent_map(em);
 | |
| 	write_unlock(&em_tree->lock);
 | |
| }
 | |
| 
 | |
| static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
 | |
| 				      u64 logical, u64 len)
 | |
| {
 | |
| 	struct btrfs_ordered_extent *new;
 | |
| 
 | |
| 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
 | |
| 	    split_extent_map(ordered->inode, ordered->file_offset,
 | |
| 			     ordered->num_bytes, len, logical))
 | |
| 		return false;
 | |
| 
 | |
| 	new = btrfs_split_ordered_extent(ordered, len);
 | |
| 	if (IS_ERR(new))
 | |
| 		return false;
 | |
| 	new->disk_bytenr = logical;
 | |
| 	btrfs_finish_one_ordered(new);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
 | |
| {
 | |
| 	struct btrfs_inode *inode = ordered->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct btrfs_ordered_sum *sum;
 | |
| 	u64 logical, len;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write to pre-allocated region is for the data relocation, and so
 | |
| 	 * it should use WRITE operation. No split/rewrite are necessary.
 | |
| 	 */
 | |
| 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
 | |
| 		return;
 | |
| 
 | |
| 	ASSERT(!list_empty(&ordered->list));
 | |
| 	/* The ordered->list can be empty in the above pre-alloc case. */
 | |
| 	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
 | |
| 	logical = sum->logical;
 | |
| 	len = sum->len;
 | |
| 
 | |
| 	while (len < ordered->disk_num_bytes) {
 | |
| 		sum = list_next_entry(sum, list);
 | |
| 		if (sum->logical == logical + len) {
 | |
| 			len += sum->len;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
 | |
| 			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 | |
| 			btrfs_err(fs_info, "failed to split ordered extent");
 | |
| 			goto out;
 | |
| 		}
 | |
| 		logical = sum->logical;
 | |
| 		len = sum->len;
 | |
| 	}
 | |
| 
 | |
| 	if (ordered->disk_bytenr != logical)
 | |
| 		btrfs_rewrite_logical_zoned(ordered, logical);
 | |
| 
 | |
| out:
 | |
| 	/*
 | |
| 	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
 | |
| 	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
 | |
| 	 * addresses and don't contain actual checksums.  We thus must free them
 | |
| 	 * here so that we don't attempt to log the csums later.
 | |
| 	 */
 | |
| 	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
 | |
| 	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
 | |
| 		while ((sum = list_first_entry_or_null(&ordered->list,
 | |
| 						       typeof(*sum), list))) {
 | |
| 			list_del(&sum->list);
 | |
| 			kfree(sum);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
 | |
| 			       struct btrfs_block_group **active_bg)
 | |
| {
 | |
| 	const struct writeback_control *wbc = ctx->wbc;
 | |
| 	struct btrfs_block_group *block_group = ctx->zoned_bg;
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 
 | |
| 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
 | |
| 		return true;
 | |
| 
 | |
| 	if (fs_info->treelog_bg == block_group->start) {
 | |
| 		if (!btrfs_zone_activate(block_group)) {
 | |
| 			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
 | |
| 
 | |
| 			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
 | |
| 				return false;
 | |
| 		}
 | |
| 	} else if (*active_bg != block_group) {
 | |
| 		struct btrfs_block_group *tgt = *active_bg;
 | |
| 
 | |
| 		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
 | |
| 		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
 | |
| 
 | |
| 		if (tgt) {
 | |
| 			/*
 | |
| 			 * If there is an unsent IO left in the allocated area,
 | |
| 			 * we cannot wait for them as it may cause a deadlock.
 | |
| 			 */
 | |
| 			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
 | |
| 				if (wbc->sync_mode == WB_SYNC_NONE ||
 | |
| 				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
 | |
| 					return false;
 | |
| 			}
 | |
| 
 | |
| 			/* Pivot active metadata/system block group. */
 | |
| 			btrfs_zoned_meta_io_unlock(fs_info);
 | |
| 			wait_eb_writebacks(tgt);
 | |
| 			do_zone_finish(tgt, true);
 | |
| 			btrfs_zoned_meta_io_lock(fs_info);
 | |
| 			if (*active_bg == tgt) {
 | |
| 				btrfs_put_block_group(tgt);
 | |
| 				*active_bg = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		if (!btrfs_zone_activate(block_group))
 | |
| 			return false;
 | |
| 		if (*active_bg != block_group) {
 | |
| 			ASSERT(*active_bg == NULL);
 | |
| 			*active_bg = block_group;
 | |
| 			btrfs_get_block_group(block_group);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if @ctx->eb is aligned to the write pointer.
 | |
|  *
 | |
|  * Return:
 | |
|  *   0:        @ctx->eb is at the write pointer. You can write it.
 | |
|  *   -EAGAIN:  There is a hole. The caller should handle the case.
 | |
|  *   -EBUSY:   There is a hole, but the caller can just bail out.
 | |
|  */
 | |
| int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
 | |
| 				   struct btrfs_eb_write_context *ctx)
 | |
| {
 | |
| 	const struct writeback_control *wbc = ctx->wbc;
 | |
| 	const struct extent_buffer *eb = ctx->eb;
 | |
| 	struct btrfs_block_group *block_group = ctx->zoned_bg;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (block_group) {
 | |
| 		if (block_group->start > eb->start ||
 | |
| 		    block_group->start + block_group->length <= eb->start) {
 | |
| 			btrfs_put_block_group(block_group);
 | |
| 			block_group = NULL;
 | |
| 			ctx->zoned_bg = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!block_group) {
 | |
| 		block_group = btrfs_lookup_block_group(fs_info, eb->start);
 | |
| 		if (!block_group)
 | |
| 			return 0;
 | |
| 		ctx->zoned_bg = block_group;
 | |
| 	}
 | |
| 
 | |
| 	if (block_group->meta_write_pointer == eb->start) {
 | |
| 		struct btrfs_block_group **tgt;
 | |
| 
 | |
| 		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
 | |
| 			tgt = &fs_info->active_system_bg;
 | |
| 		else
 | |
| 			tgt = &fs_info->active_meta_bg;
 | |
| 		if (check_bg_is_active(ctx, tgt))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
 | |
| 	 * start writing this eb. In that case, we can just bail out.
 | |
| 	 */
 | |
| 	if (block_group->meta_write_pointer > eb->start)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* If for_sync, this hole will be filled with trasnsaction commit. */
 | |
| 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
 | |
| 		return -EAGAIN;
 | |
| 	return -EBUSY;
 | |
| }
 | |
| 
 | |
| int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
 | |
| {
 | |
| 	if (!btrfs_dev_is_sequential(device, physical))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
 | |
| 				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
 | |
| }
 | |
| 
 | |
| static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
 | |
| 			  struct blk_zone *zone)
 | |
| {
 | |
| 	struct btrfs_io_context *bioc = NULL;
 | |
| 	u64 mapped_length = PAGE_SIZE;
 | |
| 	unsigned int nofs_flag;
 | |
| 	int nmirrors;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
 | |
| 			      &mapped_length, &bioc, NULL, NULL);
 | |
| 	if (ret || !bioc || mapped_length < PAGE_SIZE) {
 | |
| 		ret = -EIO;
 | |
| 		goto out_put_bioc;
 | |
| 	}
 | |
| 
 | |
| 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_put_bioc;
 | |
| 	}
 | |
| 
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	nmirrors = (int)bioc->num_stripes;
 | |
| 	for (i = 0; i < nmirrors; i++) {
 | |
| 		u64 physical = bioc->stripes[i].physical;
 | |
| 		struct btrfs_device *dev = bioc->stripes[i].dev;
 | |
| 
 | |
| 		/* Missing device */
 | |
| 		if (!dev->bdev)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = btrfs_get_dev_zone(dev, physical, zone);
 | |
| 		/* Failing device */
 | |
| 		if (ret == -EIO || ret == -EOPNOTSUPP)
 | |
| 			continue;
 | |
| 		break;
 | |
| 	}
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| out_put_bioc:
 | |
| 	btrfs_put_bioc(bioc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
 | |
|  * filling zeros between @physical_pos to a write pointer of dev-replace
 | |
|  * source device.
 | |
|  */
 | |
| int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
 | |
| 				    u64 physical_start, u64 physical_pos)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
 | |
| 	struct blk_zone zone;
 | |
| 	u64 length;
 | |
| 	u64 wp;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = read_zone_info(fs_info, logical, &zone);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
 | |
| 
 | |
| 	if (physical_pos == wp)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (physical_pos > wp)
 | |
| 		return -EUCLEAN;
 | |
| 
 | |
| 	length = wp - physical_pos;
 | |
| 	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Activate block group and underlying device zones
 | |
|  *
 | |
|  * @block_group: the block group to activate
 | |
|  *
 | |
|  * Return: true on success, false otherwise
 | |
|  */
 | |
| bool btrfs_zone_activate(struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_chunk_map *map;
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 physical;
 | |
| 	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
 | |
| 	bool ret;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(block_group->fs_info))
 | |
| 		return true;
 | |
| 
 | |
| 	map = block_group->physical_map;
 | |
| 
 | |
| 	spin_lock(&fs_info->zone_active_bgs_lock);
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
 | |
| 		ret = true;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* No space left */
 | |
| 	if (btrfs_zoned_bg_is_full(block_group)) {
 | |
| 		ret = false;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		struct btrfs_zoned_device_info *zinfo;
 | |
| 		int reserved = 0;
 | |
| 
 | |
| 		device = map->stripes[i].dev;
 | |
| 		physical = map->stripes[i].physical;
 | |
| 		zinfo = device->zone_info;
 | |
| 
 | |
| 		if (zinfo->max_active_zones == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		if (is_data)
 | |
| 			reserved = zinfo->reserved_active_zones;
 | |
| 		/*
 | |
| 		 * For the data block group, leave active zones for one
 | |
| 		 * metadata block group and one system block group.
 | |
| 		 */
 | |
| 		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
 | |
| 			ret = false;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		if (!btrfs_dev_set_active_zone(device, physical)) {
 | |
| 			/* Cannot activate the zone */
 | |
| 			ret = false;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		if (!is_data)
 | |
| 			zinfo->reserved_active_zones--;
 | |
| 	}
 | |
| 
 | |
| 	/* Successfully activated all the zones */
 | |
| 	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	/* For the active block group list */
 | |
| 	btrfs_get_block_group(block_group);
 | |
| 	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
 | |
| 	spin_unlock(&fs_info->zone_active_bgs_lock);
 | |
| 
 | |
| 	return true;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 	spin_unlock(&fs_info->zone_active_bgs_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void wait_eb_writebacks(struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	const u64 end = block_group->start + block_group->length;
 | |
| 	struct radix_tree_iter iter;
 | |
| 	struct extent_buffer *eb;
 | |
| 	void __rcu **slot;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
 | |
| 				 block_group->start >> fs_info->sectorsize_bits) {
 | |
| 		eb = radix_tree_deref_slot(slot);
 | |
| 		if (!eb)
 | |
| 			continue;
 | |
| 		if (radix_tree_deref_retry(eb)) {
 | |
| 			slot = radix_tree_iter_retry(&iter);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (eb->start < block_group->start)
 | |
| 			continue;
 | |
| 		if (eb->start >= end)
 | |
| 			break;
 | |
| 
 | |
| 		slot = radix_tree_iter_resume(slot, &iter);
 | |
| 		rcu_read_unlock();
 | |
| 		wait_on_extent_buffer_writeback(eb);
 | |
| 		rcu_read_lock();
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_chunk_map *map;
 | |
| 	const bool is_metadata = (block_group->flags &
 | |
| 			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
 | |
| 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
 | |
| 	int ret = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if we have unwritten allocated space */
 | |
| 	if (is_metadata &&
 | |
| 	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are sure that the block group is full (= no more room left for
 | |
| 	 * new allocation) and the IO for the last usable block is completed, we
 | |
| 	 * don't need to wait for the other IOs. This holds because we ensure
 | |
| 	 * the sequential IO submissions using the ZONE_APPEND command for data
 | |
| 	 * and block_group->meta_write_pointer for metadata.
 | |
| 	 */
 | |
| 	if (!fully_written) {
 | |
| 		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 
 | |
| 		ret = btrfs_inc_block_group_ro(block_group, false);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/* Ensure all writes in this block group finish */
 | |
| 		btrfs_wait_block_group_reservations(block_group);
 | |
| 		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
 | |
| 		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
 | |
| 		/* Wait for extent buffers to be written. */
 | |
| 		if (is_metadata)
 | |
| 			wait_eb_writebacks(block_group);
 | |
| 
 | |
| 		spin_lock(&block_group->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * Bail out if someone already deactivated the block group, or
 | |
| 		 * allocated space is left in the block group.
 | |
| 		 */
 | |
| 		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
 | |
| 			      &block_group->runtime_flags)) {
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			btrfs_dec_block_group_ro(block_group);
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (block_group->reserved ||
 | |
| 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
 | |
| 			     &block_group->runtime_flags)) {
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			btrfs_dec_block_group_ro(block_group);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
 | |
| 	block_group->alloc_offset = block_group->zone_capacity;
 | |
| 	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
 | |
| 		block_group->meta_write_pointer = block_group->start +
 | |
| 						  block_group->zone_capacity;
 | |
| 	block_group->free_space_ctl->free_space = 0;
 | |
| 	btrfs_clear_treelog_bg(block_group);
 | |
| 	btrfs_clear_data_reloc_bg(block_group);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	down_read(&dev_replace->rwsem);
 | |
| 	map = block_group->physical_map;
 | |
| 	for (i = 0; i < map->num_stripes; i++) {
 | |
| 		struct btrfs_device *device = map->stripes[i].dev;
 | |
| 		const u64 physical = map->stripes[i].physical;
 | |
| 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
 | |
| 		unsigned int nofs_flags;
 | |
| 
 | |
| 		if (zinfo->max_active_zones == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		nofs_flags = memalloc_nofs_save();
 | |
| 		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
 | |
| 				       physical >> SECTOR_SHIFT,
 | |
| 				       zinfo->zone_size >> SECTOR_SHIFT);
 | |
| 		memalloc_nofs_restore(nofs_flags);
 | |
| 
 | |
| 		if (ret) {
 | |
| 			up_read(&dev_replace->rwsem);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
 | |
| 			zinfo->reserved_active_zones++;
 | |
| 		btrfs_dev_clear_active_zone(device, physical);
 | |
| 	}
 | |
| 	up_read(&dev_replace->rwsem);
 | |
| 
 | |
| 	if (!fully_written)
 | |
| 		btrfs_dec_block_group_ro(block_group);
 | |
| 
 | |
| 	spin_lock(&fs_info->zone_active_bgs_lock);
 | |
| 	ASSERT(!list_empty(&block_group->active_bg_list));
 | |
| 	list_del_init(&block_group->active_bg_list);
 | |
| 	spin_unlock(&fs_info->zone_active_bgs_lock);
 | |
| 
 | |
| 	/* For active_bg_list */
 | |
| 	btrfs_put_block_group(block_group);
 | |
| 
 | |
| 	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_zone_finish(struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	if (!btrfs_is_zoned(block_group->fs_info))
 | |
| 		return 0;
 | |
| 
 | |
| 	return do_zone_finish(block_group, false);
 | |
| }
 | |
| 
 | |
| bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
 | |
| 	struct btrfs_device *device;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Check if there is a device with active zones left */
 | |
| 	mutex_lock(&fs_info->chunk_mutex);
 | |
| 	spin_lock(&fs_info->zone_active_bgs_lock);
 | |
| 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
 | |
| 		struct btrfs_zoned_device_info *zinfo = device->zone_info;
 | |
| 		int reserved = 0;
 | |
| 
 | |
| 		if (!device->bdev)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!zinfo->max_active_zones) {
 | |
| 			ret = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (flags & BTRFS_BLOCK_GROUP_DATA)
 | |
| 			reserved = zinfo->reserved_active_zones;
 | |
| 
 | |
| 		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
 | |
| 		case 0: /* single */
 | |
| 			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
 | |
| 			break;
 | |
| 		case BTRFS_BLOCK_GROUP_DUP:
 | |
| 			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->zone_active_bgs_lock);
 | |
| 	mutex_unlock(&fs_info->chunk_mutex);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	u64 min_alloc_bytes;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(fs_info, logical);
 | |
| 	ASSERT(block_group);
 | |
| 
 | |
| 	/* No MIXED_BG on zoned btrfs. */
 | |
| 	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
 | |
| 		min_alloc_bytes = fs_info->sectorsize;
 | |
| 	else
 | |
| 		min_alloc_bytes = fs_info->nodesize;
 | |
| 
 | |
| 	/* Bail out if we can allocate more data from this block group. */
 | |
| 	if (logical + length + min_alloc_bytes <=
 | |
| 	    block_group->start + block_group->zone_capacity)
 | |
| 		goto out;
 | |
| 
 | |
| 	do_zone_finish(block_group, true);
 | |
| 
 | |
| out:
 | |
| 	btrfs_put_block_group(block_group);
 | |
| }
 | |
| 
 | |
| static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
 | |
| {
 | |
| 	struct btrfs_block_group *bg =
 | |
| 		container_of(work, struct btrfs_block_group, zone_finish_work);
 | |
| 
 | |
| 	wait_on_extent_buffer_writeback(bg->last_eb);
 | |
| 	free_extent_buffer(bg->last_eb);
 | |
| 	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
 | |
| 	btrfs_put_block_group(bg);
 | |
| }
 | |
| 
 | |
| void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
 | |
| 				   struct extent_buffer *eb)
 | |
| {
 | |
| 	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
 | |
| 	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
 | |
| 		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
 | |
| 			  bg->start);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* For the work */
 | |
| 	btrfs_get_block_group(bg);
 | |
| 	atomic_inc(&eb->refs);
 | |
| 	bg->last_eb = eb;
 | |
| 	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
 | |
| 	queue_work(system_unbound_wq, &bg->zone_finish_work);
 | |
| }
 | |
| 
 | |
| void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bg->fs_info;
 | |
| 
 | |
| 	spin_lock(&fs_info->relocation_bg_lock);
 | |
| 	if (fs_info->data_reloc_bg == bg->start)
 | |
| 		fs_info->data_reloc_bg = 0;
 | |
| 	spin_unlock(&fs_info->relocation_bg_lock);
 | |
| }
 | |
| 
 | |
| void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		if (device->zone_info) {
 | |
| 			vfree(device->zone_info->zone_cache);
 | |
| 			device->zone_info->zone_cache = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| }
 | |
| 
 | |
| bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	struct btrfs_device *device;
 | |
| 	u64 used = 0;
 | |
| 	u64 total = 0;
 | |
| 	u64 factor;
 | |
| 
 | |
| 	ASSERT(btrfs_is_zoned(fs_info));
 | |
| 
 | |
| 	if (fs_info->bg_reclaim_threshold == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		if (!device->bdev)
 | |
| 			continue;
 | |
| 
 | |
| 		total += device->disk_total_bytes;
 | |
| 		used += device->bytes_used;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	factor = div64_u64(used * 100, total);
 | |
| 	return factor >= fs_info->bg_reclaim_threshold;
 | |
| }
 | |
| 
 | |
| void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
 | |
| 				       u64 length)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info))
 | |
| 		return;
 | |
| 
 | |
| 	block_group = btrfs_lookup_block_group(fs_info, logical);
 | |
| 	/* It should be called on a previous data relocation block group. */
 | |
| 	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* All relocation extents are written. */
 | |
| 	if (block_group->start + block_group->alloc_offset == logical + length) {
 | |
| 		/*
 | |
| 		 * Now, release this block group for further allocations and
 | |
| 		 * zone finish.
 | |
| 		 */
 | |
| 		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
 | |
| 			  &block_group->runtime_flags);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 	btrfs_put_block_group(block_group);
 | |
| }
 | |
| 
 | |
| int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	struct btrfs_block_group *min_bg = NULL;
 | |
| 	u64 min_avail = U64_MAX;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock(&fs_info->zone_active_bgs_lock);
 | |
| 	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
 | |
| 			    active_bg_list) {
 | |
| 		u64 avail;
 | |
| 
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		if (block_group->reserved || block_group->alloc_offset == 0 ||
 | |
| 		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
 | |
| 		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		avail = block_group->zone_capacity - block_group->alloc_offset;
 | |
| 		if (min_avail > avail) {
 | |
| 			if (min_bg)
 | |
| 				btrfs_put_block_group(min_bg);
 | |
| 			min_bg = block_group;
 | |
| 			min_avail = avail;
 | |
| 			btrfs_get_block_group(min_bg);
 | |
| 		}
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->zone_active_bgs_lock);
 | |
| 
 | |
| 	if (!min_bg)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = btrfs_zone_finish(min_bg);
 | |
| 	btrfs_put_block_group(min_bg);
 | |
| 
 | |
| 	return ret < 0 ? ret : 1;
 | |
| }
 | |
| 
 | |
| int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
 | |
| 				struct btrfs_space_info *space_info,
 | |
| 				bool do_finish)
 | |
| {
 | |
| 	struct btrfs_block_group *bg;
 | |
| 	int index;
 | |
| 
 | |
| 	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		int ret;
 | |
| 		bool need_finish = false;
 | |
| 
 | |
| 		down_read(&space_info->groups_sem);
 | |
| 		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
 | |
| 			list_for_each_entry(bg, &space_info->block_groups[index],
 | |
| 					    list) {
 | |
| 				if (!spin_trylock(&bg->lock))
 | |
| 					continue;
 | |
| 				if (btrfs_zoned_bg_is_full(bg) ||
 | |
| 				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
 | |
| 					     &bg->runtime_flags)) {
 | |
| 					spin_unlock(&bg->lock);
 | |
| 					continue;
 | |
| 				}
 | |
| 				spin_unlock(&bg->lock);
 | |
| 
 | |
| 				if (btrfs_zone_activate(bg)) {
 | |
| 					up_read(&space_info->groups_sem);
 | |
| 					return 1;
 | |
| 				}
 | |
| 
 | |
| 				need_finish = true;
 | |
| 			}
 | |
| 		}
 | |
| 		up_read(&space_info->groups_sem);
 | |
| 
 | |
| 		if (!do_finish || !need_finish)
 | |
| 			break;
 | |
| 
 | |
| 		ret = btrfs_zone_finish_one_bg(fs_info);
 | |
| 		if (ret == 0)
 | |
| 			break;
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reserve zones for one metadata block group, one tree-log block group, and one
 | |
|  * system block group.
 | |
|  */
 | |
| void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	struct btrfs_device *device;
 | |
| 	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
 | |
| 	unsigned int metadata_reserve = 2;
 | |
| 	/* Reserve a zone for SINGLE system block group. */
 | |
| 	unsigned int system_reserve = 1;
 | |
| 
 | |
| 	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * This function is called from the mount context. So, there is no
 | |
| 	 * parallel process touching the bits. No need for read_seqretry().
 | |
| 	 */
 | |
| 	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
 | |
| 		metadata_reserve = 4;
 | |
| 	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
 | |
| 		system_reserve = 2;
 | |
| 
 | |
| 	/* Apply the reservation on all the devices. */
 | |
| 	mutex_lock(&fs_devices->device_list_mutex);
 | |
| 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 | |
| 		if (!device->bdev)
 | |
| 			continue;
 | |
| 
 | |
| 		device->zone_info->reserved_active_zones =
 | |
| 			metadata_reserve + system_reserve;
 | |
| 	}
 | |
| 	mutex_unlock(&fs_devices->device_list_mutex);
 | |
| 
 | |
| 	/* Release reservation for currently active block groups. */
 | |
| 	spin_lock(&fs_info->zone_active_bgs_lock);
 | |
| 	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
 | |
| 		struct btrfs_chunk_map *map = block_group->physical_map;
 | |
| 
 | |
| 		if (!(block_group->flags &
 | |
| 		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
 | |
| 			continue;
 | |
| 
 | |
| 		for (int i = 0; i < map->num_stripes; i++)
 | |
| 			map->stripes[i].dev->zone_info->reserved_active_zones--;
 | |
| 	}
 | |
| 	spin_unlock(&fs_info->zone_active_bgs_lock);
 | |
| }
 |