4339 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4339 lines
		
	
	
		
			114 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2008 Red Hat.  All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/error-injection.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include "ctree.h"
 | |
| #include "fs.h"
 | |
| #include "messages.h"
 | |
| #include "misc.h"
 | |
| #include "free-space-cache.h"
 | |
| #include "transaction.h"
 | |
| #include "disk-io.h"
 | |
| #include "extent_io.h"
 | |
| #include "space-info.h"
 | |
| #include "block-group.h"
 | |
| #include "discard.h"
 | |
| #include "subpage.h"
 | |
| #include "inode-item.h"
 | |
| #include "accessors.h"
 | |
| #include "file-item.h"
 | |
| #include "file.h"
 | |
| #include "super.h"
 | |
| 
 | |
| #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
 | |
| #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
 | |
| #define FORCE_EXTENT_THRESHOLD	SZ_1M
 | |
| 
 | |
| static struct kmem_cache *btrfs_free_space_cachep;
 | |
| static struct kmem_cache *btrfs_free_space_bitmap_cachep;
 | |
| 
 | |
| struct btrfs_trim_range {
 | |
| 	u64 start;
 | |
| 	u64 bytes;
 | |
| 	struct list_head list;
 | |
| };
 | |
| 
 | |
| static int link_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			   struct btrfs_free_space *info);
 | |
| static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info, bool update_stat);
 | |
| static int search_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			 struct btrfs_free_space *bitmap_info, u64 *offset,
 | |
| 			 u64 *bytes, bool for_alloc);
 | |
| static void free_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			struct btrfs_free_space *bitmap_info);
 | |
| static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info, u64 offset,
 | |
| 			      u64 bytes, bool update_stats);
 | |
| 
 | |
| static void btrfs_crc32c_final(u32 crc, u8 *result)
 | |
| {
 | |
| 	put_unaligned_le32(~crc, result);
 | |
| }
 | |
| 
 | |
| static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
 | |
| {
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
 | |
| 		info = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		if (!info->bitmap) {
 | |
| 			unlink_free_space(ctl, info, true);
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 		} else {
 | |
| 			free_bitmap(ctl, info);
 | |
| 		}
 | |
| 
 | |
| 		cond_resched_lock(&ctl->tree_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
 | |
| 					       struct btrfs_path *path,
 | |
| 					       u64 offset)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_key location;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct btrfs_free_space_header *header;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct inode *inode = NULL;
 | |
| 	unsigned nofs_flag;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = offset;
 | |
| 	key.type = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return ERR_PTR(ret);
 | |
| 	if (ret > 0) {
 | |
| 		btrfs_release_path(path);
 | |
| 		return ERR_PTR(-ENOENT);
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	header = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_free_space_header);
 | |
| 	btrfs_free_space_key(leaf, header, &disk_key);
 | |
| 	btrfs_disk_key_to_cpu(&location, &disk_key);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	/*
 | |
| 	 * We are often under a trans handle at this point, so we need to make
 | |
| 	 * sure NOFS is set to keep us from deadlocking.
 | |
| 	 */
 | |
| 	nofs_flag = memalloc_nofs_save();
 | |
| 	inode = btrfs_iget_path(location.objectid, root, path);
 | |
| 	btrfs_release_path(path);
 | |
| 	memalloc_nofs_restore(nofs_flag);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return inode;
 | |
| 
 | |
| 	mapping_set_gfp_mask(inode->i_mapping,
 | |
| 			mapping_gfp_constraint(inode->i_mapping,
 | |
| 			~(__GFP_FS | __GFP_HIGHMEM)));
 | |
| 
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
 | |
| 		struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct inode *inode = NULL;
 | |
| 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->inode)
 | |
| 		inode = igrab(&block_group->inode->vfs_inode);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 	if (inode)
 | |
| 		return inode;
 | |
| 
 | |
| 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
 | |
| 					  block_group->start);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return inode;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
 | |
| 		btrfs_info(fs_info, "Old style space inode found, converting.");
 | |
| 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
 | |
| 			BTRFS_INODE_NODATACOW;
 | |
| 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
 | |
| 		block_group->inode = BTRFS_I(igrab(inode));
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	return inode;
 | |
| }
 | |
| 
 | |
| static int __create_free_space_inode(struct btrfs_root *root,
 | |
| 				     struct btrfs_trans_handle *trans,
 | |
| 				     struct btrfs_path *path,
 | |
| 				     u64 ino, u64 offset)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_disk_key disk_key;
 | |
| 	struct btrfs_free_space_header *header;
 | |
| 	struct btrfs_inode_item *inode_item;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	/* We inline CRCs for the free disk space cache */
 | |
| 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
 | |
| 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				    struct btrfs_inode_item);
 | |
| 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
 | |
| 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
 | |
| 			     sizeof(*inode_item));
 | |
| 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
 | |
| 	btrfs_set_inode_size(leaf, inode_item, 0);
 | |
| 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
 | |
| 	btrfs_set_inode_uid(leaf, inode_item, 0);
 | |
| 	btrfs_set_inode_gid(leaf, inode_item, 0);
 | |
| 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
 | |
| 	btrfs_set_inode_flags(leaf, inode_item, flags);
 | |
| 	btrfs_set_inode_nlink(leaf, inode_item, 1);
 | |
| 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
 | |
| 	btrfs_set_inode_block_group(leaf, inode_item, offset);
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = offset;
 | |
| 	key.type = 0;
 | |
| 	ret = btrfs_insert_empty_item(trans, root, path, &key,
 | |
| 				      sizeof(struct btrfs_free_space_header));
 | |
| 	if (ret < 0) {
 | |
| 		btrfs_release_path(path);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	header = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_free_space_header);
 | |
| 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
 | |
| 	btrfs_set_free_space_key(leaf, header, &disk_key);
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int create_free_space_inode(struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_block_group *block_group,
 | |
| 			    struct btrfs_path *path)
 | |
| {
 | |
| 	int ret;
 | |
| 	u64 ino;
 | |
| 
 | |
| 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
 | |
| 					 ino, block_group->start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
 | |
|  * handles lookup, otherwise it takes ownership and iputs the inode.
 | |
|  * Don't reuse an inode pointer after passing it into this function.
 | |
|  */
 | |
| int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
 | |
| 				  struct inode *inode,
 | |
| 				  struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	struct btrfs_path *path;
 | |
| 	struct btrfs_key key;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!inode)
 | |
| 		inode = lookup_free_space_inode(block_group, path);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		if (PTR_ERR(inode) != -ENOENT)
 | |
| 			ret = PTR_ERR(inode);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
 | |
| 	if (ret) {
 | |
| 		btrfs_add_delayed_iput(BTRFS_I(inode));
 | |
| 		goto out;
 | |
| 	}
 | |
| 	clear_nlink(inode);
 | |
| 	/* One for the block groups ref */
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
 | |
| 		block_group->inode = NULL;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		iput(inode);
 | |
| 	} else {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 	/* One for the lookup ref */
 | |
| 	btrfs_add_delayed_iput(BTRFS_I(inode));
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.type = 0;
 | |
| 	key.offset = block_group->start;
 | |
| 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
 | |
| 				-1, 1);
 | |
| 	if (ret) {
 | |
| 		if (ret > 0)
 | |
| 			ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
 | |
| out:
 | |
| 	btrfs_free_path(path);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
 | |
| 				    struct btrfs_block_group *block_group,
 | |
| 				    struct inode *vfs_inode)
 | |
| {
 | |
| 	struct btrfs_truncate_control control = {
 | |
| 		.inode = BTRFS_I(vfs_inode),
 | |
| 		.new_size = 0,
 | |
| 		.ino = btrfs_ino(BTRFS_I(vfs_inode)),
 | |
| 		.min_type = BTRFS_EXTENT_DATA_KEY,
 | |
| 		.clear_extent_range = true,
 | |
| 	};
 | |
| 	struct btrfs_inode *inode = BTRFS_I(vfs_inode);
 | |
| 	struct btrfs_root *root = inode->root;
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	int ret = 0;
 | |
| 	bool locked = false;
 | |
| 
 | |
| 	if (block_group) {
 | |
| 		struct btrfs_path *path = btrfs_alloc_path();
 | |
| 
 | |
| 		if (!path) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		locked = true;
 | |
| 		mutex_lock(&trans->transaction->cache_write_mutex);
 | |
| 		if (!list_empty(&block_group->io_list)) {
 | |
| 			list_del_init(&block_group->io_list);
 | |
| 
 | |
| 			btrfs_wait_cache_io(trans, block_group, path);
 | |
| 			btrfs_put_block_group(block_group);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * now that we've truncated the cache away, its no longer
 | |
| 		 * setup or written
 | |
| 		 */
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		btrfs_free_path(path);
 | |
| 	}
 | |
| 
 | |
| 	btrfs_i_size_write(inode, 0);
 | |
| 	truncate_pagecache(vfs_inode, 0);
 | |
| 
 | |
| 	lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 | |
| 	btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
 | |
| 
 | |
| 	/*
 | |
| 	 * We skip the throttling logic for free space cache inodes, so we don't
 | |
| 	 * need to check for -EAGAIN.
 | |
| 	 */
 | |
| 	ret = btrfs_truncate_inode_items(trans, root, &control);
 | |
| 
 | |
| 	inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
 | |
| 	btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
 | |
| 
 | |
| 	unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
 | |
| 	if (ret)
 | |
| 		goto fail;
 | |
| 
 | |
| 	ret = btrfs_update_inode(trans, inode);
 | |
| 
 | |
| fail:
 | |
| 	if (locked)
 | |
| 		mutex_unlock(&trans->transaction->cache_write_mutex);
 | |
| 	if (ret)
 | |
| 		btrfs_abort_transaction(trans, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void readahead_cache(struct inode *inode)
 | |
| {
 | |
| 	struct file_ra_state ra;
 | |
| 	unsigned long last_index;
 | |
| 
 | |
| 	file_ra_state_init(&ra, inode->i_mapping);
 | |
| 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 | |
| 
 | |
| 	page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
 | |
| }
 | |
| 
 | |
| static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
 | |
| 		       int write)
 | |
| {
 | |
| 	int num_pages;
 | |
| 
 | |
| 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 | |
| 
 | |
| 	/* Make sure we can fit our crcs and generation into the first page */
 | |
| 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
 | |
| 
 | |
| 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
 | |
| 	if (!io_ctl->pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	io_ctl->num_pages = num_pages;
 | |
| 	io_ctl->fs_info = inode_to_fs_info(inode);
 | |
| 	io_ctl->inode = inode;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
 | |
| 
 | |
| static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
 | |
| {
 | |
| 	kfree(io_ctl->pages);
 | |
| 	io_ctl->pages = NULL;
 | |
| }
 | |
| 
 | |
| static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
 | |
| {
 | |
| 	if (io_ctl->cur) {
 | |
| 		io_ctl->cur = NULL;
 | |
| 		io_ctl->orig = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
 | |
| {
 | |
| 	ASSERT(io_ctl->index < io_ctl->num_pages);
 | |
| 	io_ctl->page = io_ctl->pages[io_ctl->index++];
 | |
| 	io_ctl->cur = page_address(io_ctl->page);
 | |
| 	io_ctl->orig = io_ctl->cur;
 | |
| 	io_ctl->size = PAGE_SIZE;
 | |
| 	if (clear)
 | |
| 		clear_page(io_ctl->cur);
 | |
| }
 | |
| 
 | |
| static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	io_ctl_unmap_page(io_ctl);
 | |
| 
 | |
| 	for (i = 0; i < io_ctl->num_pages; i++) {
 | |
| 		if (io_ctl->pages[i]) {
 | |
| 			btrfs_folio_clear_checked(io_ctl->fs_info,
 | |
| 					page_folio(io_ctl->pages[i]),
 | |
| 					page_offset(io_ctl->pages[i]),
 | |
| 					PAGE_SIZE);
 | |
| 			unlock_page(io_ctl->pages[i]);
 | |
| 			put_page(io_ctl->pages[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct inode *inode = io_ctl->inode;
 | |
| 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < io_ctl->num_pages; i++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		page = find_or_create_page(inode->i_mapping, i, mask);
 | |
| 		if (!page) {
 | |
| 			io_ctl_drop_pages(io_ctl);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		ret = set_page_extent_mapped(page);
 | |
| 		if (ret < 0) {
 | |
| 			unlock_page(page);
 | |
| 			put_page(page);
 | |
| 			io_ctl_drop_pages(io_ctl);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		io_ctl->pages[i] = page;
 | |
| 		if (uptodate && !PageUptodate(page)) {
 | |
| 			btrfs_read_folio(NULL, page_folio(page));
 | |
| 			lock_page(page);
 | |
| 			if (page->mapping != inode->i_mapping) {
 | |
| 				btrfs_err(BTRFS_I(inode)->root->fs_info,
 | |
| 					  "free space cache page truncated");
 | |
| 				io_ctl_drop_pages(io_ctl);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 			if (!PageUptodate(page)) {
 | |
| 				btrfs_err(BTRFS_I(inode)->root->fs_info,
 | |
| 					   "error reading free space cache");
 | |
| 				io_ctl_drop_pages(io_ctl);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < io_ctl->num_pages; i++)
 | |
| 		clear_page_dirty_for_io(io_ctl->pages[i]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 | |
| {
 | |
| 	io_ctl_map_page(io_ctl, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip the csum areas.  If we don't check crcs then we just have a
 | |
| 	 * 64bit chunk at the front of the first page.
 | |
| 	 */
 | |
| 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
 | |
| 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 | |
| 
 | |
| 	put_unaligned_le64(generation, io_ctl->cur);
 | |
| 	io_ctl->cur += sizeof(u64);
 | |
| }
 | |
| 
 | |
| static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
 | |
| {
 | |
| 	u64 cache_gen;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
 | |
| 	 * chunk at the front of the first page.
 | |
| 	 */
 | |
| 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
 | |
| 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
 | |
| 
 | |
| 	cache_gen = get_unaligned_le64(io_ctl->cur);
 | |
| 	if (cache_gen != generation) {
 | |
| 		btrfs_err_rl(io_ctl->fs_info,
 | |
| 			"space cache generation (%llu) does not match inode (%llu)",
 | |
| 				cache_gen, generation);
 | |
| 		io_ctl_unmap_page(io_ctl);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	io_ctl->cur += sizeof(u64);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
 | |
| {
 | |
| 	u32 *tmp;
 | |
| 	u32 crc = ~(u32)0;
 | |
| 	unsigned offset = 0;
 | |
| 
 | |
| 	if (index == 0)
 | |
| 		offset = sizeof(u32) * io_ctl->num_pages;
 | |
| 
 | |
| 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 | |
| 	btrfs_crc32c_final(crc, (u8 *)&crc);
 | |
| 	io_ctl_unmap_page(io_ctl);
 | |
| 	tmp = page_address(io_ctl->pages[0]);
 | |
| 	tmp += index;
 | |
| 	*tmp = crc;
 | |
| }
 | |
| 
 | |
| static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
 | |
| {
 | |
| 	u32 *tmp, val;
 | |
| 	u32 crc = ~(u32)0;
 | |
| 	unsigned offset = 0;
 | |
| 
 | |
| 	if (index == 0)
 | |
| 		offset = sizeof(u32) * io_ctl->num_pages;
 | |
| 
 | |
| 	tmp = page_address(io_ctl->pages[0]);
 | |
| 	tmp += index;
 | |
| 	val = *tmp;
 | |
| 
 | |
| 	io_ctl_map_page(io_ctl, 0);
 | |
| 	crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
 | |
| 	btrfs_crc32c_final(crc, (u8 *)&crc);
 | |
| 	if (val != crc) {
 | |
| 		btrfs_err_rl(io_ctl->fs_info,
 | |
| 			"csum mismatch on free space cache");
 | |
| 		io_ctl_unmap_page(io_ctl);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
 | |
| 			    void *bitmap)
 | |
| {
 | |
| 	struct btrfs_free_space_entry *entry;
 | |
| 
 | |
| 	if (!io_ctl->cur)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	entry = io_ctl->cur;
 | |
| 	put_unaligned_le64(offset, &entry->offset);
 | |
| 	put_unaligned_le64(bytes, &entry->bytes);
 | |
| 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
 | |
| 		BTRFS_FREE_SPACE_EXTENT;
 | |
| 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 | |
| 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 | |
| 
 | |
| 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 | |
| 		return 0;
 | |
| 
 | |
| 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 
 | |
| 	/* No more pages to map */
 | |
| 	if (io_ctl->index >= io_ctl->num_pages)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* map the next page */
 | |
| 	io_ctl_map_page(io_ctl, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
 | |
| {
 | |
| 	if (!io_ctl->cur)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we aren't at the start of the current page, unmap this one and
 | |
| 	 * map the next one if there is any left.
 | |
| 	 */
 | |
| 	if (io_ctl->cur != io_ctl->orig) {
 | |
| 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 		if (io_ctl->index >= io_ctl->num_pages)
 | |
| 			return -ENOSPC;
 | |
| 		io_ctl_map_page(io_ctl, 0);
 | |
| 	}
 | |
| 
 | |
| 	copy_page(io_ctl->cur, bitmap);
 | |
| 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 	if (io_ctl->index < io_ctl->num_pages)
 | |
| 		io_ctl_map_page(io_ctl, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we're not on the boundary we know we've modified the page and we
 | |
| 	 * need to crc the page.
 | |
| 	 */
 | |
| 	if (io_ctl->cur != io_ctl->orig)
 | |
| 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 	else
 | |
| 		io_ctl_unmap_page(io_ctl);
 | |
| 
 | |
| 	while (io_ctl->index < io_ctl->num_pages) {
 | |
| 		io_ctl_map_page(io_ctl, 1);
 | |
| 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
 | |
| 			    struct btrfs_free_space *entry, u8 *type)
 | |
| {
 | |
| 	struct btrfs_free_space_entry *e;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!io_ctl->cur) {
 | |
| 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	e = io_ctl->cur;
 | |
| 	entry->offset = get_unaligned_le64(&e->offset);
 | |
| 	entry->bytes = get_unaligned_le64(&e->bytes);
 | |
| 	*type = e->type;
 | |
| 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
 | |
| 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
 | |
| 
 | |
| 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
 | |
| 		return 0;
 | |
| 
 | |
| 	io_ctl_unmap_page(io_ctl);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
 | |
| 			      struct btrfs_free_space *entry)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	copy_page(entry->bitmap, io_ctl->cur);
 | |
| 	io_ctl_unmap_page(io_ctl);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group = ctl->block_group;
 | |
| 	u64 max_bytes;
 | |
| 	u64 bitmap_bytes;
 | |
| 	u64 extent_bytes;
 | |
| 	u64 size = block_group->length;
 | |
| 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
 | |
| 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
 | |
| 
 | |
| 	max_bitmaps = max_t(u64, max_bitmaps, 1);
 | |
| 
 | |
| 	if (ctl->total_bitmaps > max_bitmaps)
 | |
| 		btrfs_err(block_group->fs_info,
 | |
| "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
 | |
| 			  block_group->start, block_group->length,
 | |
| 			  ctl->total_bitmaps, ctl->unit, max_bitmaps,
 | |
| 			  bytes_per_bg);
 | |
| 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
 | |
| 
 | |
| 	/*
 | |
| 	 * We are trying to keep the total amount of memory used per 1GiB of
 | |
| 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
 | |
| 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
 | |
| 	 * bitmaps, we may end up using more memory than this.
 | |
| 	 */
 | |
| 	if (size < SZ_1G)
 | |
| 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
 | |
| 	else
 | |
| 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
 | |
| 
 | |
| 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
 | |
| 
 | |
| 	/*
 | |
| 	 * we want the extent entry threshold to always be at most 1/2 the max
 | |
| 	 * bytes we can have, or whatever is less than that.
 | |
| 	 */
 | |
| 	extent_bytes = max_bytes - bitmap_bytes;
 | |
| 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
 | |
| 
 | |
| 	ctl->extents_thresh =
 | |
| 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
 | |
| }
 | |
| 
 | |
| static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
 | |
| 				   struct btrfs_free_space_ctl *ctl,
 | |
| 				   struct btrfs_path *path, u64 offset)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = root->fs_info;
 | |
| 	struct btrfs_free_space_header *header;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	struct btrfs_io_ctl io_ctl;
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_free_space *e, *n;
 | |
| 	LIST_HEAD(bitmaps);
 | |
| 	u64 num_entries;
 | |
| 	u64 num_bitmaps;
 | |
| 	u64 generation;
 | |
| 	u8 type;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Nothing in the space cache, goodbye */
 | |
| 	if (!i_size_read(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = offset;
 | |
| 	key.type = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 | |
| 	if (ret < 0)
 | |
| 		return 0;
 | |
| 	else if (ret > 0) {
 | |
| 		btrfs_release_path(path);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = -1;
 | |
| 
 | |
| 	leaf = path->nodes[0];
 | |
| 	header = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_free_space_header);
 | |
| 	num_entries = btrfs_free_space_entries(leaf, header);
 | |
| 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
 | |
| 	generation = btrfs_free_space_generation(leaf, header);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	if (!BTRFS_I(inode)->generation) {
 | |
| 		btrfs_info(fs_info,
 | |
| 			   "the free space cache file (%llu) is invalid, skip it",
 | |
| 			   offset);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (BTRFS_I(inode)->generation != generation) {
 | |
| 		btrfs_err(fs_info,
 | |
| 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
 | |
| 			  BTRFS_I(inode)->generation, generation);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!num_entries)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = io_ctl_init(&io_ctl, inode, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	readahead_cache(inode);
 | |
| 
 | |
| 	ret = io_ctl_prepare_pages(&io_ctl, true);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = io_ctl_check_crc(&io_ctl, 0);
 | |
| 	if (ret)
 | |
| 		goto free_cache;
 | |
| 
 | |
| 	ret = io_ctl_check_generation(&io_ctl, generation);
 | |
| 	if (ret)
 | |
| 		goto free_cache;
 | |
| 
 | |
| 	while (num_entries) {
 | |
| 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
 | |
| 				      GFP_NOFS);
 | |
| 		if (!e) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto free_cache;
 | |
| 		}
 | |
| 
 | |
| 		ret = io_ctl_read_entry(&io_ctl, e, &type);
 | |
| 		if (ret) {
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 			goto free_cache;
 | |
| 		}
 | |
| 
 | |
| 		if (!e->bytes) {
 | |
| 			ret = -1;
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 			goto free_cache;
 | |
| 		}
 | |
| 
 | |
| 		if (type == BTRFS_FREE_SPACE_EXTENT) {
 | |
| 			spin_lock(&ctl->tree_lock);
 | |
| 			ret = link_free_space(ctl, e);
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			if (ret) {
 | |
| 				btrfs_err(fs_info,
 | |
| 					"Duplicate entries in free space cache, dumping");
 | |
| 				kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 				goto free_cache;
 | |
| 			}
 | |
| 		} else {
 | |
| 			ASSERT(num_bitmaps);
 | |
| 			num_bitmaps--;
 | |
| 			e->bitmap = kmem_cache_zalloc(
 | |
| 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
 | |
| 			if (!e->bitmap) {
 | |
| 				ret = -ENOMEM;
 | |
| 				kmem_cache_free(
 | |
| 					btrfs_free_space_cachep, e);
 | |
| 				goto free_cache;
 | |
| 			}
 | |
| 			spin_lock(&ctl->tree_lock);
 | |
| 			ret = link_free_space(ctl, e);
 | |
| 			if (ret) {
 | |
| 				spin_unlock(&ctl->tree_lock);
 | |
| 				btrfs_err(fs_info,
 | |
| 					"Duplicate entries in free space cache, dumping");
 | |
| 				kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
 | |
| 				kmem_cache_free(btrfs_free_space_cachep, e);
 | |
| 				goto free_cache;
 | |
| 			}
 | |
| 			ctl->total_bitmaps++;
 | |
| 			recalculate_thresholds(ctl);
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			list_add_tail(&e->list, &bitmaps);
 | |
| 		}
 | |
| 
 | |
| 		num_entries--;
 | |
| 	}
 | |
| 
 | |
| 	io_ctl_unmap_page(&io_ctl);
 | |
| 
 | |
| 	/*
 | |
| 	 * We add the bitmaps at the end of the entries in order that
 | |
| 	 * the bitmap entries are added to the cache.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(e, n, &bitmaps, list) {
 | |
| 		list_del_init(&e->list);
 | |
| 		ret = io_ctl_read_bitmap(&io_ctl, e);
 | |
| 		if (ret)
 | |
| 			goto free_cache;
 | |
| 	}
 | |
| 
 | |
| 	io_ctl_drop_pages(&io_ctl);
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	io_ctl_free(&io_ctl);
 | |
| 	return ret;
 | |
| free_cache:
 | |
| 	io_ctl_drop_pages(&io_ctl);
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	__btrfs_remove_free_space_cache(ctl);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| static int copy_free_space_cache(struct btrfs_block_group *block_group,
 | |
| 				 struct btrfs_free_space_ctl *ctl)
 | |
| {
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *n;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
 | |
| 		info = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		if (!info->bitmap) {
 | |
| 			const u64 offset = info->offset;
 | |
| 			const u64 bytes = info->bytes;
 | |
| 
 | |
| 			unlink_free_space(ctl, info, true);
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 			ret = btrfs_add_free_space(block_group, offset, bytes);
 | |
| 			spin_lock(&ctl->tree_lock);
 | |
| 		} else {
 | |
| 			u64 offset = info->offset;
 | |
| 			u64 bytes = ctl->unit;
 | |
| 
 | |
| 			ret = search_bitmap(ctl, info, &offset, &bytes, false);
 | |
| 			if (ret == 0) {
 | |
| 				bitmap_clear_bits(ctl, info, offset, bytes, true);
 | |
| 				spin_unlock(&ctl->tree_lock);
 | |
| 				ret = btrfs_add_free_space(block_group, offset,
 | |
| 							   bytes);
 | |
| 				spin_lock(&ctl->tree_lock);
 | |
| 			} else {
 | |
| 				free_bitmap(ctl, info);
 | |
| 				ret = 0;
 | |
| 			}
 | |
| 		}
 | |
| 		cond_resched_lock(&ctl->tree_lock);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct lock_class_key btrfs_free_space_inode_key;
 | |
| 
 | |
| int load_free_space_cache(struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space_ctl tmp_ctl = {};
 | |
| 	struct inode *inode;
 | |
| 	struct btrfs_path *path;
 | |
| 	int ret = 0;
 | |
| 	bool matched;
 | |
| 	u64 used = block_group->used;
 | |
| 
 | |
| 	/*
 | |
| 	 * Because we could potentially discard our loaded free space, we want
 | |
| 	 * to load everything into a temporary structure first, and then if it's
 | |
| 	 * valid copy it all into the actual free space ctl.
 | |
| 	 */
 | |
| 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this block group has been marked to be cleared for one reason or
 | |
| 	 * another then we can't trust the on disk cache, so just return.
 | |
| 	 */
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	path = btrfs_alloc_path();
 | |
| 	if (!path)
 | |
| 		return 0;
 | |
| 	path->search_commit_root = 1;
 | |
| 	path->skip_locking = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must pass a path with search_commit_root set to btrfs_iget in
 | |
| 	 * order to avoid a deadlock when allocating extents for the tree root.
 | |
| 	 *
 | |
| 	 * When we are COWing an extent buffer from the tree root, when looking
 | |
| 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
 | |
| 	 * block group without its free space cache loaded. When we find one
 | |
| 	 * we must load its space cache which requires reading its free space
 | |
| 	 * cache's inode item from the root tree. If this inode item is located
 | |
| 	 * in the same leaf that we started COWing before, then we end up in
 | |
| 	 * deadlock on the extent buffer (trying to read lock it when we
 | |
| 	 * previously write locked it).
 | |
| 	 *
 | |
| 	 * It's safe to read the inode item using the commit root because
 | |
| 	 * block groups, once loaded, stay in memory forever (until they are
 | |
| 	 * removed) as well as their space caches once loaded. New block groups
 | |
| 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
 | |
| 	 * we will never try to read their inode item while the fs is mounted.
 | |
| 	 */
 | |
| 	inode = lookup_free_space_inode(block_group, path);
 | |
| 	if (IS_ERR(inode)) {
 | |
| 		btrfs_free_path(path);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* We may have converted the inode and made the cache invalid. */
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		btrfs_free_path(path);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reinitialize the class of struct inode's mapping->invalidate_lock for
 | |
| 	 * free space inodes to prevent false positives related to locks for normal
 | |
| 	 * inodes.
 | |
| 	 */
 | |
| 	lockdep_set_class(&(&inode->i_data)->invalidate_lock,
 | |
| 			  &btrfs_free_space_inode_key);
 | |
| 
 | |
| 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
 | |
| 				      path, block_group->start);
 | |
| 	btrfs_free_path(path);
 | |
| 	if (ret <= 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	matched = (tmp_ctl.free_space == (block_group->length - used -
 | |
| 					  block_group->bytes_super));
 | |
| 
 | |
| 	if (matched) {
 | |
| 		spin_lock(&tmp_ctl.tree_lock);
 | |
| 		ret = copy_free_space_cache(block_group, &tmp_ctl);
 | |
| 		spin_unlock(&tmp_ctl.tree_lock);
 | |
| 		/*
 | |
| 		 * ret == 1 means we successfully loaded the free space cache,
 | |
| 		 * so we need to re-set it here.
 | |
| 		 */
 | |
| 		if (ret == 0)
 | |
| 			ret = 1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We need to call the _locked variant so we don't try to update
 | |
| 		 * the discard counters.
 | |
| 		 */
 | |
| 		spin_lock(&tmp_ctl.tree_lock);
 | |
| 		__btrfs_remove_free_space_cache(&tmp_ctl);
 | |
| 		spin_unlock(&tmp_ctl.tree_lock);
 | |
| 		btrfs_warn(fs_info,
 | |
| 			   "block group %llu has wrong amount of free space",
 | |
| 			   block_group->start);
 | |
| 		ret = -1;
 | |
| 	}
 | |
| out:
 | |
| 	if (ret < 0) {
 | |
| 		/* This cache is bogus, make sure it gets cleared */
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		ret = 0;
 | |
| 
 | |
| 		btrfs_warn(fs_info,
 | |
| 			   "failed to load free space cache for block group %llu, rebuilding it now",
 | |
| 			   block_group->start);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	btrfs_discard_update_discardable(block_group);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack
 | |
| int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
 | |
| 			      struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_block_group *block_group,
 | |
| 			      int *entries, int *bitmaps,
 | |
| 			      struct list_head *bitmap_list)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct btrfs_free_cluster *cluster = NULL;
 | |
| 	struct btrfs_free_cluster *cluster_locked = NULL;
 | |
| 	struct rb_node *node = rb_first(&ctl->free_space_offset);
 | |
| 	struct btrfs_trim_range *trim_entry;
 | |
| 
 | |
| 	/* Get the cluster for this block_group if it exists */
 | |
| 	if (block_group && !list_empty(&block_group->cluster_list)) {
 | |
| 		cluster = list_entry(block_group->cluster_list.next,
 | |
| 				     struct btrfs_free_cluster,
 | |
| 				     block_group_list);
 | |
| 	}
 | |
| 
 | |
| 	if (!node && cluster) {
 | |
| 		cluster_locked = cluster;
 | |
| 		spin_lock(&cluster_locked->lock);
 | |
| 		node = rb_first(&cluster->root);
 | |
| 		cluster = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Write out the extent entries */
 | |
| 	while (node) {
 | |
| 		struct btrfs_free_space *e;
 | |
| 
 | |
| 		e = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		*entries += 1;
 | |
| 
 | |
| 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
 | |
| 				       e->bitmap);
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 
 | |
| 		if (e->bitmap) {
 | |
| 			list_add_tail(&e->list, bitmap_list);
 | |
| 			*bitmaps += 1;
 | |
| 		}
 | |
| 		node = rb_next(node);
 | |
| 		if (!node && cluster) {
 | |
| 			node = rb_first(&cluster->root);
 | |
| 			cluster_locked = cluster;
 | |
| 			spin_lock(&cluster_locked->lock);
 | |
| 			cluster = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (cluster_locked) {
 | |
| 		spin_unlock(&cluster_locked->lock);
 | |
| 		cluster_locked = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we don't miss any range that was removed from our rbtree
 | |
| 	 * because trimming is running. Otherwise after a umount+mount (or crash
 | |
| 	 * after committing the transaction) we would leak free space and get
 | |
| 	 * an inconsistent free space cache report from fsck.
 | |
| 	 */
 | |
| 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
 | |
| 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
 | |
| 				       trim_entry->bytes, NULL);
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 		*entries += 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| fail:
 | |
| 	if (cluster_locked)
 | |
| 		spin_unlock(&cluster_locked->lock);
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| update_cache_item(struct btrfs_trans_handle *trans,
 | |
| 		  struct btrfs_root *root,
 | |
| 		  struct inode *inode,
 | |
| 		  struct btrfs_path *path, u64 offset,
 | |
| 		  int entries, int bitmaps)
 | |
| {
 | |
| 	struct btrfs_key key;
 | |
| 	struct btrfs_free_space_header *header;
 | |
| 	struct extent_buffer *leaf;
 | |
| 	int ret;
 | |
| 
 | |
| 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
 | |
| 	key.offset = offset;
 | |
| 	key.type = 0;
 | |
| 
 | |
| 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
 | |
| 	if (ret < 0) {
 | |
| 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
 | |
| 				 EXTENT_DELALLOC, NULL);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	leaf = path->nodes[0];
 | |
| 	if (ret > 0) {
 | |
| 		struct btrfs_key found_key;
 | |
| 		ASSERT(path->slots[0]);
 | |
| 		path->slots[0]--;
 | |
| 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
 | |
| 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
 | |
| 		    found_key.offset != offset) {
 | |
| 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
 | |
| 					 inode->i_size - 1, EXTENT_DELALLOC,
 | |
| 					 NULL);
 | |
| 			btrfs_release_path(path);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BTRFS_I(inode)->generation = trans->transid;
 | |
| 	header = btrfs_item_ptr(leaf, path->slots[0],
 | |
| 				struct btrfs_free_space_header);
 | |
| 	btrfs_set_free_space_entries(leaf, header, entries);
 | |
| 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
 | |
| 	btrfs_set_free_space_generation(leaf, header, trans->transid);
 | |
| 	btrfs_mark_buffer_dirty(trans, leaf);
 | |
| 	btrfs_release_path(path);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int write_pinned_extent_entries(
 | |
| 			    struct btrfs_trans_handle *trans,
 | |
| 			    struct btrfs_block_group *block_group,
 | |
| 			    struct btrfs_io_ctl *io_ctl,
 | |
| 			    int *entries)
 | |
| {
 | |
| 	u64 start, extent_start, extent_end, len;
 | |
| 	struct extent_io_tree *unpin = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!block_group)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We want to add any pinned extents to our free space cache
 | |
| 	 * so we don't leak the space
 | |
| 	 *
 | |
| 	 * We shouldn't have switched the pinned extents yet so this is the
 | |
| 	 * right one
 | |
| 	 */
 | |
| 	unpin = &trans->transaction->pinned_extents;
 | |
| 
 | |
| 	start = block_group->start;
 | |
| 
 | |
| 	while (start < block_group->start + block_group->length) {
 | |
| 		if (!find_first_extent_bit(unpin, start,
 | |
| 					   &extent_start, &extent_end,
 | |
| 					   EXTENT_DIRTY, NULL))
 | |
| 			return 0;
 | |
| 
 | |
| 		/* This pinned extent is out of our range */
 | |
| 		if (extent_start >= block_group->start + block_group->length)
 | |
| 			return 0;
 | |
| 
 | |
| 		extent_start = max(extent_start, start);
 | |
| 		extent_end = min(block_group->start + block_group->length,
 | |
| 				 extent_end + 1);
 | |
| 		len = extent_end - extent_start;
 | |
| 
 | |
| 		*entries += 1;
 | |
| 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
 | |
| 		if (ret)
 | |
| 			return -ENOSPC;
 | |
| 
 | |
| 		start = extent_end;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline_for_stack int
 | |
| write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
 | |
| {
 | |
| 	struct btrfs_free_space *entry, *next;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Write out the bitmaps */
 | |
| 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
 | |
| 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
 | |
| 		if (ret)
 | |
| 			return -ENOSPC;
 | |
| 		list_del_init(&entry->list);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int flush_dirty_cache(struct inode *inode)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
 | |
| 	if (ret)
 | |
| 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
 | |
| 				 EXTENT_DELALLOC, NULL);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void noinline_for_stack
 | |
| cleanup_bitmap_list(struct list_head *bitmap_list)
 | |
| {
 | |
| 	struct btrfs_free_space *entry, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(entry, next, bitmap_list, list)
 | |
| 		list_del_init(&entry->list);
 | |
| }
 | |
| 
 | |
| static void noinline_for_stack
 | |
| cleanup_write_cache_enospc(struct inode *inode,
 | |
| 			   struct btrfs_io_ctl *io_ctl,
 | |
| 			   struct extent_state **cached_state)
 | |
| {
 | |
| 	io_ctl_drop_pages(io_ctl);
 | |
| 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
 | |
| 		      cached_state);
 | |
| }
 | |
| 
 | |
| static int __btrfs_wait_cache_io(struct btrfs_root *root,
 | |
| 				 struct btrfs_trans_handle *trans,
 | |
| 				 struct btrfs_block_group *block_group,
 | |
| 				 struct btrfs_io_ctl *io_ctl,
 | |
| 				 struct btrfs_path *path, u64 offset)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct inode *inode = io_ctl->inode;
 | |
| 
 | |
| 	if (!inode)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Flush the dirty pages in the cache file. */
 | |
| 	ret = flush_dirty_cache(inode);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Update the cache item to tell everyone this cache file is valid. */
 | |
| 	ret = update_cache_item(trans, root, inode, path, offset,
 | |
| 				io_ctl->entries, io_ctl->bitmaps);
 | |
| out:
 | |
| 	if (ret) {
 | |
| 		invalidate_inode_pages2(inode->i_mapping);
 | |
| 		BTRFS_I(inode)->generation = 0;
 | |
| 		if (block_group)
 | |
| 			btrfs_debug(root->fs_info,
 | |
| 	  "failed to write free space cache for block group %llu error %d",
 | |
| 				  block_group->start, ret);
 | |
| 	}
 | |
| 	btrfs_update_inode(trans, BTRFS_I(inode));
 | |
| 
 | |
| 	if (block_group) {
 | |
| 		/* the dirty list is protected by the dirty_bgs_lock */
 | |
| 		spin_lock(&trans->transaction->dirty_bgs_lock);
 | |
| 
 | |
| 		/* the disk_cache_state is protected by the block group lock */
 | |
| 		spin_lock(&block_group->lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * only mark this as written if we didn't get put back on
 | |
| 		 * the dirty list while waiting for IO.   Otherwise our
 | |
| 		 * cache state won't be right, and we won't get written again
 | |
| 		 */
 | |
| 		if (!ret && list_empty(&block_group->dirty_list))
 | |
| 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
 | |
| 		else if (ret)
 | |
| 			block_group->disk_cache_state = BTRFS_DC_ERROR;
 | |
| 
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		spin_unlock(&trans->transaction->dirty_bgs_lock);
 | |
| 		io_ctl->inode = NULL;
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
 | |
| 			struct btrfs_block_group *block_group,
 | |
| 			struct btrfs_path *path)
 | |
| {
 | |
| 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
 | |
| 				     block_group, &block_group->io_ctl,
 | |
| 				     path, block_group->start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out cached info to an inode.
 | |
|  *
 | |
|  * @inode:       freespace inode we are writing out
 | |
|  * @ctl:         free space cache we are going to write out
 | |
|  * @block_group: block_group for this cache if it belongs to a block_group
 | |
|  * @io_ctl:      holds context for the io
 | |
|  * @trans:       the trans handle
 | |
|  *
 | |
|  * This function writes out a free space cache struct to disk for quick recovery
 | |
|  * on mount.  This will return 0 if it was successful in writing the cache out,
 | |
|  * or an errno if it was not.
 | |
|  */
 | |
| static int __btrfs_write_out_cache(struct inode *inode,
 | |
| 				   struct btrfs_free_space_ctl *ctl,
 | |
| 				   struct btrfs_block_group *block_group,
 | |
| 				   struct btrfs_io_ctl *io_ctl,
 | |
| 				   struct btrfs_trans_handle *trans)
 | |
| {
 | |
| 	struct extent_state *cached_state = NULL;
 | |
| 	LIST_HEAD(bitmap_list);
 | |
| 	int entries = 0;
 | |
| 	int bitmaps = 0;
 | |
| 	int ret;
 | |
| 	int must_iput = 0;
 | |
| 
 | |
| 	if (!i_size_read(inode))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	WARN_ON(io_ctl->pages);
 | |
| 	ret = io_ctl_init(io_ctl, inode, 1);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
 | |
| 		down_write(&block_group->data_rwsem);
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		if (block_group->delalloc_bytes) {
 | |
| 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
 | |
| 			spin_unlock(&block_group->lock);
 | |
| 			up_write(&block_group->data_rwsem);
 | |
| 			BTRFS_I(inode)->generation = 0;
 | |
| 			ret = 0;
 | |
| 			must_iput = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Lock all pages first so we can lock the extent safely. */
 | |
| 	ret = io_ctl_prepare_pages(io_ctl, false);
 | |
| 	if (ret)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
 | |
| 		    &cached_state);
 | |
| 
 | |
| 	io_ctl_set_generation(io_ctl, trans->transid);
 | |
| 
 | |
| 	mutex_lock(&ctl->cache_writeout_mutex);
 | |
| 	/* Write out the extent entries in the free space cache */
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	ret = write_cache_extent_entries(io_ctl, ctl,
 | |
| 					 block_group, &entries, &bitmaps,
 | |
| 					 &bitmap_list);
 | |
| 	if (ret)
 | |
| 		goto out_nospc_locked;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some spaces that are freed in the current transaction are pinned,
 | |
| 	 * they will be added into free space cache after the transaction is
 | |
| 	 * committed, we shouldn't lose them.
 | |
| 	 *
 | |
| 	 * If this changes while we are working we'll get added back to
 | |
| 	 * the dirty list and redo it.  No locking needed
 | |
| 	 */
 | |
| 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
 | |
| 	if (ret)
 | |
| 		goto out_nospc_locked;
 | |
| 
 | |
| 	/*
 | |
| 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
 | |
| 	 * locked while doing it because a concurrent trim can be manipulating
 | |
| 	 * or freeing the bitmap.
 | |
| 	 */
 | |
| 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 	if (ret)
 | |
| 		goto out_nospc;
 | |
| 
 | |
| 	/* Zero out the rest of the pages just to make sure */
 | |
| 	io_ctl_zero_remaining_pages(io_ctl);
 | |
| 
 | |
| 	/* Everything is written out, now we dirty the pages in the file. */
 | |
| 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
 | |
| 				io_ctl->num_pages, 0, i_size_read(inode),
 | |
| 				&cached_state, false);
 | |
| 	if (ret)
 | |
| 		goto out_nospc;
 | |
| 
 | |
| 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
 | |
| 		up_write(&block_group->data_rwsem);
 | |
| 	/*
 | |
| 	 * Release the pages and unlock the extent, we will flush
 | |
| 	 * them out later
 | |
| 	 */
 | |
| 	io_ctl_drop_pages(io_ctl);
 | |
| 	io_ctl_free(io_ctl);
 | |
| 
 | |
| 	unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
 | |
| 		      &cached_state);
 | |
| 
 | |
| 	/*
 | |
| 	 * at this point the pages are under IO and we're happy,
 | |
| 	 * The caller is responsible for waiting on them and updating
 | |
| 	 * the cache and the inode
 | |
| 	 */
 | |
| 	io_ctl->entries = entries;
 | |
| 	io_ctl->bitmaps = bitmaps;
 | |
| 
 | |
| 	ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_nospc_locked:
 | |
| 	cleanup_bitmap_list(&bitmap_list);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| out_nospc:
 | |
| 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
 | |
| 
 | |
| out_unlock:
 | |
| 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
 | |
| 		up_write(&block_group->data_rwsem);
 | |
| 
 | |
| out:
 | |
| 	io_ctl->inode = NULL;
 | |
| 	io_ctl_free(io_ctl);
 | |
| 	if (ret) {
 | |
| 		invalidate_inode_pages2(inode->i_mapping);
 | |
| 		BTRFS_I(inode)->generation = 0;
 | |
| 	}
 | |
| 	btrfs_update_inode(trans, BTRFS_I(inode));
 | |
| 	if (must_iput)
 | |
| 		iput(inode);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
 | |
| 			  struct btrfs_block_group *block_group,
 | |
| 			  struct btrfs_path *path)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = trans->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct inode *inode;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	inode = lookup_free_space_inode(block_group, path);
 | |
| 	if (IS_ERR(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = __btrfs_write_out_cache(inode, ctl, block_group,
 | |
| 				      &block_group->io_ctl, trans);
 | |
| 	if (ret) {
 | |
| 		btrfs_debug(fs_info,
 | |
| 	  "failed to write free space cache for block group %llu error %d",
 | |
| 			  block_group->start, ret);
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		block_group->disk_cache_state = BTRFS_DC_ERROR;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 
 | |
| 		block_group->io_ctl.inode = NULL;
 | |
| 		iput(inode);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
 | |
| 	 * to wait for IO and put the inode
 | |
| 	 */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
 | |
| 					  u64 offset)
 | |
| {
 | |
| 	ASSERT(offset >= bitmap_start);
 | |
| 	offset -= bitmap_start;
 | |
| 	return (unsigned long)(div_u64(offset, unit));
 | |
| }
 | |
| 
 | |
| static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
 | |
| {
 | |
| 	return (unsigned long)(div_u64(bytes, unit));
 | |
| }
 | |
| 
 | |
| static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 				   u64 offset)
 | |
| {
 | |
| 	u64 bitmap_start;
 | |
| 	u64 bytes_per_bitmap;
 | |
| 
 | |
| 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
 | |
| 	bitmap_start = offset - ctl->start;
 | |
| 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
 | |
| 	bitmap_start *= bytes_per_bitmap;
 | |
| 	bitmap_start += ctl->start;
 | |
| 
 | |
| 	return bitmap_start;
 | |
| }
 | |
| 
 | |
| static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_cluster *cluster,
 | |
| 			      struct btrfs_free_space *new_entry)
 | |
| {
 | |
| 	struct rb_root *root;
 | |
| 	struct rb_node **p;
 | |
| 	struct rb_node *parent = NULL;
 | |
| 
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 
 | |
| 	if (cluster) {
 | |
| 		lockdep_assert_held(&cluster->lock);
 | |
| 		root = &cluster->root;
 | |
| 	} else {
 | |
| 		root = &ctl->free_space_offset;
 | |
| 	}
 | |
| 
 | |
| 	p = &root->rb_node;
 | |
| 
 | |
| 	while (*p) {
 | |
| 		struct btrfs_free_space *info;
 | |
| 
 | |
| 		parent = *p;
 | |
| 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 		if (new_entry->offset < info->offset) {
 | |
| 			p = &(*p)->rb_left;
 | |
| 		} else if (new_entry->offset > info->offset) {
 | |
| 			p = &(*p)->rb_right;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * we could have a bitmap entry and an extent entry
 | |
| 			 * share the same offset.  If this is the case, we want
 | |
| 			 * the extent entry to always be found first if we do a
 | |
| 			 * linear search through the tree, since we want to have
 | |
| 			 * the quickest allocation time, and allocating from an
 | |
| 			 * extent is faster than allocating from a bitmap.  So
 | |
| 			 * if we're inserting a bitmap and we find an entry at
 | |
| 			 * this offset, we want to go right, or after this entry
 | |
| 			 * logically.  If we are inserting an extent and we've
 | |
| 			 * found a bitmap, we want to go left, or before
 | |
| 			 * logically.
 | |
| 			 */
 | |
| 			if (new_entry->bitmap) {
 | |
| 				if (info->bitmap) {
 | |
| 					WARN_ON_ONCE(1);
 | |
| 					return -EEXIST;
 | |
| 				}
 | |
| 				p = &(*p)->rb_right;
 | |
| 			} else {
 | |
| 				if (!info->bitmap) {
 | |
| 					WARN_ON_ONCE(1);
 | |
| 					return -EEXIST;
 | |
| 				}
 | |
| 				p = &(*p)->rb_left;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rb_link_node(&new_entry->offset_index, parent, p);
 | |
| 	rb_insert_color(&new_entry->offset_index, root);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a little subtle.  We *only* have ->max_extent_size set if we actually
 | |
|  * searched through the bitmap and figured out the largest ->max_extent_size,
 | |
|  * otherwise it's 0.  In the case that it's 0 we don't want to tell the
 | |
|  * allocator the wrong thing, we want to use the actual real max_extent_size
 | |
|  * we've found already if it's larger, or we want to use ->bytes.
 | |
|  *
 | |
|  * This matters because find_free_space() will skip entries who's ->bytes is
 | |
|  * less than the required bytes.  So if we didn't search down this bitmap, we
 | |
|  * may pick some previous entry that has a smaller ->max_extent_size than we
 | |
|  * have.  For example, assume we have two entries, one that has
 | |
|  * ->max_extent_size set to 4K and ->bytes set to 1M.  A second entry hasn't set
 | |
|  * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous.  We will
 | |
|  *  call into find_free_space(), and return with max_extent_size == 4K, because
 | |
|  *  that first bitmap entry had ->max_extent_size set, but the second one did
 | |
|  *  not.  If instead we returned 8K we'd come in searching for 8K, and find the
 | |
|  *  8K contiguous range.
 | |
|  *
 | |
|  *  Consider the other case, we have 2 8K chunks in that second entry and still
 | |
|  *  don't have ->max_extent_size set.  We'll return 16K, and the next time the
 | |
|  *  allocator comes in it'll fully search our second bitmap, and this time it'll
 | |
|  *  get an uptodate value of 8K as the maximum chunk size.  Then we'll get the
 | |
|  *  right allocation the next loop through.
 | |
|  */
 | |
| static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
 | |
| {
 | |
| 	if (entry->bitmap && entry->max_extent_size)
 | |
| 		return entry->max_extent_size;
 | |
| 	return entry->bytes;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We want the largest entry to be leftmost, so this is inverted from what you'd
 | |
|  * normally expect.
 | |
|  */
 | |
| static bool entry_less(struct rb_node *node, const struct rb_node *parent)
 | |
| {
 | |
| 	const struct btrfs_free_space *entry, *exist;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_free_space, bytes_index);
 | |
| 	exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
 | |
| 	return get_max_extent_size(exist) < get_max_extent_size(entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * searches the tree for the given offset.
 | |
|  *
 | |
|  * fuzzy - If this is set, then we are trying to make an allocation, and we just
 | |
|  * want a section that has at least bytes size and comes at or after the given
 | |
|  * offset.
 | |
|  */
 | |
| static struct btrfs_free_space *
 | |
| tree_search_offset(struct btrfs_free_space_ctl *ctl,
 | |
| 		   u64 offset, int bitmap_only, int fuzzy)
 | |
| {
 | |
| 	struct rb_node *n = ctl->free_space_offset.rb_node;
 | |
| 	struct btrfs_free_space *entry = NULL, *prev = NULL;
 | |
| 
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 
 | |
| 	/* find entry that is closest to the 'offset' */
 | |
| 	while (n) {
 | |
| 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		prev = entry;
 | |
| 
 | |
| 		if (offset < entry->offset)
 | |
| 			n = n->rb_left;
 | |
| 		else if (offset > entry->offset)
 | |
| 			n = n->rb_right;
 | |
| 		else
 | |
| 			break;
 | |
| 
 | |
| 		entry = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (bitmap_only) {
 | |
| 		if (!entry)
 | |
| 			return NULL;
 | |
| 		if (entry->bitmap)
 | |
| 			return entry;
 | |
| 
 | |
| 		/*
 | |
| 		 * bitmap entry and extent entry may share same offset,
 | |
| 		 * in that case, bitmap entry comes after extent entry.
 | |
| 		 */
 | |
| 		n = rb_next(n);
 | |
| 		if (!n)
 | |
| 			return NULL;
 | |
| 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		if (entry->offset != offset)
 | |
| 			return NULL;
 | |
| 
 | |
| 		WARN_ON(!entry->bitmap);
 | |
| 		return entry;
 | |
| 	} else if (entry) {
 | |
| 		if (entry->bitmap) {
 | |
| 			/*
 | |
| 			 * if previous extent entry covers the offset,
 | |
| 			 * we should return it instead of the bitmap entry
 | |
| 			 */
 | |
| 			n = rb_prev(&entry->offset_index);
 | |
| 			if (n) {
 | |
| 				prev = rb_entry(n, struct btrfs_free_space,
 | |
| 						offset_index);
 | |
| 				if (!prev->bitmap &&
 | |
| 				    prev->offset + prev->bytes > offset)
 | |
| 					entry = prev;
 | |
| 			}
 | |
| 		}
 | |
| 		return entry;
 | |
| 	}
 | |
| 
 | |
| 	if (!prev)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* find last entry before the 'offset' */
 | |
| 	entry = prev;
 | |
| 	if (entry->offset > offset) {
 | |
| 		n = rb_prev(&entry->offset_index);
 | |
| 		if (n) {
 | |
| 			entry = rb_entry(n, struct btrfs_free_space,
 | |
| 					offset_index);
 | |
| 			ASSERT(entry->offset <= offset);
 | |
| 		} else {
 | |
| 			if (fuzzy)
 | |
| 				return entry;
 | |
| 			else
 | |
| 				return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (entry->bitmap) {
 | |
| 		n = rb_prev(&entry->offset_index);
 | |
| 		if (n) {
 | |
| 			prev = rb_entry(n, struct btrfs_free_space,
 | |
| 					offset_index);
 | |
| 			if (!prev->bitmap &&
 | |
| 			    prev->offset + prev->bytes > offset)
 | |
| 				return prev;
 | |
| 		}
 | |
| 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
 | |
| 			return entry;
 | |
| 	} else if (entry->offset + entry->bytes > offset)
 | |
| 		return entry;
 | |
| 
 | |
| 	if (!fuzzy)
 | |
| 		return NULL;
 | |
| 
 | |
| 	while (1) {
 | |
| 		n = rb_next(&entry->offset_index);
 | |
| 		if (!n)
 | |
| 			return NULL;
 | |
| 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		if (entry->bitmap) {
 | |
| 			if (entry->offset + BITS_PER_BITMAP *
 | |
| 			    ctl->unit > offset)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			if (entry->offset + entry->bytes > offset)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	return entry;
 | |
| }
 | |
| 
 | |
| static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 				     struct btrfs_free_space *info,
 | |
| 				     bool update_stat)
 | |
| {
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 
 | |
| 	rb_erase(&info->offset_index, &ctl->free_space_offset);
 | |
| 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
 | |
| 	ctl->free_extents--;
 | |
| 
 | |
| 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
 | |
| 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
 | |
| 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
 | |
| 	}
 | |
| 
 | |
| 	if (update_stat)
 | |
| 		ctl->free_space -= info->bytes;
 | |
| }
 | |
| 
 | |
| static int link_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			   struct btrfs_free_space *info)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 
 | |
| 	ASSERT(info->bytes || info->bitmap);
 | |
| 	ret = tree_insert_offset(ctl, NULL, info);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
 | |
| 
 | |
| 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
 | |
| 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
 | |
| 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
 | |
| 	}
 | |
| 
 | |
| 	ctl->free_space += info->bytes;
 | |
| 	ctl->free_extents++;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
 | |
| 				struct btrfs_free_space *info)
 | |
| {
 | |
| 	ASSERT(info->bitmap);
 | |
| 
 | |
| 	/*
 | |
| 	 * If our entry is empty it's because we're on a cluster and we don't
 | |
| 	 * want to re-link it into our ctl bytes index.
 | |
| 	 */
 | |
| 	if (RB_EMPTY_NODE(&info->bytes_index))
 | |
| 		return;
 | |
| 
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 
 | |
| 	rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
 | |
| 	rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
 | |
| }
 | |
| 
 | |
| static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
 | |
| 				     struct btrfs_free_space *info,
 | |
| 				     u64 offset, u64 bytes, bool update_stat)
 | |
| {
 | |
| 	unsigned long start, count, end;
 | |
| 	int extent_delta = -1;
 | |
| 
 | |
| 	start = offset_to_bit(info->offset, ctl->unit, offset);
 | |
| 	count = bytes_to_bits(bytes, ctl->unit);
 | |
| 	end = start + count;
 | |
| 	ASSERT(end <= BITS_PER_BITMAP);
 | |
| 
 | |
| 	bitmap_clear(info->bitmap, start, count);
 | |
| 
 | |
| 	info->bytes -= bytes;
 | |
| 	if (info->max_extent_size > ctl->unit)
 | |
| 		info->max_extent_size = 0;
 | |
| 
 | |
| 	relink_bitmap_entry(ctl, info);
 | |
| 
 | |
| 	if (start && test_bit(start - 1, info->bitmap))
 | |
| 		extent_delta++;
 | |
| 
 | |
| 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
 | |
| 		extent_delta++;
 | |
| 
 | |
| 	info->bitmap_extents += extent_delta;
 | |
| 	if (!btrfs_free_space_trimmed(info)) {
 | |
| 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
 | |
| 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
 | |
| 	}
 | |
| 
 | |
| 	if (update_stat)
 | |
| 		ctl->free_space -= bytes;
 | |
| }
 | |
| 
 | |
| static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
 | |
| 				  struct btrfs_free_space *info, u64 offset,
 | |
| 				  u64 bytes)
 | |
| {
 | |
| 	unsigned long start, count, end;
 | |
| 	int extent_delta = 1;
 | |
| 
 | |
| 	start = offset_to_bit(info->offset, ctl->unit, offset);
 | |
| 	count = bytes_to_bits(bytes, ctl->unit);
 | |
| 	end = start + count;
 | |
| 	ASSERT(end <= BITS_PER_BITMAP);
 | |
| 
 | |
| 	bitmap_set(info->bitmap, start, count);
 | |
| 
 | |
| 	/*
 | |
| 	 * We set some bytes, we have no idea what the max extent size is
 | |
| 	 * anymore.
 | |
| 	 */
 | |
| 	info->max_extent_size = 0;
 | |
| 	info->bytes += bytes;
 | |
| 	ctl->free_space += bytes;
 | |
| 
 | |
| 	relink_bitmap_entry(ctl, info);
 | |
| 
 | |
| 	if (start && test_bit(start - 1, info->bitmap))
 | |
| 		extent_delta--;
 | |
| 
 | |
| 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
 | |
| 		extent_delta--;
 | |
| 
 | |
| 	info->bitmap_extents += extent_delta;
 | |
| 	if (!btrfs_free_space_trimmed(info)) {
 | |
| 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
 | |
| 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we can not find suitable extent, we will use bytes to record
 | |
|  * the size of the max extent.
 | |
|  */
 | |
| static int search_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			 struct btrfs_free_space *bitmap_info, u64 *offset,
 | |
| 			 u64 *bytes, bool for_alloc)
 | |
| {
 | |
| 	unsigned long found_bits = 0;
 | |
| 	unsigned long max_bits = 0;
 | |
| 	unsigned long bits, i;
 | |
| 	unsigned long next_zero;
 | |
| 	unsigned long extent_bits;
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip searching the bitmap if we don't have a contiguous section that
 | |
| 	 * is large enough for this allocation.
 | |
| 	 */
 | |
| 	if (for_alloc &&
 | |
| 	    bitmap_info->max_extent_size &&
 | |
| 	    bitmap_info->max_extent_size < *bytes) {
 | |
| 		*bytes = bitmap_info->max_extent_size;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
 | |
| 			  max_t(u64, *offset, bitmap_info->offset));
 | |
| 	bits = bytes_to_bits(*bytes, ctl->unit);
 | |
| 
 | |
| 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
 | |
| 		if (for_alloc && bits == 1) {
 | |
| 			found_bits = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
 | |
| 					       BITS_PER_BITMAP, i);
 | |
| 		extent_bits = next_zero - i;
 | |
| 		if (extent_bits >= bits) {
 | |
| 			found_bits = extent_bits;
 | |
| 			break;
 | |
| 		} else if (extent_bits > max_bits) {
 | |
| 			max_bits = extent_bits;
 | |
| 		}
 | |
| 		i = next_zero;
 | |
| 	}
 | |
| 
 | |
| 	if (found_bits) {
 | |
| 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
 | |
| 		*bytes = (u64)(found_bits) * ctl->unit;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	*bytes = (u64)(max_bits) * ctl->unit;
 | |
| 	bitmap_info->max_extent_size = *bytes;
 | |
| 	relink_bitmap_entry(ctl, bitmap_info);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* Cache the size of the max extent in bytes */
 | |
| static struct btrfs_free_space *
 | |
| find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
 | |
| 		unsigned long align, u64 *max_extent_size, bool use_bytes_index)
 | |
| {
 | |
| 	struct btrfs_free_space *entry;
 | |
| 	struct rb_node *node;
 | |
| 	u64 tmp;
 | |
| 	u64 align_off;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!ctl->free_space_offset.rb_node)
 | |
| 		goto out;
 | |
| again:
 | |
| 	if (use_bytes_index) {
 | |
| 		node = rb_first_cached(&ctl->free_space_bytes);
 | |
| 	} else {
 | |
| 		entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
 | |
| 					   0, 1);
 | |
| 		if (!entry)
 | |
| 			goto out;
 | |
| 		node = &entry->offset_index;
 | |
| 	}
 | |
| 
 | |
| 	for (; node; node = rb_next(node)) {
 | |
| 		if (use_bytes_index)
 | |
| 			entry = rb_entry(node, struct btrfs_free_space,
 | |
| 					 bytes_index);
 | |
| 		else
 | |
| 			entry = rb_entry(node, struct btrfs_free_space,
 | |
| 					 offset_index);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we are using the bytes index then all subsequent entries
 | |
| 		 * in this tree are going to be < bytes, so simply set the max
 | |
| 		 * extent size and exit the loop.
 | |
| 		 *
 | |
| 		 * If we're using the offset index then we need to keep going
 | |
| 		 * through the rest of the tree.
 | |
| 		 */
 | |
| 		if (entry->bytes < *bytes) {
 | |
| 			*max_extent_size = max(get_max_extent_size(entry),
 | |
| 					       *max_extent_size);
 | |
| 			if (use_bytes_index)
 | |
| 				break;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure the space returned is big enough
 | |
| 		 * to match our requested alignment
 | |
| 		 */
 | |
| 		if (*bytes >= align) {
 | |
| 			tmp = entry->offset - ctl->start + align - 1;
 | |
| 			tmp = div64_u64(tmp, align);
 | |
| 			tmp = tmp * align + ctl->start;
 | |
| 			align_off = tmp - entry->offset;
 | |
| 		} else {
 | |
| 			align_off = 0;
 | |
| 			tmp = entry->offset;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We don't break here if we're using the bytes index because we
 | |
| 		 * may have another entry that has the correct alignment that is
 | |
| 		 * the right size, so we don't want to miss that possibility.
 | |
| 		 * At worst this adds another loop through the logic, but if we
 | |
| 		 * broke here we could prematurely ENOSPC.
 | |
| 		 */
 | |
| 		if (entry->bytes < *bytes + align_off) {
 | |
| 			*max_extent_size = max(get_max_extent_size(entry),
 | |
| 					       *max_extent_size);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->bitmap) {
 | |
| 			struct rb_node *old_next = rb_next(node);
 | |
| 			u64 size = *bytes;
 | |
| 
 | |
| 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
 | |
| 			if (!ret) {
 | |
| 				*offset = tmp;
 | |
| 				*bytes = size;
 | |
| 				return entry;
 | |
| 			} else {
 | |
| 				*max_extent_size =
 | |
| 					max(get_max_extent_size(entry),
 | |
| 					    *max_extent_size);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * The bitmap may have gotten re-arranged in the space
 | |
| 			 * index here because the max_extent_size may have been
 | |
| 			 * updated.  Start from the beginning again if this
 | |
| 			 * happened.
 | |
| 			 */
 | |
| 			if (use_bytes_index && old_next != rb_next(node))
 | |
| 				goto again;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		*offset = tmp;
 | |
| 		*bytes = entry->bytes - align_off;
 | |
| 		return entry;
 | |
| 	}
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			   struct btrfs_free_space *info, u64 offset)
 | |
| {
 | |
| 	info->offset = offset_to_bitmap(ctl, offset);
 | |
| 	info->bytes = 0;
 | |
| 	info->bitmap_extents = 0;
 | |
| 	INIT_LIST_HEAD(&info->list);
 | |
| 	link_free_space(ctl, info);
 | |
| 	ctl->total_bitmaps++;
 | |
| 	recalculate_thresholds(ctl);
 | |
| }
 | |
| 
 | |
| static void free_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			struct btrfs_free_space *bitmap_info)
 | |
| {
 | |
| 	/*
 | |
| 	 * Normally when this is called, the bitmap is completely empty. However,
 | |
| 	 * if we are blowing up the free space cache for one reason or another
 | |
| 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
 | |
| 	 * we may leave stats on the table.
 | |
| 	 */
 | |
| 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
 | |
| 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
 | |
| 			bitmap_info->bitmap_extents;
 | |
| 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
 | |
| 
 | |
| 	}
 | |
| 	unlink_free_space(ctl, bitmap_info, true);
 | |
| 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
 | |
| 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
 | |
| 	ctl->total_bitmaps--;
 | |
| 	recalculate_thresholds(ctl);
 | |
| }
 | |
| 
 | |
| static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *bitmap_info,
 | |
| 			      u64 *offset, u64 *bytes)
 | |
| {
 | |
| 	u64 end;
 | |
| 	u64 search_start, search_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| again:
 | |
| 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to search for bits in this bitmap.  We could only cover some
 | |
| 	 * of the extent in this bitmap thanks to how we add space, so we need
 | |
| 	 * to search for as much as it as we can and clear that amount, and then
 | |
| 	 * go searching for the next bit.
 | |
| 	 */
 | |
| 	search_start = *offset;
 | |
| 	search_bytes = ctl->unit;
 | |
| 	search_bytes = min(search_bytes, end - search_start + 1);
 | |
| 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
 | |
| 			    false);
 | |
| 	if (ret < 0 || search_start != *offset)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* We may have found more bits than what we need */
 | |
| 	search_bytes = min(search_bytes, *bytes);
 | |
| 
 | |
| 	/* Cannot clear past the end of the bitmap */
 | |
| 	search_bytes = min(search_bytes, end - search_start + 1);
 | |
| 
 | |
| 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
 | |
| 	*offset += search_bytes;
 | |
| 	*bytes -= search_bytes;
 | |
| 
 | |
| 	if (*bytes) {
 | |
| 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
 | |
| 		if (!bitmap_info->bytes)
 | |
| 			free_bitmap(ctl, bitmap_info);
 | |
| 
 | |
| 		/*
 | |
| 		 * no entry after this bitmap, but we still have bytes to
 | |
| 		 * remove, so something has gone wrong.
 | |
| 		 */
 | |
| 		if (!next)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		bitmap_info = rb_entry(next, struct btrfs_free_space,
 | |
| 				       offset_index);
 | |
| 
 | |
| 		/*
 | |
| 		 * if the next entry isn't a bitmap we need to return to let the
 | |
| 		 * extent stuff do its work.
 | |
| 		 */
 | |
| 		if (!bitmap_info->bitmap)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		/*
 | |
| 		 * Ok the next item is a bitmap, but it may not actually hold
 | |
| 		 * the information for the rest of this free space stuff, so
 | |
| 		 * look for it, and if we don't find it return so we can try
 | |
| 		 * everything over again.
 | |
| 		 */
 | |
| 		search_start = *offset;
 | |
| 		search_bytes = ctl->unit;
 | |
| 		ret = search_bitmap(ctl, bitmap_info, &search_start,
 | |
| 				    &search_bytes, false);
 | |
| 		if (ret < 0 || search_start != *offset)
 | |
| 			return -EAGAIN;
 | |
| 
 | |
| 		goto again;
 | |
| 	} else if (!bitmap_info->bytes)
 | |
| 		free_bitmap(ctl, bitmap_info);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			       struct btrfs_free_space *info, u64 offset,
 | |
| 			       u64 bytes, enum btrfs_trim_state trim_state)
 | |
| {
 | |
| 	u64 bytes_to_set = 0;
 | |
| 	u64 end;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
 | |
| 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
 | |
| 	 */
 | |
| 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
 | |
| 		if (btrfs_free_space_trimmed(info)) {
 | |
| 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
 | |
| 				info->bitmap_extents;
 | |
| 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
 | |
| 		}
 | |
| 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 	}
 | |
| 
 | |
| 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
 | |
| 
 | |
| 	bytes_to_set = min(end - offset, bytes);
 | |
| 
 | |
| 	btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
 | |
| 
 | |
| 	return bytes_to_set;
 | |
| 
 | |
| }
 | |
| 
 | |
| static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 		      struct btrfs_free_space *info)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group = ctl->block_group;
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	bool forced = false;
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| 	if (btrfs_should_fragment_free_space(block_group))
 | |
| 		forced = true;
 | |
| #endif
 | |
| 
 | |
| 	/* This is a way to reclaim large regions from the bitmaps. */
 | |
| 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are below the extents threshold then we can add this as an
 | |
| 	 * extent, and don't have to deal with the bitmap
 | |
| 	 */
 | |
| 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
 | |
| 		/*
 | |
| 		 * If this block group has some small extents we don't want to
 | |
| 		 * use up all of our free slots in the cache with them, we want
 | |
| 		 * to reserve them to larger extents, however if we have plenty
 | |
| 		 * of cache left then go ahead an dadd them, no sense in adding
 | |
| 		 * the overhead of a bitmap if we don't have to.
 | |
| 		 */
 | |
| 		if (info->bytes <= fs_info->sectorsize * 8) {
 | |
| 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
 | |
| 				return false;
 | |
| 		} else {
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The original block groups from mkfs can be really small, like 8
 | |
| 	 * megabytes, so don't bother with a bitmap for those entries.  However
 | |
| 	 * some block groups can be smaller than what a bitmap would cover but
 | |
| 	 * are still large enough that they could overflow the 32k memory limit,
 | |
| 	 * so allow those block groups to still be allowed to have a bitmap
 | |
| 	 * entry.
 | |
| 	 */
 | |
| 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static const struct btrfs_free_space_op free_space_op = {
 | |
| 	.use_bitmap		= use_bitmap,
 | |
| };
 | |
| 
 | |
| static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info)
 | |
| {
 | |
| 	struct btrfs_free_space *bitmap_info;
 | |
| 	struct btrfs_block_group *block_group = NULL;
 | |
| 	int added = 0;
 | |
| 	u64 bytes, offset, bytes_added;
 | |
| 	enum btrfs_trim_state trim_state;
 | |
| 	int ret;
 | |
| 
 | |
| 	bytes = info->bytes;
 | |
| 	offset = info->offset;
 | |
| 	trim_state = info->trim_state;
 | |
| 
 | |
| 	if (!ctl->op->use_bitmap(ctl, info))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ctl->op == &free_space_op)
 | |
| 		block_group = ctl->block_group;
 | |
| again:
 | |
| 	/*
 | |
| 	 * Since we link bitmaps right into the cluster we need to see if we
 | |
| 	 * have a cluster here, and if so and it has our bitmap we need to add
 | |
| 	 * the free space to that bitmap.
 | |
| 	 */
 | |
| 	if (block_group && !list_empty(&block_group->cluster_list)) {
 | |
| 		struct btrfs_free_cluster *cluster;
 | |
| 		struct rb_node *node;
 | |
| 		struct btrfs_free_space *entry;
 | |
| 
 | |
| 		cluster = list_entry(block_group->cluster_list.next,
 | |
| 				     struct btrfs_free_cluster,
 | |
| 				     block_group_list);
 | |
| 		spin_lock(&cluster->lock);
 | |
| 		node = rb_first(&cluster->root);
 | |
| 		if (!node) {
 | |
| 			spin_unlock(&cluster->lock);
 | |
| 			goto no_cluster_bitmap;
 | |
| 		}
 | |
| 
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		if (!entry->bitmap) {
 | |
| 			spin_unlock(&cluster->lock);
 | |
| 			goto no_cluster_bitmap;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
 | |
| 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
 | |
| 							  bytes, trim_state);
 | |
| 			bytes -= bytes_added;
 | |
| 			offset += bytes_added;
 | |
| 		}
 | |
| 		spin_unlock(&cluster->lock);
 | |
| 		if (!bytes) {
 | |
| 			ret = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| no_cluster_bitmap:
 | |
| 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
 | |
| 					 1, 0);
 | |
| 	if (!bitmap_info) {
 | |
| 		ASSERT(added == 0);
 | |
| 		goto new_bitmap;
 | |
| 	}
 | |
| 
 | |
| 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
 | |
| 					  trim_state);
 | |
| 	bytes -= bytes_added;
 | |
| 	offset += bytes_added;
 | |
| 	added = 0;
 | |
| 
 | |
| 	if (!bytes) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	} else
 | |
| 		goto again;
 | |
| 
 | |
| new_bitmap:
 | |
| 	if (info && info->bitmap) {
 | |
| 		add_new_bitmap(ctl, info, offset);
 | |
| 		added = 1;
 | |
| 		info = NULL;
 | |
| 		goto again;
 | |
| 	} else {
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 		/* no pre-allocated info, allocate a new one */
 | |
| 		if (!info) {
 | |
| 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
 | |
| 						 GFP_NOFS);
 | |
| 			if (!info) {
 | |
| 				spin_lock(&ctl->tree_lock);
 | |
| 				ret = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* allocate the bitmap */
 | |
| 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
 | |
| 						 GFP_NOFS);
 | |
| 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
 | |
| 		spin_lock(&ctl->tree_lock);
 | |
| 		if (!info->bitmap) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (info) {
 | |
| 		if (info->bitmap)
 | |
| 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
 | |
| 					info->bitmap);
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free space merging rules:
 | |
|  *  1) Merge trimmed areas together
 | |
|  *  2) Let untrimmed areas coalesce with trimmed areas
 | |
|  *  3) Always pull neighboring regions from bitmaps
 | |
|  *
 | |
|  * The above rules are for when we merge free space based on btrfs_trim_state.
 | |
|  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
 | |
|  * same reason: to promote larger extent regions which makes life easier for
 | |
|  * find_free_extent().  Rule 2 enables coalescing based on the common path
 | |
|  * being returning free space from btrfs_finish_extent_commit().  So when free
 | |
|  * space is trimmed, it will prevent aggregating trimmed new region and
 | |
|  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
 | |
|  * and provide find_free_extent() with the largest extents possible hoping for
 | |
|  * the reuse path.
 | |
|  */
 | |
| static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
 | |
| 			  struct btrfs_free_space *info, bool update_stat)
 | |
| {
 | |
| 	struct btrfs_free_space *left_info = NULL;
 | |
| 	struct btrfs_free_space *right_info;
 | |
| 	bool merged = false;
 | |
| 	u64 offset = info->offset;
 | |
| 	u64 bytes = info->bytes;
 | |
| 	const bool is_trimmed = btrfs_free_space_trimmed(info);
 | |
| 	struct rb_node *right_prev = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * first we want to see if there is free space adjacent to the range we
 | |
| 	 * are adding, if there is remove that struct and add a new one to
 | |
| 	 * cover the entire range
 | |
| 	 */
 | |
| 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
 | |
| 	if (right_info)
 | |
| 		right_prev = rb_prev(&right_info->offset_index);
 | |
| 
 | |
| 	if (right_prev)
 | |
| 		left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
 | |
| 	else if (!right_info)
 | |
| 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
 | |
| 
 | |
| 	/* See try_merge_free_space() comment. */
 | |
| 	if (right_info && !right_info->bitmap &&
 | |
| 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
 | |
| 		unlink_free_space(ctl, right_info, update_stat);
 | |
| 		info->bytes += right_info->bytes;
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, right_info);
 | |
| 		merged = true;
 | |
| 	}
 | |
| 
 | |
| 	/* See try_merge_free_space() comment. */
 | |
| 	if (left_info && !left_info->bitmap &&
 | |
| 	    left_info->offset + left_info->bytes == offset &&
 | |
| 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
 | |
| 		unlink_free_space(ctl, left_info, update_stat);
 | |
| 		info->offset = left_info->offset;
 | |
| 		info->bytes += left_info->bytes;
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, left_info);
 | |
| 		merged = true;
 | |
| 	}
 | |
| 
 | |
| 	return merged;
 | |
| }
 | |
| 
 | |
| static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
 | |
| 				     struct btrfs_free_space *info,
 | |
| 				     bool update_stat)
 | |
| {
 | |
| 	struct btrfs_free_space *bitmap;
 | |
| 	unsigned long i;
 | |
| 	unsigned long j;
 | |
| 	const u64 end = info->offset + info->bytes;
 | |
| 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
 | |
| 	u64 bytes;
 | |
| 
 | |
| 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
 | |
| 	if (!bitmap)
 | |
| 		return false;
 | |
| 
 | |
| 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
 | |
| 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
 | |
| 	if (j == i)
 | |
| 		return false;
 | |
| 	bytes = (j - i) * ctl->unit;
 | |
| 	info->bytes += bytes;
 | |
| 
 | |
| 	/* See try_merge_free_space() comment. */
 | |
| 	if (!btrfs_free_space_trimmed(bitmap))
 | |
| 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 
 | |
| 	bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
 | |
| 
 | |
| 	if (!bitmap->bytes)
 | |
| 		free_bitmap(ctl, bitmap);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
 | |
| 				       struct btrfs_free_space *info,
 | |
| 				       bool update_stat)
 | |
| {
 | |
| 	struct btrfs_free_space *bitmap;
 | |
| 	u64 bitmap_offset;
 | |
| 	unsigned long i;
 | |
| 	unsigned long j;
 | |
| 	unsigned long prev_j;
 | |
| 	u64 bytes;
 | |
| 
 | |
| 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
 | |
| 	/* If we're on a boundary, try the previous logical bitmap. */
 | |
| 	if (bitmap_offset == info->offset) {
 | |
| 		if (info->offset == 0)
 | |
| 			return false;
 | |
| 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
 | |
| 	}
 | |
| 
 | |
| 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
 | |
| 	if (!bitmap)
 | |
| 		return false;
 | |
| 
 | |
| 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
 | |
| 	j = 0;
 | |
| 	prev_j = (unsigned long)-1;
 | |
| 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
 | |
| 		if (j > i)
 | |
| 			break;
 | |
| 		prev_j = j;
 | |
| 	}
 | |
| 	if (prev_j == i)
 | |
| 		return false;
 | |
| 
 | |
| 	if (prev_j == (unsigned long)-1)
 | |
| 		bytes = (i + 1) * ctl->unit;
 | |
| 	else
 | |
| 		bytes = (i - prev_j) * ctl->unit;
 | |
| 
 | |
| 	info->offset -= bytes;
 | |
| 	info->bytes += bytes;
 | |
| 
 | |
| 	/* See try_merge_free_space() comment. */
 | |
| 	if (!btrfs_free_space_trimmed(bitmap))
 | |
| 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 
 | |
| 	bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
 | |
| 
 | |
| 	if (!bitmap->bytes)
 | |
| 		free_bitmap(ctl, bitmap);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We prefer always to allocate from extent entries, both for clustered and
 | |
|  * non-clustered allocation requests. So when attempting to add a new extent
 | |
|  * entry, try to see if there's adjacent free space in bitmap entries, and if
 | |
|  * there is, migrate that space from the bitmaps to the extent.
 | |
|  * Like this we get better chances of satisfying space allocation requests
 | |
|  * because we attempt to satisfy them based on a single cache entry, and never
 | |
|  * on 2 or more entries - even if the entries represent a contiguous free space
 | |
|  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
 | |
|  * ends).
 | |
|  */
 | |
| static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 			      struct btrfs_free_space *info,
 | |
| 			      bool update_stat)
 | |
| {
 | |
| 	/*
 | |
| 	 * Only work with disconnected entries, as we can change their offset,
 | |
| 	 * and must be extent entries.
 | |
| 	 */
 | |
| 	ASSERT(!info->bitmap);
 | |
| 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
 | |
| 
 | |
| 	if (ctl->total_bitmaps > 0) {
 | |
| 		bool stole_end;
 | |
| 		bool stole_front = false;
 | |
| 
 | |
| 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
 | |
| 		if (ctl->total_bitmaps > 0)
 | |
| 			stole_front = steal_from_bitmap_to_front(ctl, info,
 | |
| 								 update_stat);
 | |
| 
 | |
| 		if (stole_end || stole_front)
 | |
| 			try_merge_free_space(ctl, info, update_stat);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
 | |
| 			   u64 offset, u64 bytes,
 | |
| 			   enum btrfs_trim_state trim_state)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *info;
 | |
| 	int ret = 0;
 | |
| 	u64 filter_bytes = bytes;
 | |
| 
 | |
| 	ASSERT(!btrfs_is_zoned(fs_info));
 | |
| 
 | |
| 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	info->offset = offset;
 | |
| 	info->bytes = bytes;
 | |
| 	info->trim_state = trim_state;
 | |
| 	RB_CLEAR_NODE(&info->offset_index);
 | |
| 	RB_CLEAR_NODE(&info->bytes_index);
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (try_merge_free_space(ctl, info, true))
 | |
| 		goto link;
 | |
| 
 | |
| 	/*
 | |
| 	 * There was no extent directly to the left or right of this new
 | |
| 	 * extent then we know we're going to have to allocate a new extent, so
 | |
| 	 * before we do that see if we need to drop this into a bitmap
 | |
| 	 */
 | |
| 	ret = insert_into_bitmap(ctl, info);
 | |
| 	if (ret < 0) {
 | |
| 		goto out;
 | |
| 	} else if (ret) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| link:
 | |
| 	/*
 | |
| 	 * Only steal free space from adjacent bitmaps if we're sure we're not
 | |
| 	 * going to add the new free space to existing bitmap entries - because
 | |
| 	 * that would mean unnecessary work that would be reverted. Therefore
 | |
| 	 * attempt to steal space from bitmaps if we're adding an extent entry.
 | |
| 	 */
 | |
| 	steal_from_bitmap(ctl, info, true);
 | |
| 
 | |
| 	filter_bytes = max(filter_bytes, info->bytes);
 | |
| 
 | |
| 	ret = link_free_space(ctl, info);
 | |
| 	if (ret)
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| out:
 | |
| 	btrfs_discard_update_discardable(block_group);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
 | |
| 		ASSERT(ret != -EEXIST);
 | |
| 	}
 | |
| 
 | |
| 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
 | |
| 		btrfs_discard_check_filter(block_group, filter_bytes);
 | |
| 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
 | |
| 					u64 bytenr, u64 size, bool used)
 | |
| {
 | |
| 	struct btrfs_space_info *sinfo = block_group->space_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	u64 offset = bytenr - block_group->start;
 | |
| 	u64 to_free, to_unusable;
 | |
| 	int bg_reclaim_threshold = 0;
 | |
| 	bool initial;
 | |
| 	u64 reclaimable_unusable;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 
 | |
| 	initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
 | |
| 	WARN_ON(!initial && offset + size > block_group->zone_capacity);
 | |
| 	if (!initial)
 | |
| 		bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
 | |
| 
 | |
| 	if (!used)
 | |
| 		to_free = size;
 | |
| 	else if (initial)
 | |
| 		to_free = block_group->zone_capacity;
 | |
| 	else if (offset >= block_group->alloc_offset)
 | |
| 		to_free = size;
 | |
| 	else if (offset + size <= block_group->alloc_offset)
 | |
| 		to_free = 0;
 | |
| 	else
 | |
| 		to_free = offset + size - block_group->alloc_offset;
 | |
| 	to_unusable = size - to_free;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	ctl->free_space += to_free;
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	/*
 | |
| 	 * If the block group is read-only, we should account freed space into
 | |
| 	 * bytes_readonly.
 | |
| 	 */
 | |
| 	if (!block_group->ro) {
 | |
| 		block_group->zone_unusable += to_unusable;
 | |
| 		WARN_ON(block_group->zone_unusable > block_group->length);
 | |
| 	}
 | |
| 	if (!used) {
 | |
| 		block_group->alloc_offset -= size;
 | |
| 	}
 | |
| 
 | |
| 	reclaimable_unusable = block_group->zone_unusable -
 | |
| 			       (block_group->length - block_group->zone_capacity);
 | |
| 	/* All the region is now unusable. Mark it as unused and reclaim */
 | |
| 	if (block_group->zone_unusable == block_group->length) {
 | |
| 		btrfs_mark_bg_unused(block_group);
 | |
| 	} else if (bg_reclaim_threshold &&
 | |
| 		   reclaimable_unusable >=
 | |
| 		   mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
 | |
| 		btrfs_mark_bg_to_reclaim(block_group);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int btrfs_add_free_space(struct btrfs_block_group *block_group,
 | |
| 			 u64 bytenr, u64 size)
 | |
| {
 | |
| 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 
 | |
| 	if (btrfs_is_zoned(block_group->fs_info))
 | |
| 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
 | |
| 						    true);
 | |
| 
 | |
| 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
 | |
| 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
 | |
| 
 | |
| 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
 | |
| }
 | |
| 
 | |
| int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
 | |
| 				u64 bytenr, u64 size)
 | |
| {
 | |
| 	if (btrfs_is_zoned(block_group->fs_info))
 | |
| 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
 | |
| 						    false);
 | |
| 
 | |
| 	return btrfs_add_free_space(block_group, bytenr, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is a subtle distinction because when adding free space back in general,
 | |
|  * we want it to be added as untrimmed for async. But in the case where we add
 | |
|  * it on loading of a block group, we want to consider it trimmed.
 | |
|  */
 | |
| int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
 | |
| 				       u64 bytenr, u64 size)
 | |
| {
 | |
| 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 
 | |
| 	if (btrfs_is_zoned(block_group->fs_info))
 | |
| 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
 | |
| 						    true);
 | |
| 
 | |
| 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
 | |
| 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
 | |
| 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
 | |
| 
 | |
| 	return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
 | |
| }
 | |
| 
 | |
| int btrfs_remove_free_space(struct btrfs_block_group *block_group,
 | |
| 			    u64 offset, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *info;
 | |
| 	int ret;
 | |
| 	bool re_search = false;
 | |
| 
 | |
| 	if (btrfs_is_zoned(block_group->fs_info)) {
 | |
| 		/*
 | |
| 		 * This can happen with conventional zones when replaying log.
 | |
| 		 * Since the allocation info of tree-log nodes are not recorded
 | |
| 		 * to the extent-tree, calculate_alloc_pointer() failed to
 | |
| 		 * advance the allocation pointer after last allocated tree log
 | |
| 		 * node blocks.
 | |
| 		 *
 | |
| 		 * This function is called from
 | |
| 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
 | |
| 		 * Advance the pointer not to overwrite the tree-log nodes.
 | |
| 		 */
 | |
| 		if (block_group->start + block_group->alloc_offset <
 | |
| 		    offset + bytes) {
 | |
| 			block_group->alloc_offset =
 | |
| 				offset + bytes - block_group->start;
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| again:
 | |
| 	ret = 0;
 | |
| 	if (!bytes)
 | |
| 		goto out_lock;
 | |
| 
 | |
| 	info = tree_search_offset(ctl, offset, 0, 0);
 | |
| 	if (!info) {
 | |
| 		/*
 | |
| 		 * oops didn't find an extent that matched the space we wanted
 | |
| 		 * to remove, look for a bitmap instead
 | |
| 		 */
 | |
| 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
 | |
| 					  1, 0);
 | |
| 		if (!info) {
 | |
| 			/*
 | |
| 			 * If we found a partial bit of our free space in a
 | |
| 			 * bitmap but then couldn't find the other part this may
 | |
| 			 * be a problem, so WARN about it.
 | |
| 			 */
 | |
| 			WARN_ON(re_search);
 | |
| 			goto out_lock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	re_search = false;
 | |
| 	if (!info->bitmap) {
 | |
| 		unlink_free_space(ctl, info, true);
 | |
| 		if (offset == info->offset) {
 | |
| 			u64 to_free = min(bytes, info->bytes);
 | |
| 
 | |
| 			info->bytes -= to_free;
 | |
| 			info->offset += to_free;
 | |
| 			if (info->bytes) {
 | |
| 				ret = link_free_space(ctl, info);
 | |
| 				WARN_ON(ret);
 | |
| 			} else {
 | |
| 				kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 			}
 | |
| 
 | |
| 			offset += to_free;
 | |
| 			bytes -= to_free;
 | |
| 			goto again;
 | |
| 		} else {
 | |
| 			u64 old_end = info->bytes + info->offset;
 | |
| 
 | |
| 			info->bytes = offset - info->offset;
 | |
| 			ret = link_free_space(ctl, info);
 | |
| 			WARN_ON(ret);
 | |
| 			if (ret)
 | |
| 				goto out_lock;
 | |
| 
 | |
| 			/* Not enough bytes in this entry to satisfy us */
 | |
| 			if (old_end < offset + bytes) {
 | |
| 				bytes -= old_end - offset;
 | |
| 				offset = old_end;
 | |
| 				goto again;
 | |
| 			} else if (old_end == offset + bytes) {
 | |
| 				/* all done */
 | |
| 				goto out_lock;
 | |
| 			}
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 			ret = __btrfs_add_free_space(block_group,
 | |
| 						     offset + bytes,
 | |
| 						     old_end - (offset + bytes),
 | |
| 						     info->trim_state);
 | |
| 			WARN_ON(ret);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
 | |
| 	if (ret == -EAGAIN) {
 | |
| 		re_search = true;
 | |
| 		goto again;
 | |
| 	}
 | |
| out_lock:
 | |
| 	btrfs_discard_update_discardable(block_group);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void btrfs_dump_free_space(struct btrfs_block_group *block_group,
 | |
| 			   u64 bytes)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *n;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Zoned btrfs does not use free space tree and cluster. Just print
 | |
| 	 * out the free space after the allocation offset.
 | |
| 	 */
 | |
| 	if (btrfs_is_zoned(fs_info)) {
 | |
| 		btrfs_info(fs_info, "free space %llu active %d",
 | |
| 			   block_group->zone_capacity - block_group->alloc_offset,
 | |
| 			   test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
 | |
| 				    &block_group->runtime_flags));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
 | |
| 		info = rb_entry(n, struct btrfs_free_space, offset_index);
 | |
| 		if (info->bytes >= bytes && !block_group->ro)
 | |
| 			count++;
 | |
| 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
 | |
| 			   info->offset, info->bytes,
 | |
| 		       (info->bitmap) ? "yes" : "no");
 | |
| 	}
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	btrfs_info(fs_info, "block group has cluster?: %s",
 | |
| 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
 | |
| 	btrfs_info(fs_info,
 | |
| 		   "%d free space entries at or bigger than %llu bytes",
 | |
| 		   count, bytes);
 | |
| }
 | |
| 
 | |
| void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
 | |
| 			       struct btrfs_free_space_ctl *ctl)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 
 | |
| 	spin_lock_init(&ctl->tree_lock);
 | |
| 	ctl->unit = fs_info->sectorsize;
 | |
| 	ctl->start = block_group->start;
 | |
| 	ctl->block_group = block_group;
 | |
| 	ctl->op = &free_space_op;
 | |
| 	ctl->free_space_bytes = RB_ROOT_CACHED;
 | |
| 	INIT_LIST_HEAD(&ctl->trimming_ranges);
 | |
| 	mutex_init(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 	/*
 | |
| 	 * we only want to have 32k of ram per block group for keeping
 | |
| 	 * track of free space, and if we pass 1/2 of that we want to
 | |
| 	 * start converting things over to using bitmaps
 | |
| 	 */
 | |
| 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for a given cluster, put all of its extents back into the free
 | |
|  * space cache.  If the block group passed doesn't match the block group
 | |
|  * pointed to by the cluster, someone else raced in and freed the
 | |
|  * cluster already.  In that case, we just return without changing anything
 | |
|  */
 | |
| static void __btrfs_return_cluster_to_free_space(
 | |
| 			     struct btrfs_block_group *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct rb_node *node;
 | |
| 
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (cluster->block_group != block_group) {
 | |
| 		spin_unlock(&cluster->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	cluster->block_group = NULL;
 | |
| 	cluster->window_start = 0;
 | |
| 	list_del_init(&cluster->block_group_list);
 | |
| 
 | |
| 	node = rb_first(&cluster->root);
 | |
| 	while (node) {
 | |
| 		struct btrfs_free_space *entry;
 | |
| 
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		node = rb_next(&entry->offset_index);
 | |
| 		rb_erase(&entry->offset_index, &cluster->root);
 | |
| 		RB_CLEAR_NODE(&entry->offset_index);
 | |
| 
 | |
| 		if (!entry->bitmap) {
 | |
| 			/* Merging treats extents as if they were new */
 | |
| 			if (!btrfs_free_space_trimmed(entry)) {
 | |
| 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
 | |
| 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
 | |
| 					entry->bytes;
 | |
| 			}
 | |
| 
 | |
| 			try_merge_free_space(ctl, entry, false);
 | |
| 			steal_from_bitmap(ctl, entry, false);
 | |
| 
 | |
| 			/* As we insert directly, update these statistics */
 | |
| 			if (!btrfs_free_space_trimmed(entry)) {
 | |
| 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
 | |
| 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
 | |
| 					entry->bytes;
 | |
| 			}
 | |
| 		}
 | |
| 		tree_insert_offset(ctl, NULL, entry);
 | |
| 		rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
 | |
| 			      entry_less);
 | |
| 	}
 | |
| 	cluster->root = RB_ROOT;
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 	btrfs_put_block_group(block_group);
 | |
| }
 | |
| 
 | |
| void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_cluster *cluster;
 | |
| 	struct list_head *head;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	while ((head = block_group->cluster_list.next) !=
 | |
| 	       &block_group->cluster_list) {
 | |
| 		cluster = list_entry(head, struct btrfs_free_cluster,
 | |
| 				     block_group_list);
 | |
| 
 | |
| 		WARN_ON(cluster->block_group != block_group);
 | |
| 		__btrfs_return_cluster_to_free_space(block_group, cluster);
 | |
| 
 | |
| 		cond_resched_lock(&ctl->tree_lock);
 | |
| 	}
 | |
| 	__btrfs_remove_free_space_cache(ctl);
 | |
| 	btrfs_discard_update_discardable(block_group);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
 | |
|  */
 | |
| bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *info;
 | |
| 	struct rb_node *node;
 | |
| 	bool ret = true;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	node = rb_first(&ctl->free_space_offset);
 | |
| 
 | |
| 	while (node) {
 | |
| 		info = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 		if (!btrfs_free_space_trimmed(info)) {
 | |
| 			ret = false;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		node = rb_next(node);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
 | |
| 			       u64 offset, u64 bytes, u64 empty_size,
 | |
| 			       u64 *max_extent_size)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_discard_ctl *discard_ctl =
 | |
| 					&block_group->fs_info->discard_ctl;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	u64 bytes_search = bytes + empty_size;
 | |
| 	u64 ret = 0;
 | |
| 	u64 align_gap = 0;
 | |
| 	u64 align_gap_len = 0;
 | |
| 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 	bool use_bytes_index = (offset == block_group->start);
 | |
| 
 | |
| 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	entry = find_free_space(ctl, &offset, &bytes_search,
 | |
| 				block_group->full_stripe_len, max_extent_size,
 | |
| 				use_bytes_index);
 | |
| 	if (!entry)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = offset;
 | |
| 	if (entry->bitmap) {
 | |
| 		bitmap_clear_bits(ctl, entry, offset, bytes, true);
 | |
| 
 | |
| 		if (!btrfs_free_space_trimmed(entry))
 | |
| 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
 | |
| 
 | |
| 		if (!entry->bytes)
 | |
| 			free_bitmap(ctl, entry);
 | |
| 	} else {
 | |
| 		unlink_free_space(ctl, entry, true);
 | |
| 		align_gap_len = offset - entry->offset;
 | |
| 		align_gap = entry->offset;
 | |
| 		align_gap_trim_state = entry->trim_state;
 | |
| 
 | |
| 		if (!btrfs_free_space_trimmed(entry))
 | |
| 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
 | |
| 
 | |
| 		entry->offset = offset + bytes;
 | |
| 		WARN_ON(entry->bytes < bytes + align_gap_len);
 | |
| 
 | |
| 		entry->bytes -= bytes + align_gap_len;
 | |
| 		if (!entry->bytes)
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, entry);
 | |
| 		else
 | |
| 			link_free_space(ctl, entry);
 | |
| 	}
 | |
| out:
 | |
| 	btrfs_discard_update_discardable(block_group);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (align_gap_len)
 | |
| 		__btrfs_add_free_space(block_group, align_gap, align_gap_len,
 | |
| 				       align_gap_trim_state);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * given a cluster, put all of its extents back into the free space
 | |
|  * cache.  If a block group is passed, this function will only free
 | |
|  * a cluster that belongs to the passed block group.
 | |
|  *
 | |
|  * Otherwise, it'll get a reference on the block group pointed to by the
 | |
|  * cluster and remove the cluster from it.
 | |
|  */
 | |
| void btrfs_return_cluster_to_free_space(
 | |
| 			       struct btrfs_block_group *block_group,
 | |
| 			       struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl;
 | |
| 
 | |
| 	/* first, get a safe pointer to the block group */
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (!block_group) {
 | |
| 		block_group = cluster->block_group;
 | |
| 		if (!block_group) {
 | |
| 			spin_unlock(&cluster->lock);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else if (cluster->block_group != block_group) {
 | |
| 		/* someone else has already freed it don't redo their work */
 | |
| 		spin_unlock(&cluster->lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	btrfs_get_block_group(block_group);
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 
 | |
| 	ctl = block_group->free_space_ctl;
 | |
| 
 | |
| 	/* now return any extents the cluster had on it */
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	__btrfs_return_cluster_to_free_space(block_group, cluster);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
 | |
| 
 | |
| 	/* finally drop our ref */
 | |
| 	btrfs_put_block_group(block_group);
 | |
| }
 | |
| 
 | |
| static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
 | |
| 				   struct btrfs_free_cluster *cluster,
 | |
| 				   struct btrfs_free_space *entry,
 | |
| 				   u64 bytes, u64 min_start,
 | |
| 				   u64 *max_extent_size)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	int err;
 | |
| 	u64 search_start = cluster->window_start;
 | |
| 	u64 search_bytes = bytes;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	search_start = min_start;
 | |
| 	search_bytes = bytes;
 | |
| 
 | |
| 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
 | |
| 	if (err) {
 | |
| 		*max_extent_size = max(get_max_extent_size(entry),
 | |
| 				       *max_extent_size);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = search_start;
 | |
| 	bitmap_clear_bits(ctl, entry, ret, bytes, false);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * given a cluster, try to allocate 'bytes' from it, returns 0
 | |
|  * if it couldn't find anything suitably large, or a logical disk offset
 | |
|  * if things worked out
 | |
|  */
 | |
| u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster, u64 bytes,
 | |
| 			     u64 min_start, u64 *max_extent_size)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_discard_ctl *discard_ctl =
 | |
| 					&block_group->fs_info->discard_ctl;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	struct rb_node *node;
 | |
| 	u64 ret = 0;
 | |
| 
 | |
| 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (bytes > cluster->max_size)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (cluster->block_group != block_group)
 | |
| 		goto out;
 | |
| 
 | |
| 	node = rb_first(&cluster->root);
 | |
| 	if (!node)
 | |
| 		goto out;
 | |
| 
 | |
| 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 	while (1) {
 | |
| 		if (entry->bytes < bytes)
 | |
| 			*max_extent_size = max(get_max_extent_size(entry),
 | |
| 					       *max_extent_size);
 | |
| 
 | |
| 		if (entry->bytes < bytes ||
 | |
| 		    (!entry->bitmap && entry->offset < min_start)) {
 | |
| 			node = rb_next(&entry->offset_index);
 | |
| 			if (!node)
 | |
| 				break;
 | |
| 			entry = rb_entry(node, struct btrfs_free_space,
 | |
| 					 offset_index);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->bitmap) {
 | |
| 			ret = btrfs_alloc_from_bitmap(block_group,
 | |
| 						      cluster, entry, bytes,
 | |
| 						      cluster->window_start,
 | |
| 						      max_extent_size);
 | |
| 			if (ret == 0) {
 | |
| 				node = rb_next(&entry->offset_index);
 | |
| 				if (!node)
 | |
| 					break;
 | |
| 				entry = rb_entry(node, struct btrfs_free_space,
 | |
| 						 offset_index);
 | |
| 				continue;
 | |
| 			}
 | |
| 			cluster->window_start += bytes;
 | |
| 		} else {
 | |
| 			ret = entry->offset;
 | |
| 
 | |
| 			entry->offset += bytes;
 | |
| 			entry->bytes -= bytes;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (!btrfs_free_space_trimmed(entry))
 | |
| 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
 | |
| 
 | |
| 	ctl->free_space -= bytes;
 | |
| 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
 | |
| 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 	if (entry->bytes == 0) {
 | |
| 		rb_erase(&entry->offset_index, &cluster->root);
 | |
| 		ctl->free_extents--;
 | |
| 		if (entry->bitmap) {
 | |
| 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
 | |
| 					entry->bitmap);
 | |
| 			ctl->total_bitmaps--;
 | |
| 			recalculate_thresholds(ctl);
 | |
| 		} else if (!btrfs_free_space_trimmed(entry)) {
 | |
| 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
 | |
| 		}
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, entry);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
 | |
| 				struct btrfs_free_space *entry,
 | |
| 				struct btrfs_free_cluster *cluster,
 | |
| 				u64 offset, u64 bytes,
 | |
| 				u64 cont1_bytes, u64 min_bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	unsigned long next_zero;
 | |
| 	unsigned long i;
 | |
| 	unsigned long want_bits;
 | |
| 	unsigned long min_bits;
 | |
| 	unsigned long found_bits;
 | |
| 	unsigned long max_bits = 0;
 | |
| 	unsigned long start = 0;
 | |
| 	unsigned long total_found = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 
 | |
| 	i = offset_to_bit(entry->offset, ctl->unit,
 | |
| 			  max_t(u64, offset, entry->offset));
 | |
| 	want_bits = bytes_to_bits(bytes, ctl->unit);
 | |
| 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't bother looking for a cluster in this bitmap if it's heavily
 | |
| 	 * fragmented.
 | |
| 	 */
 | |
| 	if (entry->max_extent_size &&
 | |
| 	    entry->max_extent_size < cont1_bytes)
 | |
| 		return -ENOSPC;
 | |
| again:
 | |
| 	found_bits = 0;
 | |
| 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
 | |
| 		next_zero = find_next_zero_bit(entry->bitmap,
 | |
| 					       BITS_PER_BITMAP, i);
 | |
| 		if (next_zero - i >= min_bits) {
 | |
| 			found_bits = next_zero - i;
 | |
| 			if (found_bits > max_bits)
 | |
| 				max_bits = found_bits;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (next_zero - i > max_bits)
 | |
| 			max_bits = next_zero - i;
 | |
| 		i = next_zero;
 | |
| 	}
 | |
| 
 | |
| 	if (!found_bits) {
 | |
| 		entry->max_extent_size = (u64)max_bits * ctl->unit;
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	if (!total_found) {
 | |
| 		start = i;
 | |
| 		cluster->max_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	total_found += found_bits;
 | |
| 
 | |
| 	if (cluster->max_size < found_bits * ctl->unit)
 | |
| 		cluster->max_size = found_bits * ctl->unit;
 | |
| 
 | |
| 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
 | |
| 		i = next_zero + 1;
 | |
| 		goto again;
 | |
| 	}
 | |
| 
 | |
| 	cluster->window_start = start * ctl->unit + entry->offset;
 | |
| 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
 | |
| 	rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to know if we're currently on the normal space index when we
 | |
| 	 * manipulate the bitmap so that we know we need to remove and re-insert
 | |
| 	 * it into the space_index tree.  Clear the bytes_index node here so the
 | |
| 	 * bitmap manipulation helpers know not to mess with the space_index
 | |
| 	 * until this bitmap entry is added back into the normal cache.
 | |
| 	 */
 | |
| 	RB_CLEAR_NODE(&entry->bytes_index);
 | |
| 
 | |
| 	ret = tree_insert_offset(ctl, cluster, entry);
 | |
| 	ASSERT(!ret); /* -EEXIST; Logic error */
 | |
| 
 | |
| 	trace_btrfs_setup_cluster(block_group, cluster,
 | |
| 				  total_found * ctl->unit, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This searches the block group for just extents to fill the cluster with.
 | |
|  * Try to find a cluster with at least bytes total bytes, at least one
 | |
|  * extent of cont1_bytes, and other clusters of at least min_bytes.
 | |
|  */
 | |
| static noinline int
 | |
| setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
 | |
| 			struct btrfs_free_cluster *cluster,
 | |
| 			struct list_head *bitmaps, u64 offset, u64 bytes,
 | |
| 			u64 cont1_bytes, u64 min_bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *first = NULL;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	struct btrfs_free_space *last;
 | |
| 	struct rb_node *node;
 | |
| 	u64 window_free;
 | |
| 	u64 max_extent;
 | |
| 	u64 total_size = 0;
 | |
| 
 | |
| 	lockdep_assert_held(&ctl->tree_lock);
 | |
| 
 | |
| 	entry = tree_search_offset(ctl, offset, 0, 1);
 | |
| 	if (!entry)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want bitmaps, so just move along until we find a normal
 | |
| 	 * extent entry.
 | |
| 	 */
 | |
| 	while (entry->bitmap || entry->bytes < min_bytes) {
 | |
| 		if (entry->bitmap && list_empty(&entry->list))
 | |
| 			list_add_tail(&entry->list, bitmaps);
 | |
| 		node = rb_next(&entry->offset_index);
 | |
| 		if (!node)
 | |
| 			return -ENOSPC;
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 	}
 | |
| 
 | |
| 	window_free = entry->bytes;
 | |
| 	max_extent = entry->bytes;
 | |
| 	first = entry;
 | |
| 	last = entry;
 | |
| 
 | |
| 	for (node = rb_next(&entry->offset_index); node;
 | |
| 	     node = rb_next(&entry->offset_index)) {
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 
 | |
| 		if (entry->bitmap) {
 | |
| 			if (list_empty(&entry->list))
 | |
| 				list_add_tail(&entry->list, bitmaps);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (entry->bytes < min_bytes)
 | |
| 			continue;
 | |
| 
 | |
| 		last = entry;
 | |
| 		window_free += entry->bytes;
 | |
| 		if (entry->bytes > max_extent)
 | |
| 			max_extent = entry->bytes;
 | |
| 	}
 | |
| 
 | |
| 	if (window_free < bytes || max_extent < cont1_bytes)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	cluster->window_start = first->offset;
 | |
| 
 | |
| 	node = &first->offset_index;
 | |
| 
 | |
| 	/*
 | |
| 	 * now we've found our entries, pull them out of the free space
 | |
| 	 * cache and put them into the cluster rbtree
 | |
| 	 */
 | |
| 	do {
 | |
| 		int ret;
 | |
| 
 | |
| 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
 | |
| 		node = rb_next(&entry->offset_index);
 | |
| 		if (entry->bitmap || entry->bytes < min_bytes)
 | |
| 			continue;
 | |
| 
 | |
| 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
 | |
| 		rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
 | |
| 		ret = tree_insert_offset(ctl, cluster, entry);
 | |
| 		total_size += entry->bytes;
 | |
| 		ASSERT(!ret); /* -EEXIST; Logic error */
 | |
| 	} while (node && entry != last);
 | |
| 
 | |
| 	cluster->max_size = max_extent;
 | |
| 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This specifically looks for bitmaps that may work in the cluster, we assume
 | |
|  * that we have already failed to find extents that will work.
 | |
|  */
 | |
| static noinline int
 | |
| setup_cluster_bitmap(struct btrfs_block_group *block_group,
 | |
| 		     struct btrfs_free_cluster *cluster,
 | |
| 		     struct list_head *bitmaps, u64 offset, u64 bytes,
 | |
| 		     u64 cont1_bytes, u64 min_bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry = NULL;
 | |
| 	int ret = -ENOSPC;
 | |
| 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
 | |
| 
 | |
| 	if (ctl->total_bitmaps == 0)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	/*
 | |
| 	 * The bitmap that covers offset won't be in the list unless offset
 | |
| 	 * is just its start offset.
 | |
| 	 */
 | |
| 	if (!list_empty(bitmaps))
 | |
| 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
 | |
| 
 | |
| 	if (!entry || entry->offset != bitmap_offset) {
 | |
| 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
 | |
| 		if (entry && list_empty(&entry->list))
 | |
| 			list_add(&entry->list, bitmaps);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(entry, bitmaps, list) {
 | |
| 		if (entry->bytes < bytes)
 | |
| 			continue;
 | |
| 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
 | |
| 					   bytes, cont1_bytes, min_bytes);
 | |
| 		if (!ret)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The bitmaps list has all the bitmaps that record free space
 | |
| 	 * starting after offset, so no more search is required.
 | |
| 	 */
 | |
| 	return -ENOSPC;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * here we try to find a cluster of blocks in a block group.  The goal
 | |
|  * is to find at least bytes+empty_size.
 | |
|  * We might not find them all in one contiguous area.
 | |
|  *
 | |
|  * returns zero and sets up cluster if things worked out, otherwise
 | |
|  * it returns -enospc
 | |
|  */
 | |
| int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
 | |
| 			     struct btrfs_free_cluster *cluster,
 | |
| 			     u64 offset, u64 bytes, u64 empty_size)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry, *tmp;
 | |
| 	LIST_HEAD(bitmaps);
 | |
| 	u64 min_bytes;
 | |
| 	u64 cont1_bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Choose the minimum extent size we'll require for this
 | |
| 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
 | |
| 	 * For metadata, allow allocates with smaller extents.  For
 | |
| 	 * data, keep it dense.
 | |
| 	 */
 | |
| 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
 | |
| 		cont1_bytes = bytes + empty_size;
 | |
| 		min_bytes = cont1_bytes;
 | |
| 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
 | |
| 		cont1_bytes = bytes;
 | |
| 		min_bytes = fs_info->sectorsize;
 | |
| 	} else {
 | |
| 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
 | |
| 		min_bytes = fs_info->sectorsize;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we know we don't have enough space to make a cluster don't even
 | |
| 	 * bother doing all the work to try and find one.
 | |
| 	 */
 | |
| 	if (ctl->free_space < bytes) {
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 		return -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&cluster->lock);
 | |
| 
 | |
| 	/* someone already found a cluster, hooray */
 | |
| 	if (cluster->block_group) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
 | |
| 				 min_bytes);
 | |
| 
 | |
| 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
 | |
| 				      bytes + empty_size,
 | |
| 				      cont1_bytes, min_bytes);
 | |
| 	if (ret)
 | |
| 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
 | |
| 					   offset, bytes + empty_size,
 | |
| 					   cont1_bytes, min_bytes);
 | |
| 
 | |
| 	/* Clear our temporary list */
 | |
| 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
 | |
| 		list_del_init(&entry->list);
 | |
| 
 | |
| 	if (!ret) {
 | |
| 		btrfs_get_block_group(block_group);
 | |
| 		list_add_tail(&cluster->block_group_list,
 | |
| 			      &block_group->cluster_list);
 | |
| 		cluster->block_group = block_group;
 | |
| 	} else {
 | |
| 		trace_btrfs_failed_cluster_setup(block_group);
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock(&cluster->lock);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * simple code to zero out a cluster
 | |
|  */
 | |
| void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
 | |
| {
 | |
| 	spin_lock_init(&cluster->lock);
 | |
| 	spin_lock_init(&cluster->refill_lock);
 | |
| 	cluster->root = RB_ROOT;
 | |
| 	cluster->max_size = 0;
 | |
| 	cluster->fragmented = false;
 | |
| 	INIT_LIST_HEAD(&cluster->block_group_list);
 | |
| 	cluster->block_group = NULL;
 | |
| }
 | |
| 
 | |
| static int do_trimming(struct btrfs_block_group *block_group,
 | |
| 		       u64 *total_trimmed, u64 start, u64 bytes,
 | |
| 		       u64 reserved_start, u64 reserved_bytes,
 | |
| 		       enum btrfs_trim_state reserved_trim_state,
 | |
| 		       struct btrfs_trim_range *trim_entry)
 | |
| {
 | |
| 	struct btrfs_space_info *space_info = block_group->space_info;
 | |
| 	struct btrfs_fs_info *fs_info = block_group->fs_info;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	int ret;
 | |
| 	int update = 0;
 | |
| 	const u64 end = start + bytes;
 | |
| 	const u64 reserved_end = reserved_start + reserved_bytes;
 | |
| 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 	u64 trimmed = 0;
 | |
| 
 | |
| 	spin_lock(&space_info->lock);
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (!block_group->ro) {
 | |
| 		block_group->reserved += reserved_bytes;
 | |
| 		space_info->bytes_reserved += reserved_bytes;
 | |
| 		update = 1;
 | |
| 	}
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 	spin_unlock(&space_info->lock);
 | |
| 
 | |
| 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
 | |
| 	if (!ret) {
 | |
| 		*total_trimmed += trimmed;
 | |
| 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&ctl->cache_writeout_mutex);
 | |
| 	if (reserved_start < start)
 | |
| 		__btrfs_add_free_space(block_group, reserved_start,
 | |
| 				       start - reserved_start,
 | |
| 				       reserved_trim_state);
 | |
| 	if (end < reserved_end)
 | |
| 		__btrfs_add_free_space(block_group, end, reserved_end - end,
 | |
| 				       reserved_trim_state);
 | |
| 	__btrfs_add_free_space(block_group, start, bytes, trim_state);
 | |
| 	list_del(&trim_entry->list);
 | |
| 	mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 	if (update) {
 | |
| 		spin_lock(&space_info->lock);
 | |
| 		spin_lock(&block_group->lock);
 | |
| 		if (block_group->ro)
 | |
| 			space_info->bytes_readonly += reserved_bytes;
 | |
| 		block_group->reserved -= reserved_bytes;
 | |
| 		space_info->bytes_reserved -= reserved_bytes;
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		spin_unlock(&space_info->lock);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If @async is set, then we will trim 1 region and return.
 | |
|  */
 | |
| static int trim_no_bitmap(struct btrfs_block_group *block_group,
 | |
| 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
 | |
| 			  bool async)
 | |
| {
 | |
| 	struct btrfs_discard_ctl *discard_ctl =
 | |
| 					&block_group->fs_info->discard_ctl;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry;
 | |
| 	struct rb_node *node;
 | |
| 	int ret = 0;
 | |
| 	u64 extent_start;
 | |
| 	u64 extent_bytes;
 | |
| 	enum btrfs_trim_state extent_trim_state;
 | |
| 	u64 bytes;
 | |
| 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
 | |
| 
 | |
| 	while (start < end) {
 | |
| 		struct btrfs_trim_range trim_entry;
 | |
| 
 | |
| 		mutex_lock(&ctl->cache_writeout_mutex);
 | |
| 		spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 		if (ctl->free_space < minlen)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		entry = tree_search_offset(ctl, start, 0, 1);
 | |
| 		if (!entry)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		/* Skip bitmaps and if async, already trimmed entries */
 | |
| 		while (entry->bitmap ||
 | |
| 		       (async && btrfs_free_space_trimmed(entry))) {
 | |
| 			node = rb_next(&entry->offset_index);
 | |
| 			if (!node)
 | |
| 				goto out_unlock;
 | |
| 			entry = rb_entry(node, struct btrfs_free_space,
 | |
| 					 offset_index);
 | |
| 		}
 | |
| 
 | |
| 		if (entry->offset >= end)
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		extent_start = entry->offset;
 | |
| 		extent_bytes = entry->bytes;
 | |
| 		extent_trim_state = entry->trim_state;
 | |
| 		if (async) {
 | |
| 			start = entry->offset;
 | |
| 			bytes = entry->bytes;
 | |
| 			if (bytes < minlen) {
 | |
| 				spin_unlock(&ctl->tree_lock);
 | |
| 				mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 				goto next;
 | |
| 			}
 | |
| 			unlink_free_space(ctl, entry, true);
 | |
| 			/*
 | |
| 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
 | |
| 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
 | |
| 			 * X when we come back around.  So trim it now.
 | |
| 			 */
 | |
| 			if (max_discard_size &&
 | |
| 			    bytes >= (max_discard_size +
 | |
| 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
 | |
| 				bytes = max_discard_size;
 | |
| 				extent_bytes = max_discard_size;
 | |
| 				entry->offset += max_discard_size;
 | |
| 				entry->bytes -= max_discard_size;
 | |
| 				link_free_space(ctl, entry);
 | |
| 			} else {
 | |
| 				kmem_cache_free(btrfs_free_space_cachep, entry);
 | |
| 			}
 | |
| 		} else {
 | |
| 			start = max(start, extent_start);
 | |
| 			bytes = min(extent_start + extent_bytes, end) - start;
 | |
| 			if (bytes < minlen) {
 | |
| 				spin_unlock(&ctl->tree_lock);
 | |
| 				mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 				goto next;
 | |
| 			}
 | |
| 
 | |
| 			unlink_free_space(ctl, entry, true);
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, entry);
 | |
| 		}
 | |
| 
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 		trim_entry.start = extent_start;
 | |
| 		trim_entry.bytes = extent_bytes;
 | |
| 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
 | |
| 		mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 		ret = do_trimming(block_group, total_trimmed, start, bytes,
 | |
| 				  extent_start, extent_bytes, extent_trim_state,
 | |
| 				  &trim_entry);
 | |
| 		if (ret) {
 | |
| 			block_group->discard_cursor = start + bytes;
 | |
| 			break;
 | |
| 		}
 | |
| next:
 | |
| 		start += bytes;
 | |
| 		block_group->discard_cursor = start;
 | |
| 		if (async && *total_trimmed)
 | |
| 			break;
 | |
| 
 | |
| 		if (btrfs_trim_interrupted()) {
 | |
| 			ret = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| out_unlock:
 | |
| 	block_group->discard_cursor = btrfs_block_group_end(block_group);
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we break out of trimming a bitmap prematurely, we should reset the
 | |
|  * trimming bit.  In a rather contrieved case, it's possible to race here so
 | |
|  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
 | |
|  *
 | |
|  * start = start of bitmap
 | |
|  * end = near end of bitmap
 | |
|  *
 | |
|  * Thread 1:			Thread 2:
 | |
|  * trim_bitmaps(start)
 | |
|  *				trim_bitmaps(end)
 | |
|  *				end_trimming_bitmap()
 | |
|  * reset_trimming_bitmap()
 | |
|  */
 | |
| static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
 | |
| {
 | |
| 	struct btrfs_free_space *entry;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	entry = tree_search_offset(ctl, offset, 1, 0);
 | |
| 	if (entry) {
 | |
| 		if (btrfs_free_space_trimmed(entry)) {
 | |
| 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
 | |
| 				entry->bitmap_extents;
 | |
| 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
 | |
| 		}
 | |
| 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| }
 | |
| 
 | |
| static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
 | |
| 				struct btrfs_free_space *entry)
 | |
| {
 | |
| 	if (btrfs_free_space_trimming_bitmap(entry)) {
 | |
| 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
 | |
| 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
 | |
| 			entry->bitmap_extents;
 | |
| 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If @async is set, then we will trim 1 region and return.
 | |
|  */
 | |
| static int trim_bitmaps(struct btrfs_block_group *block_group,
 | |
| 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
 | |
| 			u64 maxlen, bool async)
 | |
| {
 | |
| 	struct btrfs_discard_ctl *discard_ctl =
 | |
| 					&block_group->fs_info->discard_ctl;
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	struct btrfs_free_space *entry;
 | |
| 	int ret = 0;
 | |
| 	int ret2;
 | |
| 	u64 bytes;
 | |
| 	u64 offset = offset_to_bitmap(ctl, start);
 | |
| 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
 | |
| 
 | |
| 	while (offset < end) {
 | |
| 		bool next_bitmap = false;
 | |
| 		struct btrfs_trim_range trim_entry;
 | |
| 
 | |
| 		mutex_lock(&ctl->cache_writeout_mutex);
 | |
| 		spin_lock(&ctl->tree_lock);
 | |
| 
 | |
| 		if (ctl->free_space < minlen) {
 | |
| 			block_group->discard_cursor =
 | |
| 				btrfs_block_group_end(block_group);
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		entry = tree_search_offset(ctl, offset, 1, 0);
 | |
| 		/*
 | |
| 		 * Bitmaps are marked trimmed lossily now to prevent constant
 | |
| 		 * discarding of the same bitmap (the reason why we are bound
 | |
| 		 * by the filters).  So, retrim the block group bitmaps when we
 | |
| 		 * are preparing to punt to the unused_bgs list.  This uses
 | |
| 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
 | |
| 		 * which is the only discard index which sets minlen to 0.
 | |
| 		 */
 | |
| 		if (!entry || (async && minlen && start == offset &&
 | |
| 			       btrfs_free_space_trimmed(entry))) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			next_bitmap = true;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Async discard bitmap trimming begins at by setting the start
 | |
| 		 * to be key.objectid and the offset_to_bitmap() aligns to the
 | |
| 		 * start of the bitmap.  This lets us know we are fully
 | |
| 		 * scanning the bitmap rather than only some portion of it.
 | |
| 		 */
 | |
| 		if (start == offset)
 | |
| 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
 | |
| 
 | |
| 		bytes = minlen;
 | |
| 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
 | |
| 		if (ret2 || start >= end) {
 | |
| 			/*
 | |
| 			 * We lossily consider a bitmap trimmed if we only skip
 | |
| 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
 | |
| 			 */
 | |
| 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
 | |
| 				end_trimming_bitmap(ctl, entry);
 | |
| 			else
 | |
| 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			next_bitmap = true;
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We already trimmed a region, but are using the locking above
 | |
| 		 * to reset the trim_state.
 | |
| 		 */
 | |
| 		if (async && *total_trimmed) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes = min(bytes, end - start);
 | |
| 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
 | |
| 			spin_unlock(&ctl->tree_lock);
 | |
| 			mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 			goto next;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
 | |
| 		 * If X < @minlen, we won't trim X when we come back around.
 | |
| 		 * So trim it now.  We differ here from trimming extents as we
 | |
| 		 * don't keep individual state per bit.
 | |
| 		 */
 | |
| 		if (async &&
 | |
| 		    max_discard_size &&
 | |
| 		    bytes > (max_discard_size + minlen))
 | |
| 			bytes = max_discard_size;
 | |
| 
 | |
| 		bitmap_clear_bits(ctl, entry, start, bytes, true);
 | |
| 		if (entry->bytes == 0)
 | |
| 			free_bitmap(ctl, entry);
 | |
| 
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 		trim_entry.start = start;
 | |
| 		trim_entry.bytes = bytes;
 | |
| 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
 | |
| 		mutex_unlock(&ctl->cache_writeout_mutex);
 | |
| 
 | |
| 		ret = do_trimming(block_group, total_trimmed, start, bytes,
 | |
| 				  start, bytes, 0, &trim_entry);
 | |
| 		if (ret) {
 | |
| 			reset_trimming_bitmap(ctl, offset);
 | |
| 			block_group->discard_cursor =
 | |
| 				btrfs_block_group_end(block_group);
 | |
| 			break;
 | |
| 		}
 | |
| next:
 | |
| 		if (next_bitmap) {
 | |
| 			offset += BITS_PER_BITMAP * ctl->unit;
 | |
| 			start = offset;
 | |
| 		} else {
 | |
| 			start += bytes;
 | |
| 		}
 | |
| 		block_group->discard_cursor = start;
 | |
| 
 | |
| 		if (btrfs_trim_interrupted()) {
 | |
| 			if (start != offset)
 | |
| 				reset_trimming_bitmap(ctl, offset);
 | |
| 			ret = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	if (offset >= end)
 | |
| 		block_group->discard_cursor = end;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_trim_block_group(struct btrfs_block_group *block_group,
 | |
| 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
 | |
| 	int ret;
 | |
| 	u64 rem = 0;
 | |
| 
 | |
| 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
 | |
| 
 | |
| 	*trimmed = 0;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	btrfs_freeze_block_group(block_group);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
 | |
| 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
 | |
| 	/* If we ended in the middle of a bitmap, reset the trimming flag */
 | |
| 	if (rem)
 | |
| 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
 | |
| out:
 | |
| 	btrfs_unfreeze_block_group(block_group);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
 | |
| 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
 | |
| 				   bool async)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	*trimmed = 0;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	btrfs_freeze_block_group(block_group);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
 | |
| 	btrfs_unfreeze_block_group(block_group);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
 | |
| 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
 | |
| 				   u64 maxlen, bool async)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	*trimmed = 0;
 | |
| 
 | |
| 	spin_lock(&block_group->lock);
 | |
| 	if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
 | |
| 		spin_unlock(&block_group->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	btrfs_freeze_block_group(block_group);
 | |
| 	spin_unlock(&block_group->lock);
 | |
| 
 | |
| 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
 | |
| 			   async);
 | |
| 
 | |
| 	btrfs_unfreeze_block_group(block_group);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
 | |
| {
 | |
| 	return btrfs_super_cache_generation(fs_info->super_copy);
 | |
| }
 | |
| 
 | |
| static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
 | |
| 				       struct btrfs_trans_handle *trans)
 | |
| {
 | |
| 	struct btrfs_block_group *block_group;
 | |
| 	struct rb_node *node;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	btrfs_info(fs_info, "cleaning free space cache v1");
 | |
| 
 | |
| 	node = rb_first_cached(&fs_info->block_group_cache_tree);
 | |
| 	while (node) {
 | |
| 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
 | |
| 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 		node = rb_next(node);
 | |
| 	}
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
 | |
| {
 | |
| 	struct btrfs_trans_handle *trans;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * update_super_roots will appropriately set or unset
 | |
| 	 * super_copy->cache_generation based on SPACE_CACHE and
 | |
| 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
 | |
| 	 * transaction commit whether we are enabling space cache v1 and don't
 | |
| 	 * have any other work to do, or are disabling it and removing free
 | |
| 	 * space inodes.
 | |
| 	 */
 | |
| 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
 | |
| 	if (IS_ERR(trans))
 | |
| 		return PTR_ERR(trans);
 | |
| 
 | |
| 	if (!active) {
 | |
| 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
 | |
| 		ret = cleanup_free_space_cache_v1(fs_info, trans);
 | |
| 		if (ret) {
 | |
| 			btrfs_abort_transaction(trans, ret);
 | |
| 			btrfs_end_transaction(trans);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = btrfs_commit_transaction(trans);
 | |
| out:
 | |
| 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __init btrfs_free_space_init(void)
 | |
| {
 | |
| 	btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
 | |
| 	if (!btrfs_free_space_cachep)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
 | |
| 							PAGE_SIZE, PAGE_SIZE,
 | |
| 							0, NULL);
 | |
| 	if (!btrfs_free_space_bitmap_cachep) {
 | |
| 		kmem_cache_destroy(btrfs_free_space_cachep);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __cold btrfs_free_space_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(btrfs_free_space_cachep);
 | |
| 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 | |
| /*
 | |
|  * Use this if you need to make a bitmap or extent entry specifically, it
 | |
|  * doesn't do any of the merging that add_free_space does, this acts a lot like
 | |
|  * how the free space cache loading stuff works, so you can get really weird
 | |
|  * configurations.
 | |
|  */
 | |
| int test_add_free_space_entry(struct btrfs_block_group *cache,
 | |
| 			      u64 offset, u64 bytes, bool bitmap)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
 | |
| 	struct btrfs_free_space *info = NULL, *bitmap_info;
 | |
| 	void *map = NULL;
 | |
| 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
 | |
| 	u64 bytes_added;
 | |
| 	int ret;
 | |
| 
 | |
| again:
 | |
| 	if (!info) {
 | |
| 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
 | |
| 		if (!info)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (!bitmap) {
 | |
| 		spin_lock(&ctl->tree_lock);
 | |
| 		info->offset = offset;
 | |
| 		info->bytes = bytes;
 | |
| 		info->max_extent_size = 0;
 | |
| 		ret = link_free_space(ctl, info);
 | |
| 		spin_unlock(&ctl->tree_lock);
 | |
| 		if (ret)
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!map) {
 | |
| 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
 | |
| 		if (!map) {
 | |
| 			kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
 | |
| 					 1, 0);
 | |
| 	if (!bitmap_info) {
 | |
| 		info->bitmap = map;
 | |
| 		map = NULL;
 | |
| 		add_new_bitmap(ctl, info, offset);
 | |
| 		bitmap_info = info;
 | |
| 		info = NULL;
 | |
| 	}
 | |
| 
 | |
| 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
 | |
| 					  trim_state);
 | |
| 
 | |
| 	bytes -= bytes_added;
 | |
| 	offset += bytes_added;
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 
 | |
| 	if (bytes)
 | |
| 		goto again;
 | |
| 
 | |
| 	if (info)
 | |
| 		kmem_cache_free(btrfs_free_space_cachep, info);
 | |
| 	if (map)
 | |
| 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks to see if the given range is in the free space cache.  This is really
 | |
|  * just used to check the absence of space, so if there is free space in the
 | |
|  * range at all we will return 1.
 | |
|  */
 | |
| int test_check_exists(struct btrfs_block_group *cache,
 | |
| 		      u64 offset, u64 bytes)
 | |
| {
 | |
| 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
 | |
| 	struct btrfs_free_space *info;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&ctl->tree_lock);
 | |
| 	info = tree_search_offset(ctl, offset, 0, 0);
 | |
| 	if (!info) {
 | |
| 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
 | |
| 					  1, 0);
 | |
| 		if (!info)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| have_info:
 | |
| 	if (info->bitmap) {
 | |
| 		u64 bit_off, bit_bytes;
 | |
| 		struct rb_node *n;
 | |
| 		struct btrfs_free_space *tmp;
 | |
| 
 | |
| 		bit_off = offset;
 | |
| 		bit_bytes = ctl->unit;
 | |
| 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
 | |
| 		if (!ret) {
 | |
| 			if (bit_off == offset) {
 | |
| 				ret = 1;
 | |
| 				goto out;
 | |
| 			} else if (bit_off > offset &&
 | |
| 				   offset + bytes > bit_off) {
 | |
| 				ret = 1;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		n = rb_prev(&info->offset_index);
 | |
| 		while (n) {
 | |
| 			tmp = rb_entry(n, struct btrfs_free_space,
 | |
| 				       offset_index);
 | |
| 			if (tmp->offset + tmp->bytes < offset)
 | |
| 				break;
 | |
| 			if (offset + bytes < tmp->offset) {
 | |
| 				n = rb_prev(&tmp->offset_index);
 | |
| 				continue;
 | |
| 			}
 | |
| 			info = tmp;
 | |
| 			goto have_info;
 | |
| 		}
 | |
| 
 | |
| 		n = rb_next(&info->offset_index);
 | |
| 		while (n) {
 | |
| 			tmp = rb_entry(n, struct btrfs_free_space,
 | |
| 				       offset_index);
 | |
| 			if (offset + bytes < tmp->offset)
 | |
| 				break;
 | |
| 			if (tmp->offset + tmp->bytes < offset) {
 | |
| 				n = rb_next(&tmp->offset_index);
 | |
| 				continue;
 | |
| 			}
 | |
| 			info = tmp;
 | |
| 			goto have_info;
 | |
| 		}
 | |
| 
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (info->offset == offset) {
 | |
| 		ret = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (offset > info->offset && offset < info->offset + info->bytes)
 | |
| 		ret = 1;
 | |
| out:
 | |
| 	spin_unlock(&ctl->tree_lock);
 | |
| 	return ret;
 | |
| }
 | |
| #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
 |