911 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			911 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2007 Oracle.  All rights reserved.
 | |
|  * Copyright (C) 2022 Christoph Hellwig.
 | |
|  */
 | |
| 
 | |
| #include <linux/bio.h>
 | |
| #include "bio.h"
 | |
| #include "ctree.h"
 | |
| #include "volumes.h"
 | |
| #include "raid56.h"
 | |
| #include "async-thread.h"
 | |
| #include "dev-replace.h"
 | |
| #include "zoned.h"
 | |
| #include "file-item.h"
 | |
| #include "raid-stripe-tree.h"
 | |
| 
 | |
| static struct bio_set btrfs_bioset;
 | |
| static struct bio_set btrfs_clone_bioset;
 | |
| static struct bio_set btrfs_repair_bioset;
 | |
| static mempool_t btrfs_failed_bio_pool;
 | |
| 
 | |
| struct btrfs_failed_bio {
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	int num_copies;
 | |
| 	atomic_t repair_count;
 | |
| };
 | |
| 
 | |
| /* Is this a data path I/O that needs storage layer checksum and repair? */
 | |
| static inline bool is_data_bbio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	return bbio->inode && is_data_inode(bbio->inode);
 | |
| }
 | |
| 
 | |
| static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize a btrfs_bio structure.  This skips the embedded bio itself as it
 | |
|  * is already initialized by the block layer.
 | |
|  */
 | |
| void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
 | |
| 		    btrfs_bio_end_io_t end_io, void *private)
 | |
| {
 | |
| 	memset(bbio, 0, offsetof(struct btrfs_bio, bio));
 | |
| 	bbio->fs_info = fs_info;
 | |
| 	bbio->end_io = end_io;
 | |
| 	bbio->private = private;
 | |
| 	atomic_set(&bbio->pending_ios, 1);
 | |
| 	WRITE_ONCE(bbio->status, BLK_STS_OK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a btrfs_bio structure.  The btrfs_bio is the main I/O container for
 | |
|  * btrfs, and is used for all I/O submitted through btrfs_submit_bbio().
 | |
|  *
 | |
|  * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
 | |
|  * a mempool.
 | |
|  */
 | |
| struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
 | |
| 				  struct btrfs_fs_info *fs_info,
 | |
| 				  btrfs_bio_end_io_t end_io, void *private)
 | |
| {
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
 | |
| 	bbio = btrfs_bio(bio);
 | |
| 	btrfs_bio_init(bbio, fs_info, end_io, private);
 | |
| 	return bbio;
 | |
| }
 | |
| 
 | |
| static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
 | |
| 					 struct btrfs_bio *orig_bbio,
 | |
| 					 u64 map_length)
 | |
| {
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT, GFP_NOFS,
 | |
| 			&btrfs_clone_bioset);
 | |
| 	bbio = btrfs_bio(bio);
 | |
| 	btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
 | |
| 	bbio->inode = orig_bbio->inode;
 | |
| 	bbio->file_offset = orig_bbio->file_offset;
 | |
| 	orig_bbio->file_offset += map_length;
 | |
| 	if (bbio_has_ordered_extent(bbio)) {
 | |
| 		refcount_inc(&orig_bbio->ordered->refs);
 | |
| 		bbio->ordered = orig_bbio->ordered;
 | |
| 	}
 | |
| 	atomic_inc(&orig_bbio->pending_ios);
 | |
| 	return bbio;
 | |
| }
 | |
| 
 | |
| /* Free a bio that was never submitted to the underlying device. */
 | |
| static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	if (bbio_has_ordered_extent(bbio))
 | |
| 		btrfs_put_ordered_extent(bbio->ordered);
 | |
| 	bio_put(&bbio->bio);
 | |
| }
 | |
| 
 | |
| static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	if (bbio_has_ordered_extent(bbio)) {
 | |
| 		struct btrfs_ordered_extent *ordered = bbio->ordered;
 | |
| 
 | |
| 		bbio->end_io(bbio);
 | |
| 		btrfs_put_ordered_extent(ordered);
 | |
| 	} else {
 | |
| 		bbio->end_io(bbio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
 | |
| {
 | |
| 	bbio->bio.bi_status = status;
 | |
| 	if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
 | |
| 		struct btrfs_bio *orig_bbio = bbio->private;
 | |
| 
 | |
| 		btrfs_cleanup_bio(bbio);
 | |
| 		bbio = orig_bbio;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point, bbio always points to the original btrfs_bio. Save
 | |
| 	 * the first error in it.
 | |
| 	 */
 | |
| 	if (status != BLK_STS_OK)
 | |
| 		cmpxchg(&bbio->status, BLK_STS_OK, status);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&bbio->pending_ios)) {
 | |
| 		/* Load split bio's error which might be set above. */
 | |
| 		if (status == BLK_STS_OK)
 | |
| 			bbio->bio.bi_status = READ_ONCE(bbio->status);
 | |
| 		__btrfs_bio_end_io(bbio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
 | |
| {
 | |
| 	if (cur_mirror == fbio->num_copies)
 | |
| 		return cur_mirror + 1 - fbio->num_copies;
 | |
| 	return cur_mirror + 1;
 | |
| }
 | |
| 
 | |
| static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
 | |
| {
 | |
| 	if (cur_mirror == 1)
 | |
| 		return fbio->num_copies;
 | |
| 	return cur_mirror - 1;
 | |
| }
 | |
| 
 | |
| static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&fbio->repair_count)) {
 | |
| 		btrfs_bio_end_io(fbio->bbio, fbio->bbio->bio.bi_status);
 | |
| 		mempool_free(fbio, &btrfs_failed_bio_pool);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
 | |
| 				 struct btrfs_device *dev)
 | |
| {
 | |
| 	struct btrfs_failed_bio *fbio = repair_bbio->private;
 | |
| 	struct btrfs_inode *inode = repair_bbio->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
 | |
| 	int mirror = repair_bbio->mirror_num;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can only trigger this for data bio, which doesn't support larger
 | |
| 	 * folios yet.
 | |
| 	 */
 | |
| 	ASSERT(folio_order(page_folio(bv->bv_page)) == 0);
 | |
| 
 | |
| 	if (repair_bbio->bio.bi_status ||
 | |
| 	    !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
 | |
| 		bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
 | |
| 		repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
 | |
| 
 | |
| 		mirror = next_repair_mirror(fbio, mirror);
 | |
| 		if (mirror == fbio->bbio->mirror_num) {
 | |
| 			btrfs_debug(fs_info, "no mirror left");
 | |
| 			fbio->bbio->bio.bi_status = BLK_STS_IOERR;
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		btrfs_submit_bbio(repair_bbio, mirror);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		mirror = prev_repair_mirror(fbio, mirror);
 | |
| 		btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
 | |
| 				  repair_bbio->file_offset, fs_info->sectorsize,
 | |
| 				  repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
 | |
| 				  page_folio(bv->bv_page), bv->bv_offset, mirror);
 | |
| 	} while (mirror != fbio->bbio->mirror_num);
 | |
| 
 | |
| done:
 | |
| 	btrfs_repair_done(fbio);
 | |
| 	bio_put(&repair_bbio->bio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Try to kick off a repair read to the next available mirror for a bad sector.
 | |
|  *
 | |
|  * This primarily tries to recover good data to serve the actual read request,
 | |
|  * but also tries to write the good data back to the bad mirror(s) when a
 | |
|  * read succeeded to restore the redundancy.
 | |
|  */
 | |
| static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
 | |
| 						  u32 bio_offset,
 | |
| 						  struct bio_vec *bv,
 | |
| 						  struct btrfs_failed_bio *fbio)
 | |
| {
 | |
| 	struct btrfs_inode *inode = failed_bbio->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	const u32 sectorsize = fs_info->sectorsize;
 | |
| 	const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
 | |
| 	struct btrfs_bio *repair_bbio;
 | |
| 	struct bio *repair_bio;
 | |
| 	int num_copies;
 | |
| 	int mirror;
 | |
| 
 | |
| 	btrfs_debug(fs_info, "repair read error: read error at %llu",
 | |
| 		    failed_bbio->file_offset + bio_offset);
 | |
| 
 | |
| 	num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
 | |
| 	if (num_copies == 1) {
 | |
| 		btrfs_debug(fs_info, "no copy to repair from");
 | |
| 		failed_bbio->bio.bi_status = BLK_STS_IOERR;
 | |
| 		return fbio;
 | |
| 	}
 | |
| 
 | |
| 	if (!fbio) {
 | |
| 		fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
 | |
| 		fbio->bbio = failed_bbio;
 | |
| 		fbio->num_copies = num_copies;
 | |
| 		atomic_set(&fbio->repair_count, 1);
 | |
| 	}
 | |
| 
 | |
| 	atomic_inc(&fbio->repair_count);
 | |
| 
 | |
| 	repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
 | |
| 				      &btrfs_repair_bioset);
 | |
| 	repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
 | |
| 	__bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
 | |
| 
 | |
| 	repair_bbio = btrfs_bio(repair_bio);
 | |
| 	btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
 | |
| 	repair_bbio->inode = failed_bbio->inode;
 | |
| 	repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
 | |
| 
 | |
| 	mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
 | |
| 	btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
 | |
| 	btrfs_submit_bbio(repair_bbio, mirror);
 | |
| 	return fbio;
 | |
| }
 | |
| 
 | |
| static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
 | |
| {
 | |
| 	struct btrfs_inode *inode = bbio->inode;
 | |
| 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 | |
| 	u32 sectorsize = fs_info->sectorsize;
 | |
| 	struct bvec_iter *iter = &bbio->saved_iter;
 | |
| 	blk_status_t status = bbio->bio.bi_status;
 | |
| 	struct btrfs_failed_bio *fbio = NULL;
 | |
| 	u32 offset = 0;
 | |
| 
 | |
| 	/* Read-repair requires the inode field to be set by the submitter. */
 | |
| 	ASSERT(inode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Hand off repair bios to the repair code as there is no upper level
 | |
| 	 * submitter for them.
 | |
| 	 */
 | |
| 	if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
 | |
| 		btrfs_end_repair_bio(bbio, dev);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the I/O error. A failed repair will reset it. */
 | |
| 	bbio->bio.bi_status = BLK_STS_OK;
 | |
| 
 | |
| 	while (iter->bi_size) {
 | |
| 		struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
 | |
| 
 | |
| 		bv.bv_len = min(bv.bv_len, sectorsize);
 | |
| 		if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
 | |
| 			fbio = repair_one_sector(bbio, offset, &bv, fbio);
 | |
| 
 | |
| 		bio_advance_iter_single(&bbio->bio, iter, sectorsize);
 | |
| 		offset += sectorsize;
 | |
| 	}
 | |
| 
 | |
| 	if (bbio->csum != bbio->csum_inline)
 | |
| 		kfree(bbio->csum);
 | |
| 
 | |
| 	if (fbio)
 | |
| 		btrfs_repair_done(fbio);
 | |
| 	else
 | |
| 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
 | |
| }
 | |
| 
 | |
| static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
 | |
| {
 | |
| 	if (!dev || !dev->bdev)
 | |
| 		return;
 | |
| 	if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
 | |
| 		return;
 | |
| 
 | |
| 	if (btrfs_op(bio) == BTRFS_MAP_WRITE)
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
 | |
| 	else if (!(bio->bi_opf & REQ_RAHEAD))
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 | |
| 	if (bio->bi_opf & REQ_PREFLUSH)
 | |
| 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
 | |
| }
 | |
| 
 | |
| static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
 | |
| 						struct bio *bio)
 | |
| {
 | |
| 	if (bio->bi_opf & REQ_META)
 | |
| 		return fs_info->endio_meta_workers;
 | |
| 	return fs_info->endio_workers;
 | |
| }
 | |
| 
 | |
| static void btrfs_end_bio_work(struct work_struct *work)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
 | |
| 
 | |
| 	/* Metadata reads are checked and repaired by the submitter. */
 | |
| 	if (is_data_bbio(bbio))
 | |
| 		btrfs_check_read_bio(bbio, bbio->bio.bi_private);
 | |
| 	else
 | |
| 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
 | |
| }
 | |
| 
 | |
| static void btrfs_simple_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_bio *bbio = btrfs_bio(bio);
 | |
| 	struct btrfs_device *dev = bio->bi_private;
 | |
| 	struct btrfs_fs_info *fs_info = bbio->fs_info;
 | |
| 
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		btrfs_log_dev_io_error(bio, dev);
 | |
| 
 | |
| 	if (bio_op(bio) == REQ_OP_READ) {
 | |
| 		INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
 | |
| 		queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
 | |
| 	} else {
 | |
| 		if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
 | |
| 			btrfs_record_physical_zoned(bbio);
 | |
| 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void btrfs_raid56_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_io_context *bioc = bio->bi_private;
 | |
| 	struct btrfs_bio *bbio = btrfs_bio(bio);
 | |
| 
 | |
| 	btrfs_bio_counter_dec(bioc->fs_info);
 | |
| 	bbio->mirror_num = bioc->mirror_num;
 | |
| 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
 | |
| 		btrfs_check_read_bio(bbio, NULL);
 | |
| 	else
 | |
| 		btrfs_bio_end_io(bbio, bbio->bio.bi_status);
 | |
| 
 | |
| 	btrfs_put_bioc(bioc);
 | |
| }
 | |
| 
 | |
| static void btrfs_orig_write_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_io_stripe *stripe = bio->bi_private;
 | |
| 	struct btrfs_io_context *bioc = stripe->bioc;
 | |
| 	struct btrfs_bio *bbio = btrfs_bio(bio);
 | |
| 
 | |
| 	btrfs_bio_counter_dec(bioc->fs_info);
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		atomic_inc(&bioc->error);
 | |
| 		btrfs_log_dev_io_error(bio, stripe->dev);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only send an error to the higher layers if it is beyond the tolerance
 | |
| 	 * threshold.
 | |
| 	 */
 | |
| 	if (atomic_read(&bioc->error) > bioc->max_errors)
 | |
| 		bio->bi_status = BLK_STS_IOERR;
 | |
| 	else
 | |
| 		bio->bi_status = BLK_STS_OK;
 | |
| 
 | |
| 	if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
 | |
| 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 
 | |
| 	btrfs_bio_end_io(bbio, bbio->bio.bi_status);
 | |
| 	btrfs_put_bioc(bioc);
 | |
| }
 | |
| 
 | |
| static void btrfs_clone_write_end_io(struct bio *bio)
 | |
| {
 | |
| 	struct btrfs_io_stripe *stripe = bio->bi_private;
 | |
| 
 | |
| 	if (bio->bi_status) {
 | |
| 		atomic_inc(&stripe->bioc->error);
 | |
| 		btrfs_log_dev_io_error(bio, stripe->dev);
 | |
| 	} else if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
 | |
| 		stripe->physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	/* Pass on control to the original bio this one was cloned from */
 | |
| 	bio_endio(stripe->bioc->orig_bio);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
 | |
| {
 | |
| 	if (!dev || !dev->bdev ||
 | |
| 	    test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
 | |
| 	    (btrfs_op(bio) == BTRFS_MAP_WRITE &&
 | |
| 	     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
 | |
| 		bio_io_error(bio);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bio_set_dev(bio, dev->bdev);
 | |
| 
 | |
| 	/*
 | |
| 	 * For zone append writing, bi_sector must point the beginning of the
 | |
| 	 * zone
 | |
| 	 */
 | |
| 	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
 | |
| 		u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 		u64 zone_start = round_down(physical, dev->fs_info->zone_size);
 | |
| 
 | |
| 		ASSERT(btrfs_dev_is_sequential(dev, physical));
 | |
| 		bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
 | |
| 	}
 | |
| 	btrfs_debug_in_rcu(dev->fs_info,
 | |
| 	"%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
 | |
| 		__func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
 | |
| 		(unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
 | |
| 		dev->devid, bio->bi_iter.bi_size);
 | |
| 
 | |
| 	if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
 | |
| 		blkcg_punt_bio_submit(bio);
 | |
| 	else
 | |
| 		submit_bio(bio);
 | |
| }
 | |
| 
 | |
| static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
 | |
| {
 | |
| 	struct bio *orig_bio = bioc->orig_bio, *bio;
 | |
| 
 | |
| 	ASSERT(bio_op(orig_bio) != REQ_OP_READ);
 | |
| 
 | |
| 	/* Reuse the bio embedded into the btrfs_bio for the last mirror */
 | |
| 	if (dev_nr == bioc->num_stripes - 1) {
 | |
| 		bio = orig_bio;
 | |
| 		bio->bi_end_io = btrfs_orig_write_end_io;
 | |
| 	} else {
 | |
| 		bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
 | |
| 		bio_inc_remaining(orig_bio);
 | |
| 		bio->bi_end_io = btrfs_clone_write_end_io;
 | |
| 	}
 | |
| 
 | |
| 	bio->bi_private = &bioc->stripes[dev_nr];
 | |
| 	bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
 | |
| 	bioc->stripes[dev_nr].bioc = bioc;
 | |
| 	bioc->size = bio->bi_iter.bi_size;
 | |
| 	btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
 | |
| }
 | |
| 
 | |
| static void btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
 | |
| 			     struct btrfs_io_stripe *smap, int mirror_num)
 | |
| {
 | |
| 	if (!bioc) {
 | |
| 		/* Single mirror read/write fast path. */
 | |
| 		btrfs_bio(bio)->mirror_num = mirror_num;
 | |
| 		bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
 | |
| 		if (bio_op(bio) != REQ_OP_READ)
 | |
| 			btrfs_bio(bio)->orig_physical = smap->physical;
 | |
| 		bio->bi_private = smap->dev;
 | |
| 		bio->bi_end_io = btrfs_simple_end_io;
 | |
| 		btrfs_submit_dev_bio(smap->dev, bio);
 | |
| 	} else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
 | |
| 		/* Parity RAID write or read recovery. */
 | |
| 		bio->bi_private = bioc;
 | |
| 		bio->bi_end_io = btrfs_raid56_end_io;
 | |
| 		if (bio_op(bio) == REQ_OP_READ)
 | |
| 			raid56_parity_recover(bio, bioc, mirror_num);
 | |
| 		else
 | |
| 			raid56_parity_write(bio, bioc);
 | |
| 	} else {
 | |
| 		/* Write to multiple mirrors. */
 | |
| 		int total_devs = bioc->num_stripes;
 | |
| 
 | |
| 		bioc->orig_bio = bio;
 | |
| 		for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
 | |
| 			btrfs_submit_mirrored_bio(bioc, dev_nr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	if (bbio->bio.bi_opf & REQ_META)
 | |
| 		return btree_csum_one_bio(bbio);
 | |
| 	return btrfs_csum_one_bio(bbio);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Async submit bios are used to offload expensive checksumming onto the worker
 | |
|  * threads.
 | |
|  */
 | |
| struct async_submit_bio {
 | |
| 	struct btrfs_bio *bbio;
 | |
| 	struct btrfs_io_context *bioc;
 | |
| 	struct btrfs_io_stripe smap;
 | |
| 	int mirror_num;
 | |
| 	struct btrfs_work work;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * In order to insert checksums into the metadata in large chunks, we wait
 | |
|  * until bio submission time.   All the pages in the bio are checksummed and
 | |
|  * sums are attached onto the ordered extent record.
 | |
|  *
 | |
|  * At IO completion time the csums attached on the ordered extent record are
 | |
|  * inserted into the btree.
 | |
|  */
 | |
| static void run_one_async_start(struct btrfs_work *work)
 | |
| {
 | |
| 	struct async_submit_bio *async =
 | |
| 		container_of(work, struct async_submit_bio, work);
 | |
| 	blk_status_t ret;
 | |
| 
 | |
| 	ret = btrfs_bio_csum(async->bbio);
 | |
| 	if (ret)
 | |
| 		async->bbio->bio.bi_status = ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In order to insert checksums into the metadata in large chunks, we wait
 | |
|  * until bio submission time.   All the pages in the bio are checksummed and
 | |
|  * sums are attached onto the ordered extent record.
 | |
|  *
 | |
|  * At IO completion time the csums attached on the ordered extent record are
 | |
|  * inserted into the tree.
 | |
|  *
 | |
|  * If called with @do_free == true, then it will free the work struct.
 | |
|  */
 | |
| static void run_one_async_done(struct btrfs_work *work, bool do_free)
 | |
| {
 | |
| 	struct async_submit_bio *async =
 | |
| 		container_of(work, struct async_submit_bio, work);
 | |
| 	struct bio *bio = &async->bbio->bio;
 | |
| 
 | |
| 	if (do_free) {
 | |
| 		kfree(container_of(work, struct async_submit_bio, work));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* If an error occurred we just want to clean up the bio and move on. */
 | |
| 	if (bio->bi_status) {
 | |
| 		btrfs_bio_end_io(async->bbio, async->bbio->bio.bi_status);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All of the bios that pass through here are from async helpers.
 | |
| 	 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
 | |
| 	 * context.  This changes nothing when cgroups aren't in use.
 | |
| 	 */
 | |
| 	bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
 | |
| 	btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
 | |
| }
 | |
| 
 | |
| static bool should_async_write(struct btrfs_bio *bbio)
 | |
| {
 | |
| 	bool auto_csum_mode = true;
 | |
| 
 | |
| #ifdef CONFIG_BTRFS_DEBUG
 | |
| 	struct btrfs_fs_devices *fs_devices = bbio->fs_info->fs_devices;
 | |
| 	enum btrfs_offload_csum_mode csum_mode = READ_ONCE(fs_devices->offload_csum_mode);
 | |
| 
 | |
| 	if (csum_mode == BTRFS_OFFLOAD_CSUM_FORCE_OFF)
 | |
| 		return false;
 | |
| 
 | |
| 	auto_csum_mode = (csum_mode == BTRFS_OFFLOAD_CSUM_AUTO);
 | |
| #endif
 | |
| 
 | |
| 	/* Submit synchronously if the checksum implementation is fast. */
 | |
| 	if (auto_csum_mode && test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to defer the submission to a workqueue to parallelize the
 | |
| 	 * checksum calculation unless the I/O is issued synchronously.
 | |
| 	 */
 | |
| 	if (op_is_sync(bbio->bio.bi_opf))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Zoned devices require I/O to be submitted in order. */
 | |
| 	if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit bio to an async queue.
 | |
|  *
 | |
|  * Return true if the work has been successfully submitted, else false.
 | |
|  */
 | |
| static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
 | |
| 				struct btrfs_io_context *bioc,
 | |
| 				struct btrfs_io_stripe *smap, int mirror_num)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bbio->fs_info;
 | |
| 	struct async_submit_bio *async;
 | |
| 
 | |
| 	async = kmalloc(sizeof(*async), GFP_NOFS);
 | |
| 	if (!async)
 | |
| 		return false;
 | |
| 
 | |
| 	async->bbio = bbio;
 | |
| 	async->bioc = bioc;
 | |
| 	async->smap = *smap;
 | |
| 	async->mirror_num = mirror_num;
 | |
| 
 | |
| 	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done);
 | |
| 	btrfs_queue_work(fs_info->workers, &async->work);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static u64 btrfs_append_map_length(struct btrfs_bio *bbio, u64 map_length)
 | |
| {
 | |
| 	unsigned int nr_segs;
 | |
| 	int sector_offset;
 | |
| 
 | |
| 	map_length = min(map_length, bbio->fs_info->max_zone_append_size);
 | |
| 	sector_offset = bio_split_rw_at(&bbio->bio, &bbio->fs_info->limits,
 | |
| 					&nr_segs, map_length);
 | |
| 	if (sector_offset)
 | |
| 		return sector_offset << SECTOR_SHIFT;
 | |
| 	return map_length;
 | |
| }
 | |
| 
 | |
| static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
 | |
| {
 | |
| 	struct btrfs_inode *inode = bbio->inode;
 | |
| 	struct btrfs_fs_info *fs_info = bbio->fs_info;
 | |
| 	struct bio *bio = &bbio->bio;
 | |
| 	u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 	u64 length = bio->bi_iter.bi_size;
 | |
| 	u64 map_length = length;
 | |
| 	bool use_append = btrfs_use_zone_append(bbio);
 | |
| 	struct btrfs_io_context *bioc = NULL;
 | |
| 	struct btrfs_io_stripe smap;
 | |
| 	blk_status_t ret;
 | |
| 	int error;
 | |
| 
 | |
| 	if (!bbio->inode || btrfs_is_data_reloc_root(inode->root))
 | |
| 		smap.rst_search_commit_root = true;
 | |
| 	else
 | |
| 		smap.rst_search_commit_root = false;
 | |
| 
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
 | |
| 				&bioc, &smap, &mirror_num);
 | |
| 	if (error) {
 | |
| 		ret = errno_to_blk_status(error);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	map_length = min(map_length, length);
 | |
| 	if (use_append)
 | |
| 		map_length = btrfs_append_map_length(bbio, map_length);
 | |
| 
 | |
| 	if (map_length < length) {
 | |
| 		bbio = btrfs_split_bio(fs_info, bbio, map_length);
 | |
| 		bio = &bbio->bio;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Save the iter for the end_io handler and preload the checksums for
 | |
| 	 * data reads.
 | |
| 	 */
 | |
| 	if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
 | |
| 		bbio->saved_iter = bio->bi_iter;
 | |
| 		ret = btrfs_lookup_bio_sums(bbio);
 | |
| 		if (ret)
 | |
| 			goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
 | |
| 		if (use_append) {
 | |
| 			bio->bi_opf &= ~REQ_OP_WRITE;
 | |
| 			bio->bi_opf |= REQ_OP_ZONE_APPEND;
 | |
| 		}
 | |
| 
 | |
| 		if (is_data_bbio(bbio) && bioc &&
 | |
| 		    btrfs_need_stripe_tree_update(bioc->fs_info, bioc->map_type)) {
 | |
| 			/*
 | |
| 			 * No locking for the list update, as we only add to
 | |
| 			 * the list in the I/O submission path, and list
 | |
| 			 * iteration only happens in the completion path, which
 | |
| 			 * can't happen until after the last submission.
 | |
| 			 */
 | |
| 			btrfs_get_bioc(bioc);
 | |
| 			list_add_tail(&bioc->rst_ordered_entry, &bbio->ordered->bioc_list);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Csum items for reloc roots have already been cloned at this
 | |
| 		 * point, so they are handled as part of the no-checksum case.
 | |
| 		 */
 | |
| 		if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
 | |
| 		    !test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state) &&
 | |
| 		    !btrfs_is_data_reloc_root(inode->root)) {
 | |
| 			if (should_async_write(bbio) &&
 | |
| 			    btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
 | |
| 				goto done;
 | |
| 
 | |
| 			ret = btrfs_bio_csum(bbio);
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 		} else if (use_append ||
 | |
| 			   (btrfs_is_zoned(fs_info) && inode &&
 | |
| 			    inode->flags & BTRFS_INODE_NODATASUM)) {
 | |
| 			ret = btrfs_alloc_dummy_sum(bbio);
 | |
| 			if (ret)
 | |
| 				goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	btrfs_submit_bio(bio, bioc, &smap, mirror_num);
 | |
| done:
 | |
| 	return map_length == length;
 | |
| 
 | |
| fail:
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 	/*
 | |
| 	 * We have split the original bbio, now we have to end both the current
 | |
| 	 * @bbio and remaining one, as the remaining one will never be submitted.
 | |
| 	 */
 | |
| 	if (map_length < length) {
 | |
| 		struct btrfs_bio *remaining = bbio->private;
 | |
| 
 | |
| 		ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
 | |
| 		ASSERT(remaining);
 | |
| 
 | |
| 		btrfs_bio_end_io(remaining, ret);
 | |
| 	}
 | |
| 	btrfs_bio_end_io(bbio, ret);
 | |
| 	/* Do not submit another chunk */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void btrfs_submit_bbio(struct btrfs_bio *bbio, int mirror_num)
 | |
| {
 | |
| 	/* If bbio->inode is not populated, its file_offset must be 0. */
 | |
| 	ASSERT(bbio->inode || bbio->file_offset == 0);
 | |
| 
 | |
| 	while (!btrfs_submit_chunk(bbio, mirror_num))
 | |
| 		;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit a repair write.
 | |
|  *
 | |
|  * This bypasses btrfs_submit_bbio() deliberately, as that writes all copies in a
 | |
|  * RAID setup.  Here we only want to write the one bad copy, so we do the
 | |
|  * mapping ourselves and submit the bio directly.
 | |
|  *
 | |
|  * The I/O is issued synchronously to block the repair read completion from
 | |
|  * freeing the bio.
 | |
|  */
 | |
| int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
 | |
| 			    u64 length, u64 logical, struct folio *folio,
 | |
| 			    unsigned int folio_offset, int mirror_num)
 | |
| {
 | |
| 	struct btrfs_io_stripe smap = { 0 };
 | |
| 	struct bio_vec bvec;
 | |
| 	struct bio bio;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
 | |
| 	BUG_ON(!mirror_num);
 | |
| 
 | |
| 	if (btrfs_repair_one_zone(fs_info, logical))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid races with device replace and make sure our bioc has devices
 | |
| 	 * associated to its stripes that don't go away while we are doing the
 | |
| 	 * read repair operation.
 | |
| 	 */
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
 | |
| 	if (ret < 0)
 | |
| 		goto out_counter_dec;
 | |
| 
 | |
| 	if (!smap.dev->bdev ||
 | |
| 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
 | |
| 		ret = -EIO;
 | |
| 		goto out_counter_dec;
 | |
| 	}
 | |
| 
 | |
| 	bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
 | |
| 	bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
 | |
| 	ret = bio_add_folio(&bio, folio, length, folio_offset);
 | |
| 	ASSERT(ret);
 | |
| 	ret = submit_bio_wait(&bio);
 | |
| 	if (ret) {
 | |
| 		/* try to remap that extent elsewhere? */
 | |
| 		btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
 | |
| 		goto out_bio_uninit;
 | |
| 	}
 | |
| 
 | |
| 	btrfs_info_rl_in_rcu(fs_info,
 | |
| 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
 | |
| 			     ino, start, btrfs_dev_name(smap.dev),
 | |
| 			     smap.physical >> SECTOR_SHIFT);
 | |
| 	ret = 0;
 | |
| 
 | |
| out_bio_uninit:
 | |
| 	bio_uninit(&bio);
 | |
| out_counter_dec:
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit a btrfs_bio based repair write.
 | |
|  *
 | |
|  * If @dev_replace is true, the write would be submitted to dev-replace target.
 | |
|  */
 | |
| void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
 | |
| {
 | |
| 	struct btrfs_fs_info *fs_info = bbio->fs_info;
 | |
| 	u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
 | |
| 	u64 length = bbio->bio.bi_iter.bi_size;
 | |
| 	struct btrfs_io_stripe smap = { 0 };
 | |
| 	int ret;
 | |
| 
 | |
| 	ASSERT(fs_info);
 | |
| 	ASSERT(mirror_num > 0);
 | |
| 	ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
 | |
| 	ASSERT(!bbio->inode);
 | |
| 
 | |
| 	btrfs_bio_counter_inc_blocked(fs_info);
 | |
| 	ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
 | |
| 	if (ret < 0)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (dev_replace) {
 | |
| 		ASSERT(smap.dev == fs_info->dev_replace.srcdev);
 | |
| 		smap.dev = fs_info->dev_replace.tgtdev;
 | |
| 	}
 | |
| 	btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
 | |
| 	return;
 | |
| 
 | |
| fail:
 | |
| 	btrfs_bio_counter_dec(fs_info);
 | |
| 	btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 | |
| }
 | |
| 
 | |
| int __init btrfs_bioset_init(void)
 | |
| {
 | |
| 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 | |
| 			offsetof(struct btrfs_bio, bio),
 | |
| 			BIOSET_NEED_BVECS))
 | |
| 		return -ENOMEM;
 | |
| 	if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
 | |
| 			offsetof(struct btrfs_bio, bio), 0))
 | |
| 		goto out_free_bioset;
 | |
| 	if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
 | |
| 			offsetof(struct btrfs_bio, bio),
 | |
| 			BIOSET_NEED_BVECS))
 | |
| 		goto out_free_clone_bioset;
 | |
| 	if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
 | |
| 				      sizeof(struct btrfs_failed_bio)))
 | |
| 		goto out_free_repair_bioset;
 | |
| 	return 0;
 | |
| 
 | |
| out_free_repair_bioset:
 | |
| 	bioset_exit(&btrfs_repair_bioset);
 | |
| out_free_clone_bioset:
 | |
| 	bioset_exit(&btrfs_clone_bioset);
 | |
| out_free_bioset:
 | |
| 	bioset_exit(&btrfs_bioset);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void __cold btrfs_bioset_exit(void)
 | |
| {
 | |
| 	mempool_exit(&btrfs_failed_bio_pool);
 | |
| 	bioset_exit(&btrfs_repair_bioset);
 | |
| 	bioset_exit(&btrfs_clone_bioset);
 | |
| 	bioset_exit(&btrfs_bioset);
 | |
| }
 |