306 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			306 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include "eytzinger.h"
 | |
| 
 | |
| /**
 | |
|  * is_aligned - is this pointer & size okay for word-wide copying?
 | |
|  * @base: pointer to data
 | |
|  * @size: size of each element
 | |
|  * @align: required alignment (typically 4 or 8)
 | |
|  *
 | |
|  * Returns true if elements can be copied using word loads and stores.
 | |
|  * The size must be a multiple of the alignment, and the base address must
 | |
|  * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
 | |
|  *
 | |
|  * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
 | |
|  * to "if ((a | b) & mask)", so we do that by hand.
 | |
|  */
 | |
| __attribute_const__ __always_inline
 | |
| static bool is_aligned(const void *base, size_t size, unsigned char align)
 | |
| {
 | |
| 	unsigned char lsbits = (unsigned char)size;
 | |
| 
 | |
| 	(void)base;
 | |
| #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 | |
| 	lsbits |= (unsigned char)(uintptr_t)base;
 | |
| #endif
 | |
| 	return (lsbits & (align - 1)) == 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_words_32 - swap two elements in 32-bit chunks
 | |
|  * @a: pointer to the first element to swap
 | |
|  * @b: pointer to the second element to swap
 | |
|  * @n: element size (must be a multiple of 4)
 | |
|  *
 | |
|  * Exchange the two objects in memory.  This exploits base+index addressing,
 | |
|  * which basically all CPUs have, to minimize loop overhead computations.
 | |
|  *
 | |
|  * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
 | |
|  * bottom of the loop, even though the zero flag is still valid from the
 | |
|  * subtract (since the intervening mov instructions don't alter the flags).
 | |
|  * Gcc 8.1.0 doesn't have that problem.
 | |
|  */
 | |
| static void swap_words_32(void *a, void *b, size_t n)
 | |
| {
 | |
| 	do {
 | |
| 		u32 t = *(u32 *)(a + (n -= 4));
 | |
| 		*(u32 *)(a + n) = *(u32 *)(b + n);
 | |
| 		*(u32 *)(b + n) = t;
 | |
| 	} while (n);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_words_64 - swap two elements in 64-bit chunks
 | |
|  * @a: pointer to the first element to swap
 | |
|  * @b: pointer to the second element to swap
 | |
|  * @n: element size (must be a multiple of 8)
 | |
|  *
 | |
|  * Exchange the two objects in memory.  This exploits base+index
 | |
|  * addressing, which basically all CPUs have, to minimize loop overhead
 | |
|  * computations.
 | |
|  *
 | |
|  * We'd like to use 64-bit loads if possible.  If they're not, emulating
 | |
|  * one requires base+index+4 addressing which x86 has but most other
 | |
|  * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
 | |
|  * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
 | |
|  * x32 ABI).  Are there any cases the kernel needs to worry about?
 | |
|  */
 | |
| static void swap_words_64(void *a, void *b, size_t n)
 | |
| {
 | |
| 	do {
 | |
| #ifdef CONFIG_64BIT
 | |
| 		u64 t = *(u64 *)(a + (n -= 8));
 | |
| 		*(u64 *)(a + n) = *(u64 *)(b + n);
 | |
| 		*(u64 *)(b + n) = t;
 | |
| #else
 | |
| 		/* Use two 32-bit transfers to avoid base+index+4 addressing */
 | |
| 		u32 t = *(u32 *)(a + (n -= 4));
 | |
| 		*(u32 *)(a + n) = *(u32 *)(b + n);
 | |
| 		*(u32 *)(b + n) = t;
 | |
| 
 | |
| 		t = *(u32 *)(a + (n -= 4));
 | |
| 		*(u32 *)(a + n) = *(u32 *)(b + n);
 | |
| 		*(u32 *)(b + n) = t;
 | |
| #endif
 | |
| 	} while (n);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * swap_bytes - swap two elements a byte at a time
 | |
|  * @a: pointer to the first element to swap
 | |
|  * @b: pointer to the second element to swap
 | |
|  * @n: element size
 | |
|  *
 | |
|  * This is the fallback if alignment doesn't allow using larger chunks.
 | |
|  */
 | |
| static void swap_bytes(void *a, void *b, size_t n)
 | |
| {
 | |
| 	do {
 | |
| 		char t = ((char *)a)[--n];
 | |
| 		((char *)a)[n] = ((char *)b)[n];
 | |
| 		((char *)b)[n] = t;
 | |
| 	} while (n);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The values are arbitrary as long as they can't be confused with
 | |
|  * a pointer, but small integers make for the smallest compare
 | |
|  * instructions.
 | |
|  */
 | |
| #define SWAP_WORDS_64 (swap_r_func_t)0
 | |
| #define SWAP_WORDS_32 (swap_r_func_t)1
 | |
| #define SWAP_BYTES    (swap_r_func_t)2
 | |
| #define SWAP_WRAPPER  (swap_r_func_t)3
 | |
| 
 | |
| struct wrapper {
 | |
| 	cmp_func_t cmp;
 | |
| 	swap_func_t swap_func;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The function pointer is last to make tail calls most efficient if the
 | |
|  * compiler decides not to inline this function.
 | |
|  */
 | |
| static void do_swap(void *a, void *b, size_t size, swap_r_func_t swap_func, const void *priv)
 | |
| {
 | |
| 	if (swap_func == SWAP_WRAPPER) {
 | |
| 		((const struct wrapper *)priv)->swap_func(a, b, (int)size);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (swap_func == SWAP_WORDS_64)
 | |
| 		swap_words_64(a, b, size);
 | |
| 	else if (swap_func == SWAP_WORDS_32)
 | |
| 		swap_words_32(a, b, size);
 | |
| 	else if (swap_func == SWAP_BYTES)
 | |
| 		swap_bytes(a, b, size);
 | |
| 	else
 | |
| 		swap_func(a, b, (int)size, priv);
 | |
| }
 | |
| 
 | |
| #define _CMP_WRAPPER ((cmp_r_func_t)0L)
 | |
| 
 | |
| static int do_cmp(const void *a, const void *b, cmp_r_func_t cmp, const void *priv)
 | |
| {
 | |
| 	if (cmp == _CMP_WRAPPER)
 | |
| 		return ((const struct wrapper *)priv)->cmp(a, b);
 | |
| 	return cmp(a, b, priv);
 | |
| }
 | |
| 
 | |
| static inline int eytzinger0_do_cmp(void *base, size_t n, size_t size,
 | |
| 			 cmp_r_func_t cmp_func, const void *priv,
 | |
| 			 size_t l, size_t r)
 | |
| {
 | |
| 	return do_cmp(base + inorder_to_eytzinger0(l, n) * size,
 | |
| 		      base + inorder_to_eytzinger0(r, n) * size,
 | |
| 		      cmp_func, priv);
 | |
| }
 | |
| 
 | |
| static inline void eytzinger0_do_swap(void *base, size_t n, size_t size,
 | |
| 			   swap_r_func_t swap_func, const void *priv,
 | |
| 			   size_t l, size_t r)
 | |
| {
 | |
| 	do_swap(base + inorder_to_eytzinger0(l, n) * size,
 | |
| 		base + inorder_to_eytzinger0(r, n) * size,
 | |
| 		size, swap_func, priv);
 | |
| }
 | |
| 
 | |
| void eytzinger0_sort_r(void *base, size_t n, size_t size,
 | |
| 		       cmp_r_func_t cmp_func,
 | |
| 		       swap_r_func_t swap_func,
 | |
| 		       const void *priv)
 | |
| {
 | |
| 	int i, j, k;
 | |
| 
 | |
| 	/* called from 'sort' without swap function, let's pick the default */
 | |
| 	if (swap_func == SWAP_WRAPPER && !((struct wrapper *)priv)->swap_func)
 | |
| 		swap_func = NULL;
 | |
| 
 | |
| 	if (!swap_func) {
 | |
| 		if (is_aligned(base, size, 8))
 | |
| 			swap_func = SWAP_WORDS_64;
 | |
| 		else if (is_aligned(base, size, 4))
 | |
| 			swap_func = SWAP_WORDS_32;
 | |
| 		else
 | |
| 			swap_func = SWAP_BYTES;
 | |
| 	}
 | |
| 
 | |
| 	/* heapify */
 | |
| 	for (i = n / 2 - 1; i >= 0; --i) {
 | |
| 		/* Find the sift-down path all the way to the leaves. */
 | |
| 		for (j = i; k = j * 2 + 1, k + 1 < n;)
 | |
| 			j = eytzinger0_do_cmp(base, n, size, cmp_func, priv, k, k + 1) > 0 ? k : k + 1;
 | |
| 
 | |
| 		/* Special case for the last leaf with no sibling. */
 | |
| 		if (j * 2 + 2 == n)
 | |
| 			j = j * 2 + 1;
 | |
| 
 | |
| 		/* Backtrack to the correct location. */
 | |
| 		while (j != i && eytzinger0_do_cmp(base, n, size, cmp_func, priv, i, j) >= 0)
 | |
| 			j = (j - 1) / 2;
 | |
| 
 | |
| 		/* Shift the element into its correct place. */
 | |
| 		for (k = j; j != i;) {
 | |
| 			j = (j - 1) / 2;
 | |
| 			eytzinger0_do_swap(base, n, size, swap_func, priv, j, k);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* sort */
 | |
| 	for (i = n - 1; i > 0; --i) {
 | |
| 		eytzinger0_do_swap(base, n, size, swap_func, priv, 0, i);
 | |
| 
 | |
| 		/* Find the sift-down path all the way to the leaves. */
 | |
| 		for (j = 0; k = j * 2 + 1, k + 1 < i;)
 | |
| 			j = eytzinger0_do_cmp(base, n, size, cmp_func, priv, k, k + 1) > 0 ? k : k + 1;
 | |
| 
 | |
| 		/* Special case for the last leaf with no sibling. */
 | |
| 		if (j * 2 + 2 == i)
 | |
| 			j = j * 2 + 1;
 | |
| 
 | |
| 		/* Backtrack to the correct location. */
 | |
| 		while (j && eytzinger0_do_cmp(base, n, size, cmp_func, priv, 0, j) >= 0)
 | |
| 			j = (j - 1) / 2;
 | |
| 
 | |
| 		/* Shift the element into its correct place. */
 | |
| 		for (k = j; j;) {
 | |
| 			j = (j - 1) / 2;
 | |
| 			eytzinger0_do_swap(base, n, size, swap_func, priv, j, k);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void eytzinger0_sort(void *base, size_t n, size_t size,
 | |
| 		     cmp_func_t cmp_func,
 | |
| 		     swap_func_t swap_func)
 | |
| {
 | |
| 	struct wrapper w = {
 | |
| 		.cmp  = cmp_func,
 | |
| 		.swap_func = swap_func,
 | |
| 	};
 | |
| 
 | |
| 	return eytzinger0_sort_r(base, n, size, _CMP_WRAPPER, SWAP_WRAPPER, &w);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| #include <linux/slab.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/ktime.h>
 | |
| 
 | |
| static u64 cmp_count;
 | |
| 
 | |
| static int mycmp(const void *a, const void *b)
 | |
| {
 | |
| 	u32 _a = *(u32 *)a;
 | |
| 	u32 _b = *(u32 *)b;
 | |
| 
 | |
| 	cmp_count++;
 | |
| 	if (_a < _b)
 | |
| 		return -1;
 | |
| 	else if (_a > _b)
 | |
| 		return 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static int test(void)
 | |
| {
 | |
| 	size_t N, i;
 | |
| 	ktime_t start, end;
 | |
| 	s64 delta;
 | |
| 	u32 *arr;
 | |
| 
 | |
| 	for (N = 10000; N <= 100000; N += 10000) {
 | |
| 		arr = kmalloc_array(N, sizeof(u32), GFP_KERNEL);
 | |
| 		cmp_count = 0;
 | |
| 
 | |
| 		for (i = 0; i < N; i++)
 | |
| 			arr[i] = get_random_u32();
 | |
| 
 | |
| 		start = ktime_get();
 | |
| 		eytzinger0_sort(arr, N, sizeof(u32), mycmp, NULL);
 | |
| 		end = ktime_get();
 | |
| 
 | |
| 		delta = ktime_us_delta(end, start);
 | |
| 		printk(KERN_INFO "time: %lld\n", delta);
 | |
| 		printk(KERN_INFO "comparisons: %lld\n", cmp_count);
 | |
| 
 | |
| 		u32 prev = 0;
 | |
| 
 | |
| 		eytzinger0_for_each(i, N) {
 | |
| 			if (prev > arr[i])
 | |
| 				goto err;
 | |
| 			prev = arr[i];
 | |
| 		}
 | |
| 
 | |
| 		kfree(arr);
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	kfree(arr);
 | |
| 	return -1;
 | |
| }
 | |
| #endif
 |