814 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			814 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include "bcachefs.h"
 | |
| #include "btree_cache.h"
 | |
| #include "btree_iter.h"
 | |
| #include "btree_key_cache.h"
 | |
| #include "btree_locking.h"
 | |
| #include "btree_update.h"
 | |
| #include "errcode.h"
 | |
| #include "error.h"
 | |
| #include "journal.h"
 | |
| #include "journal_reclaim.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| #include <linux/sched/mm.h>
 | |
| 
 | |
| static inline bool btree_uses_pcpu_readers(enum btree_id id)
 | |
| {
 | |
| 	return id == BTREE_ID_subvolumes;
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *bch2_key_cache;
 | |
| 
 | |
| static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
 | |
| 				       const void *obj)
 | |
| {
 | |
| 	const struct bkey_cached *ck = obj;
 | |
| 	const struct bkey_cached_key *key = arg->key;
 | |
| 
 | |
| 	return ck->key.btree_id != key->btree_id ||
 | |
| 		!bpos_eq(ck->key.pos, key->pos);
 | |
| }
 | |
| 
 | |
| static const struct rhashtable_params bch2_btree_key_cache_params = {
 | |
| 	.head_offset		= offsetof(struct bkey_cached, hash),
 | |
| 	.key_offset		= offsetof(struct bkey_cached, key),
 | |
| 	.key_len		= sizeof(struct bkey_cached_key),
 | |
| 	.obj_cmpfn		= bch2_btree_key_cache_cmp_fn,
 | |
| 	.automatic_shrinking	= true,
 | |
| };
 | |
| 
 | |
| static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
 | |
| 					 struct bkey_cached *ck,
 | |
| 					 enum btree_node_locked_type lock_held)
 | |
| {
 | |
| 	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
 | |
| 	path->l[0].b		= (void *) ck;
 | |
| 	mark_btree_node_locked(trans, path, 0, lock_held);
 | |
| }
 | |
| 
 | |
| __flatten
 | |
| inline struct bkey_cached *
 | |
| bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
 | |
| {
 | |
| 	struct bkey_cached_key key = {
 | |
| 		.btree_id	= btree_id,
 | |
| 		.pos		= pos,
 | |
| 	};
 | |
| 
 | |
| 	return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
 | |
| 				      bch2_btree_key_cache_params);
 | |
| }
 | |
| 
 | |
| static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
 | |
| {
 | |
| 	if (!six_trylock_intent(&ck->c.lock))
 | |
| 		return false;
 | |
| 
 | |
| 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 | |
| 		six_unlock_intent(&ck->c.lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (!six_trylock_write(&ck->c.lock)) {
 | |
| 		six_unlock_intent(&ck->c.lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool bkey_cached_evict(struct btree_key_cache *c,
 | |
| 			      struct bkey_cached *ck)
 | |
| {
 | |
| 	bool ret = !rhashtable_remove_fast(&c->table, &ck->hash,
 | |
| 				      bch2_btree_key_cache_params);
 | |
| 	if (ret) {
 | |
| 		memset(&ck->key, ~0, sizeof(ck->key));
 | |
| 		atomic_long_dec(&c->nr_keys);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu)
 | |
| {
 | |
| 	struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier);
 | |
| 	struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu);
 | |
| 
 | |
| 	this_cpu_dec(*c->btree_key_cache.nr_pending);
 | |
| 	kmem_cache_free(bch2_key_cache, ck);
 | |
| }
 | |
| 
 | |
| static void bkey_cached_free(struct btree_key_cache *bc,
 | |
| 			     struct bkey_cached *ck)
 | |
| {
 | |
| 	kfree(ck->k);
 | |
| 	ck->k		= NULL;
 | |
| 	ck->u64s	= 0;
 | |
| 
 | |
| 	six_unlock_write(&ck->c.lock);
 | |
| 	six_unlock_intent(&ck->c.lock);
 | |
| 
 | |
| 	bool pcpu_readers = ck->c.lock.readers != NULL;
 | |
| 	rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu);
 | |
| 	this_cpu_inc(*bc->nr_pending);
 | |
| }
 | |
| 
 | |
| static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
 | |
| {
 | |
| 	gfp |= __GFP_ACCOUNT|__GFP_RECLAIMABLE;
 | |
| 
 | |
| 	struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
 | |
| 	if (unlikely(!ck))
 | |
| 		return NULL;
 | |
| 	ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
 | |
| 	if (unlikely(!ck->k)) {
 | |
| 		kmem_cache_free(bch2_key_cache, ck);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	ck->u64s = key_u64s;
 | |
| 	return ck;
 | |
| }
 | |
| 
 | |
| static struct bkey_cached *
 | |
| bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
 | |
| {
 | |
| 	struct bch_fs *c = trans->c;
 | |
| 	struct btree_key_cache *bc = &c->btree_key_cache;
 | |
| 	bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
 | |
| 	int ret;
 | |
| 
 | |
| 	struct bkey_cached *ck = container_of_or_null(
 | |
| 				rcu_pending_dequeue(&bc->pending[pcpu_readers]),
 | |
| 				struct bkey_cached, rcu);
 | |
| 	if (ck)
 | |
| 		goto lock;
 | |
| 
 | |
| 	ck = allocate_dropping_locks(trans, ret,
 | |
| 				     __bkey_cached_alloc(key_u64s, _gfp));
 | |
| 	if (ret) {
 | |
| 		if (ck)
 | |
| 			kfree(ck->k);
 | |
| 		kmem_cache_free(bch2_key_cache, ck);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	if (ck) {
 | |
| 		bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
 | |
| 		ck->c.cached = true;
 | |
| 		goto lock;
 | |
| 	}
 | |
| 
 | |
| 	ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]),
 | |
| 				  struct bkey_cached, rcu);
 | |
| 	if (ck)
 | |
| 		goto lock;
 | |
| lock:
 | |
| 	six_lock_intent(&ck->c.lock, NULL, NULL);
 | |
| 	six_lock_write(&ck->c.lock, NULL, NULL);
 | |
| 	return ck;
 | |
| }
 | |
| 
 | |
| static struct bkey_cached *
 | |
| bkey_cached_reuse(struct btree_key_cache *c)
 | |
| {
 | |
| 	struct bucket_table *tbl;
 | |
| 	struct rhash_head *pos;
 | |
| 	struct bkey_cached *ck;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	tbl = rht_dereference_rcu(c->table.tbl, &c->table);
 | |
| 	for (i = 0; i < tbl->size; i++)
 | |
| 		rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
 | |
| 			if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
 | |
| 			    bkey_cached_lock_for_evict(ck)) {
 | |
| 				if (bkey_cached_evict(c, ck))
 | |
| 					goto out;
 | |
| 				six_unlock_write(&ck->c.lock);
 | |
| 				six_unlock_intent(&ck->c.lock);
 | |
| 			}
 | |
| 		}
 | |
| 	ck = NULL;
 | |
| out:
 | |
| 	rcu_read_unlock();
 | |
| 	return ck;
 | |
| }
 | |
| 
 | |
| static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path,
 | |
| 				  struct bkey_s_c k)
 | |
| {
 | |
| 	struct bch_fs *c = trans->c;
 | |
| 	struct btree_key_cache *bc = &c->btree_key_cache;
 | |
| 
 | |
| 	/*
 | |
| 	 * bch2_varint_decode can read past the end of the buffer by at
 | |
| 	 * most 7 bytes (it won't be used):
 | |
| 	 */
 | |
| 	unsigned key_u64s = k.k->u64s + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate some extra space so that the transaction commit path is less
 | |
| 	 * likely to have to reallocate, since that requires a transaction
 | |
| 	 * restart:
 | |
| 	 */
 | |
| 	key_u64s = min(256U, (key_u64s * 3) / 2);
 | |
| 	key_u64s = roundup_pow_of_two(key_u64s);
 | |
| 
 | |
| 	struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s);
 | |
| 	int ret = PTR_ERR_OR_ZERO(ck);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (unlikely(!ck)) {
 | |
| 		ck = bkey_cached_reuse(bc);
 | |
| 		if (unlikely(!ck)) {
 | |
| 			bch_err(c, "error allocating memory for key cache item, btree %s",
 | |
| 				bch2_btree_id_str(path->btree_id));
 | |
| 			return -BCH_ERR_ENOMEM_btree_key_cache_create;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ck->c.level		= 0;
 | |
| 	ck->c.btree_id		= path->btree_id;
 | |
| 	ck->key.btree_id	= path->btree_id;
 | |
| 	ck->key.pos		= path->pos;
 | |
| 	ck->flags		= 1U << BKEY_CACHED_ACCESSED;
 | |
| 
 | |
| 	if (unlikely(key_u64s > ck->u64s)) {
 | |
| 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
 | |
| 
 | |
| 		struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
 | |
| 				kmalloc(key_u64s * sizeof(u64), _gfp));
 | |
| 		if (unlikely(!new_k)) {
 | |
| 			bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
 | |
| 				bch2_btree_id_str(ck->key.btree_id), key_u64s);
 | |
| 			ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
 | |
| 		} else if (ret) {
 | |
| 			kfree(new_k);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		kfree(ck->k);
 | |
| 		ck->k = new_k;
 | |
| 		ck->u64s = key_u64s;
 | |
| 	}
 | |
| 
 | |
| 	bkey_reassemble(ck->k, k);
 | |
| 
 | |
| 	ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
 | |
| 	if (unlikely(ret)) /* raced with another fill? */
 | |
| 		goto err;
 | |
| 
 | |
| 	atomic_long_inc(&bc->nr_keys);
 | |
| 	six_unlock_write(&ck->c.lock);
 | |
| 
 | |
| 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
 | |
| 	if (lock_want == SIX_LOCK_read)
 | |
| 		six_lock_downgrade(&ck->c.lock);
 | |
| 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
 | |
| 	path->uptodate = BTREE_ITER_UPTODATE;
 | |
| 	return 0;
 | |
| err:
 | |
| 	bkey_cached_free(bc, ck);
 | |
| 	mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static noinline int btree_key_cache_fill(struct btree_trans *trans,
 | |
| 					 struct btree_path *ck_path,
 | |
| 					 unsigned flags)
 | |
| {
 | |
| 	if (flags & BTREE_ITER_cached_nofill) {
 | |
| 		ck_path->uptodate = BTREE_ITER_UPTODATE;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	struct bch_fs *c = trans->c;
 | |
| 	struct btree_iter iter;
 | |
| 	struct bkey_s_c k;
 | |
| 	int ret;
 | |
| 
 | |
| 	bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
 | |
| 			     BTREE_ITER_key_cache_fill|
 | |
| 			     BTREE_ITER_cached_nofill);
 | |
| 	iter.flags &= ~BTREE_ITER_with_journal;
 | |
| 	k = bch2_btree_iter_peek_slot(&iter);
 | |
| 	ret = bkey_err(k);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* Recheck after btree lookup, before allocating: */
 | |
| 	ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
 | |
| 	if (unlikely(ret))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = btree_key_cache_create(trans, ck_path, k);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| out:
 | |
| 	/* We're not likely to need this iterator again: */
 | |
| 	bch2_set_btree_iter_dontneed(&iter);
 | |
| err:
 | |
| 	bch2_trans_iter_exit(trans, &iter);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
 | |
| 						  struct btree_path *path)
 | |
| {
 | |
| 	struct bch_fs *c = trans->c;
 | |
| 	struct bkey_cached *ck;
 | |
| retry:
 | |
| 	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
 | |
| 	if (!ck)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	enum six_lock_type lock_want = __btree_lock_want(path, 0);
 | |
| 
 | |
| 	int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ck->key.btree_id != path->btree_id ||
 | |
| 	    !bpos_eq(ck->key.pos, path->pos)) {
 | |
| 		six_unlock_type(&ck->c.lock, lock_want);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
 | |
| 		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);
 | |
| 
 | |
| 	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
 | |
| 	path->uptodate = BTREE_ITER_UPTODATE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
 | |
| 				    unsigned flags)
 | |
| {
 | |
| 	EBUG_ON(path->level);
 | |
| 
 | |
| 	path->l[1].b = NULL;
 | |
| 
 | |
| 	int ret;
 | |
| 	do {
 | |
| 		ret = btree_path_traverse_cached_fast(trans, path);
 | |
| 		if (unlikely(ret == -ENOENT))
 | |
| 			ret = btree_key_cache_fill(trans, path, flags);
 | |
| 	} while (ret == -EEXIST);
 | |
| 
 | |
| 	if (unlikely(ret)) {
 | |
| 		path->uptodate = BTREE_ITER_NEED_TRAVERSE;
 | |
| 		if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
 | |
| 			btree_node_unlock(trans, path, 0);
 | |
| 			path->l[0].b = ERR_PTR(ret);
 | |
| 		}
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int btree_key_cache_flush_pos(struct btree_trans *trans,
 | |
| 				     struct bkey_cached_key key,
 | |
| 				     u64 journal_seq,
 | |
| 				     unsigned commit_flags,
 | |
| 				     bool evict)
 | |
| {
 | |
| 	struct bch_fs *c = trans->c;
 | |
| 	struct journal *j = &c->journal;
 | |
| 	struct btree_iter c_iter, b_iter;
 | |
| 	struct bkey_cached *ck = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
 | |
| 			     BTREE_ITER_slots|
 | |
| 			     BTREE_ITER_intent|
 | |
| 			     BTREE_ITER_all_snapshots);
 | |
| 	bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
 | |
| 			     BTREE_ITER_cached|
 | |
| 			     BTREE_ITER_intent);
 | |
| 	b_iter.flags &= ~BTREE_ITER_with_key_cache;
 | |
| 
 | |
| 	ret = bch2_btree_iter_traverse(&c_iter);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
 | |
| 	if (!ck)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 | |
| 		if (evict)
 | |
| 			goto evict;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (journal_seq && ck->journal.seq != journal_seq)
 | |
| 		goto out;
 | |
| 
 | |
| 	trans->journal_res.seq = ck->journal.seq;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're at the end of the journal, we really want to free up space
 | |
| 	 * in the journal right away - we don't want to pin that old journal
 | |
| 	 * sequence number with a new btree node write, we want to re-journal
 | |
| 	 * the update
 | |
| 	 */
 | |
| 	if (ck->journal.seq == journal_last_seq(j))
 | |
| 		commit_flags |= BCH_WATERMARK_reclaim;
 | |
| 
 | |
| 	if (ck->journal.seq != journal_last_seq(j) ||
 | |
| 	    !test_bit(JOURNAL_space_low, &c->journal.flags))
 | |
| 		commit_flags |= BCH_TRANS_COMMIT_no_journal_res;
 | |
| 
 | |
| 	ret   = bch2_btree_iter_traverse(&b_iter) ?:
 | |
| 		bch2_trans_update(trans, &b_iter, ck->k,
 | |
| 				  BTREE_UPDATE_key_cache_reclaim|
 | |
| 				  BTREE_UPDATE_internal_snapshot_node|
 | |
| 				  BTREE_TRIGGER_norun) ?:
 | |
| 		bch2_trans_commit(trans, NULL, NULL,
 | |
| 				  BCH_TRANS_COMMIT_no_check_rw|
 | |
| 				  BCH_TRANS_COMMIT_no_enospc|
 | |
| 				  commit_flags);
 | |
| 
 | |
| 	bch2_fs_fatal_err_on(ret &&
 | |
| 			     !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
 | |
| 			     !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
 | |
| 			     !bch2_journal_error(j), c,
 | |
| 			     "flushing key cache: %s", bch2_err_str(ret));
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	bch2_journal_pin_drop(j, &ck->journal);
 | |
| 
 | |
| 	struct btree_path *path = btree_iter_path(trans, &c_iter);
 | |
| 	BUG_ON(!btree_node_locked(path, 0));
 | |
| 
 | |
| 	if (!evict) {
 | |
| 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 | |
| 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
 | |
| 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct btree_path *path2;
 | |
| 		unsigned i;
 | |
| evict:
 | |
| 		trans_for_each_path(trans, path2, i)
 | |
| 			if (path2 != path)
 | |
| 				__bch2_btree_path_unlock(trans, path2);
 | |
| 
 | |
| 		bch2_btree_node_lock_write_nofail(trans, path, &ck->c);
 | |
| 
 | |
| 		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 | |
| 			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
 | |
| 			atomic_long_dec(&c->btree_key_cache.nr_dirty);
 | |
| 		}
 | |
| 
 | |
| 		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
 | |
| 		if (bkey_cached_evict(&c->btree_key_cache, ck)) {
 | |
| 			bkey_cached_free(&c->btree_key_cache, ck);
 | |
| 		} else {
 | |
| 			six_unlock_write(&ck->c.lock);
 | |
| 			six_unlock_intent(&ck->c.lock);
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	bch2_trans_iter_exit(trans, &b_iter);
 | |
| 	bch2_trans_iter_exit(trans, &c_iter);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int bch2_btree_key_cache_journal_flush(struct journal *j,
 | |
| 				struct journal_entry_pin *pin, u64 seq)
 | |
| {
 | |
| 	struct bch_fs *c = container_of(j, struct bch_fs, journal);
 | |
| 	struct bkey_cached *ck =
 | |
| 		container_of(pin, struct bkey_cached, journal);
 | |
| 	struct bkey_cached_key key;
 | |
| 	struct btree_trans *trans = bch2_trans_get(c);
 | |
| 	int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
 | |
| 	key = ck->key;
 | |
| 
 | |
| 	if (ck->journal.seq != seq ||
 | |
| 	    !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 | |
| 		six_unlock_read(&ck->c.lock);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (ck->seq != seq) {
 | |
| 		bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
 | |
| 					bch2_btree_key_cache_journal_flush);
 | |
| 		six_unlock_read(&ck->c.lock);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	six_unlock_read(&ck->c.lock);
 | |
| 
 | |
| 	ret = lockrestart_do(trans,
 | |
| 		btree_key_cache_flush_pos(trans, key, seq,
 | |
| 				BCH_TRANS_COMMIT_journal_reclaim, false));
 | |
| unlock:
 | |
| 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
 | |
| 
 | |
| 	bch2_trans_put(trans);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| bool bch2_btree_insert_key_cached(struct btree_trans *trans,
 | |
| 				  unsigned flags,
 | |
| 				  struct btree_insert_entry *insert_entry)
 | |
| {
 | |
| 	struct bch_fs *c = trans->c;
 | |
| 	struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
 | |
| 	struct bkey_i *insert = insert_entry->k;
 | |
| 	bool kick_reclaim = false;
 | |
| 
 | |
| 	BUG_ON(insert->k.u64s > ck->u64s);
 | |
| 
 | |
| 	bkey_copy(ck->k, insert);
 | |
| 
 | |
| 	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 | |
| 		EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
 | |
| 		set_bit(BKEY_CACHED_DIRTY, &ck->flags);
 | |
| 		atomic_long_inc(&c->btree_key_cache.nr_dirty);
 | |
| 
 | |
| 		if (bch2_nr_btree_keys_need_flush(c))
 | |
| 			kick_reclaim = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * To minimize lock contention, we only add the journal pin here and
 | |
| 	 * defer pin updates to the flush callback via ->seq. Be careful not to
 | |
| 	 * update ->seq on nojournal commits because we don't want to update the
 | |
| 	 * pin to a seq that doesn't include journal updates on disk. Otherwise
 | |
| 	 * we risk losing the update after a crash.
 | |
| 	 *
 | |
| 	 * The only exception is if the pin is not active in the first place. We
 | |
| 	 * have to add the pin because journal reclaim drives key cache
 | |
| 	 * flushing. The flush callback will not proceed unless ->seq matches
 | |
| 	 * the latest pin, so make sure it starts with a consistent value.
 | |
| 	 */
 | |
| 	if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
 | |
| 	    !journal_pin_active(&ck->journal)) {
 | |
| 		ck->seq = trans->journal_res.seq;
 | |
| 	}
 | |
| 	bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
 | |
| 			     &ck->journal, bch2_btree_key_cache_journal_flush);
 | |
| 
 | |
| 	if (kick_reclaim)
 | |
| 		journal_reclaim_kick(&c->journal);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void bch2_btree_key_cache_drop(struct btree_trans *trans,
 | |
| 			       struct btree_path *path)
 | |
| {
 | |
| 	struct bch_fs *c = trans->c;
 | |
| 	struct btree_key_cache *bc = &c->btree_key_cache;
 | |
| 	struct bkey_cached *ck = (void *) path->l[0].b;
 | |
| 
 | |
| 	/*
 | |
| 	 * We just did an update to the btree, bypassing the key cache: the key
 | |
| 	 * cache key is now stale and must be dropped, even if dirty:
 | |
| 	 */
 | |
| 	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 | |
| 		clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
 | |
| 		atomic_long_dec(&c->btree_key_cache.nr_dirty);
 | |
| 		bch2_journal_pin_drop(&c->journal, &ck->journal);
 | |
| 	}
 | |
| 
 | |
| 	bkey_cached_evict(bc, ck);
 | |
| 	bkey_cached_free(bc, ck);
 | |
| 
 | |
| 	mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
 | |
| 	btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
 | |
| 	path->should_be_locked = false;
 | |
| }
 | |
| 
 | |
| static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
 | |
| 					   struct shrink_control *sc)
 | |
| {
 | |
| 	struct bch_fs *c = shrink->private_data;
 | |
| 	struct btree_key_cache *bc = &c->btree_key_cache;
 | |
| 	struct bucket_table *tbl;
 | |
| 	struct bkey_cached *ck;
 | |
| 	size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
 | |
| 	unsigned iter, start;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
 | |
| 
 | |
| 	/*
 | |
| 	 * Scanning is expensive while a rehash is in progress - most elements
 | |
| 	 * will be on the new hashtable, if it's in progress
 | |
| 	 *
 | |
| 	 * A rehash could still start while we're scanning - that's ok, we'll
 | |
| 	 * still see most elements.
 | |
| 	 */
 | |
| 	if (unlikely(tbl->nest)) {
 | |
| 		rcu_read_unlock();
 | |
| 		srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
 | |
| 		return SHRINK_STOP;
 | |
| 	}
 | |
| 
 | |
| 	iter = bc->shrink_iter;
 | |
| 	if (iter >= tbl->size)
 | |
| 		iter = 0;
 | |
| 	start = iter;
 | |
| 
 | |
| 	do {
 | |
| 		struct rhash_head *pos, *next;
 | |
| 
 | |
| 		pos = rht_ptr_rcu(&tbl->buckets[iter]);
 | |
| 
 | |
| 		while (!rht_is_a_nulls(pos)) {
 | |
| 			next = rht_dereference_bucket_rcu(pos->next, tbl, iter);
 | |
| 			ck = container_of(pos, struct bkey_cached, hash);
 | |
| 
 | |
| 			if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
 | |
| 				bc->skipped_dirty++;
 | |
| 			} else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
 | |
| 				clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
 | |
| 				bc->skipped_accessed++;
 | |
| 			} else if (!bkey_cached_lock_for_evict(ck)) {
 | |
| 				bc->skipped_lock_fail++;
 | |
| 			} else if (bkey_cached_evict(bc, ck)) {
 | |
| 				bkey_cached_free(bc, ck);
 | |
| 				bc->freed++;
 | |
| 				freed++;
 | |
| 			} else {
 | |
| 				six_unlock_write(&ck->c.lock);
 | |
| 				six_unlock_intent(&ck->c.lock);
 | |
| 			}
 | |
| 
 | |
| 			scanned++;
 | |
| 			if (scanned >= nr)
 | |
| 				goto out;
 | |
| 
 | |
| 			pos = next;
 | |
| 		}
 | |
| 
 | |
| 		iter++;
 | |
| 		if (iter >= tbl->size)
 | |
| 			iter = 0;
 | |
| 	} while (scanned < nr && iter != start);
 | |
| out:
 | |
| 	bc->shrink_iter = iter;
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
 | |
| 
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
 | |
| 					    struct shrink_control *sc)
 | |
| {
 | |
| 	struct bch_fs *c = shrink->private_data;
 | |
| 	struct btree_key_cache *bc = &c->btree_key_cache;
 | |
| 	long nr = atomic_long_read(&bc->nr_keys) -
 | |
| 		atomic_long_read(&bc->nr_dirty);
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid hammering our shrinker too much if it's nearly empty - the
 | |
| 	 * shrinker code doesn't take into account how big our cache is, if it's
 | |
| 	 * mostly empty but the system is under memory pressure it causes nasty
 | |
| 	 * lock contention:
 | |
| 	 */
 | |
| 	nr -= 128;
 | |
| 
 | |
| 	return max(0L, nr);
 | |
| }
 | |
| 
 | |
| void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
 | |
| {
 | |
| 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
 | |
| 	struct bucket_table *tbl;
 | |
| 	struct bkey_cached *ck;
 | |
| 	struct rhash_head *pos;
 | |
| 	LIST_HEAD(items);
 | |
| 	unsigned i;
 | |
| 
 | |
| 	shrinker_free(bc->shrink);
 | |
| 
 | |
| 	/*
 | |
| 	 * The loop is needed to guard against racing with rehash:
 | |
| 	 */
 | |
| 	while (atomic_long_read(&bc->nr_keys)) {
 | |
| 		rcu_read_lock();
 | |
| 		tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
 | |
| 		if (tbl) {
 | |
| 			if (tbl->nest) {
 | |
| 				/* wait for in progress rehash */
 | |
| 				rcu_read_unlock();
 | |
| 				mutex_lock(&bc->table.mutex);
 | |
| 				mutex_unlock(&bc->table.mutex);
 | |
| 				rcu_read_lock();
 | |
| 				continue;
 | |
| 			}
 | |
| 			for (i = 0; i < tbl->size; i++)
 | |
| 				while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
 | |
| 					ck = container_of(pos, struct bkey_cached, hash);
 | |
| 					BUG_ON(!bkey_cached_evict(bc, ck));
 | |
| 					kfree(ck->k);
 | |
| 					kmem_cache_free(bch2_key_cache, ck);
 | |
| 				}
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_long_read(&bc->nr_dirty) &&
 | |
| 	    !bch2_journal_error(&c->journal) &&
 | |
| 	    test_bit(BCH_FS_was_rw, &c->flags))
 | |
| 		panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
 | |
| 		      atomic_long_read(&bc->nr_dirty));
 | |
| 
 | |
| 	if (atomic_long_read(&bc->nr_keys))
 | |
| 		panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
 | |
| 		      atomic_long_read(&bc->nr_keys));
 | |
| 
 | |
| 	if (bc->table_init_done)
 | |
| 		rhashtable_destroy(&bc->table);
 | |
| 
 | |
| 	rcu_pending_exit(&bc->pending[0]);
 | |
| 	rcu_pending_exit(&bc->pending[1]);
 | |
| 
 | |
| 	free_percpu(bc->nr_pending);
 | |
| }
 | |
| 
 | |
| void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
 | |
| {
 | |
| }
 | |
| 
 | |
| int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
 | |
| {
 | |
| 	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
 | |
| 	struct shrinker *shrink;
 | |
| 
 | |
| 	bc->nr_pending = alloc_percpu(size_t);
 | |
| 	if (!bc->nr_pending)
 | |
| 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
 | |
| 
 | |
| 	if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) ||
 | |
| 	    rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free))
 | |
| 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
 | |
| 
 | |
| 	if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
 | |
| 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
 | |
| 
 | |
| 	bc->table_init_done = true;
 | |
| 
 | |
| 	shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
 | |
| 	if (!shrink)
 | |
| 		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
 | |
| 	bc->shrink = shrink;
 | |
| 	shrink->count_objects	= bch2_btree_key_cache_count;
 | |
| 	shrink->scan_objects	= bch2_btree_key_cache_scan;
 | |
| 	shrink->batch		= 1 << 14;
 | |
| 	shrink->seeks		= 0;
 | |
| 	shrink->private_data	= c;
 | |
| 	shrinker_register(shrink);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
 | |
| {
 | |
| 	printbuf_tabstop_push(out, 24);
 | |
| 	printbuf_tabstop_push(out, 12);
 | |
| 
 | |
| 	prt_printf(out, "keys:\t%lu\r\n",		atomic_long_read(&bc->nr_keys));
 | |
| 	prt_printf(out, "dirty:\t%lu\r\n",		atomic_long_read(&bc->nr_dirty));
 | |
| 	prt_printf(out, "table size:\t%u\r\n",		bc->table.tbl->size);
 | |
| 	prt_newline(out);
 | |
| 	prt_printf(out, "shrinker:\n");
 | |
| 	prt_printf(out, "requested_to_free:\t%lu\r\n",	bc->requested_to_free);
 | |
| 	prt_printf(out, "freed:\t%lu\r\n",		bc->freed);
 | |
| 	prt_printf(out, "skipped_dirty:\t%lu\r\n",	bc->skipped_dirty);
 | |
| 	prt_printf(out, "skipped_accessed:\t%lu\r\n",	bc->skipped_accessed);
 | |
| 	prt_printf(out, "skipped_lock_fail:\t%lu\r\n",	bc->skipped_lock_fail);
 | |
| 	prt_newline(out);
 | |
| 	prt_printf(out, "pending:\t%zu\r\n",		per_cpu_sum(bc->nr_pending));
 | |
| }
 | |
| 
 | |
| void bch2_btree_key_cache_exit(void)
 | |
| {
 | |
| 	kmem_cache_destroy(bch2_key_cache);
 | |
| }
 | |
| 
 | |
| int __init bch2_btree_key_cache_init(void)
 | |
| {
 | |
| 	bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
 | |
| 	if (!bch2_key_cache)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |