430 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			430 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /* LRW: as defined by Cyril Guyot in
 | |
|  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
 | |
|  *
 | |
|  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
 | |
|  *
 | |
|  * Based on ecb.c
 | |
|  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 | |
|  */
 | |
| /* This implementation is checked against the test vectors in the above
 | |
|  * document and by a test vector provided by Ken Buchanan at
 | |
|  * https://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 | |
|  *
 | |
|  * The test vectors are included in the testing module tcrypt.[ch] */
 | |
| 
 | |
| #include <crypto/internal/skcipher.h>
 | |
| #include <crypto/scatterwalk.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <crypto/b128ops.h>
 | |
| #include <crypto/gf128mul.h>
 | |
| 
 | |
| #define LRW_BLOCK_SIZE 16
 | |
| 
 | |
| struct lrw_tfm_ctx {
 | |
| 	struct crypto_skcipher *child;
 | |
| 
 | |
| 	/*
 | |
| 	 * optimizes multiplying a random (non incrementing, as at the
 | |
| 	 * start of a new sector) value with key2, we could also have
 | |
| 	 * used 4k optimization tables or no optimization at all. In the
 | |
| 	 * latter case we would have to store key2 here
 | |
| 	 */
 | |
| 	struct gf128mul_64k *table;
 | |
| 
 | |
| 	/*
 | |
| 	 * stores:
 | |
| 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
 | |
| 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
 | |
| 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
 | |
| 	 * needed for optimized multiplication of incrementing values
 | |
| 	 * with key2
 | |
| 	 */
 | |
| 	be128 mulinc[128];
 | |
| };
 | |
| 
 | |
| struct lrw_request_ctx {
 | |
| 	be128 t;
 | |
| 	struct skcipher_request subreq;
 | |
| };
 | |
| 
 | |
| static inline void lrw_setbit128_bbe(void *b, int bit)
 | |
| {
 | |
| 	__set_bit(bit ^ (0x80 -
 | |
| #ifdef __BIG_ENDIAN
 | |
| 			 BITS_PER_LONG
 | |
| #else
 | |
| 			 BITS_PER_BYTE
 | |
| #endif
 | |
| 			), b);
 | |
| }
 | |
| 
 | |
| static int lrw_setkey(struct crypto_skcipher *parent, const u8 *key,
 | |
| 		      unsigned int keylen)
 | |
| {
 | |
| 	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
 | |
| 	struct crypto_skcipher *child = ctx->child;
 | |
| 	int err, bsize = LRW_BLOCK_SIZE;
 | |
| 	const u8 *tweak = key + keylen - bsize;
 | |
| 	be128 tmp = { 0 };
 | |
| 	int i;
 | |
| 
 | |
| 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 | |
| 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
 | |
| 					 CRYPTO_TFM_REQ_MASK);
 | |
| 	err = crypto_skcipher_setkey(child, key, keylen - bsize);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (ctx->table)
 | |
| 		gf128mul_free_64k(ctx->table);
 | |
| 
 | |
| 	/* initialize multiplication table for Key2 */
 | |
| 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
 | |
| 	if (!ctx->table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* initialize optimization table */
 | |
| 	for (i = 0; i < 128; i++) {
 | |
| 		lrw_setbit128_bbe(&tmp, i);
 | |
| 		ctx->mulinc[i] = tmp;
 | |
| 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the number of trailing '1' bits in the words of the counter, which is
 | |
|  * represented by 4 32-bit words, arranged from least to most significant.
 | |
|  * At the same time, increments the counter by one.
 | |
|  *
 | |
|  * For example:
 | |
|  *
 | |
|  * u32 counter[4] = { 0xFFFFFFFF, 0x1, 0x0, 0x0 };
 | |
|  * int i = lrw_next_index(&counter);
 | |
|  * // i == 33, counter == { 0x0, 0x2, 0x0, 0x0 }
 | |
|  */
 | |
| static int lrw_next_index(u32 *counter)
 | |
| {
 | |
| 	int i, res = 0;
 | |
| 
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		if (counter[i] + 1 != 0)
 | |
| 			return res + ffz(counter[i]++);
 | |
| 
 | |
| 		counter[i] = 0;
 | |
| 		res += 32;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we get here, then x == 128 and we are incrementing the counter
 | |
| 	 * from all ones to all zeros. This means we must return index 127, i.e.
 | |
| 	 * the one corresponding to key2*{ 1,...,1 }.
 | |
| 	 */
 | |
| 	return 127;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We compute the tweak masks twice (both before and after the ECB encryption or
 | |
|  * decryption) to avoid having to allocate a temporary buffer and/or make
 | |
|  * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
 | |
|  * just doing the lrw_next_index() calls again.
 | |
|  */
 | |
| static int lrw_xor_tweak(struct skcipher_request *req, bool second_pass)
 | |
| {
 | |
| 	const int bs = LRW_BLOCK_SIZE;
 | |
| 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 | |
| 	const struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | |
| 	be128 t = rctx->t;
 | |
| 	struct skcipher_walk w;
 | |
| 	__be32 *iv;
 | |
| 	u32 counter[4];
 | |
| 	int err;
 | |
| 
 | |
| 	if (second_pass) {
 | |
| 		req = &rctx->subreq;
 | |
| 		/* set to our TFM to enforce correct alignment: */
 | |
| 		skcipher_request_set_tfm(req, tfm);
 | |
| 	}
 | |
| 
 | |
| 	err = skcipher_walk_virt(&w, req, false);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	iv = (__be32 *)w.iv;
 | |
| 	counter[0] = be32_to_cpu(iv[3]);
 | |
| 	counter[1] = be32_to_cpu(iv[2]);
 | |
| 	counter[2] = be32_to_cpu(iv[1]);
 | |
| 	counter[3] = be32_to_cpu(iv[0]);
 | |
| 
 | |
| 	while (w.nbytes) {
 | |
| 		unsigned int avail = w.nbytes;
 | |
| 		be128 *wsrc;
 | |
| 		be128 *wdst;
 | |
| 
 | |
| 		wsrc = w.src.virt.addr;
 | |
| 		wdst = w.dst.virt.addr;
 | |
| 
 | |
| 		do {
 | |
| 			be128_xor(wdst++, &t, wsrc++);
 | |
| 
 | |
| 			/* T <- I*Key2, using the optimization
 | |
| 			 * discussed in the specification */
 | |
| 			be128_xor(&t, &t,
 | |
| 				  &ctx->mulinc[lrw_next_index(counter)]);
 | |
| 		} while ((avail -= bs) >= bs);
 | |
| 
 | |
| 		if (second_pass && w.nbytes == w.total) {
 | |
| 			iv[0] = cpu_to_be32(counter[3]);
 | |
| 			iv[1] = cpu_to_be32(counter[2]);
 | |
| 			iv[2] = cpu_to_be32(counter[1]);
 | |
| 			iv[3] = cpu_to_be32(counter[0]);
 | |
| 		}
 | |
| 
 | |
| 		err = skcipher_walk_done(&w, avail);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int lrw_xor_tweak_pre(struct skcipher_request *req)
 | |
| {
 | |
| 	return lrw_xor_tweak(req, false);
 | |
| }
 | |
| 
 | |
| static int lrw_xor_tweak_post(struct skcipher_request *req)
 | |
| {
 | |
| 	return lrw_xor_tweak(req, true);
 | |
| }
 | |
| 
 | |
| static void lrw_crypt_done(void *data, int err)
 | |
| {
 | |
| 	struct skcipher_request *req = data;
 | |
| 
 | |
| 	if (!err) {
 | |
| 		struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | |
| 
 | |
| 		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
 | |
| 		err = lrw_xor_tweak_post(req);
 | |
| 	}
 | |
| 
 | |
| 	skcipher_request_complete(req, err);
 | |
| }
 | |
| 
 | |
| static void lrw_init_crypt(struct skcipher_request *req)
 | |
| {
 | |
| 	const struct lrw_tfm_ctx *ctx =
 | |
| 		crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
 | |
| 	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | |
| 	struct skcipher_request *subreq = &rctx->subreq;
 | |
| 
 | |
| 	skcipher_request_set_tfm(subreq, ctx->child);
 | |
| 	skcipher_request_set_callback(subreq, req->base.flags, lrw_crypt_done,
 | |
| 				      req);
 | |
| 	/* pass req->iv as IV (will be used by xor_tweak, ECB will ignore it) */
 | |
| 	skcipher_request_set_crypt(subreq, req->dst, req->dst,
 | |
| 				   req->cryptlen, req->iv);
 | |
| 
 | |
| 	/* calculate first value of T */
 | |
| 	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
 | |
| 
 | |
| 	/* T <- I*Key2 */
 | |
| 	gf128mul_64k_bbe(&rctx->t, ctx->table);
 | |
| }
 | |
| 
 | |
| static int lrw_encrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | |
| 	struct skcipher_request *subreq = &rctx->subreq;
 | |
| 
 | |
| 	lrw_init_crypt(req);
 | |
| 	return lrw_xor_tweak_pre(req) ?:
 | |
| 		crypto_skcipher_encrypt(subreq) ?:
 | |
| 		lrw_xor_tweak_post(req);
 | |
| }
 | |
| 
 | |
| static int lrw_decrypt(struct skcipher_request *req)
 | |
| {
 | |
| 	struct lrw_request_ctx *rctx = skcipher_request_ctx(req);
 | |
| 	struct skcipher_request *subreq = &rctx->subreq;
 | |
| 
 | |
| 	lrw_init_crypt(req);
 | |
| 	return lrw_xor_tweak_pre(req) ?:
 | |
| 		crypto_skcipher_decrypt(subreq) ?:
 | |
| 		lrw_xor_tweak_post(req);
 | |
| }
 | |
| 
 | |
| static int lrw_init_tfm(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
 | |
| 	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
 | |
| 	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 	struct crypto_skcipher *cipher;
 | |
| 
 | |
| 	cipher = crypto_spawn_skcipher(spawn);
 | |
| 	if (IS_ERR(cipher))
 | |
| 		return PTR_ERR(cipher);
 | |
| 
 | |
| 	ctx->child = cipher;
 | |
| 
 | |
| 	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
 | |
| 					 sizeof(struct lrw_request_ctx));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void lrw_exit_tfm(struct crypto_skcipher *tfm)
 | |
| {
 | |
| 	struct lrw_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
 | |
| 
 | |
| 	if (ctx->table)
 | |
| 		gf128mul_free_64k(ctx->table);
 | |
| 	crypto_free_skcipher(ctx->child);
 | |
| }
 | |
| 
 | |
| static void lrw_free_instance(struct skcipher_instance *inst)
 | |
| {
 | |
| 	crypto_drop_skcipher(skcipher_instance_ctx(inst));
 | |
| 	kfree(inst);
 | |
| }
 | |
| 
 | |
| static int lrw_create(struct crypto_template *tmpl, struct rtattr **tb)
 | |
| {
 | |
| 	struct crypto_skcipher_spawn *spawn;
 | |
| 	struct skcipher_alg_common *alg;
 | |
| 	struct skcipher_instance *inst;
 | |
| 	const char *cipher_name;
 | |
| 	char ecb_name[CRYPTO_MAX_ALG_NAME];
 | |
| 	u32 mask;
 | |
| 	int err;
 | |
| 
 | |
| 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	cipher_name = crypto_attr_alg_name(tb[1]);
 | |
| 	if (IS_ERR(cipher_name))
 | |
| 		return PTR_ERR(cipher_name);
 | |
| 
 | |
| 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
 | |
| 	if (!inst)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spawn = skcipher_instance_ctx(inst);
 | |
| 
 | |
| 	err = crypto_grab_skcipher(spawn, skcipher_crypto_instance(inst),
 | |
| 				   cipher_name, 0, mask);
 | |
| 	if (err == -ENOENT) {
 | |
| 		err = -ENAMETOOLONG;
 | |
| 		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
 | |
| 			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
 | |
| 			goto err_free_inst;
 | |
| 
 | |
| 		err = crypto_grab_skcipher(spawn,
 | |
| 					   skcipher_crypto_instance(inst),
 | |
| 					   ecb_name, 0, mask);
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	alg = crypto_spawn_skcipher_alg_common(spawn);
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	if (alg->ivsize)
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
 | |
| 				  &alg->base);
 | |
| 	if (err)
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	err = -EINVAL;
 | |
| 	cipher_name = alg->base.cra_name;
 | |
| 
 | |
| 	/* Alas we screwed up the naming so we have to mangle the
 | |
| 	 * cipher name.
 | |
| 	 */
 | |
| 	if (!strncmp(cipher_name, "ecb(", 4)) {
 | |
| 		int len;
 | |
| 
 | |
| 		len = strscpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
 | |
| 		if (len < 2)
 | |
| 			goto err_free_inst;
 | |
| 
 | |
| 		if (ecb_name[len - 1] != ')')
 | |
| 			goto err_free_inst;
 | |
| 
 | |
| 		ecb_name[len - 1] = 0;
 | |
| 
 | |
| 		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
 | |
| 			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
 | |
| 			err = -ENAMETOOLONG;
 | |
| 			goto err_free_inst;
 | |
| 		}
 | |
| 	} else
 | |
| 		goto err_free_inst;
 | |
| 
 | |
| 	inst->alg.base.cra_priority = alg->base.cra_priority;
 | |
| 	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
 | |
| 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
 | |
| 				       (__alignof__(be128) - 1);
 | |
| 
 | |
| 	inst->alg.ivsize = LRW_BLOCK_SIZE;
 | |
| 	inst->alg.min_keysize = alg->min_keysize + LRW_BLOCK_SIZE;
 | |
| 	inst->alg.max_keysize = alg->max_keysize + LRW_BLOCK_SIZE;
 | |
| 
 | |
| 	inst->alg.base.cra_ctxsize = sizeof(struct lrw_tfm_ctx);
 | |
| 
 | |
| 	inst->alg.init = lrw_init_tfm;
 | |
| 	inst->alg.exit = lrw_exit_tfm;
 | |
| 
 | |
| 	inst->alg.setkey = lrw_setkey;
 | |
| 	inst->alg.encrypt = lrw_encrypt;
 | |
| 	inst->alg.decrypt = lrw_decrypt;
 | |
| 
 | |
| 	inst->free = lrw_free_instance;
 | |
| 
 | |
| 	err = skcipher_register_instance(tmpl, inst);
 | |
| 	if (err) {
 | |
| err_free_inst:
 | |
| 		lrw_free_instance(inst);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct crypto_template lrw_tmpl = {
 | |
| 	.name = "lrw",
 | |
| 	.create = lrw_create,
 | |
| 	.module = THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init lrw_module_init(void)
 | |
| {
 | |
| 	return crypto_register_template(&lrw_tmpl);
 | |
| }
 | |
| 
 | |
| static void __exit lrw_module_exit(void)
 | |
| {
 | |
| 	crypto_unregister_template(&lrw_tmpl);
 | |
| }
 | |
| 
 | |
| subsys_initcall(lrw_module_init);
 | |
| module_exit(lrw_module_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_DESCRIPTION("LRW block cipher mode");
 | |
| MODULE_ALIAS_CRYPTO("lrw");
 | |
| MODULE_SOFTDEP("pre: ecb");
 |