1240 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1240 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Functions related to segment and merge handling
 | 
						|
 */
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/bio.h>
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/blk-integrity.h>
 | 
						|
#include <linux/scatterlist.h>
 | 
						|
#include <linux/part_stat.h>
 | 
						|
#include <linux/blk-cgroup.h>
 | 
						|
 | 
						|
#include <trace/events/block.h>
 | 
						|
 | 
						|
#include "blk.h"
 | 
						|
#include "blk-mq-sched.h"
 | 
						|
#include "blk-rq-qos.h"
 | 
						|
#include "blk-throttle.h"
 | 
						|
 | 
						|
static inline void bio_get_first_bvec(struct bio *bio, struct bio_vec *bv)
 | 
						|
{
 | 
						|
	*bv = mp_bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
 | 
						|
}
 | 
						|
 | 
						|
static inline void bio_get_last_bvec(struct bio *bio, struct bio_vec *bv)
 | 
						|
{
 | 
						|
	struct bvec_iter iter = bio->bi_iter;
 | 
						|
	int idx;
 | 
						|
 | 
						|
	bio_get_first_bvec(bio, bv);
 | 
						|
	if (bv->bv_len == bio->bi_iter.bi_size)
 | 
						|
		return;		/* this bio only has a single bvec */
 | 
						|
 | 
						|
	bio_advance_iter(bio, &iter, iter.bi_size);
 | 
						|
 | 
						|
	if (!iter.bi_bvec_done)
 | 
						|
		idx = iter.bi_idx - 1;
 | 
						|
	else	/* in the middle of bvec */
 | 
						|
		idx = iter.bi_idx;
 | 
						|
 | 
						|
	*bv = bio->bi_io_vec[idx];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * iter.bi_bvec_done records actual length of the last bvec
 | 
						|
	 * if this bio ends in the middle of one io vector
 | 
						|
	 */
 | 
						|
	if (iter.bi_bvec_done)
 | 
						|
		bv->bv_len = iter.bi_bvec_done;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool bio_will_gap(struct request_queue *q,
 | 
						|
		struct request *prev_rq, struct bio *prev, struct bio *next)
 | 
						|
{
 | 
						|
	struct bio_vec pb, nb;
 | 
						|
 | 
						|
	if (!bio_has_data(prev) || !queue_virt_boundary(q))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Don't merge if the 1st bio starts with non-zero offset, otherwise it
 | 
						|
	 * is quite difficult to respect the sg gap limit.  We work hard to
 | 
						|
	 * merge a huge number of small single bios in case of mkfs.
 | 
						|
	 */
 | 
						|
	if (prev_rq)
 | 
						|
		bio_get_first_bvec(prev_rq->bio, &pb);
 | 
						|
	else
 | 
						|
		bio_get_first_bvec(prev, &pb);
 | 
						|
	if (pb.bv_offset & queue_virt_boundary(q))
 | 
						|
		return true;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We don't need to worry about the situation that the merged segment
 | 
						|
	 * ends in unaligned virt boundary:
 | 
						|
	 *
 | 
						|
	 * - if 'pb' ends aligned, the merged segment ends aligned
 | 
						|
	 * - if 'pb' ends unaligned, the next bio must include
 | 
						|
	 *   one single bvec of 'nb', otherwise the 'nb' can't
 | 
						|
	 *   merge with 'pb'
 | 
						|
	 */
 | 
						|
	bio_get_last_bvec(prev, &pb);
 | 
						|
	bio_get_first_bvec(next, &nb);
 | 
						|
	if (biovec_phys_mergeable(q, &pb, &nb))
 | 
						|
		return false;
 | 
						|
	return __bvec_gap_to_prev(&q->limits, &pb, nb.bv_offset);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
 | 
						|
{
 | 
						|
	return bio_will_gap(req->q, req, req->biotail, bio);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
 | 
						|
{
 | 
						|
	return bio_will_gap(req->q, NULL, bio, req->bio);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
 | 
						|
 * is defined as 'unsigned int', meantime it has to be aligned to with the
 | 
						|
 * logical block size, which is the minimum accepted unit by hardware.
 | 
						|
 */
 | 
						|
static unsigned int bio_allowed_max_sectors(const struct queue_limits *lim)
 | 
						|
{
 | 
						|
	return round_down(UINT_MAX, lim->logical_block_size) >> SECTOR_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
static struct bio *bio_submit_split(struct bio *bio, int split_sectors)
 | 
						|
{
 | 
						|
	if (unlikely(split_sectors < 0)) {
 | 
						|
		bio->bi_status = errno_to_blk_status(split_sectors);
 | 
						|
		bio_endio(bio);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (split_sectors) {
 | 
						|
		struct bio *split;
 | 
						|
 | 
						|
		split = bio_split(bio, split_sectors, GFP_NOIO,
 | 
						|
				&bio->bi_bdev->bd_disk->bio_split);
 | 
						|
		split->bi_opf |= REQ_NOMERGE;
 | 
						|
		blkcg_bio_issue_init(split);
 | 
						|
		bio_chain(split, bio);
 | 
						|
		trace_block_split(split, bio->bi_iter.bi_sector);
 | 
						|
		WARN_ON_ONCE(bio_zone_write_plugging(bio));
 | 
						|
		submit_bio_noacct(bio);
 | 
						|
		return split;
 | 
						|
	}
 | 
						|
 | 
						|
	return bio;
 | 
						|
}
 | 
						|
 | 
						|
struct bio *bio_split_discard(struct bio *bio, const struct queue_limits *lim,
 | 
						|
		unsigned *nsegs)
 | 
						|
{
 | 
						|
	unsigned int max_discard_sectors, granularity;
 | 
						|
	sector_t tmp;
 | 
						|
	unsigned split_sectors;
 | 
						|
 | 
						|
	*nsegs = 1;
 | 
						|
 | 
						|
	granularity = max(lim->discard_granularity >> 9, 1U);
 | 
						|
 | 
						|
	max_discard_sectors =
 | 
						|
		min(lim->max_discard_sectors, bio_allowed_max_sectors(lim));
 | 
						|
	max_discard_sectors -= max_discard_sectors % granularity;
 | 
						|
	if (unlikely(!max_discard_sectors))
 | 
						|
		return bio;
 | 
						|
 | 
						|
	if (bio_sectors(bio) <= max_discard_sectors)
 | 
						|
		return bio;
 | 
						|
 | 
						|
	split_sectors = max_discard_sectors;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the next starting sector would be misaligned, stop the discard at
 | 
						|
	 * the previous aligned sector.
 | 
						|
	 */
 | 
						|
	tmp = bio->bi_iter.bi_sector + split_sectors -
 | 
						|
		((lim->discard_alignment >> 9) % granularity);
 | 
						|
	tmp = sector_div(tmp, granularity);
 | 
						|
 | 
						|
	if (split_sectors > tmp)
 | 
						|
		split_sectors -= tmp;
 | 
						|
 | 
						|
	return bio_submit_split(bio, split_sectors);
 | 
						|
}
 | 
						|
 | 
						|
struct bio *bio_split_write_zeroes(struct bio *bio,
 | 
						|
		const struct queue_limits *lim, unsigned *nsegs)
 | 
						|
{
 | 
						|
	*nsegs = 0;
 | 
						|
	if (!lim->max_write_zeroes_sectors)
 | 
						|
		return bio;
 | 
						|
	if (bio_sectors(bio) <= lim->max_write_zeroes_sectors)
 | 
						|
		return bio;
 | 
						|
	return bio_submit_split(bio, lim->max_write_zeroes_sectors);
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned int blk_boundary_sectors(const struct queue_limits *lim,
 | 
						|
						bool is_atomic)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * chunk_sectors must be a multiple of atomic_write_boundary_sectors if
 | 
						|
	 * both non-zero.
 | 
						|
	 */
 | 
						|
	if (is_atomic && lim->atomic_write_boundary_sectors)
 | 
						|
		return lim->atomic_write_boundary_sectors;
 | 
						|
 | 
						|
	return lim->chunk_sectors;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return the maximum number of sectors from the start of a bio that may be
 | 
						|
 * submitted as a single request to a block device. If enough sectors remain,
 | 
						|
 * align the end to the physical block size. Otherwise align the end to the
 | 
						|
 * logical block size. This approach minimizes the number of non-aligned
 | 
						|
 * requests that are submitted to a block device if the start of a bio is not
 | 
						|
 * aligned to a physical block boundary.
 | 
						|
 */
 | 
						|
static inline unsigned get_max_io_size(struct bio *bio,
 | 
						|
				       const struct queue_limits *lim)
 | 
						|
{
 | 
						|
	unsigned pbs = lim->physical_block_size >> SECTOR_SHIFT;
 | 
						|
	unsigned lbs = lim->logical_block_size >> SECTOR_SHIFT;
 | 
						|
	bool is_atomic = bio->bi_opf & REQ_ATOMIC;
 | 
						|
	unsigned boundary_sectors = blk_boundary_sectors(lim, is_atomic);
 | 
						|
	unsigned max_sectors, start, end;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We ignore lim->max_sectors for atomic writes because it may less
 | 
						|
	 * than the actual bio size, which we cannot tolerate.
 | 
						|
	 */
 | 
						|
	if (is_atomic)
 | 
						|
		max_sectors = lim->atomic_write_max_sectors;
 | 
						|
	else
 | 
						|
		max_sectors = lim->max_sectors;
 | 
						|
 | 
						|
	if (boundary_sectors) {
 | 
						|
		max_sectors = min(max_sectors,
 | 
						|
			blk_boundary_sectors_left(bio->bi_iter.bi_sector,
 | 
						|
					      boundary_sectors));
 | 
						|
	}
 | 
						|
 | 
						|
	start = bio->bi_iter.bi_sector & (pbs - 1);
 | 
						|
	end = (start + max_sectors) & ~(pbs - 1);
 | 
						|
	if (end > start)
 | 
						|
		return end - start;
 | 
						|
	return max_sectors & ~(lbs - 1);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_max_segment_size() - maximum number of bytes to add as a single segment
 | 
						|
 * @lim: Request queue limits.
 | 
						|
 * @paddr: address of the range to add
 | 
						|
 * @len: maximum length available to add at @paddr
 | 
						|
 *
 | 
						|
 * Returns the maximum number of bytes of the range starting at @paddr that can
 | 
						|
 * be added to a single segment.
 | 
						|
 */
 | 
						|
static inline unsigned get_max_segment_size(const struct queue_limits *lim,
 | 
						|
		phys_addr_t paddr, unsigned int len)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Prevent an overflow if mask = ULONG_MAX and offset = 0 by adding 1
 | 
						|
	 * after having calculated the minimum.
 | 
						|
	 */
 | 
						|
	return min_t(unsigned long, len,
 | 
						|
		min(lim->seg_boundary_mask - (lim->seg_boundary_mask & paddr),
 | 
						|
		    (unsigned long)lim->max_segment_size - 1) + 1);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bvec_split_segs - verify whether or not a bvec should be split in the middle
 | 
						|
 * @lim:      [in] queue limits to split based on
 | 
						|
 * @bv:       [in] bvec to examine
 | 
						|
 * @nsegs:    [in,out] Number of segments in the bio being built. Incremented
 | 
						|
 *            by the number of segments from @bv that may be appended to that
 | 
						|
 *            bio without exceeding @max_segs
 | 
						|
 * @bytes:    [in,out] Number of bytes in the bio being built. Incremented
 | 
						|
 *            by the number of bytes from @bv that may be appended to that
 | 
						|
 *            bio without exceeding @max_bytes
 | 
						|
 * @max_segs: [in] upper bound for *@nsegs
 | 
						|
 * @max_bytes: [in] upper bound for *@bytes
 | 
						|
 *
 | 
						|
 * When splitting a bio, it can happen that a bvec is encountered that is too
 | 
						|
 * big to fit in a single segment and hence that it has to be split in the
 | 
						|
 * middle. This function verifies whether or not that should happen. The value
 | 
						|
 * %true is returned if and only if appending the entire @bv to a bio with
 | 
						|
 * *@nsegs segments and *@sectors sectors would make that bio unacceptable for
 | 
						|
 * the block driver.
 | 
						|
 */
 | 
						|
static bool bvec_split_segs(const struct queue_limits *lim,
 | 
						|
		const struct bio_vec *bv, unsigned *nsegs, unsigned *bytes,
 | 
						|
		unsigned max_segs, unsigned max_bytes)
 | 
						|
{
 | 
						|
	unsigned max_len = min(max_bytes, UINT_MAX) - *bytes;
 | 
						|
	unsigned len = min(bv->bv_len, max_len);
 | 
						|
	unsigned total_len = 0;
 | 
						|
	unsigned seg_size = 0;
 | 
						|
 | 
						|
	while (len && *nsegs < max_segs) {
 | 
						|
		seg_size = get_max_segment_size(lim, bvec_phys(bv) + total_len, len);
 | 
						|
 | 
						|
		(*nsegs)++;
 | 
						|
		total_len += seg_size;
 | 
						|
		len -= seg_size;
 | 
						|
 | 
						|
		if ((bv->bv_offset + total_len) & lim->virt_boundary_mask)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	*bytes += total_len;
 | 
						|
 | 
						|
	/* tell the caller to split the bvec if it is too big to fit */
 | 
						|
	return len > 0 || bv->bv_len > max_len;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bio_split_rw_at - check if and where to split a read/write bio
 | 
						|
 * @bio:  [in] bio to be split
 | 
						|
 * @lim:  [in] queue limits to split based on
 | 
						|
 * @segs: [out] number of segments in the bio with the first half of the sectors
 | 
						|
 * @max_bytes: [in] maximum number of bytes per bio
 | 
						|
 *
 | 
						|
 * Find out if @bio needs to be split to fit the queue limits in @lim and a
 | 
						|
 * maximum size of @max_bytes.  Returns a negative error number if @bio can't be
 | 
						|
 * split, 0 if the bio doesn't have to be split, or a positive sector offset if
 | 
						|
 * @bio needs to be split.
 | 
						|
 */
 | 
						|
int bio_split_rw_at(struct bio *bio, const struct queue_limits *lim,
 | 
						|
		unsigned *segs, unsigned max_bytes)
 | 
						|
{
 | 
						|
	struct bio_vec bv, bvprv, *bvprvp = NULL;
 | 
						|
	struct bvec_iter iter;
 | 
						|
	unsigned nsegs = 0, bytes = 0;
 | 
						|
 | 
						|
	bio_for_each_bvec(bv, bio, iter) {
 | 
						|
		/*
 | 
						|
		 * If the queue doesn't support SG gaps and adding this
 | 
						|
		 * offset would create a gap, disallow it.
 | 
						|
		 */
 | 
						|
		if (bvprvp && bvec_gap_to_prev(lim, bvprvp, bv.bv_offset))
 | 
						|
			goto split;
 | 
						|
 | 
						|
		if (nsegs < lim->max_segments &&
 | 
						|
		    bytes + bv.bv_len <= max_bytes &&
 | 
						|
		    bv.bv_offset + bv.bv_len <= PAGE_SIZE) {
 | 
						|
			nsegs++;
 | 
						|
			bytes += bv.bv_len;
 | 
						|
		} else {
 | 
						|
			if (bvec_split_segs(lim, &bv, &nsegs, &bytes,
 | 
						|
					lim->max_segments, max_bytes))
 | 
						|
				goto split;
 | 
						|
		}
 | 
						|
 | 
						|
		bvprv = bv;
 | 
						|
		bvprvp = &bvprv;
 | 
						|
	}
 | 
						|
 | 
						|
	*segs = nsegs;
 | 
						|
	return 0;
 | 
						|
split:
 | 
						|
	if (bio->bi_opf & REQ_ATOMIC)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We can't sanely support splitting for a REQ_NOWAIT bio. End it
 | 
						|
	 * with EAGAIN if splitting is required and return an error pointer.
 | 
						|
	 */
 | 
						|
	if (bio->bi_opf & REQ_NOWAIT)
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	*segs = nsegs;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Individual bvecs might not be logical block aligned. Round down the
 | 
						|
	 * split size so that each bio is properly block size aligned, even if
 | 
						|
	 * we do not use the full hardware limits.
 | 
						|
	 */
 | 
						|
	bytes = ALIGN_DOWN(bytes, lim->logical_block_size);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Bio splitting may cause subtle trouble such as hang when doing sync
 | 
						|
	 * iopoll in direct IO routine. Given performance gain of iopoll for
 | 
						|
	 * big IO can be trival, disable iopoll when split needed.
 | 
						|
	 */
 | 
						|
	bio_clear_polled(bio);
 | 
						|
	return bytes >> SECTOR_SHIFT;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(bio_split_rw_at);
 | 
						|
 | 
						|
struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
 | 
						|
		unsigned *nr_segs)
 | 
						|
{
 | 
						|
	return bio_submit_split(bio,
 | 
						|
		bio_split_rw_at(bio, lim, nr_segs,
 | 
						|
			get_max_io_size(bio, lim) << SECTOR_SHIFT));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * REQ_OP_ZONE_APPEND bios must never be split by the block layer.
 | 
						|
 *
 | 
						|
 * But we want the nr_segs calculation provided by bio_split_rw_at, and having
 | 
						|
 * a good sanity check that the submitter built the bio correctly is nice to
 | 
						|
 * have as well.
 | 
						|
 */
 | 
						|
struct bio *bio_split_zone_append(struct bio *bio,
 | 
						|
		const struct queue_limits *lim, unsigned *nr_segs)
 | 
						|
{
 | 
						|
	unsigned int max_sectors = queue_limits_max_zone_append_sectors(lim);
 | 
						|
	int split_sectors;
 | 
						|
 | 
						|
	split_sectors = bio_split_rw_at(bio, lim, nr_segs,
 | 
						|
			max_sectors << SECTOR_SHIFT);
 | 
						|
	if (WARN_ON_ONCE(split_sectors > 0))
 | 
						|
		split_sectors = -EINVAL;
 | 
						|
	return bio_submit_split(bio, split_sectors);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bio_split_to_limits - split a bio to fit the queue limits
 | 
						|
 * @bio:     bio to be split
 | 
						|
 *
 | 
						|
 * Check if @bio needs splitting based on the queue limits of @bio->bi_bdev, and
 | 
						|
 * if so split off a bio fitting the limits from the beginning of @bio and
 | 
						|
 * return it.  @bio is shortened to the remainder and re-submitted.
 | 
						|
 *
 | 
						|
 * The split bio is allocated from @q->bio_split, which is provided by the
 | 
						|
 * block layer.
 | 
						|
 */
 | 
						|
struct bio *bio_split_to_limits(struct bio *bio)
 | 
						|
{
 | 
						|
	const struct queue_limits *lim = &bdev_get_queue(bio->bi_bdev)->limits;
 | 
						|
	unsigned int nr_segs;
 | 
						|
 | 
						|
	return __bio_split_to_limits(bio, lim, &nr_segs);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bio_split_to_limits);
 | 
						|
 | 
						|
unsigned int blk_recalc_rq_segments(struct request *rq)
 | 
						|
{
 | 
						|
	unsigned int nr_phys_segs = 0;
 | 
						|
	unsigned int bytes = 0;
 | 
						|
	struct req_iterator iter;
 | 
						|
	struct bio_vec bv;
 | 
						|
 | 
						|
	if (!rq->bio)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	switch (bio_op(rq->bio)) {
 | 
						|
	case REQ_OP_DISCARD:
 | 
						|
	case REQ_OP_SECURE_ERASE:
 | 
						|
		if (queue_max_discard_segments(rq->q) > 1) {
 | 
						|
			struct bio *bio = rq->bio;
 | 
						|
 | 
						|
			for_each_bio(bio)
 | 
						|
				nr_phys_segs++;
 | 
						|
			return nr_phys_segs;
 | 
						|
		}
 | 
						|
		return 1;
 | 
						|
	case REQ_OP_WRITE_ZEROES:
 | 
						|
		return 0;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	rq_for_each_bvec(bv, rq, iter)
 | 
						|
		bvec_split_segs(&rq->q->limits, &bv, &nr_phys_segs, &bytes,
 | 
						|
				UINT_MAX, UINT_MAX);
 | 
						|
	return nr_phys_segs;
 | 
						|
}
 | 
						|
 | 
						|
static inline struct scatterlist *blk_next_sg(struct scatterlist **sg,
 | 
						|
		struct scatterlist *sglist)
 | 
						|
{
 | 
						|
	if (!*sg)
 | 
						|
		return sglist;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the driver previously mapped a shorter list, we could see a
 | 
						|
	 * termination bit prematurely unless it fully inits the sg table
 | 
						|
	 * on each mapping. We KNOW that there must be more entries here
 | 
						|
	 * or the driver would be buggy, so force clear the termination bit
 | 
						|
	 * to avoid doing a full sg_init_table() in drivers for each command.
 | 
						|
	 */
 | 
						|
	sg_unmark_end(*sg);
 | 
						|
	return sg_next(*sg);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned blk_bvec_map_sg(struct request_queue *q,
 | 
						|
		struct bio_vec *bvec, struct scatterlist *sglist,
 | 
						|
		struct scatterlist **sg)
 | 
						|
{
 | 
						|
	unsigned nbytes = bvec->bv_len;
 | 
						|
	unsigned nsegs = 0, total = 0;
 | 
						|
 | 
						|
	while (nbytes > 0) {
 | 
						|
		unsigned offset = bvec->bv_offset + total;
 | 
						|
		unsigned len = get_max_segment_size(&q->limits,
 | 
						|
				bvec_phys(bvec) + total, nbytes);
 | 
						|
		struct page *page = bvec->bv_page;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Unfortunately a fair number of drivers barf on scatterlists
 | 
						|
		 * that have an offset larger than PAGE_SIZE, despite other
 | 
						|
		 * subsystems dealing with that invariant just fine.  For now
 | 
						|
		 * stick to the legacy format where we never present those from
 | 
						|
		 * the block layer, but the code below should be removed once
 | 
						|
		 * these offenders (mostly MMC/SD drivers) are fixed.
 | 
						|
		 */
 | 
						|
		page += (offset >> PAGE_SHIFT);
 | 
						|
		offset &= ~PAGE_MASK;
 | 
						|
 | 
						|
		*sg = blk_next_sg(sg, sglist);
 | 
						|
		sg_set_page(*sg, page, len, offset);
 | 
						|
 | 
						|
		total += len;
 | 
						|
		nbytes -= len;
 | 
						|
		nsegs++;
 | 
						|
	}
 | 
						|
 | 
						|
	return nsegs;
 | 
						|
}
 | 
						|
 | 
						|
static inline int __blk_bvec_map_sg(struct bio_vec bv,
 | 
						|
		struct scatterlist *sglist, struct scatterlist **sg)
 | 
						|
{
 | 
						|
	*sg = blk_next_sg(sg, sglist);
 | 
						|
	sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* only try to merge bvecs into one sg if they are from two bios */
 | 
						|
static inline bool
 | 
						|
__blk_segment_map_sg_merge(struct request_queue *q, struct bio_vec *bvec,
 | 
						|
			   struct bio_vec *bvprv, struct scatterlist **sg)
 | 
						|
{
 | 
						|
 | 
						|
	int nbytes = bvec->bv_len;
 | 
						|
 | 
						|
	if (!*sg)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if ((*sg)->length + nbytes > queue_max_segment_size(q))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (!biovec_phys_mergeable(q, bvprv, bvec))
 | 
						|
		return false;
 | 
						|
 | 
						|
	(*sg)->length += nbytes;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio,
 | 
						|
			     struct scatterlist *sglist,
 | 
						|
			     struct scatterlist **sg)
 | 
						|
{
 | 
						|
	struct bio_vec bvec, bvprv = { NULL };
 | 
						|
	struct bvec_iter iter;
 | 
						|
	int nsegs = 0;
 | 
						|
	bool new_bio = false;
 | 
						|
 | 
						|
	for_each_bio(bio) {
 | 
						|
		bio_for_each_bvec(bvec, bio, iter) {
 | 
						|
			/*
 | 
						|
			 * Only try to merge bvecs from two bios given we
 | 
						|
			 * have done bio internal merge when adding pages
 | 
						|
			 * to bio
 | 
						|
			 */
 | 
						|
			if (new_bio &&
 | 
						|
			    __blk_segment_map_sg_merge(q, &bvec, &bvprv, sg))
 | 
						|
				goto next_bvec;
 | 
						|
 | 
						|
			if (bvec.bv_offset + bvec.bv_len <= PAGE_SIZE)
 | 
						|
				nsegs += __blk_bvec_map_sg(bvec, sglist, sg);
 | 
						|
			else
 | 
						|
				nsegs += blk_bvec_map_sg(q, &bvec, sglist, sg);
 | 
						|
 next_bvec:
 | 
						|
			new_bio = false;
 | 
						|
		}
 | 
						|
		if (likely(bio->bi_iter.bi_size)) {
 | 
						|
			bvprv = bvec;
 | 
						|
			new_bio = true;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return nsegs;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * map a request to scatterlist, return number of sg entries setup. Caller
 | 
						|
 * must make sure sg can hold rq->nr_phys_segments entries
 | 
						|
 */
 | 
						|
int __blk_rq_map_sg(struct request_queue *q, struct request *rq,
 | 
						|
		struct scatterlist *sglist, struct scatterlist **last_sg)
 | 
						|
{
 | 
						|
	int nsegs = 0;
 | 
						|
 | 
						|
	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
 | 
						|
		nsegs = __blk_bvec_map_sg(rq->special_vec, sglist, last_sg);
 | 
						|
	else if (rq->bio)
 | 
						|
		nsegs = __blk_bios_map_sg(q, rq->bio, sglist, last_sg);
 | 
						|
 | 
						|
	if (*last_sg)
 | 
						|
		sg_mark_end(*last_sg);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Something must have been wrong if the figured number of
 | 
						|
	 * segment is bigger than number of req's physical segments
 | 
						|
	 */
 | 
						|
	WARN_ON(nsegs > blk_rq_nr_phys_segments(rq));
 | 
						|
 | 
						|
	return nsegs;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__blk_rq_map_sg);
 | 
						|
 | 
						|
static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
 | 
						|
						  sector_t offset)
 | 
						|
{
 | 
						|
	struct request_queue *q = rq->q;
 | 
						|
	struct queue_limits *lim = &q->limits;
 | 
						|
	unsigned int max_sectors, boundary_sectors;
 | 
						|
	bool is_atomic = rq->cmd_flags & REQ_ATOMIC;
 | 
						|
 | 
						|
	if (blk_rq_is_passthrough(rq))
 | 
						|
		return q->limits.max_hw_sectors;
 | 
						|
 | 
						|
	boundary_sectors = blk_boundary_sectors(lim, is_atomic);
 | 
						|
	max_sectors = blk_queue_get_max_sectors(rq);
 | 
						|
 | 
						|
	if (!boundary_sectors ||
 | 
						|
	    req_op(rq) == REQ_OP_DISCARD ||
 | 
						|
	    req_op(rq) == REQ_OP_SECURE_ERASE)
 | 
						|
		return max_sectors;
 | 
						|
	return min(max_sectors,
 | 
						|
		   blk_boundary_sectors_left(offset, boundary_sectors));
 | 
						|
}
 | 
						|
 | 
						|
static inline int ll_new_hw_segment(struct request *req, struct bio *bio,
 | 
						|
		unsigned int nr_phys_segs)
 | 
						|
{
 | 
						|
	if (!blk_cgroup_mergeable(req, bio))
 | 
						|
		goto no_merge;
 | 
						|
 | 
						|
	if (blk_integrity_merge_bio(req->q, req, bio) == false)
 | 
						|
		goto no_merge;
 | 
						|
 | 
						|
	/* discard request merge won't add new segment */
 | 
						|
	if (req_op(req) == REQ_OP_DISCARD)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (req->nr_phys_segments + nr_phys_segs > blk_rq_get_max_segments(req))
 | 
						|
		goto no_merge;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This will form the start of a new hw segment.  Bump both
 | 
						|
	 * counters.
 | 
						|
	 */
 | 
						|
	req->nr_phys_segments += nr_phys_segs;
 | 
						|
	if (bio_integrity(bio))
 | 
						|
		req->nr_integrity_segments += blk_rq_count_integrity_sg(req->q,
 | 
						|
									bio);
 | 
						|
	return 1;
 | 
						|
 | 
						|
no_merge:
 | 
						|
	req_set_nomerge(req->q, req);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int ll_back_merge_fn(struct request *req, struct bio *bio, unsigned int nr_segs)
 | 
						|
{
 | 
						|
	if (req_gap_back_merge(req, bio))
 | 
						|
		return 0;
 | 
						|
	if (blk_integrity_rq(req) &&
 | 
						|
	    integrity_req_gap_back_merge(req, bio))
 | 
						|
		return 0;
 | 
						|
	if (!bio_crypt_ctx_back_mergeable(req, bio))
 | 
						|
		return 0;
 | 
						|
	if (blk_rq_sectors(req) + bio_sectors(bio) >
 | 
						|
	    blk_rq_get_max_sectors(req, blk_rq_pos(req))) {
 | 
						|
		req_set_nomerge(req->q, req);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return ll_new_hw_segment(req, bio, nr_segs);
 | 
						|
}
 | 
						|
 | 
						|
static int ll_front_merge_fn(struct request *req, struct bio *bio,
 | 
						|
		unsigned int nr_segs)
 | 
						|
{
 | 
						|
	if (req_gap_front_merge(req, bio))
 | 
						|
		return 0;
 | 
						|
	if (blk_integrity_rq(req) &&
 | 
						|
	    integrity_req_gap_front_merge(req, bio))
 | 
						|
		return 0;
 | 
						|
	if (!bio_crypt_ctx_front_mergeable(req, bio))
 | 
						|
		return 0;
 | 
						|
	if (blk_rq_sectors(req) + bio_sectors(bio) >
 | 
						|
	    blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) {
 | 
						|
		req_set_nomerge(req->q, req);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return ll_new_hw_segment(req, bio, nr_segs);
 | 
						|
}
 | 
						|
 | 
						|
static bool req_attempt_discard_merge(struct request_queue *q, struct request *req,
 | 
						|
		struct request *next)
 | 
						|
{
 | 
						|
	unsigned short segments = blk_rq_nr_discard_segments(req);
 | 
						|
 | 
						|
	if (segments >= queue_max_discard_segments(q))
 | 
						|
		goto no_merge;
 | 
						|
	if (blk_rq_sectors(req) + bio_sectors(next->bio) >
 | 
						|
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 | 
						|
		goto no_merge;
 | 
						|
 | 
						|
	req->nr_phys_segments = segments + blk_rq_nr_discard_segments(next);
 | 
						|
	return true;
 | 
						|
no_merge:
 | 
						|
	req_set_nomerge(q, req);
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
 | 
						|
				struct request *next)
 | 
						|
{
 | 
						|
	int total_phys_segments;
 | 
						|
 | 
						|
	if (req_gap_back_merge(req, next->bio))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Will it become too large?
 | 
						|
	 */
 | 
						|
	if ((blk_rq_sectors(req) + blk_rq_sectors(next)) >
 | 
						|
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
 | 
						|
	if (total_phys_segments > blk_rq_get_max_segments(req))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!blk_cgroup_mergeable(req, next->bio))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (blk_integrity_merge_rq(q, req, next) == false)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (!bio_crypt_ctx_merge_rq(req, next))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Merge is OK... */
 | 
						|
	req->nr_phys_segments = total_phys_segments;
 | 
						|
	req->nr_integrity_segments += next->nr_integrity_segments;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * blk_rq_set_mixed_merge - mark a request as mixed merge
 | 
						|
 * @rq: request to mark as mixed merge
 | 
						|
 *
 | 
						|
 * Description:
 | 
						|
 *     @rq is about to be mixed merged.  Make sure the attributes
 | 
						|
 *     which can be mixed are set in each bio and mark @rq as mixed
 | 
						|
 *     merged.
 | 
						|
 */
 | 
						|
static void blk_rq_set_mixed_merge(struct request *rq)
 | 
						|
{
 | 
						|
	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 | 
						|
	struct bio *bio;
 | 
						|
 | 
						|
	if (rq->rq_flags & RQF_MIXED_MERGE)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * @rq will no longer represent mixable attributes for all the
 | 
						|
	 * contained bios.  It will just track those of the first one.
 | 
						|
	 * Distributes the attributs to each bio.
 | 
						|
	 */
 | 
						|
	for (bio = rq->bio; bio; bio = bio->bi_next) {
 | 
						|
		WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) &&
 | 
						|
			     (bio->bi_opf & REQ_FAILFAST_MASK) != ff);
 | 
						|
		bio->bi_opf |= ff;
 | 
						|
	}
 | 
						|
	rq->rq_flags |= RQF_MIXED_MERGE;
 | 
						|
}
 | 
						|
 | 
						|
static inline blk_opf_t bio_failfast(const struct bio *bio)
 | 
						|
{
 | 
						|
	if (bio->bi_opf & REQ_RAHEAD)
 | 
						|
		return REQ_FAILFAST_MASK;
 | 
						|
 | 
						|
	return bio->bi_opf & REQ_FAILFAST_MASK;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * After we are marked as MIXED_MERGE, any new RA bio has to be updated
 | 
						|
 * as failfast, and request's failfast has to be updated in case of
 | 
						|
 * front merge.
 | 
						|
 */
 | 
						|
static inline void blk_update_mixed_merge(struct request *req,
 | 
						|
		struct bio *bio, bool front_merge)
 | 
						|
{
 | 
						|
	if (req->rq_flags & RQF_MIXED_MERGE) {
 | 
						|
		if (bio->bi_opf & REQ_RAHEAD)
 | 
						|
			bio->bi_opf |= REQ_FAILFAST_MASK;
 | 
						|
 | 
						|
		if (front_merge) {
 | 
						|
			req->cmd_flags &= ~REQ_FAILFAST_MASK;
 | 
						|
			req->cmd_flags |= bio->bi_opf & REQ_FAILFAST_MASK;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void blk_account_io_merge_request(struct request *req)
 | 
						|
{
 | 
						|
	if (blk_do_io_stat(req)) {
 | 
						|
		part_stat_lock();
 | 
						|
		part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 | 
						|
		part_stat_local_dec(req->part,
 | 
						|
				    in_flight[op_is_write(req_op(req))]);
 | 
						|
		part_stat_unlock();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static enum elv_merge blk_try_req_merge(struct request *req,
 | 
						|
					struct request *next)
 | 
						|
{
 | 
						|
	if (blk_discard_mergable(req))
 | 
						|
		return ELEVATOR_DISCARD_MERGE;
 | 
						|
	else if (blk_rq_pos(req) + blk_rq_sectors(req) == blk_rq_pos(next))
 | 
						|
		return ELEVATOR_BACK_MERGE;
 | 
						|
 | 
						|
	return ELEVATOR_NO_MERGE;
 | 
						|
}
 | 
						|
 | 
						|
static bool blk_atomic_write_mergeable_rq_bio(struct request *rq,
 | 
						|
					      struct bio *bio)
 | 
						|
{
 | 
						|
	return (rq->cmd_flags & REQ_ATOMIC) == (bio->bi_opf & REQ_ATOMIC);
 | 
						|
}
 | 
						|
 | 
						|
static bool blk_atomic_write_mergeable_rqs(struct request *rq,
 | 
						|
					   struct request *next)
 | 
						|
{
 | 
						|
	return (rq->cmd_flags & REQ_ATOMIC) == (next->cmd_flags & REQ_ATOMIC);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For non-mq, this has to be called with the request spinlock acquired.
 | 
						|
 * For mq with scheduling, the appropriate queue wide lock should be held.
 | 
						|
 */
 | 
						|
static struct request *attempt_merge(struct request_queue *q,
 | 
						|
				     struct request *req, struct request *next)
 | 
						|
{
 | 
						|
	if (!rq_mergeable(req) || !rq_mergeable(next))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (req_op(req) != req_op(next))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (rq_data_dir(req) != rq_data_dir(next))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/* Don't merge requests with different write hints. */
 | 
						|
	if (req->write_hint != next->write_hint)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (req->ioprio != next->ioprio)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	if (!blk_atomic_write_mergeable_rqs(req, next))
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are allowed to merge, then append bio list
 | 
						|
	 * from next to rq and release next. merge_requests_fn
 | 
						|
	 * will have updated segment counts, update sector
 | 
						|
	 * counts here. Handle DISCARDs separately, as they
 | 
						|
	 * have separate settings.
 | 
						|
	 */
 | 
						|
 | 
						|
	switch (blk_try_req_merge(req, next)) {
 | 
						|
	case ELEVATOR_DISCARD_MERGE:
 | 
						|
		if (!req_attempt_discard_merge(q, req, next))
 | 
						|
			return NULL;
 | 
						|
		break;
 | 
						|
	case ELEVATOR_BACK_MERGE:
 | 
						|
		if (!ll_merge_requests_fn(q, req, next))
 | 
						|
			return NULL;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If failfast settings disagree or any of the two is already
 | 
						|
	 * a mixed merge, mark both as mixed before proceeding.  This
 | 
						|
	 * makes sure that all involved bios have mixable attributes
 | 
						|
	 * set properly.
 | 
						|
	 */
 | 
						|
	if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) ||
 | 
						|
	    (req->cmd_flags & REQ_FAILFAST_MASK) !=
 | 
						|
	    (next->cmd_flags & REQ_FAILFAST_MASK)) {
 | 
						|
		blk_rq_set_mixed_merge(req);
 | 
						|
		blk_rq_set_mixed_merge(next);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * At this point we have either done a back merge or front merge. We
 | 
						|
	 * need the smaller start_time_ns of the merged requests to be the
 | 
						|
	 * current request for accounting purposes.
 | 
						|
	 */
 | 
						|
	if (next->start_time_ns < req->start_time_ns)
 | 
						|
		req->start_time_ns = next->start_time_ns;
 | 
						|
 | 
						|
	req->biotail->bi_next = next->bio;
 | 
						|
	req->biotail = next->biotail;
 | 
						|
 | 
						|
	req->__data_len += blk_rq_bytes(next);
 | 
						|
 | 
						|
	if (!blk_discard_mergable(req))
 | 
						|
		elv_merge_requests(q, req, next);
 | 
						|
 | 
						|
	blk_crypto_rq_put_keyslot(next);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 'next' is going away, so update stats accordingly
 | 
						|
	 */
 | 
						|
	blk_account_io_merge_request(next);
 | 
						|
 | 
						|
	trace_block_rq_merge(next);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * ownership of bio passed from next to req, return 'next' for
 | 
						|
	 * the caller to free
 | 
						|
	 */
 | 
						|
	next->bio = NULL;
 | 
						|
	return next;
 | 
						|
}
 | 
						|
 | 
						|
static struct request *attempt_back_merge(struct request_queue *q,
 | 
						|
		struct request *rq)
 | 
						|
{
 | 
						|
	struct request *next = elv_latter_request(q, rq);
 | 
						|
 | 
						|
	if (next)
 | 
						|
		return attempt_merge(q, rq, next);
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static struct request *attempt_front_merge(struct request_queue *q,
 | 
						|
		struct request *rq)
 | 
						|
{
 | 
						|
	struct request *prev = elv_former_request(q, rq);
 | 
						|
 | 
						|
	if (prev)
 | 
						|
		return attempt_merge(q, prev, rq);
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Try to merge 'next' into 'rq'. Return true if the merge happened, false
 | 
						|
 * otherwise. The caller is responsible for freeing 'next' if the merge
 | 
						|
 * happened.
 | 
						|
 */
 | 
						|
bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
 | 
						|
			   struct request *next)
 | 
						|
{
 | 
						|
	return attempt_merge(q, rq, next);
 | 
						|
}
 | 
						|
 | 
						|
bool blk_rq_merge_ok(struct request *rq, struct bio *bio)
 | 
						|
{
 | 
						|
	if (!rq_mergeable(rq) || !bio_mergeable(bio))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (req_op(rq) != bio_op(bio))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* different data direction or already started, don't merge */
 | 
						|
	if (bio_data_dir(bio) != rq_data_dir(rq))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* don't merge across cgroup boundaries */
 | 
						|
	if (!blk_cgroup_mergeable(rq, bio))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* only merge integrity protected bio into ditto rq */
 | 
						|
	if (blk_integrity_merge_bio(rq->q, rq, bio) == false)
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Only merge if the crypt contexts are compatible */
 | 
						|
	if (!bio_crypt_rq_ctx_compatible(rq, bio))
 | 
						|
		return false;
 | 
						|
 | 
						|
	/* Don't merge requests with different write hints. */
 | 
						|
	if (rq->write_hint != bio->bi_write_hint)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (rq->ioprio != bio_prio(bio))
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (blk_atomic_write_mergeable_rq_bio(rq, bio) == false)
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
enum elv_merge blk_try_merge(struct request *rq, struct bio *bio)
 | 
						|
{
 | 
						|
	if (blk_discard_mergable(rq))
 | 
						|
		return ELEVATOR_DISCARD_MERGE;
 | 
						|
	else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector)
 | 
						|
		return ELEVATOR_BACK_MERGE;
 | 
						|
	else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector)
 | 
						|
		return ELEVATOR_FRONT_MERGE;
 | 
						|
	return ELEVATOR_NO_MERGE;
 | 
						|
}
 | 
						|
 | 
						|
static void blk_account_io_merge_bio(struct request *req)
 | 
						|
{
 | 
						|
	if (!blk_do_io_stat(req))
 | 
						|
		return;
 | 
						|
 | 
						|
	part_stat_lock();
 | 
						|
	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
 | 
						|
	part_stat_unlock();
 | 
						|
}
 | 
						|
 | 
						|
enum bio_merge_status bio_attempt_back_merge(struct request *req,
 | 
						|
		struct bio *bio, unsigned int nr_segs)
 | 
						|
{
 | 
						|
	const blk_opf_t ff = bio_failfast(bio);
 | 
						|
 | 
						|
	if (!ll_back_merge_fn(req, bio, nr_segs))
 | 
						|
		return BIO_MERGE_FAILED;
 | 
						|
 | 
						|
	trace_block_bio_backmerge(bio);
 | 
						|
	rq_qos_merge(req->q, req, bio);
 | 
						|
 | 
						|
	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 | 
						|
		blk_rq_set_mixed_merge(req);
 | 
						|
 | 
						|
	blk_update_mixed_merge(req, bio, false);
 | 
						|
 | 
						|
	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
 | 
						|
		blk_zone_write_plug_bio_merged(bio);
 | 
						|
 | 
						|
	req->biotail->bi_next = bio;
 | 
						|
	req->biotail = bio;
 | 
						|
	req->__data_len += bio->bi_iter.bi_size;
 | 
						|
 | 
						|
	bio_crypt_free_ctx(bio);
 | 
						|
 | 
						|
	blk_account_io_merge_bio(req);
 | 
						|
	return BIO_MERGE_OK;
 | 
						|
}
 | 
						|
 | 
						|
static enum bio_merge_status bio_attempt_front_merge(struct request *req,
 | 
						|
		struct bio *bio, unsigned int nr_segs)
 | 
						|
{
 | 
						|
	const blk_opf_t ff = bio_failfast(bio);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A front merge for writes to sequential zones of a zoned block device
 | 
						|
	 * can happen only if the user submitted writes out of order. Do not
 | 
						|
	 * merge such write to let it fail.
 | 
						|
	 */
 | 
						|
	if (req->rq_flags & RQF_ZONE_WRITE_PLUGGING)
 | 
						|
		return BIO_MERGE_FAILED;
 | 
						|
 | 
						|
	if (!ll_front_merge_fn(req, bio, nr_segs))
 | 
						|
		return BIO_MERGE_FAILED;
 | 
						|
 | 
						|
	trace_block_bio_frontmerge(bio);
 | 
						|
	rq_qos_merge(req->q, req, bio);
 | 
						|
 | 
						|
	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
 | 
						|
		blk_rq_set_mixed_merge(req);
 | 
						|
 | 
						|
	blk_update_mixed_merge(req, bio, true);
 | 
						|
 | 
						|
	bio->bi_next = req->bio;
 | 
						|
	req->bio = bio;
 | 
						|
 | 
						|
	req->__sector = bio->bi_iter.bi_sector;
 | 
						|
	req->__data_len += bio->bi_iter.bi_size;
 | 
						|
 | 
						|
	bio_crypt_do_front_merge(req, bio);
 | 
						|
 | 
						|
	blk_account_io_merge_bio(req);
 | 
						|
	return BIO_MERGE_OK;
 | 
						|
}
 | 
						|
 | 
						|
static enum bio_merge_status bio_attempt_discard_merge(struct request_queue *q,
 | 
						|
		struct request *req, struct bio *bio)
 | 
						|
{
 | 
						|
	unsigned short segments = blk_rq_nr_discard_segments(req);
 | 
						|
 | 
						|
	if (segments >= queue_max_discard_segments(q))
 | 
						|
		goto no_merge;
 | 
						|
	if (blk_rq_sectors(req) + bio_sectors(bio) >
 | 
						|
	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
 | 
						|
		goto no_merge;
 | 
						|
 | 
						|
	rq_qos_merge(q, req, bio);
 | 
						|
 | 
						|
	req->biotail->bi_next = bio;
 | 
						|
	req->biotail = bio;
 | 
						|
	req->__data_len += bio->bi_iter.bi_size;
 | 
						|
	req->nr_phys_segments = segments + 1;
 | 
						|
 | 
						|
	blk_account_io_merge_bio(req);
 | 
						|
	return BIO_MERGE_OK;
 | 
						|
no_merge:
 | 
						|
	req_set_nomerge(q, req);
 | 
						|
	return BIO_MERGE_FAILED;
 | 
						|
}
 | 
						|
 | 
						|
static enum bio_merge_status blk_attempt_bio_merge(struct request_queue *q,
 | 
						|
						   struct request *rq,
 | 
						|
						   struct bio *bio,
 | 
						|
						   unsigned int nr_segs,
 | 
						|
						   bool sched_allow_merge)
 | 
						|
{
 | 
						|
	if (!blk_rq_merge_ok(rq, bio))
 | 
						|
		return BIO_MERGE_NONE;
 | 
						|
 | 
						|
	switch (blk_try_merge(rq, bio)) {
 | 
						|
	case ELEVATOR_BACK_MERGE:
 | 
						|
		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
 | 
						|
			return bio_attempt_back_merge(rq, bio, nr_segs);
 | 
						|
		break;
 | 
						|
	case ELEVATOR_FRONT_MERGE:
 | 
						|
		if (!sched_allow_merge || blk_mq_sched_allow_merge(q, rq, bio))
 | 
						|
			return bio_attempt_front_merge(rq, bio, nr_segs);
 | 
						|
		break;
 | 
						|
	case ELEVATOR_DISCARD_MERGE:
 | 
						|
		return bio_attempt_discard_merge(q, rq, bio);
 | 
						|
	default:
 | 
						|
		return BIO_MERGE_NONE;
 | 
						|
	}
 | 
						|
 | 
						|
	return BIO_MERGE_FAILED;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * blk_attempt_plug_merge - try to merge with %current's plugged list
 | 
						|
 * @q: request_queue new bio is being queued at
 | 
						|
 * @bio: new bio being queued
 | 
						|
 * @nr_segs: number of segments in @bio
 | 
						|
 * from the passed in @q already in the plug list
 | 
						|
 *
 | 
						|
 * Determine whether @bio being queued on @q can be merged with the previous
 | 
						|
 * request on %current's plugged list.  Returns %true if merge was successful,
 | 
						|
 * otherwise %false.
 | 
						|
 *
 | 
						|
 * Plugging coalesces IOs from the same issuer for the same purpose without
 | 
						|
 * going through @q->queue_lock.  As such it's more of an issuing mechanism
 | 
						|
 * than scheduling, and the request, while may have elvpriv data, is not
 | 
						|
 * added on the elevator at this point.  In addition, we don't have
 | 
						|
 * reliable access to the elevator outside queue lock.  Only check basic
 | 
						|
 * merging parameters without querying the elevator.
 | 
						|
 *
 | 
						|
 * Caller must ensure !blk_queue_nomerges(q) beforehand.
 | 
						|
 */
 | 
						|
bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
 | 
						|
		unsigned int nr_segs)
 | 
						|
{
 | 
						|
	struct blk_plug *plug = current->plug;
 | 
						|
	struct request *rq;
 | 
						|
 | 
						|
	if (!plug || rq_list_empty(plug->mq_list))
 | 
						|
		return false;
 | 
						|
 | 
						|
	rq_list_for_each(&plug->mq_list, rq) {
 | 
						|
		if (rq->q == q) {
 | 
						|
			if (blk_attempt_bio_merge(q, rq, bio, nr_segs, false) ==
 | 
						|
			    BIO_MERGE_OK)
 | 
						|
				return true;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Only keep iterating plug list for merges if we have multiple
 | 
						|
		 * queues
 | 
						|
		 */
 | 
						|
		if (!plug->multiple_queues)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate list of requests and see if we can merge this bio with any
 | 
						|
 * of them.
 | 
						|
 */
 | 
						|
bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
 | 
						|
			struct bio *bio, unsigned int nr_segs)
 | 
						|
{
 | 
						|
	struct request *rq;
 | 
						|
	int checked = 8;
 | 
						|
 | 
						|
	list_for_each_entry_reverse(rq, list, queuelist) {
 | 
						|
		if (!checked--)
 | 
						|
			break;
 | 
						|
 | 
						|
		switch (blk_attempt_bio_merge(q, rq, bio, nr_segs, true)) {
 | 
						|
		case BIO_MERGE_NONE:
 | 
						|
			continue;
 | 
						|
		case BIO_MERGE_OK:
 | 
						|
			return true;
 | 
						|
		case BIO_MERGE_FAILED:
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(blk_bio_list_merge);
 | 
						|
 | 
						|
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
 | 
						|
		unsigned int nr_segs, struct request **merged_request)
 | 
						|
{
 | 
						|
	struct request *rq;
 | 
						|
 | 
						|
	switch (elv_merge(q, &rq, bio)) {
 | 
						|
	case ELEVATOR_BACK_MERGE:
 | 
						|
		if (!blk_mq_sched_allow_merge(q, rq, bio))
 | 
						|
			return false;
 | 
						|
		if (bio_attempt_back_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
 | 
						|
			return false;
 | 
						|
		*merged_request = attempt_back_merge(q, rq);
 | 
						|
		if (!*merged_request)
 | 
						|
			elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
 | 
						|
		return true;
 | 
						|
	case ELEVATOR_FRONT_MERGE:
 | 
						|
		if (!blk_mq_sched_allow_merge(q, rq, bio))
 | 
						|
			return false;
 | 
						|
		if (bio_attempt_front_merge(rq, bio, nr_segs) != BIO_MERGE_OK)
 | 
						|
			return false;
 | 
						|
		*merged_request = attempt_front_merge(q, rq);
 | 
						|
		if (!*merged_request)
 | 
						|
			elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
 | 
						|
		return true;
 | 
						|
	case ELEVATOR_DISCARD_MERGE:
 | 
						|
		return bio_attempt_discard_merge(q, rq, bio) == BIO_MERGE_OK;
 | 
						|
	default:
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
 |