188 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			188 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| Code Examples
 | |
| =============
 | |
| 
 | |
| Code Example For Symmetric Key Cipher Operation
 | |
| -----------------------------------------------
 | |
| 
 | |
| This code encrypts some data with AES-256-XTS.  For sake of example,
 | |
| all inputs are random bytes, the encryption is done in-place, and it's
 | |
| assumed the code is running in a context where it can sleep.
 | |
| 
 | |
| ::
 | |
| 
 | |
|     static int test_skcipher(void)
 | |
|     {
 | |
|             struct crypto_skcipher *tfm = NULL;
 | |
|             struct skcipher_request *req = NULL;
 | |
|             u8 *data = NULL;
 | |
|             const size_t datasize = 512; /* data size in bytes */
 | |
|             struct scatterlist sg;
 | |
|             DECLARE_CRYPTO_WAIT(wait);
 | |
|             u8 iv[16];  /* AES-256-XTS takes a 16-byte IV */
 | |
|             u8 key[64]; /* AES-256-XTS takes a 64-byte key */
 | |
|             int err;
 | |
| 
 | |
|             /*
 | |
|              * Allocate a tfm (a transformation object) and set the key.
 | |
|              *
 | |
|              * In real-world use, a tfm and key are typically used for many
 | |
|              * encryption/decryption operations.  But in this example, we'll just do a
 | |
|              * single encryption operation with it (which is not very efficient).
 | |
|              */
 | |
| 
 | |
|             tfm = crypto_alloc_skcipher("xts(aes)", 0, 0);
 | |
|             if (IS_ERR(tfm)) {
 | |
|                     pr_err("Error allocating xts(aes) handle: %ld\n", PTR_ERR(tfm));
 | |
|                     return PTR_ERR(tfm);
 | |
|             }
 | |
| 
 | |
|             get_random_bytes(key, sizeof(key));
 | |
|             err = crypto_skcipher_setkey(tfm, key, sizeof(key));
 | |
|             if (err) {
 | |
|                     pr_err("Error setting key: %d\n", err);
 | |
|                     goto out;
 | |
|             }
 | |
| 
 | |
|             /* Allocate a request object */
 | |
|             req = skcipher_request_alloc(tfm, GFP_KERNEL);
 | |
|             if (!req) {
 | |
|                     err = -ENOMEM;
 | |
|                     goto out;
 | |
|             }
 | |
| 
 | |
|             /* Prepare the input data */
 | |
|             data = kmalloc(datasize, GFP_KERNEL);
 | |
|             if (!data) {
 | |
|                     err = -ENOMEM;
 | |
|                     goto out;
 | |
|             }
 | |
|             get_random_bytes(data, datasize);
 | |
| 
 | |
|             /* Initialize the IV */
 | |
|             get_random_bytes(iv, sizeof(iv));
 | |
| 
 | |
|             /*
 | |
|              * Encrypt the data in-place.
 | |
|              *
 | |
|              * For simplicity, in this example we wait for the request to complete
 | |
|              * before proceeding, even if the underlying implementation is asynchronous.
 | |
|              *
 | |
|              * To decrypt instead of encrypt, just change crypto_skcipher_encrypt() to
 | |
|              * crypto_skcipher_decrypt().
 | |
|              */
 | |
|             sg_init_one(&sg, data, datasize);
 | |
|             skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
 | |
|                                                CRYPTO_TFM_REQ_MAY_SLEEP,
 | |
|                                           crypto_req_done, &wait);
 | |
|             skcipher_request_set_crypt(req, &sg, &sg, datasize, iv);
 | |
|             err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 | |
|             if (err) {
 | |
|                     pr_err("Error encrypting data: %d\n", err);
 | |
|                     goto out;
 | |
|             }
 | |
| 
 | |
|             pr_debug("Encryption was successful\n");
 | |
|     out:
 | |
|             crypto_free_skcipher(tfm);
 | |
|             skcipher_request_free(req);
 | |
|             kfree(data);
 | |
|             return err;
 | |
|     }
 | |
| 
 | |
| 
 | |
| Code Example For Use of Operational State Memory With SHASH
 | |
| -----------------------------------------------------------
 | |
| 
 | |
| ::
 | |
| 
 | |
| 
 | |
|     struct sdesc {
 | |
|         struct shash_desc shash;
 | |
|         char ctx[];
 | |
|     };
 | |
| 
 | |
|     static struct sdesc *init_sdesc(struct crypto_shash *alg)
 | |
|     {
 | |
|         struct sdesc *sdesc;
 | |
|         int size;
 | |
| 
 | |
|         size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
 | |
|         sdesc = kmalloc(size, GFP_KERNEL);
 | |
|         if (!sdesc)
 | |
|             return ERR_PTR(-ENOMEM);
 | |
|         sdesc->shash.tfm = alg;
 | |
|         return sdesc;
 | |
|     }
 | |
| 
 | |
|     static int calc_hash(struct crypto_shash *alg,
 | |
|                  const unsigned char *data, unsigned int datalen,
 | |
|                  unsigned char *digest)
 | |
|     {
 | |
|         struct sdesc *sdesc;
 | |
|         int ret;
 | |
| 
 | |
|         sdesc = init_sdesc(alg);
 | |
|         if (IS_ERR(sdesc)) {
 | |
|             pr_info("can't alloc sdesc\n");
 | |
|             return PTR_ERR(sdesc);
 | |
|         }
 | |
| 
 | |
|         ret = crypto_shash_digest(&sdesc->shash, data, datalen, digest);
 | |
|         kfree(sdesc);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     static int test_hash(const unsigned char *data, unsigned int datalen,
 | |
|                  unsigned char *digest)
 | |
|     {
 | |
|         struct crypto_shash *alg;
 | |
|         char *hash_alg_name = "sha1-padlock-nano";
 | |
|         int ret;
 | |
| 
 | |
|         alg = crypto_alloc_shash(hash_alg_name, 0, 0);
 | |
|         if (IS_ERR(alg)) {
 | |
|                 pr_info("can't alloc alg %s\n", hash_alg_name);
 | |
|                 return PTR_ERR(alg);
 | |
|         }
 | |
|         ret = calc_hash(alg, data, datalen, digest);
 | |
|         crypto_free_shash(alg);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
| 
 | |
| Code Example For Random Number Generator Usage
 | |
| ----------------------------------------------
 | |
| 
 | |
| ::
 | |
| 
 | |
| 
 | |
|     static int get_random_numbers(u8 *buf, unsigned int len)
 | |
|     {
 | |
|         struct crypto_rng *rng = NULL;
 | |
|         char *drbg = "drbg_nopr_sha256"; /* Hash DRBG with SHA-256, no PR */
 | |
|         int ret;
 | |
| 
 | |
|         if (!buf || !len) {
 | |
|             pr_debug("No output buffer provided\n");
 | |
|             return -EINVAL;
 | |
|         }
 | |
| 
 | |
|         rng = crypto_alloc_rng(drbg, 0, 0);
 | |
|         if (IS_ERR(rng)) {
 | |
|             pr_debug("could not allocate RNG handle for %s\n", drbg);
 | |
|             return PTR_ERR(rng);
 | |
|         }
 | |
| 
 | |
|         ret = crypto_rng_get_bytes(rng, buf, len);
 | |
|         if (ret < 0)
 | |
|             pr_debug("generation of random numbers failed\n");
 | |
|         else if (ret == 0)
 | |
|             pr_debug("RNG returned no data");
 | |
|         else
 | |
|             pr_debug("RNG returned %d bytes of data\n", ret);
 | |
| 
 | |
|     out:
 | |
|         crypto_free_rng(rng);
 | |
|         return ret;
 | |
|     }
 |