1366 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1366 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SCTP kernel implementation
 | |
|  * Copyright (c) 1999-2000 Cisco, Inc.
 | |
|  * Copyright (c) 1999-2001 Motorola, Inc.
 | |
|  * Copyright (c) 2001-2003 International Business Machines, Corp.
 | |
|  * Copyright (c) 2001 Intel Corp.
 | |
|  * Copyright (c) 2001 Nokia, Inc.
 | |
|  * Copyright (c) 2001 La Monte H.P. Yarroll
 | |
|  *
 | |
|  * This file is part of the SCTP kernel implementation
 | |
|  *
 | |
|  * These functions handle all input from the IP layer into SCTP.
 | |
|  *
 | |
|  * This SCTP implementation is free software;
 | |
|  * you can redistribute it and/or modify it under the terms of
 | |
|  * the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * This SCTP implementation is distributed in the hope that it
 | |
|  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
 | |
|  *                 ************************
 | |
|  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  * See the GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with GNU CC; see the file COPYING.  If not, see
 | |
|  * <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * Please send any bug reports or fixes you make to the
 | |
|  * email address(es):
 | |
|  *    lksctp developers <linux-sctp@vger.kernel.org>
 | |
|  *
 | |
|  * Written or modified by:
 | |
|  *    La Monte H.P. Yarroll <piggy@acm.org>
 | |
|  *    Karl Knutson <karl@athena.chicago.il.us>
 | |
|  *    Xingang Guo <xingang.guo@intel.com>
 | |
|  *    Jon Grimm <jgrimm@us.ibm.com>
 | |
|  *    Hui Huang <hui.huang@nokia.com>
 | |
|  *    Daisy Chang <daisyc@us.ibm.com>
 | |
|  *    Sridhar Samudrala <sri@us.ibm.com>
 | |
|  *    Ardelle Fan <ardelle.fan@intel.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/list.h> /* For struct list_head */
 | |
| #include <linux/socket.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/time.h> /* For struct timeval */
 | |
| #include <linux/slab.h>
 | |
| #include <net/ip.h>
 | |
| #include <net/icmp.h>
 | |
| #include <net/snmp.h>
 | |
| #include <net/sock.h>
 | |
| #include <net/xfrm.h>
 | |
| #include <net/sctp/sctp.h>
 | |
| #include <net/sctp/sm.h>
 | |
| #include <net/sctp/checksum.h>
 | |
| #include <net/net_namespace.h>
 | |
| #include <linux/rhashtable.h>
 | |
| #include <net/sock_reuseport.h>
 | |
| 
 | |
| /* Forward declarations for internal helpers. */
 | |
| static int sctp_rcv_ootb(struct sk_buff *);
 | |
| static struct sctp_association *__sctp_rcv_lookup(struct net *net,
 | |
| 				      struct sk_buff *skb,
 | |
| 				      const union sctp_addr *paddr,
 | |
| 				      const union sctp_addr *laddr,
 | |
| 				      struct sctp_transport **transportp);
 | |
| static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
 | |
| 					struct net *net, struct sk_buff *skb,
 | |
| 					const union sctp_addr *laddr,
 | |
| 					const union sctp_addr *daddr);
 | |
| static struct sctp_association *__sctp_lookup_association(
 | |
| 					struct net *net,
 | |
| 					const union sctp_addr *local,
 | |
| 					const union sctp_addr *peer,
 | |
| 					struct sctp_transport **pt);
 | |
| 
 | |
| static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
 | |
| 
 | |
| 
 | |
| /* Calculate the SCTP checksum of an SCTP packet.  */
 | |
| static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
 | |
| {
 | |
| 	struct sctphdr *sh = sctp_hdr(skb);
 | |
| 	__le32 cmp = sh->checksum;
 | |
| 	__le32 val = sctp_compute_cksum(skb, 0);
 | |
| 
 | |
| 	if (val != cmp) {
 | |
| 		/* CRC failure, dump it. */
 | |
| 		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the routine which IP calls when receiving an SCTP packet.
 | |
|  */
 | |
| int sctp_rcv(struct sk_buff *skb)
 | |
| {
 | |
| 	struct sock *sk;
 | |
| 	struct sctp_association *asoc;
 | |
| 	struct sctp_endpoint *ep = NULL;
 | |
| 	struct sctp_ep_common *rcvr;
 | |
| 	struct sctp_transport *transport = NULL;
 | |
| 	struct sctp_chunk *chunk;
 | |
| 	union sctp_addr src;
 | |
| 	union sctp_addr dest;
 | |
| 	int bound_dev_if;
 | |
| 	int family;
 | |
| 	struct sctp_af *af;
 | |
| 	struct net *net = dev_net(skb->dev);
 | |
| 	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
 | |
| 
 | |
| 	if (skb->pkt_type != PACKET_HOST)
 | |
| 		goto discard_it;
 | |
| 
 | |
| 	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
 | |
| 
 | |
| 	/* If packet is too small to contain a single chunk, let's not
 | |
| 	 * waste time on it anymore.
 | |
| 	 */
 | |
| 	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
 | |
| 		       skb_transport_offset(skb))
 | |
| 		goto discard_it;
 | |
| 
 | |
| 	/* If the packet is fragmented and we need to do crc checking,
 | |
| 	 * it's better to just linearize it otherwise crc computing
 | |
| 	 * takes longer.
 | |
| 	 */
 | |
| 	if (((!is_gso || skb_cloned(skb)) && skb_linearize(skb)) ||
 | |
| 	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
 | |
| 		goto discard_it;
 | |
| 
 | |
| 	/* Pull up the IP header. */
 | |
| 	__skb_pull(skb, skb_transport_offset(skb));
 | |
| 
 | |
| 	skb->csum_valid = 0; /* Previous value not applicable */
 | |
| 	if (skb_csum_unnecessary(skb))
 | |
| 		__skb_decr_checksum_unnecessary(skb);
 | |
| 	else if (!sctp_checksum_disable &&
 | |
| 		 !is_gso &&
 | |
| 		 sctp_rcv_checksum(net, skb) < 0)
 | |
| 		goto discard_it;
 | |
| 	skb->csum_valid = 1;
 | |
| 
 | |
| 	__skb_pull(skb, sizeof(struct sctphdr));
 | |
| 
 | |
| 	family = ipver2af(ip_hdr(skb)->version);
 | |
| 	af = sctp_get_af_specific(family);
 | |
| 	if (unlikely(!af))
 | |
| 		goto discard_it;
 | |
| 	SCTP_INPUT_CB(skb)->af = af;
 | |
| 
 | |
| 	/* Initialize local addresses for lookups. */
 | |
| 	af->from_skb(&src, skb, 1);
 | |
| 	af->from_skb(&dest, skb, 0);
 | |
| 
 | |
| 	/* If the packet is to or from a non-unicast address,
 | |
| 	 * silently discard the packet.
 | |
| 	 *
 | |
| 	 * This is not clearly defined in the RFC except in section
 | |
| 	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 | |
| 	 * Transmission Protocol" 2.1, "It is important to note that the
 | |
| 	 * IP address of an SCTP transport address must be a routable
 | |
| 	 * unicast address.  In other words, IP multicast addresses and
 | |
| 	 * IP broadcast addresses cannot be used in an SCTP transport
 | |
| 	 * address."
 | |
| 	 */
 | |
| 	if (!af->addr_valid(&src, NULL, skb) ||
 | |
| 	    !af->addr_valid(&dest, NULL, skb))
 | |
| 		goto discard_it;
 | |
| 
 | |
| 	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
 | |
| 
 | |
| 	if (!asoc)
 | |
| 		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
 | |
| 
 | |
| 	/* Retrieve the common input handling substructure. */
 | |
| 	rcvr = asoc ? &asoc->base : &ep->base;
 | |
| 	sk = rcvr->sk;
 | |
| 
 | |
| 	/*
 | |
| 	 * If a frame arrives on an interface and the receiving socket is
 | |
| 	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
 | |
| 	 */
 | |
| 	bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
 | |
| 	if (bound_dev_if && (bound_dev_if != af->skb_iif(skb))) {
 | |
| 		if (transport) {
 | |
| 			sctp_transport_put(transport);
 | |
| 			asoc = NULL;
 | |
| 			transport = NULL;
 | |
| 		} else {
 | |
| 			sctp_endpoint_put(ep);
 | |
| 			ep = NULL;
 | |
| 		}
 | |
| 		sk = net->sctp.ctl_sock;
 | |
| 		ep = sctp_sk(sk)->ep;
 | |
| 		sctp_endpoint_hold(ep);
 | |
| 		rcvr = &ep->base;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 | |
| 	 * An SCTP packet is called an "out of the blue" (OOTB)
 | |
| 	 * packet if it is correctly formed, i.e., passed the
 | |
| 	 * receiver's checksum check, but the receiver is not
 | |
| 	 * able to identify the association to which this
 | |
| 	 * packet belongs.
 | |
| 	 */
 | |
| 	if (!asoc) {
 | |
| 		if (sctp_rcv_ootb(skb)) {
 | |
| 			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
 | |
| 			goto discard_release;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 | |
| 		goto discard_release;
 | |
| 	nf_reset(skb);
 | |
| 
 | |
| 	if (sk_filter(sk, skb))
 | |
| 		goto discard_release;
 | |
| 
 | |
| 	/* Create an SCTP packet structure. */
 | |
| 	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
 | |
| 	if (!chunk)
 | |
| 		goto discard_release;
 | |
| 	SCTP_INPUT_CB(skb)->chunk = chunk;
 | |
| 
 | |
| 	/* Remember what endpoint is to handle this packet. */
 | |
| 	chunk->rcvr = rcvr;
 | |
| 
 | |
| 	/* Remember the SCTP header. */
 | |
| 	chunk->sctp_hdr = sctp_hdr(skb);
 | |
| 
 | |
| 	/* Set the source and destination addresses of the incoming chunk.  */
 | |
| 	sctp_init_addrs(chunk, &src, &dest);
 | |
| 
 | |
| 	/* Remember where we came from.  */
 | |
| 	chunk->transport = transport;
 | |
| 
 | |
| 	/* Acquire access to the sock lock. Note: We are safe from other
 | |
| 	 * bottom halves on this lock, but a user may be in the lock too,
 | |
| 	 * so check if it is busy.
 | |
| 	 */
 | |
| 	bh_lock_sock(sk);
 | |
| 
 | |
| 	if (sk != rcvr->sk) {
 | |
| 		/* Our cached sk is different from the rcvr->sk.  This is
 | |
| 		 * because migrate()/accept() may have moved the association
 | |
| 		 * to a new socket and released all the sockets.  So now we
 | |
| 		 * are holding a lock on the old socket while the user may
 | |
| 		 * be doing something with the new socket.  Switch our veiw
 | |
| 		 * of the current sk.
 | |
| 		 */
 | |
| 		bh_unlock_sock(sk);
 | |
| 		sk = rcvr->sk;
 | |
| 		bh_lock_sock(sk);
 | |
| 	}
 | |
| 
 | |
| 	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
 | |
| 		if (sctp_add_backlog(sk, skb)) {
 | |
| 			bh_unlock_sock(sk);
 | |
| 			sctp_chunk_free(chunk);
 | |
| 			skb = NULL; /* sctp_chunk_free already freed the skb */
 | |
| 			goto discard_release;
 | |
| 		}
 | |
| 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
 | |
| 	} else {
 | |
| 		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
 | |
| 		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 | |
| 	}
 | |
| 
 | |
| 	bh_unlock_sock(sk);
 | |
| 
 | |
| 	/* Release the asoc/ep ref we took in the lookup calls. */
 | |
| 	if (transport)
 | |
| 		sctp_transport_put(transport);
 | |
| 	else
 | |
| 		sctp_endpoint_put(ep);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| discard_it:
 | |
| 	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
 | |
| 	kfree_skb(skb);
 | |
| 	return 0;
 | |
| 
 | |
| discard_release:
 | |
| 	/* Release the asoc/ep ref we took in the lookup calls. */
 | |
| 	if (transport)
 | |
| 		sctp_transport_put(transport);
 | |
| 	else
 | |
| 		sctp_endpoint_put(ep);
 | |
| 
 | |
| 	goto discard_it;
 | |
| }
 | |
| 
 | |
| /* Process the backlog queue of the socket.  Every skb on
 | |
|  * the backlog holds a ref on an association or endpoint.
 | |
|  * We hold this ref throughout the state machine to make
 | |
|  * sure that the structure we need is still around.
 | |
|  */
 | |
| int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 | |
| 	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 | |
| 	struct sctp_transport *t = chunk->transport;
 | |
| 	struct sctp_ep_common *rcvr = NULL;
 | |
| 	int backloged = 0;
 | |
| 
 | |
| 	rcvr = chunk->rcvr;
 | |
| 
 | |
| 	/* If the rcvr is dead then the association or endpoint
 | |
| 	 * has been deleted and we can safely drop the chunk
 | |
| 	 * and refs that we are holding.
 | |
| 	 */
 | |
| 	if (rcvr->dead) {
 | |
| 		sctp_chunk_free(chunk);
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(rcvr->sk != sk)) {
 | |
| 		/* In this case, the association moved from one socket to
 | |
| 		 * another.  We are currently sitting on the backlog of the
 | |
| 		 * old socket, so we need to move.
 | |
| 		 * However, since we are here in the process context we
 | |
| 		 * need to take make sure that the user doesn't own
 | |
| 		 * the new socket when we process the packet.
 | |
| 		 * If the new socket is user-owned, queue the chunk to the
 | |
| 		 * backlog of the new socket without dropping any refs.
 | |
| 		 * Otherwise, we can safely push the chunk on the inqueue.
 | |
| 		 */
 | |
| 
 | |
| 		sk = rcvr->sk;
 | |
| 		local_bh_disable();
 | |
| 		bh_lock_sock(sk);
 | |
| 
 | |
| 		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
 | |
| 			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
 | |
| 				sctp_chunk_free(chunk);
 | |
| 			else
 | |
| 				backloged = 1;
 | |
| 		} else
 | |
| 			sctp_inq_push(inqueue, chunk);
 | |
| 
 | |
| 		bh_unlock_sock(sk);
 | |
| 		local_bh_enable();
 | |
| 
 | |
| 		/* If the chunk was backloged again, don't drop refs */
 | |
| 		if (backloged)
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		if (!sctp_newsk_ready(sk)) {
 | |
| 			if (!sk_add_backlog(sk, skb, sk->sk_rcvbuf))
 | |
| 				return 0;
 | |
| 			sctp_chunk_free(chunk);
 | |
| 		} else {
 | |
| 			sctp_inq_push(inqueue, chunk);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	/* Release the refs we took in sctp_add_backlog */
 | |
| 	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 | |
| 		sctp_transport_put(t);
 | |
| 	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 | |
| 		sctp_endpoint_put(sctp_ep(rcvr));
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 | |
| 	struct sctp_transport *t = chunk->transport;
 | |
| 	struct sctp_ep_common *rcvr = chunk->rcvr;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
 | |
| 	if (!ret) {
 | |
| 		/* Hold the assoc/ep while hanging on the backlog queue.
 | |
| 		 * This way, we know structures we need will not disappear
 | |
| 		 * from us
 | |
| 		 */
 | |
| 		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 | |
| 			sctp_transport_hold(t);
 | |
| 		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 | |
| 			sctp_endpoint_hold(sctp_ep(rcvr));
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* Handle icmp frag needed error. */
 | |
| void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 | |
| 			   struct sctp_transport *t, __u32 pmtu)
 | |
| {
 | |
| 	if (!t ||
 | |
| 	    (t->pathmtu <= pmtu &&
 | |
| 	     t->pl.probe_size + sctp_transport_pl_hlen(t) <= pmtu))
 | |
| 		return;
 | |
| 
 | |
| 	if (sock_owned_by_user(sk)) {
 | |
| 		atomic_set(&t->mtu_info, pmtu);
 | |
| 		asoc->pmtu_pending = 1;
 | |
| 		t->pmtu_pending = 1;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!(t->param_flags & SPP_PMTUD_ENABLE))
 | |
| 		/* We can't allow retransmitting in such case, as the
 | |
| 		 * retransmission would be sized just as before, and thus we
 | |
| 		 * would get another icmp, and retransmit again.
 | |
| 		 */
 | |
| 		return;
 | |
| 
 | |
| 	/* Update transports view of the MTU. Return if no update was needed.
 | |
| 	 * If an update wasn't needed/possible, it also doesn't make sense to
 | |
| 	 * try to retransmit now.
 | |
| 	 */
 | |
| 	if (!sctp_transport_update_pmtu(t, pmtu))
 | |
| 		return;
 | |
| 
 | |
| 	/* Update association pmtu. */
 | |
| 	sctp_assoc_sync_pmtu(asoc);
 | |
| 
 | |
| 	/* Retransmit with the new pmtu setting. */
 | |
| 	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 | |
| }
 | |
| 
 | |
| void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
 | |
| 			struct sk_buff *skb)
 | |
| {
 | |
| 	struct dst_entry *dst;
 | |
| 
 | |
| 	if (sock_owned_by_user(sk) || !t)
 | |
| 		return;
 | |
| 	dst = sctp_transport_dst_check(t);
 | |
| 	if (dst)
 | |
| 		dst->ops->redirect(dst, sk, skb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 | |
|  *
 | |
|  * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 | |
|  *        or a "Protocol Unreachable" treat this message as an abort
 | |
|  *        with the T bit set.
 | |
|  *
 | |
|  * This function sends an event to the state machine, which will abort the
 | |
|  * association.
 | |
|  *
 | |
|  */
 | |
| void sctp_icmp_proto_unreachable(struct sock *sk,
 | |
| 			   struct sctp_association *asoc,
 | |
| 			   struct sctp_transport *t)
 | |
| {
 | |
| 	if (sock_owned_by_user(sk)) {
 | |
| 		if (timer_pending(&t->proto_unreach_timer))
 | |
| 			return;
 | |
| 		else {
 | |
| 			if (!mod_timer(&t->proto_unreach_timer,
 | |
| 						jiffies + (HZ/20)))
 | |
| 				sctp_transport_hold(t);
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct net *net = sock_net(sk);
 | |
| 
 | |
| 		pr_debug("%s: unrecognized next header type "
 | |
| 			 "encountered!\n", __func__);
 | |
| 
 | |
| 		if (del_timer(&t->proto_unreach_timer))
 | |
| 			sctp_transport_put(t);
 | |
| 
 | |
| 		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
 | |
| 			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 | |
| 			   asoc->state, asoc->ep, asoc, t,
 | |
| 			   GFP_ATOMIC);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Common lookup code for icmp/icmpv6 error handler. */
 | |
| struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
 | |
| 			     struct sctphdr *sctphdr,
 | |
| 			     struct sctp_association **app,
 | |
| 			     struct sctp_transport **tpp)
 | |
| {
 | |
| 	struct sctp_init_chunk *chunkhdr, _chunkhdr;
 | |
| 	union sctp_addr saddr;
 | |
| 	union sctp_addr daddr;
 | |
| 	struct sctp_af *af;
 | |
| 	struct sock *sk = NULL;
 | |
| 	struct sctp_association *asoc;
 | |
| 	struct sctp_transport *transport = NULL;
 | |
| 	__u32 vtag = ntohl(sctphdr->vtag);
 | |
| 
 | |
| 	*app = NULL; *tpp = NULL;
 | |
| 
 | |
| 	af = sctp_get_af_specific(family);
 | |
| 	if (unlikely(!af)) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialize local addresses for lookups. */
 | |
| 	af->from_skb(&saddr, skb, 1);
 | |
| 	af->from_skb(&daddr, skb, 0);
 | |
| 
 | |
| 	/* Look for an association that matches the incoming ICMP error
 | |
| 	 * packet.
 | |
| 	 */
 | |
| 	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
 | |
| 	if (!asoc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sk = asoc->base.sk;
 | |
| 
 | |
| 	/* RFC 4960, Appendix C. ICMP Handling
 | |
| 	 *
 | |
| 	 * ICMP6) An implementation MUST validate that the Verification Tag
 | |
| 	 * contained in the ICMP message matches the Verification Tag of
 | |
| 	 * the peer.  If the Verification Tag is not 0 and does NOT
 | |
| 	 * match, discard the ICMP message.  If it is 0 and the ICMP
 | |
| 	 * message contains enough bytes to verify that the chunk type is
 | |
| 	 * an INIT chunk and that the Initiate Tag matches the tag of the
 | |
| 	 * peer, continue with ICMP7.  If the ICMP message is too short
 | |
| 	 * or the chunk type or the Initiate Tag does not match, silently
 | |
| 	 * discard the packet.
 | |
| 	 */
 | |
| 	if (vtag == 0) {
 | |
| 		/* chunk header + first 4 octects of init header */
 | |
| 		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
 | |
| 					      sizeof(struct sctphdr),
 | |
| 					      sizeof(struct sctp_chunkhdr) +
 | |
| 					      sizeof(__be32), &_chunkhdr);
 | |
| 		if (!chunkhdr ||
 | |
| 		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 | |
| 		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
 | |
| 			goto out;
 | |
| 
 | |
| 	} else if (vtag != asoc->c.peer_vtag) {
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	bh_lock_sock(sk);
 | |
| 
 | |
| 	/* If too many ICMPs get dropped on busy
 | |
| 	 * servers this needs to be solved differently.
 | |
| 	 */
 | |
| 	if (sock_owned_by_user(sk))
 | |
| 		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 | |
| 
 | |
| 	*app = asoc;
 | |
| 	*tpp = transport;
 | |
| 	return sk;
 | |
| 
 | |
| out:
 | |
| 	sctp_transport_put(transport);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Common cleanup code for icmp/icmpv6 error handler. */
 | |
| void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
 | |
| {
 | |
| 	bh_unlock_sock(sk);
 | |
| 	sctp_transport_put(t);
 | |
| }
 | |
| 
 | |
| static void sctp_v4_err_handle(struct sctp_transport *t, struct sk_buff *skb,
 | |
| 			       __u8 type, __u8 code, __u32 info)
 | |
| {
 | |
| 	struct sctp_association *asoc = t->asoc;
 | |
| 	struct sock *sk = asoc->base.sk;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case ICMP_PARAMETERPROB:
 | |
| 		err = EPROTO;
 | |
| 		break;
 | |
| 	case ICMP_DEST_UNREACH:
 | |
| 		if (code > NR_ICMP_UNREACH)
 | |
| 			return;
 | |
| 		if (code == ICMP_FRAG_NEEDED) {
 | |
| 			sctp_icmp_frag_needed(sk, asoc, t, SCTP_TRUNC4(info));
 | |
| 			return;
 | |
| 		}
 | |
| 		if (code == ICMP_PROT_UNREACH) {
 | |
| 			sctp_icmp_proto_unreachable(sk, asoc, t);
 | |
| 			return;
 | |
| 		}
 | |
| 		err = icmp_err_convert[code].errno;
 | |
| 		break;
 | |
| 	case ICMP_TIME_EXCEEDED:
 | |
| 		if (code == ICMP_EXC_FRAGTIME)
 | |
| 			return;
 | |
| 
 | |
| 		err = EHOSTUNREACH;
 | |
| 		break;
 | |
| 	case ICMP_REDIRECT:
 | |
| 		sctp_icmp_redirect(sk, t, skb);
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!sock_owned_by_user(sk) && inet_sk(sk)->recverr) {
 | |
| 		sk->sk_err = err;
 | |
| 		sk_error_report(sk);
 | |
| 	} else {  /* Only an error on timeout */
 | |
| 		sk->sk_err_soft = err;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine is called by the ICMP module when it gets some
 | |
|  * sort of error condition.  If err < 0 then the socket should
 | |
|  * be closed and the error returned to the user.  If err > 0
 | |
|  * it's just the icmp type << 8 | icmp code.  After adjustment
 | |
|  * header points to the first 8 bytes of the sctp header.  We need
 | |
|  * to find the appropriate port.
 | |
|  *
 | |
|  * The locking strategy used here is very "optimistic". When
 | |
|  * someone else accesses the socket the ICMP is just dropped
 | |
|  * and for some paths there is no check at all.
 | |
|  * A more general error queue to queue errors for later handling
 | |
|  * is probably better.
 | |
|  *
 | |
|  */
 | |
| int sctp_v4_err(struct sk_buff *skb, __u32 info)
 | |
| {
 | |
| 	const struct iphdr *iph = (const struct iphdr *)skb->data;
 | |
| 	const int type = icmp_hdr(skb)->type;
 | |
| 	const int code = icmp_hdr(skb)->code;
 | |
| 	struct net *net = dev_net(skb->dev);
 | |
| 	struct sctp_transport *transport;
 | |
| 	struct sctp_association *asoc;
 | |
| 	__u16 saveip, savesctp;
 | |
| 	struct sock *sk;
 | |
| 
 | |
| 	/* Fix up skb to look at the embedded net header. */
 | |
| 	saveip = skb->network_header;
 | |
| 	savesctp = skb->transport_header;
 | |
| 	skb_reset_network_header(skb);
 | |
| 	skb_set_transport_header(skb, iph->ihl * 4);
 | |
| 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 | |
| 	/* Put back, the original values. */
 | |
| 	skb->network_header = saveip;
 | |
| 	skb->transport_header = savesctp;
 | |
| 	if (!sk) {
 | |
| 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	sctp_v4_err_handle(transport, skb, type, code, info);
 | |
| 	sctp_err_finish(sk, transport);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sctp_udp_v4_err(struct sock *sk, struct sk_buff *skb)
 | |
| {
 | |
| 	struct net *net = dev_net(skb->dev);
 | |
| 	struct sctp_association *asoc;
 | |
| 	struct sctp_transport *t;
 | |
| 	struct icmphdr *hdr;
 | |
| 	__u32 info = 0;
 | |
| 
 | |
| 	skb->transport_header += sizeof(struct udphdr);
 | |
| 	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &t);
 | |
| 	if (!sk) {
 | |
| 		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	skb->transport_header -= sizeof(struct udphdr);
 | |
| 	hdr = (struct icmphdr *)(skb_network_header(skb) - sizeof(struct icmphdr));
 | |
| 	if (hdr->type == ICMP_REDIRECT) {
 | |
| 		/* can't be handled without outer iphdr known, leave it to udp_err */
 | |
| 		sctp_err_finish(sk, t);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (hdr->type == ICMP_DEST_UNREACH && hdr->code == ICMP_FRAG_NEEDED)
 | |
| 		info = ntohs(hdr->un.frag.mtu);
 | |
| 	sctp_v4_err_handle(t, skb, hdr->type, hdr->code, info);
 | |
| 
 | |
| 	sctp_err_finish(sk, t);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 | |
|  *
 | |
|  * This function scans all the chunks in the OOTB packet to determine if
 | |
|  * the packet should be discarded right away.  If a response might be needed
 | |
|  * for this packet, or, if further processing is possible, the packet will
 | |
|  * be queued to a proper inqueue for the next phase of handling.
 | |
|  *
 | |
|  * Output:
 | |
|  * Return 0 - If further processing is needed.
 | |
|  * Return 1 - If the packet can be discarded right away.
 | |
|  */
 | |
| static int sctp_rcv_ootb(struct sk_buff *skb)
 | |
| {
 | |
| 	struct sctp_chunkhdr *ch, _ch;
 | |
| 	int ch_end, offset = 0;
 | |
| 
 | |
| 	/* Scan through all the chunks in the packet.  */
 | |
| 	do {
 | |
| 		/* Make sure we have at least the header there */
 | |
| 		if (offset + sizeof(_ch) > skb->len)
 | |
| 			break;
 | |
| 
 | |
| 		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
 | |
| 
 | |
| 		/* Break out if chunk length is less then minimal. */
 | |
| 		if (!ch || ntohs(ch->length) < sizeof(_ch))
 | |
| 			break;
 | |
| 
 | |
| 		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
 | |
| 		if (ch_end > skb->len)
 | |
| 			break;
 | |
| 
 | |
| 		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 | |
| 		 * receiver MUST silently discard the OOTB packet and take no
 | |
| 		 * further action.
 | |
| 		 */
 | |
| 		if (SCTP_CID_ABORT == ch->type)
 | |
| 			goto discard;
 | |
| 
 | |
| 		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 | |
| 		 * chunk, the receiver should silently discard the packet
 | |
| 		 * and take no further action.
 | |
| 		 */
 | |
| 		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 | |
| 			goto discard;
 | |
| 
 | |
| 		/* RFC 4460, 2.11.2
 | |
| 		 * This will discard packets with INIT chunk bundled as
 | |
| 		 * subsequent chunks in the packet.  When INIT is first,
 | |
| 		 * the normal INIT processing will discard the chunk.
 | |
| 		 */
 | |
| 		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 | |
| 			goto discard;
 | |
| 
 | |
| 		offset = ch_end;
 | |
| 	} while (ch_end < skb->len);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| discard:
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Insert endpoint into the hash table.  */
 | |
| static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
 | |
| {
 | |
| 	struct sock *sk = ep->base.sk;
 | |
| 	struct net *net = sock_net(sk);
 | |
| 	struct sctp_hashbucket *head;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	ep->hashent = sctp_ep_hashfn(net, ep->base.bind_addr.port);
 | |
| 	head = &sctp_ep_hashtable[ep->hashent];
 | |
| 
 | |
| 	write_lock(&head->lock);
 | |
| 	if (sk->sk_reuseport) {
 | |
| 		bool any = sctp_is_ep_boundall(sk);
 | |
| 		struct sctp_endpoint *ep2;
 | |
| 		struct list_head *list;
 | |
| 		int cnt = 0;
 | |
| 
 | |
| 		err = 1;
 | |
| 
 | |
| 		list_for_each(list, &ep->base.bind_addr.address_list)
 | |
| 			cnt++;
 | |
| 
 | |
| 		sctp_for_each_hentry(ep2, &head->chain) {
 | |
| 			struct sock *sk2 = ep2->base.sk;
 | |
| 
 | |
| 			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
 | |
| 			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
 | |
| 			    !sk2->sk_reuseport)
 | |
| 				continue;
 | |
| 
 | |
| 			err = sctp_bind_addrs_check(sctp_sk(sk2),
 | |
| 						    sctp_sk(sk), cnt);
 | |
| 			if (!err) {
 | |
| 				err = reuseport_add_sock(sk, sk2, any);
 | |
| 				if (err)
 | |
| 					goto out;
 | |
| 				break;
 | |
| 			} else if (err < 0) {
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (err) {
 | |
| 			err = reuseport_alloc(sk, any);
 | |
| 			if (err)
 | |
| 				goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hlist_add_head(&ep->node, &head->chain);
 | |
| out:
 | |
| 	write_unlock(&head->lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Add an endpoint to the hash. Local BH-safe. */
 | |
| int sctp_hash_endpoint(struct sctp_endpoint *ep)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	local_bh_disable();
 | |
| 	err = __sctp_hash_endpoint(ep);
 | |
| 	local_bh_enable();
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* Remove endpoint from the hash table.  */
 | |
| static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 | |
| {
 | |
| 	struct sock *sk = ep->base.sk;
 | |
| 	struct sctp_hashbucket *head;
 | |
| 
 | |
| 	ep->hashent = sctp_ep_hashfn(sock_net(sk), ep->base.bind_addr.port);
 | |
| 
 | |
| 	head = &sctp_ep_hashtable[ep->hashent];
 | |
| 
 | |
| 	write_lock(&head->lock);
 | |
| 	if (rcu_access_pointer(sk->sk_reuseport_cb))
 | |
| 		reuseport_detach_sock(sk);
 | |
| 	hlist_del_init(&ep->node);
 | |
| 	write_unlock(&head->lock);
 | |
| }
 | |
| 
 | |
| /* Remove endpoint from the hash.  Local BH-safe. */
 | |
| void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 | |
| {
 | |
| 	local_bh_disable();
 | |
| 	__sctp_unhash_endpoint(ep);
 | |
| 	local_bh_enable();
 | |
| }
 | |
| 
 | |
| static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
 | |
| 				const union sctp_addr *paddr, __u32 seed)
 | |
| {
 | |
| 	__u32 addr;
 | |
| 
 | |
| 	if (paddr->sa.sa_family == AF_INET6)
 | |
| 		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
 | |
| 	else
 | |
| 		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
 | |
| 
 | |
| 	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
 | |
| 			     (__force __u32)lport, net_hash_mix(net), seed);
 | |
| }
 | |
| 
 | |
| /* Look up an endpoint. */
 | |
| static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
 | |
| 					struct net *net, struct sk_buff *skb,
 | |
| 					const union sctp_addr *laddr,
 | |
| 					const union sctp_addr *paddr)
 | |
| {
 | |
| 	struct sctp_hashbucket *head;
 | |
| 	struct sctp_endpoint *ep;
 | |
| 	struct sock *sk;
 | |
| 	__be16 lport;
 | |
| 	int hash;
 | |
| 
 | |
| 	lport = laddr->v4.sin_port;
 | |
| 	hash = sctp_ep_hashfn(net, ntohs(lport));
 | |
| 	head = &sctp_ep_hashtable[hash];
 | |
| 	read_lock(&head->lock);
 | |
| 	sctp_for_each_hentry(ep, &head->chain) {
 | |
| 		if (sctp_endpoint_is_match(ep, net, laddr))
 | |
| 			goto hit;
 | |
| 	}
 | |
| 
 | |
| 	ep = sctp_sk(net->sctp.ctl_sock)->ep;
 | |
| 
 | |
| hit:
 | |
| 	sk = ep->base.sk;
 | |
| 	if (sk->sk_reuseport) {
 | |
| 		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
 | |
| 
 | |
| 		sk = reuseport_select_sock(sk, phash, skb,
 | |
| 					   sizeof(struct sctphdr));
 | |
| 		if (sk)
 | |
| 			ep = sctp_sk(sk)->ep;
 | |
| 	}
 | |
| 	sctp_endpoint_hold(ep);
 | |
| 	read_unlock(&head->lock);
 | |
| 	return ep;
 | |
| }
 | |
| 
 | |
| /* rhashtable for transport */
 | |
| struct sctp_hash_cmp_arg {
 | |
| 	const union sctp_addr	*paddr;
 | |
| 	const struct net	*net;
 | |
| 	__be16			lport;
 | |
| };
 | |
| 
 | |
| static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
 | |
| 				const void *ptr)
 | |
| {
 | |
| 	struct sctp_transport *t = (struct sctp_transport *)ptr;
 | |
| 	const struct sctp_hash_cmp_arg *x = arg->key;
 | |
| 	int err = 1;
 | |
| 
 | |
| 	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
 | |
| 		return err;
 | |
| 	if (!sctp_transport_hold(t))
 | |
| 		return err;
 | |
| 
 | |
| 	if (!net_eq(t->asoc->base.net, x->net))
 | |
| 		goto out;
 | |
| 	if (x->lport != htons(t->asoc->base.bind_addr.port))
 | |
| 		goto out;
 | |
| 
 | |
| 	err = 0;
 | |
| out:
 | |
| 	sctp_transport_put(t);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
 | |
| {
 | |
| 	const struct sctp_transport *t = data;
 | |
| 
 | |
| 	return sctp_hashfn(t->asoc->base.net,
 | |
| 			   htons(t->asoc->base.bind_addr.port),
 | |
| 			   &t->ipaddr, seed);
 | |
| }
 | |
| 
 | |
| static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
 | |
| {
 | |
| 	const struct sctp_hash_cmp_arg *x = data;
 | |
| 
 | |
| 	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
 | |
| }
 | |
| 
 | |
| static const struct rhashtable_params sctp_hash_params = {
 | |
| 	.head_offset		= offsetof(struct sctp_transport, node),
 | |
| 	.hashfn			= sctp_hash_key,
 | |
| 	.obj_hashfn		= sctp_hash_obj,
 | |
| 	.obj_cmpfn		= sctp_hash_cmp,
 | |
| 	.automatic_shrinking	= true,
 | |
| };
 | |
| 
 | |
| int sctp_transport_hashtable_init(void)
 | |
| {
 | |
| 	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
 | |
| }
 | |
| 
 | |
| void sctp_transport_hashtable_destroy(void)
 | |
| {
 | |
| 	rhltable_destroy(&sctp_transport_hashtable);
 | |
| }
 | |
| 
 | |
| int sctp_hash_transport(struct sctp_transport *t)
 | |
| {
 | |
| 	struct sctp_transport *transport;
 | |
| 	struct rhlist_head *tmp, *list;
 | |
| 	struct sctp_hash_cmp_arg arg;
 | |
| 	int err;
 | |
| 
 | |
| 	if (t->asoc->temp)
 | |
| 		return 0;
 | |
| 
 | |
| 	arg.net   = sock_net(t->asoc->base.sk);
 | |
| 	arg.paddr = &t->ipaddr;
 | |
| 	arg.lport = htons(t->asoc->base.bind_addr.port);
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 | |
| 			       sctp_hash_params);
 | |
| 
 | |
| 	rhl_for_each_entry_rcu(transport, tmp, list, node)
 | |
| 		if (transport->asoc->ep == t->asoc->ep) {
 | |
| 			rcu_read_unlock();
 | |
| 			return -EEXIST;
 | |
| 		}
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
 | |
| 				  &t->node, sctp_hash_params);
 | |
| 	if (err)
 | |
| 		pr_err_once("insert transport fail, errno %d\n", err);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void sctp_unhash_transport(struct sctp_transport *t)
 | |
| {
 | |
| 	if (t->asoc->temp)
 | |
| 		return;
 | |
| 
 | |
| 	rhltable_remove(&sctp_transport_hashtable, &t->node,
 | |
| 			sctp_hash_params);
 | |
| }
 | |
| 
 | |
| /* return a transport with holding it */
 | |
| struct sctp_transport *sctp_addrs_lookup_transport(
 | |
| 				struct net *net,
 | |
| 				const union sctp_addr *laddr,
 | |
| 				const union sctp_addr *paddr)
 | |
| {
 | |
| 	struct rhlist_head *tmp, *list;
 | |
| 	struct sctp_transport *t;
 | |
| 	struct sctp_hash_cmp_arg arg = {
 | |
| 		.paddr = paddr,
 | |
| 		.net   = net,
 | |
| 		.lport = laddr->v4.sin_port,
 | |
| 	};
 | |
| 
 | |
| 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 | |
| 			       sctp_hash_params);
 | |
| 
 | |
| 	rhl_for_each_entry_rcu(t, tmp, list, node) {
 | |
| 		if (!sctp_transport_hold(t))
 | |
| 			continue;
 | |
| 
 | |
| 		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
 | |
| 					 laddr, sctp_sk(t->asoc->base.sk)))
 | |
| 			return t;
 | |
| 		sctp_transport_put(t);
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* return a transport without holding it, as it's only used under sock lock */
 | |
| struct sctp_transport *sctp_epaddr_lookup_transport(
 | |
| 				const struct sctp_endpoint *ep,
 | |
| 				const union sctp_addr *paddr)
 | |
| {
 | |
| 	struct net *net = sock_net(ep->base.sk);
 | |
| 	struct rhlist_head *tmp, *list;
 | |
| 	struct sctp_transport *t;
 | |
| 	struct sctp_hash_cmp_arg arg = {
 | |
| 		.paddr = paddr,
 | |
| 		.net   = net,
 | |
| 		.lport = htons(ep->base.bind_addr.port),
 | |
| 	};
 | |
| 
 | |
| 	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 | |
| 			       sctp_hash_params);
 | |
| 
 | |
| 	rhl_for_each_entry_rcu(t, tmp, list, node)
 | |
| 		if (ep == t->asoc->ep)
 | |
| 			return t;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Look up an association. */
 | |
| static struct sctp_association *__sctp_lookup_association(
 | |
| 					struct net *net,
 | |
| 					const union sctp_addr *local,
 | |
| 					const union sctp_addr *peer,
 | |
| 					struct sctp_transport **pt)
 | |
| {
 | |
| 	struct sctp_transport *t;
 | |
| 	struct sctp_association *asoc = NULL;
 | |
| 
 | |
| 	t = sctp_addrs_lookup_transport(net, local, peer);
 | |
| 	if (!t)
 | |
| 		goto out;
 | |
| 
 | |
| 	asoc = t->asoc;
 | |
| 	*pt = t;
 | |
| 
 | |
| out:
 | |
| 	return asoc;
 | |
| }
 | |
| 
 | |
| /* Look up an association. protected by RCU read lock */
 | |
| static
 | |
| struct sctp_association *sctp_lookup_association(struct net *net,
 | |
| 						 const union sctp_addr *laddr,
 | |
| 						 const union sctp_addr *paddr,
 | |
| 						 struct sctp_transport **transportp)
 | |
| {
 | |
| 	struct sctp_association *asoc;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	return asoc;
 | |
| }
 | |
| 
 | |
| /* Is there an association matching the given local and peer addresses? */
 | |
| bool sctp_has_association(struct net *net,
 | |
| 			  const union sctp_addr *laddr,
 | |
| 			  const union sctp_addr *paddr)
 | |
| {
 | |
| 	struct sctp_transport *transport;
 | |
| 
 | |
| 	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
 | |
| 		sctp_transport_put(transport);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SCTP Implementors Guide, 2.18 Handling of address
 | |
|  * parameters within the INIT or INIT-ACK.
 | |
|  *
 | |
|  * D) When searching for a matching TCB upon reception of an INIT
 | |
|  *    or INIT-ACK chunk the receiver SHOULD use not only the
 | |
|  *    source address of the packet (containing the INIT or
 | |
|  *    INIT-ACK) but the receiver SHOULD also use all valid
 | |
|  *    address parameters contained within the chunk.
 | |
|  *
 | |
|  * 2.18.3 Solution description
 | |
|  *
 | |
|  * This new text clearly specifies to an implementor the need
 | |
|  * to look within the INIT or INIT-ACK. Any implementation that
 | |
|  * does not do this, may not be able to establish associations
 | |
|  * in certain circumstances.
 | |
|  *
 | |
|  */
 | |
| static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
 | |
| 	struct sk_buff *skb,
 | |
| 	const union sctp_addr *laddr, struct sctp_transport **transportp)
 | |
| {
 | |
| 	struct sctp_association *asoc;
 | |
| 	union sctp_addr addr;
 | |
| 	union sctp_addr *paddr = &addr;
 | |
| 	struct sctphdr *sh = sctp_hdr(skb);
 | |
| 	union sctp_params params;
 | |
| 	struct sctp_init_chunk *init;
 | |
| 	struct sctp_af *af;
 | |
| 
 | |
| 	/*
 | |
| 	 * This code will NOT touch anything inside the chunk--it is
 | |
| 	 * strictly READ-ONLY.
 | |
| 	 *
 | |
| 	 * RFC 2960 3  SCTP packet Format
 | |
| 	 *
 | |
| 	 * Multiple chunks can be bundled into one SCTP packet up to
 | |
| 	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
 | |
| 	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
 | |
| 	 * other chunk in a packet.  See Section 6.10 for more details
 | |
| 	 * on chunk bundling.
 | |
| 	 */
 | |
| 
 | |
| 	/* Find the start of the TLVs and the end of the chunk.  This is
 | |
| 	 * the region we search for address parameters.
 | |
| 	 */
 | |
| 	init = (struct sctp_init_chunk *)skb->data;
 | |
| 
 | |
| 	/* Walk the parameters looking for embedded addresses. */
 | |
| 	sctp_walk_params(params, init, init_hdr.params) {
 | |
| 
 | |
| 		/* Note: Ignoring hostname addresses. */
 | |
| 		af = sctp_get_af_specific(param_type2af(params.p->type));
 | |
| 		if (!af)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!af->from_addr_param(paddr, params.addr, sh->source, 0))
 | |
| 			continue;
 | |
| 
 | |
| 		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
 | |
| 		if (asoc)
 | |
| 			return asoc;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* ADD-IP, Section 5.2
 | |
|  * When an endpoint receives an ASCONF Chunk from the remote peer
 | |
|  * special procedures may be needed to identify the association the
 | |
|  * ASCONF Chunk is associated with. To properly find the association
 | |
|  * the following procedures SHOULD be followed:
 | |
|  *
 | |
|  * D2) If the association is not found, use the address found in the
 | |
|  * Address Parameter TLV combined with the port number found in the
 | |
|  * SCTP common header. If found proceed to rule D4.
 | |
|  *
 | |
|  * D2-ext) If more than one ASCONF Chunks are packed together, use the
 | |
|  * address found in the ASCONF Address Parameter TLV of each of the
 | |
|  * subsequent ASCONF Chunks. If found, proceed to rule D4.
 | |
|  */
 | |
| static struct sctp_association *__sctp_rcv_asconf_lookup(
 | |
| 					struct net *net,
 | |
| 					struct sctp_chunkhdr *ch,
 | |
| 					const union sctp_addr *laddr,
 | |
| 					__be16 peer_port,
 | |
| 					struct sctp_transport **transportp)
 | |
| {
 | |
| 	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
 | |
| 	struct sctp_af *af;
 | |
| 	union sctp_addr_param *param;
 | |
| 	union sctp_addr paddr;
 | |
| 
 | |
| 	if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Skip over the ADDIP header and find the Address parameter */
 | |
| 	param = (union sctp_addr_param *)(asconf + 1);
 | |
| 
 | |
| 	af = sctp_get_af_specific(param_type2af(param->p.type));
 | |
| 	if (unlikely(!af))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!af->from_addr_param(&paddr, param, peer_port, 0))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __sctp_lookup_association(net, laddr, &paddr, transportp);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* SCTP-AUTH, Section 6.3:
 | |
| *    If the receiver does not find a STCB for a packet containing an AUTH
 | |
| *    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
 | |
| *    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
 | |
| *    association.
 | |
| *
 | |
| * This means that any chunks that can help us identify the association need
 | |
| * to be looked at to find this association.
 | |
| */
 | |
| static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
 | |
| 				      struct sk_buff *skb,
 | |
| 				      const union sctp_addr *laddr,
 | |
| 				      struct sctp_transport **transportp)
 | |
| {
 | |
| 	struct sctp_association *asoc = NULL;
 | |
| 	struct sctp_chunkhdr *ch;
 | |
| 	int have_auth = 0;
 | |
| 	unsigned int chunk_num = 1;
 | |
| 	__u8 *ch_end;
 | |
| 
 | |
| 	/* Walk through the chunks looking for AUTH or ASCONF chunks
 | |
| 	 * to help us find the association.
 | |
| 	 */
 | |
| 	ch = (struct sctp_chunkhdr *)skb->data;
 | |
| 	do {
 | |
| 		/* Break out if chunk length is less then minimal. */
 | |
| 		if (ntohs(ch->length) < sizeof(*ch))
 | |
| 			break;
 | |
| 
 | |
| 		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
 | |
| 		if (ch_end > skb_tail_pointer(skb))
 | |
| 			break;
 | |
| 
 | |
| 		switch (ch->type) {
 | |
| 		case SCTP_CID_AUTH:
 | |
| 			have_auth = chunk_num;
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CID_COOKIE_ECHO:
 | |
| 			/* If a packet arrives containing an AUTH chunk as
 | |
| 			 * a first chunk, a COOKIE-ECHO chunk as the second
 | |
| 			 * chunk, and possibly more chunks after them, and
 | |
| 			 * the receiver does not have an STCB for that
 | |
| 			 * packet, then authentication is based on
 | |
| 			 * the contents of the COOKIE- ECHO chunk.
 | |
| 			 */
 | |
| 			if (have_auth == 1 && chunk_num == 2)
 | |
| 				return NULL;
 | |
| 			break;
 | |
| 
 | |
| 		case SCTP_CID_ASCONF:
 | |
| 			if (have_auth || net->sctp.addip_noauth)
 | |
| 				asoc = __sctp_rcv_asconf_lookup(
 | |
| 						net, ch, laddr,
 | |
| 						sctp_hdr(skb)->source,
 | |
| 						transportp);
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (asoc)
 | |
| 			break;
 | |
| 
 | |
| 		ch = (struct sctp_chunkhdr *)ch_end;
 | |
| 		chunk_num++;
 | |
| 	} while (ch_end + sizeof(*ch) < skb_tail_pointer(skb));
 | |
| 
 | |
| 	return asoc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There are circumstances when we need to look inside the SCTP packet
 | |
|  * for information to help us find the association.   Examples
 | |
|  * include looking inside of INIT/INIT-ACK chunks or after the AUTH
 | |
|  * chunks.
 | |
|  */
 | |
| static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
 | |
| 				      struct sk_buff *skb,
 | |
| 				      const union sctp_addr *laddr,
 | |
| 				      struct sctp_transport **transportp)
 | |
| {
 | |
| 	struct sctp_chunkhdr *ch;
 | |
| 
 | |
| 	/* We do not allow GSO frames here as we need to linearize and
 | |
| 	 * then cannot guarantee frame boundaries. This shouldn't be an
 | |
| 	 * issue as packets hitting this are mostly INIT or INIT-ACK and
 | |
| 	 * those cannot be on GSO-style anyway.
 | |
| 	 */
 | |
| 	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
 | |
| 		return NULL;
 | |
| 
 | |
| 	ch = (struct sctp_chunkhdr *)skb->data;
 | |
| 
 | |
| 	/* The code below will attempt to walk the chunk and extract
 | |
| 	 * parameter information.  Before we do that, we need to verify
 | |
| 	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
 | |
| 	 * walk off the end.
 | |
| 	 */
 | |
| 	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* If this is INIT/INIT-ACK look inside the chunk too. */
 | |
| 	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
 | |
| 		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
 | |
| 
 | |
| 	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
 | |
| }
 | |
| 
 | |
| /* Lookup an association for an inbound skb. */
 | |
| static struct sctp_association *__sctp_rcv_lookup(struct net *net,
 | |
| 				      struct sk_buff *skb,
 | |
| 				      const union sctp_addr *paddr,
 | |
| 				      const union sctp_addr *laddr,
 | |
| 				      struct sctp_transport **transportp)
 | |
| {
 | |
| 	struct sctp_association *asoc;
 | |
| 
 | |
| 	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
 | |
| 	if (asoc)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Further lookup for INIT/INIT-ACK packets.
 | |
| 	 * SCTP Implementors Guide, 2.18 Handling of address
 | |
| 	 * parameters within the INIT or INIT-ACK.
 | |
| 	 */
 | |
| 	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
 | |
| 	if (asoc)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (paddr->sa.sa_family == AF_INET)
 | |
| 		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
 | |
| 			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
 | |
| 			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
 | |
| 	else
 | |
| 		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
 | |
| 			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
 | |
| 			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
 | |
| 
 | |
| out:
 | |
| 	return asoc;
 | |
| }
 |