2857 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2857 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC).
 | |
|  *
 | |
|  * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  *	modify it under the terms of the GNU General Public License as
 | |
|  *	published by the Free Software Foundation, version 2.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <asm/div64.h>
 | |
| 
 | |
| #include <media/dvb_math.h>
 | |
| #include <media/dvb_frontend.h>
 | |
| 
 | |
| #include "dib7000p.h"
 | |
| 
 | |
| static int debug;
 | |
| module_param(debug, int, 0644);
 | |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
 | |
| 
 | |
| static int buggy_sfn_workaround;
 | |
| module_param(buggy_sfn_workaround, int, 0644);
 | |
| MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (default: 0)");
 | |
| 
 | |
| #define dprintk(fmt, arg...) do {					\
 | |
| 	if (debug)							\
 | |
| 		printk(KERN_DEBUG pr_fmt("%s: " fmt),			\
 | |
| 		       __func__, ##arg);				\
 | |
| } while (0)
 | |
| 
 | |
| struct i2c_device {
 | |
| 	struct i2c_adapter *i2c_adap;
 | |
| 	u8 i2c_addr;
 | |
| };
 | |
| 
 | |
| struct dib7000p_state {
 | |
| 	struct dvb_frontend demod;
 | |
| 	struct dib7000p_config cfg;
 | |
| 
 | |
| 	u8 i2c_addr;
 | |
| 	struct i2c_adapter *i2c_adap;
 | |
| 
 | |
| 	struct dibx000_i2c_master i2c_master;
 | |
| 
 | |
| 	u16 wbd_ref;
 | |
| 
 | |
| 	u8 current_band;
 | |
| 	u32 current_bandwidth;
 | |
| 	struct dibx000_agc_config *current_agc;
 | |
| 	u32 timf;
 | |
| 
 | |
| 	u8 div_force_off:1;
 | |
| 	u8 div_state:1;
 | |
| 	u16 div_sync_wait;
 | |
| 
 | |
| 	u8 agc_state;
 | |
| 
 | |
| 	u16 gpio_dir;
 | |
| 	u16 gpio_val;
 | |
| 
 | |
| 	u8 sfn_workaround_active:1;
 | |
| 
 | |
| #define SOC7090 0x7090
 | |
| 	u16 version;
 | |
| 
 | |
| 	u16 tuner_enable;
 | |
| 	struct i2c_adapter dib7090_tuner_adap;
 | |
| 
 | |
| 	/* for the I2C transfer */
 | |
| 	struct i2c_msg msg[2];
 | |
| 	u8 i2c_write_buffer[4];
 | |
| 	u8 i2c_read_buffer[2];
 | |
| 	struct mutex i2c_buffer_lock;
 | |
| 
 | |
| 	u8 input_mode_mpeg;
 | |
| 
 | |
| 	/* for DVBv5 stats */
 | |
| 	s64 old_ucb;
 | |
| 	unsigned long per_jiffies_stats;
 | |
| 	unsigned long ber_jiffies_stats;
 | |
| 	unsigned long get_stats_time;
 | |
| };
 | |
| 
 | |
| enum dib7000p_power_mode {
 | |
| 	DIB7000P_POWER_ALL = 0,
 | |
| 	DIB7000P_POWER_ANALOG_ADC,
 | |
| 	DIB7000P_POWER_INTERFACE_ONLY,
 | |
| };
 | |
| 
 | |
| /* dib7090 specific fonctions */
 | |
| static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
 | |
| static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);
 | |
| static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode);
 | |
| static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode);
 | |
| 
 | |
| static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
 | |
| {
 | |
| 	u16 ret;
 | |
| 
 | |
| 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
 | |
| 		dprintk("could not acquire lock\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	state->i2c_write_buffer[0] = reg >> 8;
 | |
| 	state->i2c_write_buffer[1] = reg & 0xff;
 | |
| 
 | |
| 	memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
 | |
| 	state->msg[0].addr = state->i2c_addr >> 1;
 | |
| 	state->msg[0].flags = 0;
 | |
| 	state->msg[0].buf = state->i2c_write_buffer;
 | |
| 	state->msg[0].len = 2;
 | |
| 	state->msg[1].addr = state->i2c_addr >> 1;
 | |
| 	state->msg[1].flags = I2C_M_RD;
 | |
| 	state->msg[1].buf = state->i2c_read_buffer;
 | |
| 	state->msg[1].len = 2;
 | |
| 
 | |
| 	if (i2c_transfer(state->i2c_adap, state->msg, 2) != 2)
 | |
| 		dprintk("i2c read error on %d\n", reg);
 | |
| 
 | |
| 	ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
 | |
| 	mutex_unlock(&state->i2c_buffer_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
 | |
| 		dprintk("could not acquire lock\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
 | |
| 	state->i2c_write_buffer[1] = reg & 0xff;
 | |
| 	state->i2c_write_buffer[2] = (val >> 8) & 0xff;
 | |
| 	state->i2c_write_buffer[3] = val & 0xff;
 | |
| 
 | |
| 	memset(&state->msg[0], 0, sizeof(struct i2c_msg));
 | |
| 	state->msg[0].addr = state->i2c_addr >> 1;
 | |
| 	state->msg[0].flags = 0;
 | |
| 	state->msg[0].buf = state->i2c_write_buffer;
 | |
| 	state->msg[0].len = 4;
 | |
| 
 | |
| 	ret = (i2c_transfer(state->i2c_adap, state->msg, 1) != 1 ?
 | |
| 			-EREMOTEIO : 0);
 | |
| 	mutex_unlock(&state->i2c_buffer_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
 | |
| {
 | |
| 	u16 l = 0, r, *n;
 | |
| 	n = buf;
 | |
| 	l = *n++;
 | |
| 	while (l) {
 | |
| 		r = *n++;
 | |
| 
 | |
| 		do {
 | |
| 			dib7000p_write_word(state, r, *n++);
 | |
| 			r++;
 | |
| 		} while (--l);
 | |
| 		l = *n++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u16 outreg, fifo_threshold, smo_mode;
 | |
| 
 | |
| 	outreg = 0;
 | |
| 	fifo_threshold = 1792;
 | |
| 	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
 | |
| 
 | |
| 	dprintk("setting output mode for demod %p to %d\n", &state->demod, mode);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case OUTMODE_MPEG2_PAR_GATED_CLK:
 | |
| 		outreg = (1 << 10);	/* 0x0400 */
 | |
| 		break;
 | |
| 	case OUTMODE_MPEG2_PAR_CONT_CLK:
 | |
| 		outreg = (1 << 10) | (1 << 6);	/* 0x0440 */
 | |
| 		break;
 | |
| 	case OUTMODE_MPEG2_SERIAL:
 | |
| 		outreg = (1 << 10) | (2 << 6) | (0 << 1);	/* 0x0480 */
 | |
| 		break;
 | |
| 	case OUTMODE_DIVERSITY:
 | |
| 		if (state->cfg.hostbus_diversity)
 | |
| 			outreg = (1 << 10) | (4 << 6);	/* 0x0500 */
 | |
| 		else
 | |
| 			outreg = (1 << 11);
 | |
| 		break;
 | |
| 	case OUTMODE_MPEG2_FIFO:
 | |
| 		smo_mode |= (3 << 1);
 | |
| 		fifo_threshold = 512;
 | |
| 		outreg = (1 << 10) | (5 << 6);
 | |
| 		break;
 | |
| 	case OUTMODE_ANALOG_ADC:
 | |
| 		outreg = (1 << 10) | (3 << 6);
 | |
| 		break;
 | |
| 	case OUTMODE_HIGH_Z:
 | |
| 		outreg = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dprintk("Unhandled output_mode passed to be set for demod %p\n", &state->demod);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (state->cfg.output_mpeg2_in_188_bytes)
 | |
| 		smo_mode |= (1 << 5);
 | |
| 
 | |
| 	ret |= dib7000p_write_word(state, 235, smo_mode);
 | |
| 	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
 | |
| 	if (state->version != SOC7090)
 | |
| 		ret |= dib7000p_write_word(state, 1286, outreg);	/* P_Div_active */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
 | |
| {
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 
 | |
| 	if (state->div_force_off) {
 | |
| 		dprintk("diversity combination deactivated - forced by COFDM parameters\n");
 | |
| 		onoff = 0;
 | |
| 		dib7000p_write_word(state, 207, 0);
 | |
| 	} else
 | |
| 		dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
 | |
| 
 | |
| 	state->div_state = (u8) onoff;
 | |
| 
 | |
| 	if (onoff) {
 | |
| 		dib7000p_write_word(state, 204, 6);
 | |
| 		dib7000p_write_word(state, 205, 16);
 | |
| 		/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
 | |
| 	} else {
 | |
| 		dib7000p_write_word(state, 204, 1);
 | |
| 		dib7000p_write_word(state, 205, 0);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
 | |
| {
 | |
| 	/* by default everything is powered off */
 | |
| 	u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
 | |
| 
 | |
| 	/* now, depending on the requested mode, we power on */
 | |
| 	switch (mode) {
 | |
| 		/* power up everything in the demod */
 | |
| 	case DIB7000P_POWER_ALL:
 | |
| 		reg_774 = 0x0000;
 | |
| 		reg_775 = 0x0000;
 | |
| 		reg_776 = 0x0;
 | |
| 		reg_899 = 0x0;
 | |
| 		if (state->version == SOC7090)
 | |
| 			reg_1280 &= 0x001f;
 | |
| 		else
 | |
| 			reg_1280 &= 0x01ff;
 | |
| 		break;
 | |
| 
 | |
| 	case DIB7000P_POWER_ANALOG_ADC:
 | |
| 		/* dem, cfg, iqc, sad, agc */
 | |
| 		reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
 | |
| 		/* nud */
 | |
| 		reg_776 &= ~((1 << 0));
 | |
| 		/* Dout */
 | |
| 		if (state->version != SOC7090)
 | |
| 			reg_1280 &= ~((1 << 11));
 | |
| 		reg_1280 &= ~(1 << 6);
 | |
| 		/* fall-through */
 | |
| 	case DIB7000P_POWER_INTERFACE_ONLY:
 | |
| 		/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
 | |
| 		/* TODO power up either SDIO or I2C */
 | |
| 		if (state->version == SOC7090)
 | |
| 			reg_1280 &= ~((1 << 7) | (1 << 5));
 | |
| 		else
 | |
| 			reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
 | |
| 		break;
 | |
| 
 | |
| /* TODO following stuff is just converted from the dib7000-driver - check when is used what */
 | |
| 	}
 | |
| 
 | |
| 	dib7000p_write_word(state, 774, reg_774);
 | |
| 	dib7000p_write_word(state, 775, reg_775);
 | |
| 	dib7000p_write_word(state, 776, reg_776);
 | |
| 	dib7000p_write_word(state, 1280, reg_1280);
 | |
| 	if (state->version != SOC7090)
 | |
| 		dib7000p_write_word(state, 899, reg_899);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
 | |
| {
 | |
| 	u16 reg_908 = 0, reg_909 = 0;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	if (state->version != SOC7090) {
 | |
| 		reg_908 = dib7000p_read_word(state, 908);
 | |
| 		reg_909 = dib7000p_read_word(state, 909);
 | |
| 	}
 | |
| 
 | |
| 	switch (no) {
 | |
| 	case DIBX000_SLOW_ADC_ON:
 | |
| 		if (state->version == SOC7090) {
 | |
| 			reg = dib7000p_read_word(state, 1925);
 | |
| 
 | |
| 			dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2));	/* en_slowAdc = 1 & reset_sladc = 1 */
 | |
| 
 | |
| 			reg = dib7000p_read_word(state, 1925);	/* read acces to make it works... strange ... */
 | |
| 			msleep(200);
 | |
| 			dib7000p_write_word(state, 1925, reg & ~(1 << 4));	/* en_slowAdc = 1 & reset_sladc = 0 */
 | |
| 
 | |
| 			reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
 | |
| 			dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524);	/* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */
 | |
| 		} else {
 | |
| 			reg_909 |= (1 << 1) | (1 << 0);
 | |
| 			dib7000p_write_word(state, 909, reg_909);
 | |
| 			reg_909 &= ~(1 << 1);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case DIBX000_SLOW_ADC_OFF:
 | |
| 		if (state->version == SOC7090) {
 | |
| 			reg = dib7000p_read_word(state, 1925);
 | |
| 			dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4));	/* reset_sladc = 1 en_slowAdc = 0 */
 | |
| 		} else
 | |
| 			reg_909 |= (1 << 1) | (1 << 0);
 | |
| 		break;
 | |
| 
 | |
| 	case DIBX000_ADC_ON:
 | |
| 		reg_908 &= 0x0fff;
 | |
| 		reg_909 &= 0x0003;
 | |
| 		break;
 | |
| 
 | |
| 	case DIBX000_ADC_OFF:
 | |
| 		reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
 | |
| 		reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
 | |
| 		break;
 | |
| 
 | |
| 	case DIBX000_VBG_ENABLE:
 | |
| 		reg_908 &= ~(1 << 15);
 | |
| 		break;
 | |
| 
 | |
| 	case DIBX000_VBG_DISABLE:
 | |
| 		reg_908 |= (1 << 15);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| //	dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
 | |
| 
 | |
| 	reg_909 |= (state->cfg.disable_sample_and_hold & 1) << 4;
 | |
| 	reg_908 |= (state->cfg.enable_current_mirror & 1) << 7;
 | |
| 
 | |
| 	if (state->version != SOC7090) {
 | |
| 		dib7000p_write_word(state, 908, reg_908);
 | |
| 		dib7000p_write_word(state, 909, reg_909);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
 | |
| {
 | |
| 	u32 timf;
 | |
| 
 | |
| 	// store the current bandwidth for later use
 | |
| 	state->current_bandwidth = bw;
 | |
| 
 | |
| 	if (state->timf == 0) {
 | |
| 		dprintk("using default timf\n");
 | |
| 		timf = state->cfg.bw->timf;
 | |
| 	} else {
 | |
| 		dprintk("using updated timf\n");
 | |
| 		timf = state->timf;
 | |
| 	}
 | |
| 
 | |
| 	timf = timf * (bw / 50) / 160;
 | |
| 
 | |
| 	dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
 | |
| 	dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_sad_calib(struct dib7000p_state *state)
 | |
| {
 | |
| /* internal */
 | |
| 	dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
 | |
| 
 | |
| 	if (state->version == SOC7090)
 | |
| 		dib7000p_write_word(state, 74, 2048);
 | |
| 	else
 | |
| 		dib7000p_write_word(state, 74, 776);
 | |
| 
 | |
| 	/* do the calibration */
 | |
| 	dib7000p_write_word(state, 73, (1 << 0));
 | |
| 	dib7000p_write_word(state, 73, (0 << 0));
 | |
| 
 | |
| 	msleep(1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
 | |
| {
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	if (value > 4095)
 | |
| 		value = 4095;
 | |
| 	state->wbd_ref = value;
 | |
| 	return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
 | |
| }
 | |
| 
 | |
| static int dib7000p_get_agc_values(struct dvb_frontend *fe,
 | |
| 		u16 *agc_global, u16 *agc1, u16 *agc2, u16 *wbd)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 
 | |
| 	if (agc_global != NULL)
 | |
| 		*agc_global = dib7000p_read_word(state, 394);
 | |
| 	if (agc1 != NULL)
 | |
| 		*agc1 = dib7000p_read_word(state, 392);
 | |
| 	if (agc2 != NULL)
 | |
| 		*agc2 = dib7000p_read_word(state, 393);
 | |
| 	if (wbd != NULL)
 | |
| 		*wbd = dib7000p_read_word(state, 397);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_agc1_min(struct dvb_frontend *fe, u16 v)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	return dib7000p_write_word(state, 108,  v);
 | |
| }
 | |
| 
 | |
| static void dib7000p_reset_pll(struct dib7000p_state *state)
 | |
| {
 | |
| 	struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
 | |
| 	u16 clk_cfg0;
 | |
| 
 | |
| 	if (state->version == SOC7090) {
 | |
| 		dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
 | |
| 
 | |
| 		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
 | |
| 			;
 | |
| 
 | |
| 		dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
 | |
| 	} else {
 | |
| 		/* force PLL bypass */
 | |
| 		clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
 | |
| 			(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
 | |
| 
 | |
| 		dib7000p_write_word(state, 900, clk_cfg0);
 | |
| 
 | |
| 		/* P_pll_cfg */
 | |
| 		dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
 | |
| 		clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
 | |
| 		dib7000p_write_word(state, 900, clk_cfg0);
 | |
| 	}
 | |
| 
 | |
| 	dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
 | |
| 	dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
 | |
| 	dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
 | |
| 	dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
 | |
| 
 | |
| 	dib7000p_write_word(state, 72, bw->sad_cfg);
 | |
| }
 | |
| 
 | |
| static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
 | |
| {
 | |
| 	u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
 | |
| 	internal |= (u32) dib7000p_read_word(state, 19);
 | |
| 	internal /= 1000;
 | |
| 
 | |
| 	return internal;
 | |
| }
 | |
| 
 | |
| static int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
 | |
| 	u8 loopdiv, prediv;
 | |
| 	u32 internal, xtal;
 | |
| 
 | |
| 	/* get back old values */
 | |
| 	prediv = reg_1856 & 0x3f;
 | |
| 	loopdiv = (reg_1856 >> 6) & 0x3f;
 | |
| 
 | |
| 	if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
 | |
| 		dprintk("Updating pll (prediv: old =  %d new = %d ; loopdiv : old = %d new = %d)\n", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
 | |
| 		reg_1856 &= 0xf000;
 | |
| 		reg_1857 = dib7000p_read_word(state, 1857);
 | |
| 		dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15));
 | |
| 
 | |
| 		dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));
 | |
| 
 | |
| 		/* write new system clk into P_sec_len */
 | |
| 		internal = dib7000p_get_internal_freq(state);
 | |
| 		xtal = (internal / loopdiv) * prediv;
 | |
| 		internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio;	/* new internal */
 | |
| 		dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
 | |
| 		dib7000p_write_word(state, 19, (u16) (internal & 0xffff));
 | |
| 
 | |
| 		dib7000p_write_word(state, 1857, reg_1857 | (1 << 15));
 | |
| 
 | |
| 		while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1)
 | |
| 			dprintk("Waiting for PLL to lock\n");
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| static int dib7000p_reset_gpio(struct dib7000p_state *st)
 | |
| {
 | |
| 	/* reset the GPIOs */
 | |
| 	dprintk("gpio dir: %x: val: %x, pwm_pos: %x\n", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
 | |
| 
 | |
| 	dib7000p_write_word(st, 1029, st->gpio_dir);
 | |
| 	dib7000p_write_word(st, 1030, st->gpio_val);
 | |
| 
 | |
| 	/* TODO 1031 is P_gpio_od */
 | |
| 
 | |
| 	dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos);
 | |
| 
 | |
| 	dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
 | |
| {
 | |
| 	st->gpio_dir = dib7000p_read_word(st, 1029);
 | |
| 	st->gpio_dir &= ~(1 << num);	/* reset the direction bit */
 | |
| 	st->gpio_dir |= (dir & 0x1) << num;	/* set the new direction */
 | |
| 	dib7000p_write_word(st, 1029, st->gpio_dir);
 | |
| 
 | |
| 	st->gpio_val = dib7000p_read_word(st, 1030);
 | |
| 	st->gpio_val &= ~(1 << num);	/* reset the direction bit */
 | |
| 	st->gpio_val |= (val & 0x01) << num;	/* set the new value */
 | |
| 	dib7000p_write_word(st, 1030, st->gpio_val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
 | |
| {
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	return dib7000p_cfg_gpio(state, num, dir, val);
 | |
| }
 | |
| 
 | |
| static u16 dib7000p_defaults[] = {
 | |
| 	// auto search configuration
 | |
| 	3, 2,
 | |
| 	0x0004,
 | |
| 	(1<<3)|(1<<11)|(1<<12)|(1<<13),
 | |
| 	0x0814,			/* Equal Lock */
 | |
| 
 | |
| 	12, 6,
 | |
| 	0x001b,
 | |
| 	0x7740,
 | |
| 	0x005b,
 | |
| 	0x8d80,
 | |
| 	0x01c9,
 | |
| 	0xc380,
 | |
| 	0x0000,
 | |
| 	0x0080,
 | |
| 	0x0000,
 | |
| 	0x0090,
 | |
| 	0x0001,
 | |
| 	0xd4c0,
 | |
| 
 | |
| 	1, 26,
 | |
| 	0x6680,
 | |
| 
 | |
| 	/* set ADC level to -16 */
 | |
| 	11, 79,
 | |
| 	(1 << 13) - 825 - 117,
 | |
| 	(1 << 13) - 837 - 117,
 | |
| 	(1 << 13) - 811 - 117,
 | |
| 	(1 << 13) - 766 - 117,
 | |
| 	(1 << 13) - 737 - 117,
 | |
| 	(1 << 13) - 693 - 117,
 | |
| 	(1 << 13) - 648 - 117,
 | |
| 	(1 << 13) - 619 - 117,
 | |
| 	(1 << 13) - 575 - 117,
 | |
| 	(1 << 13) - 531 - 117,
 | |
| 	(1 << 13) - 501 - 117,
 | |
| 
 | |
| 	1, 142,
 | |
| 	0x0410,
 | |
| 
 | |
| 	/* disable power smoothing */
 | |
| 	8, 145,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 	0,
 | |
| 
 | |
| 	1, 154,
 | |
| 	1 << 13,
 | |
| 
 | |
| 	1, 168,
 | |
| 	0x0ccd,
 | |
| 
 | |
| 	1, 183,
 | |
| 	0x200f,
 | |
| 
 | |
| 	1, 212,
 | |
| 		0x169,
 | |
| 
 | |
| 	5, 187,
 | |
| 	0x023d,
 | |
| 	0x00a4,
 | |
| 	0x00a4,
 | |
| 	0x7ff0,
 | |
| 	0x3ccc,
 | |
| 
 | |
| 	1, 198,
 | |
| 	0x800,
 | |
| 
 | |
| 	1, 222,
 | |
| 	0x0010,
 | |
| 
 | |
| 	1, 235,
 | |
| 	0x0062,
 | |
| 
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| static void dib7000p_reset_stats(struct dvb_frontend *fe);
 | |
| 
 | |
| static int dib7000p_demod_reset(struct dib7000p_state *state)
 | |
| {
 | |
| 	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
 | |
| 
 | |
| 	if (state->version == SOC7090)
 | |
| 		dibx000_reset_i2c_master(&state->i2c_master);
 | |
| 
 | |
| 	dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);
 | |
| 
 | |
| 	/* restart all parts */
 | |
| 	dib7000p_write_word(state, 770, 0xffff);
 | |
| 	dib7000p_write_word(state, 771, 0xffff);
 | |
| 	dib7000p_write_word(state, 772, 0x001f);
 | |
| 	dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));
 | |
| 
 | |
| 	dib7000p_write_word(state, 770, 0);
 | |
| 	dib7000p_write_word(state, 771, 0);
 | |
| 	dib7000p_write_word(state, 772, 0);
 | |
| 	dib7000p_write_word(state, 1280, 0);
 | |
| 
 | |
| 	if (state->version != SOC7090) {
 | |
| 		dib7000p_write_word(state,  898, 0x0003);
 | |
| 		dib7000p_write_word(state,  898, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* default */
 | |
| 	dib7000p_reset_pll(state);
 | |
| 
 | |
| 	if (dib7000p_reset_gpio(state) != 0)
 | |
| 		dprintk("GPIO reset was not successful.\n");
 | |
| 
 | |
| 	if (state->version == SOC7090) {
 | |
| 		dib7000p_write_word(state, 899, 0);
 | |
| 
 | |
| 		/* impulse noise */
 | |
| 		dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
 | |
| 		dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
 | |
| 		dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
 | |
| 		dib7000p_write_word(state, 273, (0<<6) | 30);
 | |
| 	}
 | |
| 	if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
 | |
| 		dprintk("OUTPUT_MODE could not be reset.\n");
 | |
| 
 | |
| 	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
 | |
| 	dib7000p_sad_calib(state);
 | |
| 	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
 | |
| 
 | |
| 	/* unforce divstr regardless whether i2c enumeration was done or not */
 | |
| 	dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));
 | |
| 
 | |
| 	dib7000p_set_bandwidth(state, 8000);
 | |
| 
 | |
| 	if (state->version == SOC7090) {
 | |
| 		dib7000p_write_word(state, 36, 0x0755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
 | |
| 	} else {
 | |
| 		if (state->cfg.tuner_is_baseband)
 | |
| 			dib7000p_write_word(state, 36, 0x0755);
 | |
| 		else
 | |
| 			dib7000p_write_word(state, 36, 0x1f55);
 | |
| 	}
 | |
| 
 | |
| 	dib7000p_write_tab(state, dib7000p_defaults);
 | |
| 	if (state->version != SOC7090) {
 | |
| 		dib7000p_write_word(state, 901, 0x0006);
 | |
| 		dib7000p_write_word(state, 902, (3 << 10) | (1 << 6));
 | |
| 		dib7000p_write_word(state, 905, 0x2c8e);
 | |
| 	}
 | |
| 
 | |
| 	dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
 | |
| {
 | |
| 	u16 tmp = 0;
 | |
| 	tmp = dib7000p_read_word(state, 903);
 | |
| 	dib7000p_write_word(state, 903, (tmp | 0x1));
 | |
| 	tmp = dib7000p_read_word(state, 900);
 | |
| 	dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6));
 | |
| }
 | |
| 
 | |
| static void dib7000p_restart_agc(struct dib7000p_state *state)
 | |
| {
 | |
| 	// P_restart_iqc & P_restart_agc
 | |
| 	dib7000p_write_word(state, 770, (1 << 11) | (1 << 9));
 | |
| 	dib7000p_write_word(state, 770, 0x0000);
 | |
| }
 | |
| 
 | |
| static int dib7000p_update_lna(struct dib7000p_state *state)
 | |
| {
 | |
| 	u16 dyn_gain;
 | |
| 
 | |
| 	if (state->cfg.update_lna) {
 | |
| 		dyn_gain = dib7000p_read_word(state, 394);
 | |
| 		if (state->cfg.update_lna(&state->demod, dyn_gain)) {
 | |
| 			dib7000p_restart_agc(state);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
 | |
| {
 | |
| 	struct dibx000_agc_config *agc = NULL;
 | |
| 	int i;
 | |
| 	if (state->current_band == band && state->current_agc != NULL)
 | |
| 		return 0;
 | |
| 	state->current_band = band;
 | |
| 
 | |
| 	for (i = 0; i < state->cfg.agc_config_count; i++)
 | |
| 		if (state->cfg.agc[i].band_caps & band) {
 | |
| 			agc = &state->cfg.agc[i];
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	if (agc == NULL) {
 | |
| 		dprintk("no valid AGC configuration found for band 0x%02x\n", band);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	state->current_agc = agc;
 | |
| 
 | |
| 	/* AGC */
 | |
| 	dib7000p_write_word(state, 75, agc->setup);
 | |
| 	dib7000p_write_word(state, 76, agc->inv_gain);
 | |
| 	dib7000p_write_word(state, 77, agc->time_stabiliz);
 | |
| 	dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
 | |
| 
 | |
| 	// Demod AGC loop configuration
 | |
| 	dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
 | |
| 	dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
 | |
| 
 | |
| 	/* AGC continued */
 | |
| 	dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d\n",
 | |
| 		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
 | |
| 
 | |
| 	if (state->wbd_ref != 0)
 | |
| 		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref);
 | |
| 	else
 | |
| 		dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref);
 | |
| 
 | |
| 	dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
 | |
| 
 | |
| 	dib7000p_write_word(state, 107, agc->agc1_max);
 | |
| 	dib7000p_write_word(state, 108, agc->agc1_min);
 | |
| 	dib7000p_write_word(state, 109, agc->agc2_max);
 | |
| 	dib7000p_write_word(state, 110, agc->agc2_min);
 | |
| 	dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
 | |
| 	dib7000p_write_word(state, 112, agc->agc1_pt3);
 | |
| 	dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
 | |
| 	dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
 | |
| 	dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
 | |
| {
 | |
| 	u32 internal = dib7000p_get_internal_freq(state);
 | |
| 	s32 unit_khz_dds_val;
 | |
| 	u32 abs_offset_khz = abs(offset_khz);
 | |
| 	u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
 | |
| 	u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));
 | |
| 	if (internal == 0) {
 | |
| 		pr_warn("DIB7000P: dib7000p_get_internal_freq returned 0\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	/* 2**26 / Fsampling is the unit 1KHz offset */
 | |
| 	unit_khz_dds_val = 67108864 / (internal);
 | |
| 
 | |
| 	dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d\n", offset_khz, internal, invert);
 | |
| 
 | |
| 	if (offset_khz < 0)
 | |
| 		unit_khz_dds_val *= -1;
 | |
| 
 | |
| 	/* IF tuner */
 | |
| 	if (invert)
 | |
| 		dds -= (abs_offset_khz * unit_khz_dds_val);	/* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */
 | |
| 	else
 | |
| 		dds += (abs_offset_khz * unit_khz_dds_val);
 | |
| 
 | |
| 	if (abs_offset_khz <= (internal / 2)) {	/* Max dds offset is the half of the demod freq */
 | |
| 		dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
 | |
| 		dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_agc_startup(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	int ret = -1;
 | |
| 	u8 *agc_state = &state->agc_state;
 | |
| 	u8 agc_split;
 | |
| 	u16 reg;
 | |
| 	u32 upd_demod_gain_period = 0x1000;
 | |
| 	s32 frequency_offset = 0;
 | |
| 
 | |
| 	switch (state->agc_state) {
 | |
| 	case 0:
 | |
| 		dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
 | |
| 		if (state->version == SOC7090) {
 | |
| 			reg = dib7000p_read_word(state, 0x79b) & 0xff00;
 | |
| 			dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF);	/* lsb */
 | |
| 			dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF));
 | |
| 
 | |
| 			/* enable adc i & q */
 | |
| 			reg = dib7000p_read_word(state, 0x780);
 | |
| 			dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
 | |
| 		} else {
 | |
| 			dib7000p_set_adc_state(state, DIBX000_ADC_ON);
 | |
| 			dib7000p_pll_clk_cfg(state);
 | |
| 		}
 | |
| 
 | |
| 		if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		if (demod->ops.tuner_ops.get_frequency) {
 | |
| 			u32 frequency_tuner;
 | |
| 
 | |
| 			demod->ops.tuner_ops.get_frequency(demod, &frequency_tuner);
 | |
| 			frequency_offset = (s32)frequency_tuner / 1000 - ch->frequency / 1000;
 | |
| 		}
 | |
| 
 | |
| 		if (dib7000p_set_dds(state, frequency_offset) < 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		ret = 7;
 | |
| 		(*agc_state)++;
 | |
| 		break;
 | |
| 
 | |
| 	case 1:
 | |
| 		if (state->cfg.agc_control)
 | |
| 			state->cfg.agc_control(&state->demod, 1);
 | |
| 
 | |
| 		dib7000p_write_word(state, 78, 32768);
 | |
| 		if (!state->current_agc->perform_agc_softsplit) {
 | |
| 			/* we are using the wbd - so slow AGC startup */
 | |
| 			/* force 0 split on WBD and restart AGC */
 | |
| 			dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
 | |
| 			(*agc_state)++;
 | |
| 			ret = 5;
 | |
| 		} else {
 | |
| 			/* default AGC startup */
 | |
| 			(*agc_state) = 4;
 | |
| 			/* wait AGC rough lock time */
 | |
| 			ret = 7;
 | |
| 		}
 | |
| 
 | |
| 		dib7000p_restart_agc(state);
 | |
| 		break;
 | |
| 
 | |
| 	case 2:		/* fast split search path after 5sec */
 | |
| 		dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4));	/* freeze AGC loop */
 | |
| 		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8));	/* fast split search 0.25kHz */
 | |
| 		(*agc_state)++;
 | |
| 		ret = 14;
 | |
| 		break;
 | |
| 
 | |
| 	case 3:		/* split search ended */
 | |
| 		agc_split = (u8) dib7000p_read_word(state, 396);	/* store the split value for the next time */
 | |
| 		dib7000p_write_word(state, 78, dib7000p_read_word(state, 394));	/* set AGC gain start value */
 | |
| 
 | |
| 		dib7000p_write_word(state, 75, state->current_agc->setup);	/* std AGC loop */
 | |
| 		dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split);	/* standard split search */
 | |
| 
 | |
| 		dib7000p_restart_agc(state);
 | |
| 
 | |
| 		dprintk("SPLIT %p: %hd\n", demod, agc_split);
 | |
| 
 | |
| 		(*agc_state)++;
 | |
| 		ret = 5;
 | |
| 		break;
 | |
| 
 | |
| 	case 4:		/* LNA startup */
 | |
| 		ret = 7;
 | |
| 
 | |
| 		if (dib7000p_update_lna(state))
 | |
| 			ret = 5;
 | |
| 		else
 | |
| 			(*agc_state)++;
 | |
| 		break;
 | |
| 
 | |
| 	case 5:
 | |
| 		if (state->cfg.agc_control)
 | |
| 			state->cfg.agc_control(&state->demod, 0);
 | |
| 		(*agc_state)++;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void dib7000p_update_timf(struct dib7000p_state *state)
 | |
| {
 | |
| 	u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428);
 | |
| 	state->timf = timf * 160 / (state->current_bandwidth / 50);
 | |
| 	dib7000p_write_word(state, 23, (u16) (timf >> 16));
 | |
| 	dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
 | |
| 	dprintk("updated timf_frequency: %d (default: %d)\n", state->timf, state->cfg.bw->timf);
 | |
| 
 | |
| }
 | |
| 
 | |
| static u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	switch (op) {
 | |
| 	case DEMOD_TIMF_SET:
 | |
| 		state->timf = timf;
 | |
| 		break;
 | |
| 	case DEMOD_TIMF_UPDATE:
 | |
| 		dib7000p_update_timf(state);
 | |
| 		break;
 | |
| 	case DEMOD_TIMF_GET:
 | |
| 		break;
 | |
| 	}
 | |
| 	dib7000p_set_bandwidth(state, state->current_bandwidth);
 | |
| 	return state->timf;
 | |
| }
 | |
| 
 | |
| static void dib7000p_set_channel(struct dib7000p_state *state,
 | |
| 				 struct dtv_frontend_properties *ch, u8 seq)
 | |
| {
 | |
| 	u16 value, est[4];
 | |
| 
 | |
| 	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
 | |
| 
 | |
| 	/* nfft, guard, qam, alpha */
 | |
| 	value = 0;
 | |
| 	switch (ch->transmission_mode) {
 | |
| 	case TRANSMISSION_MODE_2K:
 | |
| 		value |= (0 << 7);
 | |
| 		break;
 | |
| 	case TRANSMISSION_MODE_4K:
 | |
| 		value |= (2 << 7);
 | |
| 		break;
 | |
| 	default:
 | |
| 	case TRANSMISSION_MODE_8K:
 | |
| 		value |= (1 << 7);
 | |
| 		break;
 | |
| 	}
 | |
| 	switch (ch->guard_interval) {
 | |
| 	case GUARD_INTERVAL_1_32:
 | |
| 		value |= (0 << 5);
 | |
| 		break;
 | |
| 	case GUARD_INTERVAL_1_16:
 | |
| 		value |= (1 << 5);
 | |
| 		break;
 | |
| 	case GUARD_INTERVAL_1_4:
 | |
| 		value |= (3 << 5);
 | |
| 		break;
 | |
| 	default:
 | |
| 	case GUARD_INTERVAL_1_8:
 | |
| 		value |= (2 << 5);
 | |
| 		break;
 | |
| 	}
 | |
| 	switch (ch->modulation) {
 | |
| 	case QPSK:
 | |
| 		value |= (0 << 3);
 | |
| 		break;
 | |
| 	case QAM_16:
 | |
| 		value |= (1 << 3);
 | |
| 		break;
 | |
| 	default:
 | |
| 	case QAM_64:
 | |
| 		value |= (2 << 3);
 | |
| 		break;
 | |
| 	}
 | |
| 	switch (HIERARCHY_1) {
 | |
| 	case HIERARCHY_2:
 | |
| 		value |= 2;
 | |
| 		break;
 | |
| 	case HIERARCHY_4:
 | |
| 		value |= 4;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case HIERARCHY_1:
 | |
| 		value |= 1;
 | |
| 		break;
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 0, value);
 | |
| 	dib7000p_write_word(state, 5, (seq << 4) | 1);	/* do not force tps, search list 0 */
 | |
| 
 | |
| 	/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
 | |
| 	value = 0;
 | |
| 	if (1 != 0)
 | |
| 		value |= (1 << 6);
 | |
| 	if (ch->hierarchy == 1)
 | |
| 		value |= (1 << 4);
 | |
| 	if (1 == 1)
 | |
| 		value |= 1;
 | |
| 	switch ((ch->hierarchy == 0 || 1 == 1) ? ch->code_rate_HP : ch->code_rate_LP) {
 | |
| 	case FEC_2_3:
 | |
| 		value |= (2 << 1);
 | |
| 		break;
 | |
| 	case FEC_3_4:
 | |
| 		value |= (3 << 1);
 | |
| 		break;
 | |
| 	case FEC_5_6:
 | |
| 		value |= (5 << 1);
 | |
| 		break;
 | |
| 	case FEC_7_8:
 | |
| 		value |= (7 << 1);
 | |
| 		break;
 | |
| 	default:
 | |
| 	case FEC_1_2:
 | |
| 		value |= (1 << 1);
 | |
| 		break;
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 208, value);
 | |
| 
 | |
| 	/* offset loop parameters */
 | |
| 	dib7000p_write_word(state, 26, 0x6680);
 | |
| 	dib7000p_write_word(state, 32, 0x0003);
 | |
| 	dib7000p_write_word(state, 29, 0x1273);
 | |
| 	dib7000p_write_word(state, 33, 0x0005);
 | |
| 
 | |
| 	/* P_dvsy_sync_wait */
 | |
| 	switch (ch->transmission_mode) {
 | |
| 	case TRANSMISSION_MODE_8K:
 | |
| 		value = 256;
 | |
| 		break;
 | |
| 	case TRANSMISSION_MODE_4K:
 | |
| 		value = 128;
 | |
| 		break;
 | |
| 	case TRANSMISSION_MODE_2K:
 | |
| 	default:
 | |
| 		value = 64;
 | |
| 		break;
 | |
| 	}
 | |
| 	switch (ch->guard_interval) {
 | |
| 	case GUARD_INTERVAL_1_16:
 | |
| 		value *= 2;
 | |
| 		break;
 | |
| 	case GUARD_INTERVAL_1_8:
 | |
| 		value *= 4;
 | |
| 		break;
 | |
| 	case GUARD_INTERVAL_1_4:
 | |
| 		value *= 8;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case GUARD_INTERVAL_1_32:
 | |
| 		value *= 1;
 | |
| 		break;
 | |
| 	}
 | |
| 	if (state->cfg.diversity_delay == 0)
 | |
| 		state->div_sync_wait = (value * 3) / 2 + 48;
 | |
| 	else
 | |
| 		state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay;
 | |
| 
 | |
| 	/* deactive the possibility of diversity reception if extended interleaver */
 | |
| 	state->div_force_off = !1 && ch->transmission_mode != TRANSMISSION_MODE_8K;
 | |
| 	dib7000p_set_diversity_in(&state->demod, state->div_state);
 | |
| 
 | |
| 	/* channel estimation fine configuration */
 | |
| 	switch (ch->modulation) {
 | |
| 	case QAM_64:
 | |
| 		est[0] = 0x0148;	/* P_adp_regul_cnt 0.04 */
 | |
| 		est[1] = 0xfff0;	/* P_adp_noise_cnt -0.002 */
 | |
| 		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
 | |
| 		est[3] = 0xfff8;	/* P_adp_noise_ext -0.001 */
 | |
| 		break;
 | |
| 	case QAM_16:
 | |
| 		est[0] = 0x023d;	/* P_adp_regul_cnt 0.07 */
 | |
| 		est[1] = 0xffdf;	/* P_adp_noise_cnt -0.004 */
 | |
| 		est[2] = 0x00a4;	/* P_adp_regul_ext 0.02 */
 | |
| 		est[3] = 0xfff0;	/* P_adp_noise_ext -0.002 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		est[0] = 0x099a;	/* P_adp_regul_cnt 0.3 */
 | |
| 		est[1] = 0xffae;	/* P_adp_noise_cnt -0.01 */
 | |
| 		est[2] = 0x0333;	/* P_adp_regul_ext 0.1 */
 | |
| 		est[3] = 0xfff8;	/* P_adp_noise_ext -0.002 */
 | |
| 		break;
 | |
| 	}
 | |
| 	for (value = 0; value < 4; value++)
 | |
| 		dib7000p_write_word(state, 187 + value, est[value]);
 | |
| }
 | |
| 
 | |
| static int dib7000p_autosearch_start(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	struct dtv_frontend_properties schan;
 | |
| 	u32 value, factor;
 | |
| 	u32 internal = dib7000p_get_internal_freq(state);
 | |
| 
 | |
| 	schan = *ch;
 | |
| 	schan.modulation = QAM_64;
 | |
| 	schan.guard_interval = GUARD_INTERVAL_1_32;
 | |
| 	schan.transmission_mode = TRANSMISSION_MODE_8K;
 | |
| 	schan.code_rate_HP = FEC_2_3;
 | |
| 	schan.code_rate_LP = FEC_3_4;
 | |
| 	schan.hierarchy = 0;
 | |
| 
 | |
| 	dib7000p_set_channel(state, &schan, 7);
 | |
| 
 | |
| 	factor = BANDWIDTH_TO_KHZ(ch->bandwidth_hz);
 | |
| 	if (factor >= 5000) {
 | |
| 		if (state->version == SOC7090)
 | |
| 			factor = 2;
 | |
| 		else
 | |
| 			factor = 1;
 | |
| 	} else
 | |
| 		factor = 6;
 | |
| 
 | |
| 	value = 30 * internal * factor;
 | |
| 	dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff));
 | |
| 	dib7000p_write_word(state, 7, (u16) (value & 0xffff));
 | |
| 	value = 100 * internal * factor;
 | |
| 	dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff));
 | |
| 	dib7000p_write_word(state, 9, (u16) (value & 0xffff));
 | |
| 	value = 500 * internal * factor;
 | |
| 	dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff));
 | |
| 	dib7000p_write_word(state, 11, (u16) (value & 0xffff));
 | |
| 
 | |
| 	value = dib7000p_read_word(state, 0);
 | |
| 	dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
 | |
| 	dib7000p_read_word(state, 1284);
 | |
| 	dib7000p_write_word(state, 0, (u16) value);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	u16 irq_pending = dib7000p_read_word(state, 1284);
 | |
| 
 | |
| 	if (irq_pending & 0x1)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (irq_pending & 0x2)
 | |
| 		return 2;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
 | |
| {
 | |
| 	static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
 | |
| 	static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
 | |
| 		24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
 | |
| 		53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
 | |
| 		82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
 | |
| 		107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
 | |
| 		128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
 | |
| 		147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
 | |
| 		166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
 | |
| 		183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
 | |
| 		199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
 | |
| 		213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
 | |
| 		225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
 | |
| 		235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
 | |
| 		244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
 | |
| 		250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
 | |
| 		254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
 | |
| 		255, 255, 255, 255, 255, 255
 | |
| 	};
 | |
| 
 | |
| 	u32 xtal = state->cfg.bw->xtal_hz / 1000;
 | |
| 	int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
 | |
| 	int k;
 | |
| 	int coef_re[8], coef_im[8];
 | |
| 	int bw_khz = bw;
 | |
| 	u32 pha;
 | |
| 
 | |
| 	dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)\n", f_rel, rf_khz, xtal);
 | |
| 
 | |
| 	if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
 | |
| 		return;
 | |
| 
 | |
| 	bw_khz /= 100;
 | |
| 
 | |
| 	dib7000p_write_word(state, 142, 0x0610);
 | |
| 
 | |
| 	for (k = 0; k < 8; k++) {
 | |
| 		pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
 | |
| 
 | |
| 		if (pha == 0) {
 | |
| 			coef_re[k] = 256;
 | |
| 			coef_im[k] = 0;
 | |
| 		} else if (pha < 256) {
 | |
| 			coef_re[k] = sine[256 - (pha & 0xff)];
 | |
| 			coef_im[k] = sine[pha & 0xff];
 | |
| 		} else if (pha == 256) {
 | |
| 			coef_re[k] = 0;
 | |
| 			coef_im[k] = 256;
 | |
| 		} else if (pha < 512) {
 | |
| 			coef_re[k] = -sine[pha & 0xff];
 | |
| 			coef_im[k] = sine[256 - (pha & 0xff)];
 | |
| 		} else if (pha == 512) {
 | |
| 			coef_re[k] = -256;
 | |
| 			coef_im[k] = 0;
 | |
| 		} else if (pha < 768) {
 | |
| 			coef_re[k] = -sine[256 - (pha & 0xff)];
 | |
| 			coef_im[k] = -sine[pha & 0xff];
 | |
| 		} else if (pha == 768) {
 | |
| 			coef_re[k] = 0;
 | |
| 			coef_im[k] = -256;
 | |
| 		} else {
 | |
| 			coef_re[k] = sine[pha & 0xff];
 | |
| 			coef_im[k] = -sine[256 - (pha & 0xff)];
 | |
| 		}
 | |
| 
 | |
| 		coef_re[k] *= notch[k];
 | |
| 		coef_re[k] += (1 << 14);
 | |
| 		if (coef_re[k] >= (1 << 24))
 | |
| 			coef_re[k] = (1 << 24) - 1;
 | |
| 		coef_re[k] /= (1 << 15);
 | |
| 
 | |
| 		coef_im[k] *= notch[k];
 | |
| 		coef_im[k] += (1 << 14);
 | |
| 		if (coef_im[k] >= (1 << 24))
 | |
| 			coef_im[k] = (1 << 24) - 1;
 | |
| 		coef_im[k] /= (1 << 15);
 | |
| 
 | |
| 		dprintk("PALF COEF: %d re: %d im: %d\n", k, coef_re[k], coef_im[k]);
 | |
| 
 | |
| 		dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
 | |
| 		dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
 | |
| 		dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 143, 0);
 | |
| }
 | |
| 
 | |
| static int dib7000p_tune(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dtv_frontend_properties *ch = &demod->dtv_property_cache;
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	u16 tmp = 0;
 | |
| 
 | |
| 	if (ch != NULL)
 | |
| 		dib7000p_set_channel(state, ch, 0);
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	// restart demod
 | |
| 	dib7000p_write_word(state, 770, 0x4000);
 | |
| 	dib7000p_write_word(state, 770, 0x0000);
 | |
| 	msleep(45);
 | |
| 
 | |
| 	/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
 | |
| 	tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
 | |
| 	if (state->sfn_workaround_active) {
 | |
| 		dprintk("SFN workaround is active\n");
 | |
| 		tmp |= (1 << 9);
 | |
| 		dib7000p_write_word(state, 166, 0x4000);
 | |
| 	} else {
 | |
| 		dib7000p_write_word(state, 166, 0x0000);
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 29, tmp);
 | |
| 
 | |
| 	// never achieved a lock with that bandwidth so far - wait for osc-freq to update
 | |
| 	if (state->timf == 0)
 | |
| 		msleep(200);
 | |
| 
 | |
| 	/* offset loop parameters */
 | |
| 
 | |
| 	/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
 | |
| 	tmp = (6 << 8) | 0x80;
 | |
| 	switch (ch->transmission_mode) {
 | |
| 	case TRANSMISSION_MODE_2K:
 | |
| 		tmp |= (2 << 12);
 | |
| 		break;
 | |
| 	case TRANSMISSION_MODE_4K:
 | |
| 		tmp |= (3 << 12);
 | |
| 		break;
 | |
| 	default:
 | |
| 	case TRANSMISSION_MODE_8K:
 | |
| 		tmp |= (4 << 12);
 | |
| 		break;
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 26, tmp);	/* timf_a(6xxx) */
 | |
| 
 | |
| 	/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
 | |
| 	tmp = (0 << 4);
 | |
| 	switch (ch->transmission_mode) {
 | |
| 	case TRANSMISSION_MODE_2K:
 | |
| 		tmp |= 0x6;
 | |
| 		break;
 | |
| 	case TRANSMISSION_MODE_4K:
 | |
| 		tmp |= 0x7;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case TRANSMISSION_MODE_8K:
 | |
| 		tmp |= 0x8;
 | |
| 		break;
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 32, tmp);
 | |
| 
 | |
| 	/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
 | |
| 	tmp = (0 << 4);
 | |
| 	switch (ch->transmission_mode) {
 | |
| 	case TRANSMISSION_MODE_2K:
 | |
| 		tmp |= 0x6;
 | |
| 		break;
 | |
| 	case TRANSMISSION_MODE_4K:
 | |
| 		tmp |= 0x7;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case TRANSMISSION_MODE_8K:
 | |
| 		tmp |= 0x8;
 | |
| 		break;
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 33, tmp);
 | |
| 
 | |
| 	tmp = dib7000p_read_word(state, 509);
 | |
| 	if (!((tmp >> 6) & 0x1)) {
 | |
| 		/* restart the fec */
 | |
| 		tmp = dib7000p_read_word(state, 771);
 | |
| 		dib7000p_write_word(state, 771, tmp | (1 << 1));
 | |
| 		dib7000p_write_word(state, 771, tmp);
 | |
| 		msleep(40);
 | |
| 		tmp = dib7000p_read_word(state, 509);
 | |
| 	}
 | |
| 	// we achieved a lock - it's time to update the osc freq
 | |
| 	if ((tmp >> 6) & 0x1) {
 | |
| 		dib7000p_update_timf(state);
 | |
| 		/* P_timf_alpha += 2 */
 | |
| 		tmp = dib7000p_read_word(state, 26);
 | |
| 		dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
 | |
| 	}
 | |
| 
 | |
| 	if (state->cfg.spur_protect)
 | |
| 		dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
 | |
| 
 | |
| 	dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->bandwidth_hz));
 | |
| 
 | |
| 	dib7000p_reset_stats(demod);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_wakeup(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
 | |
| 	dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
 | |
| 	if (state->version == SOC7090)
 | |
| 		dib7000p_sad_calib(state);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_sleep(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	if (state->version == SOC7090)
 | |
| 		return dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
 | |
| 	return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
 | |
| }
 | |
| 
 | |
| static int dib7000p_identify(struct dib7000p_state *st)
 | |
| {
 | |
| 	u16 value;
 | |
| 	dprintk("checking demod on I2C address: %d (%x)\n", st->i2c_addr, st->i2c_addr);
 | |
| 
 | |
| 	if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
 | |
| 		dprintk("wrong Vendor ID (read=0x%x)\n", value);
 | |
| 		return -EREMOTEIO;
 | |
| 	}
 | |
| 
 | |
| 	if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
 | |
| 		dprintk("wrong Device ID (%x)\n", value);
 | |
| 		return -EREMOTEIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_get_frontend(struct dvb_frontend *fe,
 | |
| 				 struct dtv_frontend_properties *fep)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 tps = dib7000p_read_word(state, 463);
 | |
| 
 | |
| 	fep->inversion = INVERSION_AUTO;
 | |
| 
 | |
| 	fep->bandwidth_hz = BANDWIDTH_TO_HZ(state->current_bandwidth);
 | |
| 
 | |
| 	switch ((tps >> 8) & 0x3) {
 | |
| 	case 0:
 | |
| 		fep->transmission_mode = TRANSMISSION_MODE_2K;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		fep->transmission_mode = TRANSMISSION_MODE_8K;
 | |
| 		break;
 | |
| 	/* case 2: fep->transmission_mode = TRANSMISSION_MODE_4K; break; */
 | |
| 	}
 | |
| 
 | |
| 	switch (tps & 0x3) {
 | |
| 	case 0:
 | |
| 		fep->guard_interval = GUARD_INTERVAL_1_32;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		fep->guard_interval = GUARD_INTERVAL_1_16;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		fep->guard_interval = GUARD_INTERVAL_1_8;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		fep->guard_interval = GUARD_INTERVAL_1_4;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch ((tps >> 14) & 0x3) {
 | |
| 	case 0:
 | |
| 		fep->modulation = QPSK;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		fep->modulation = QAM_16;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 	default:
 | |
| 		fep->modulation = QAM_64;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
 | |
| 	/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */
 | |
| 
 | |
| 	fep->hierarchy = HIERARCHY_NONE;
 | |
| 	switch ((tps >> 5) & 0x7) {
 | |
| 	case 1:
 | |
| 		fep->code_rate_HP = FEC_1_2;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		fep->code_rate_HP = FEC_2_3;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		fep->code_rate_HP = FEC_3_4;
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		fep->code_rate_HP = FEC_5_6;
 | |
| 		break;
 | |
| 	case 7:
 | |
| 	default:
 | |
| 		fep->code_rate_HP = FEC_7_8;
 | |
| 		break;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	switch ((tps >> 2) & 0x7) {
 | |
| 	case 1:
 | |
| 		fep->code_rate_LP = FEC_1_2;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		fep->code_rate_LP = FEC_2_3;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		fep->code_rate_LP = FEC_3_4;
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		fep->code_rate_LP = FEC_5_6;
 | |
| 		break;
 | |
| 	case 7:
 | |
| 	default:
 | |
| 		fep->code_rate_LP = FEC_7_8;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* native interleaver: (dib7000p_read_word(state, 464) >>  5) & 0x1 */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_set_frontend(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct dtv_frontend_properties *fep = &fe->dtv_property_cache;
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	int time, ret;
 | |
| 
 | |
| 	if (state->version == SOC7090)
 | |
| 		dib7090_set_diversity_in(fe, 0);
 | |
| 	else
 | |
| 		dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
 | |
| 
 | |
| 	/* maybe the parameter has been changed */
 | |
| 	state->sfn_workaround_active = buggy_sfn_workaround;
 | |
| 
 | |
| 	if (fe->ops.tuner_ops.set_params)
 | |
| 		fe->ops.tuner_ops.set_params(fe);
 | |
| 
 | |
| 	/* start up the AGC */
 | |
| 	state->agc_state = 0;
 | |
| 	do {
 | |
| 		time = dib7000p_agc_startup(fe);
 | |
| 		if (time != -1)
 | |
| 			msleep(time);
 | |
| 	} while (time != -1);
 | |
| 
 | |
| 	if (fep->transmission_mode == TRANSMISSION_MODE_AUTO ||
 | |
| 		fep->guard_interval == GUARD_INTERVAL_AUTO || fep->modulation == QAM_AUTO || fep->code_rate_HP == FEC_AUTO) {
 | |
| 		int i = 800, found;
 | |
| 
 | |
| 		dib7000p_autosearch_start(fe);
 | |
| 		do {
 | |
| 			msleep(1);
 | |
| 			found = dib7000p_autosearch_is_irq(fe);
 | |
| 		} while (found == 0 && i--);
 | |
| 
 | |
| 		dprintk("autosearch returns: %d\n", found);
 | |
| 		if (found == 0 || found == 1)
 | |
| 			return 0;
 | |
| 
 | |
| 		dib7000p_get_frontend(fe, fep);
 | |
| 	}
 | |
| 
 | |
| 	ret = dib7000p_tune(fe);
 | |
| 
 | |
| 	/* make this a config parameter */
 | |
| 	if (state->version == SOC7090) {
 | |
| 		dib7090_set_output_mode(fe, state->cfg.output_mode);
 | |
| 		if (state->cfg.enMpegOutput == 0) {
 | |
| 			dib7090_setDibTxMux(state, MPEG_ON_DIBTX);
 | |
| 			dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
 | |
| 		}
 | |
| 	} else
 | |
| 		dib7000p_set_output_mode(state, state->cfg.output_mode);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dib7000p_get_stats(struct dvb_frontend *fe, enum fe_status stat);
 | |
| 
 | |
| static int dib7000p_read_status(struct dvb_frontend *fe, enum fe_status *stat)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 lock = dib7000p_read_word(state, 509);
 | |
| 
 | |
| 	*stat = 0;
 | |
| 
 | |
| 	if (lock & 0x8000)
 | |
| 		*stat |= FE_HAS_SIGNAL;
 | |
| 	if (lock & 0x3000)
 | |
| 		*stat |= FE_HAS_CARRIER;
 | |
| 	if (lock & 0x0100)
 | |
| 		*stat |= FE_HAS_VITERBI;
 | |
| 	if (lock & 0x0010)
 | |
| 		*stat |= FE_HAS_SYNC;
 | |
| 	if ((lock & 0x0038) == 0x38)
 | |
| 		*stat |= FE_HAS_LOCK;
 | |
| 
 | |
| 	dib7000p_get_stats(fe, *stat);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	*unc = dib7000p_read_word(state, 506);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 val = dib7000p_read_word(state, 394);
 | |
| 	*strength = 65535 - val;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 dib7000p_get_snr(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 val;
 | |
| 	s32 signal_mant, signal_exp, noise_mant, noise_exp;
 | |
| 	u32 result = 0;
 | |
| 
 | |
| 	val = dib7000p_read_word(state, 479);
 | |
| 	noise_mant = (val >> 4) & 0xff;
 | |
| 	noise_exp = ((val & 0xf) << 2);
 | |
| 	val = dib7000p_read_word(state, 480);
 | |
| 	noise_exp += ((val >> 14) & 0x3);
 | |
| 	if ((noise_exp & 0x20) != 0)
 | |
| 		noise_exp -= 0x40;
 | |
| 
 | |
| 	signal_mant = (val >> 6) & 0xFF;
 | |
| 	signal_exp = (val & 0x3F);
 | |
| 	if ((signal_exp & 0x20) != 0)
 | |
| 		signal_exp -= 0x40;
 | |
| 
 | |
| 	if (signal_mant != 0)
 | |
| 		result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
 | |
| 	else
 | |
| 		result = intlog10(2) * 10 * signal_exp - 100;
 | |
| 
 | |
| 	if (noise_mant != 0)
 | |
| 		result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
 | |
| 	else
 | |
| 		result -= intlog10(2) * 10 * noise_exp - 100;
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int dib7000p_read_snr(struct dvb_frontend *fe, u16 *snr)
 | |
| {
 | |
| 	u32 result;
 | |
| 
 | |
| 	result = dib7000p_get_snr(fe);
 | |
| 
 | |
| 	*snr = result / ((1 << 24) / 10);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000p_reset_stats(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	struct dtv_frontend_properties *c = &demod->dtv_property_cache;
 | |
| 	u32 ucb;
 | |
| 
 | |
| 	memset(&c->strength, 0, sizeof(c->strength));
 | |
| 	memset(&c->cnr, 0, sizeof(c->cnr));
 | |
| 	memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
 | |
| 	memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
 | |
| 	memset(&c->block_error, 0, sizeof(c->block_error));
 | |
| 
 | |
| 	c->strength.len = 1;
 | |
| 	c->cnr.len = 1;
 | |
| 	c->block_error.len = 1;
 | |
| 	c->block_count.len = 1;
 | |
| 	c->post_bit_error.len = 1;
 | |
| 	c->post_bit_count.len = 1;
 | |
| 
 | |
| 	c->strength.stat[0].scale = FE_SCALE_DECIBEL;
 | |
| 	c->strength.stat[0].uvalue = 0;
 | |
| 
 | |
| 	c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 	c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 	c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 	c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 	c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 
 | |
| 	dib7000p_read_unc_blocks(demod, &ucb);
 | |
| 
 | |
| 	state->old_ucb = ucb;
 | |
| 	state->ber_jiffies_stats = 0;
 | |
| 	state->per_jiffies_stats = 0;
 | |
| }
 | |
| 
 | |
| struct linear_segments {
 | |
| 	unsigned x;
 | |
| 	signed y;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Table to estimate signal strength in dBm.
 | |
|  * This table should be empirically determinated by measuring the signal
 | |
|  * strength generated by a RF generator directly connected into
 | |
|  * a device.
 | |
|  * This table was determinated by measuring the signal strength generated
 | |
|  * by a DTA-2111 RF generator directly connected into a dib7000p device
 | |
|  * (a Hauppauge Nova-TD stick), using a good quality 3 meters length
 | |
|  * RC6 cable and good RC6 connectors, connected directly to antenna 1.
 | |
|  * As the minimum output power of DTA-2111 is -31dBm, a 16 dBm attenuator
 | |
|  * were used, for the lower power values.
 | |
|  * The real value can actually be on other devices, or even at the
 | |
|  * second antena input, depending on several factors, like if LNA
 | |
|  * is enabled or not, if diversity is enabled, type of connectors, etc.
 | |
|  * Yet, it is better to use this measure in dB than a random non-linear
 | |
|  * percentage value, especially for antenna adjustments.
 | |
|  * On my tests, the precision of the measure using this table is about
 | |
|  * 0.5 dB, with sounds reasonable enough to adjust antennas.
 | |
|  */
 | |
| #define DB_OFFSET 131000
 | |
| 
 | |
| static struct linear_segments strength_to_db_table[] = {
 | |
| 	{ 63630, DB_OFFSET - 20500},
 | |
| 	{ 62273, DB_OFFSET - 21000},
 | |
| 	{ 60162, DB_OFFSET - 22000},
 | |
| 	{ 58730, DB_OFFSET - 23000},
 | |
| 	{ 58294, DB_OFFSET - 24000},
 | |
| 	{ 57778, DB_OFFSET - 25000},
 | |
| 	{ 57320, DB_OFFSET - 26000},
 | |
| 	{ 56779, DB_OFFSET - 27000},
 | |
| 	{ 56293, DB_OFFSET - 28000},
 | |
| 	{ 55724, DB_OFFSET - 29000},
 | |
| 	{ 55145, DB_OFFSET - 30000},
 | |
| 	{ 54680, DB_OFFSET - 31000},
 | |
| 	{ 54293, DB_OFFSET - 32000},
 | |
| 	{ 53813, DB_OFFSET - 33000},
 | |
| 	{ 53427, DB_OFFSET - 34000},
 | |
| 	{ 52981, DB_OFFSET - 35000},
 | |
| 
 | |
| 	{ 52636, DB_OFFSET - 36000},
 | |
| 	{ 52014, DB_OFFSET - 37000},
 | |
| 	{ 51674, DB_OFFSET - 38000},
 | |
| 	{ 50692, DB_OFFSET - 39000},
 | |
| 	{ 49824, DB_OFFSET - 40000},
 | |
| 	{ 49052, DB_OFFSET - 41000},
 | |
| 	{ 48436, DB_OFFSET - 42000},
 | |
| 	{ 47836, DB_OFFSET - 43000},
 | |
| 	{ 47368, DB_OFFSET - 44000},
 | |
| 	{ 46468, DB_OFFSET - 45000},
 | |
| 	{ 45597, DB_OFFSET - 46000},
 | |
| 	{ 44586, DB_OFFSET - 47000},
 | |
| 	{ 43667, DB_OFFSET - 48000},
 | |
| 	{ 42673, DB_OFFSET - 49000},
 | |
| 	{ 41816, DB_OFFSET - 50000},
 | |
| 	{ 40876, DB_OFFSET - 51000},
 | |
| 	{     0,      0},
 | |
| };
 | |
| 
 | |
| static u32 interpolate_value(u32 value, struct linear_segments *segments,
 | |
| 			     unsigned len)
 | |
| {
 | |
| 	u64 tmp64;
 | |
| 	u32 dx;
 | |
| 	s32 dy;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (value >= segments[0].x)
 | |
| 		return segments[0].y;
 | |
| 	if (value < segments[len-1].x)
 | |
| 		return segments[len-1].y;
 | |
| 
 | |
| 	for (i = 1; i < len - 1; i++) {
 | |
| 		/* If value is identical, no need to interpolate */
 | |
| 		if (value == segments[i].x)
 | |
| 			return segments[i].y;
 | |
| 		if (value > segments[i].x)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Linear interpolation between the two (x,y) points */
 | |
| 	dy = segments[i - 1].y - segments[i].y;
 | |
| 	dx = segments[i - 1].x - segments[i].x;
 | |
| 
 | |
| 	tmp64 = value - segments[i].x;
 | |
| 	tmp64 *= dy;
 | |
| 	do_div(tmp64, dx);
 | |
| 	ret = segments[i].y + tmp64;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* FIXME: may require changes - this one was borrowed from dib8000 */
 | |
| static u32 dib7000p_get_time_us(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dtv_frontend_properties *c = &demod->dtv_property_cache;
 | |
| 	u64 time_us, tmp64;
 | |
| 	u32 tmp, denom;
 | |
| 	int guard, rate_num, rate_denum = 1, bits_per_symbol;
 | |
| 	int interleaving = 0, fft_div;
 | |
| 
 | |
| 	switch (c->guard_interval) {
 | |
| 	case GUARD_INTERVAL_1_4:
 | |
| 		guard = 4;
 | |
| 		break;
 | |
| 	case GUARD_INTERVAL_1_8:
 | |
| 		guard = 8;
 | |
| 		break;
 | |
| 	case GUARD_INTERVAL_1_16:
 | |
| 		guard = 16;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case GUARD_INTERVAL_1_32:
 | |
| 		guard = 32;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (c->transmission_mode) {
 | |
| 	case TRANSMISSION_MODE_2K:
 | |
| 		fft_div = 4;
 | |
| 		break;
 | |
| 	case TRANSMISSION_MODE_4K:
 | |
| 		fft_div = 2;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case TRANSMISSION_MODE_8K:
 | |
| 		fft_div = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (c->modulation) {
 | |
| 	case DQPSK:
 | |
| 	case QPSK:
 | |
| 		bits_per_symbol = 2;
 | |
| 		break;
 | |
| 	case QAM_16:
 | |
| 		bits_per_symbol = 4;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case QAM_64:
 | |
| 		bits_per_symbol = 6;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch ((c->hierarchy == 0 || 1 == 1) ? c->code_rate_HP : c->code_rate_LP) {
 | |
| 	case FEC_1_2:
 | |
| 		rate_num = 1;
 | |
| 		rate_denum = 2;
 | |
| 		break;
 | |
| 	case FEC_2_3:
 | |
| 		rate_num = 2;
 | |
| 		rate_denum = 3;
 | |
| 		break;
 | |
| 	case FEC_3_4:
 | |
| 		rate_num = 3;
 | |
| 		rate_denum = 4;
 | |
| 		break;
 | |
| 	case FEC_5_6:
 | |
| 		rate_num = 5;
 | |
| 		rate_denum = 6;
 | |
| 		break;
 | |
| 	default:
 | |
| 	case FEC_7_8:
 | |
| 		rate_num = 7;
 | |
| 		rate_denum = 8;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	interleaving = interleaving;
 | |
| 
 | |
| 	denom = bits_per_symbol * rate_num * fft_div * 384;
 | |
| 
 | |
| 	/* If calculus gets wrong, wait for 1s for the next stats */
 | |
| 	if (!denom)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Estimate the period for the total bit rate */
 | |
| 	time_us = rate_denum * (1008 * 1562500L);
 | |
| 	tmp64 = time_us;
 | |
| 	do_div(tmp64, guard);
 | |
| 	time_us = time_us + tmp64;
 | |
| 	time_us += denom / 2;
 | |
| 	do_div(time_us, denom);
 | |
| 
 | |
| 	tmp = 1008 * 96 * interleaving;
 | |
| 	time_us += tmp + tmp / guard;
 | |
| 
 | |
| 	return time_us;
 | |
| }
 | |
| 
 | |
| static int dib7000p_get_stats(struct dvb_frontend *demod, enum fe_status stat)
 | |
| {
 | |
| 	struct dib7000p_state *state = demod->demodulator_priv;
 | |
| 	struct dtv_frontend_properties *c = &demod->dtv_property_cache;
 | |
| 	int show_per_stats = 0;
 | |
| 	u32 time_us = 0, val, snr;
 | |
| 	u64 blocks, ucb;
 | |
| 	s32 db;
 | |
| 	u16 strength;
 | |
| 
 | |
| 	/* Get Signal strength */
 | |
| 	dib7000p_read_signal_strength(demod, &strength);
 | |
| 	val = strength;
 | |
| 	db = interpolate_value(val,
 | |
| 			       strength_to_db_table,
 | |
| 			       ARRAY_SIZE(strength_to_db_table)) - DB_OFFSET;
 | |
| 	c->strength.stat[0].svalue = db;
 | |
| 
 | |
| 	/* UCB/BER/CNR measures require lock */
 | |
| 	if (!(stat & FE_HAS_LOCK)) {
 | |
| 		c->cnr.len = 1;
 | |
| 		c->block_count.len = 1;
 | |
| 		c->block_error.len = 1;
 | |
| 		c->post_bit_error.len = 1;
 | |
| 		c->post_bit_count.len = 1;
 | |
| 		c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 		c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 		c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 		c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 		c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if time for stats was elapsed */
 | |
| 	if (time_after(jiffies, state->per_jiffies_stats)) {
 | |
| 		state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);
 | |
| 
 | |
| 		/* Get SNR */
 | |
| 		snr = dib7000p_get_snr(demod);
 | |
| 		if (snr)
 | |
| 			snr = (1000L * snr) >> 24;
 | |
| 		else
 | |
| 			snr = 0;
 | |
| 		c->cnr.stat[0].svalue = snr;
 | |
| 		c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
 | |
| 
 | |
| 		/* Get UCB measures */
 | |
| 		dib7000p_read_unc_blocks(demod, &val);
 | |
| 		ucb = val - state->old_ucb;
 | |
| 		if (val < state->old_ucb)
 | |
| 			ucb += 0x100000000LL;
 | |
| 
 | |
| 		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
 | |
| 		c->block_error.stat[0].uvalue = ucb;
 | |
| 
 | |
| 		/* Estimate the number of packets based on bitrate */
 | |
| 		if (!time_us)
 | |
| 			time_us = dib7000p_get_time_us(demod);
 | |
| 
 | |
| 		if (time_us) {
 | |
| 			blocks = 1250000ULL * 1000000ULL;
 | |
| 			do_div(blocks, time_us * 8 * 204);
 | |
| 			c->block_count.stat[0].scale = FE_SCALE_COUNTER;
 | |
| 			c->block_count.stat[0].uvalue += blocks;
 | |
| 		}
 | |
| 
 | |
| 		show_per_stats = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Get post-BER measures */
 | |
| 	if (time_after(jiffies, state->ber_jiffies_stats)) {
 | |
| 		time_us = dib7000p_get_time_us(demod);
 | |
| 		state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
 | |
| 
 | |
| 		dprintk("Next all layers stats available in %u us.\n", time_us);
 | |
| 
 | |
| 		dib7000p_read_ber(demod, &val);
 | |
| 		c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
 | |
| 		c->post_bit_error.stat[0].uvalue += val;
 | |
| 
 | |
| 		c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
 | |
| 		c->post_bit_count.stat[0].uvalue += 100000000;
 | |
| 	}
 | |
| 
 | |
| 	/* Get PER measures */
 | |
| 	if (show_per_stats) {
 | |
| 		dib7000p_read_unc_blocks(demod, &val);
 | |
| 
 | |
| 		c->block_error.stat[0].scale = FE_SCALE_COUNTER;
 | |
| 		c->block_error.stat[0].uvalue += val;
 | |
| 
 | |
| 		time_us = dib7000p_get_time_us(demod);
 | |
| 		if (time_us) {
 | |
| 			blocks = 1250000ULL * 1000000ULL;
 | |
| 			do_div(blocks, time_us * 8 * 204);
 | |
| 			c->block_count.stat[0].scale = FE_SCALE_COUNTER;
 | |
| 			c->block_count.stat[0].uvalue += blocks;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
 | |
| {
 | |
| 	tune->min_delay_ms = 1000;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000p_release(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000p_state *st = demod->demodulator_priv;
 | |
| 	dibx000_exit_i2c_master(&st->i2c_master);
 | |
| 	i2c_del_adapter(&st->dib7090_tuner_adap);
 | |
| 	kfree(st);
 | |
| }
 | |
| 
 | |
| static int dib7000pc_detection(struct i2c_adapter *i2c_adap)
 | |
| {
 | |
| 	u8 *tx, *rx;
 | |
| 	struct i2c_msg msg[2] = {
 | |
| 		{.addr = 18 >> 1, .flags = 0, .len = 2},
 | |
| 		{.addr = 18 >> 1, .flags = I2C_M_RD, .len = 2},
 | |
| 	};
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	tx = kzalloc(2, GFP_KERNEL);
 | |
| 	if (!tx)
 | |
| 		return -ENOMEM;
 | |
| 	rx = kzalloc(2, GFP_KERNEL);
 | |
| 	if (!rx) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto rx_memory_error;
 | |
| 	}
 | |
| 
 | |
| 	msg[0].buf = tx;
 | |
| 	msg[1].buf = rx;
 | |
| 
 | |
| 	tx[0] = 0x03;
 | |
| 	tx[1] = 0x00;
 | |
| 
 | |
| 	if (i2c_transfer(i2c_adap, msg, 2) == 2)
 | |
| 		if (rx[0] == 0x01 && rx[1] == 0xb3) {
 | |
| 			dprintk("-D-  DiB7000PC detected\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 	msg[0].addr = msg[1].addr = 0x40;
 | |
| 
 | |
| 	if (i2c_transfer(i2c_adap, msg, 2) == 2)
 | |
| 		if (rx[0] == 0x01 && rx[1] == 0xb3) {
 | |
| 			dprintk("-D-  DiB7000PC detected\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 	dprintk("-D-  DiB7000PC not detected\n");
 | |
| 
 | |
| 	kfree(rx);
 | |
| rx_memory_error:
 | |
| 	kfree(tx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
 | |
| {
 | |
| 	struct dib7000p_state *st = demod->demodulator_priv;
 | |
| 	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
 | |
| }
 | |
| 
 | |
| static int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 val = dib7000p_read_word(state, 235) & 0xffef;
 | |
| 	val |= (onoff & 0x1) << 4;
 | |
| 	dprintk("PID filter enabled %d\n", onoff);
 | |
| 	return dib7000p_write_word(state, 235, val);
 | |
| }
 | |
| 
 | |
| static int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	dprintk("PID filter: index %x, PID %d, OnOff %d\n", id, pid, onoff);
 | |
| 	return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0);
 | |
| }
 | |
| 
 | |
| static int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
 | |
| {
 | |
| 	struct dib7000p_state *dpst;
 | |
| 	int k = 0;
 | |
| 	u8 new_addr = 0;
 | |
| 
 | |
| 	dpst = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
 | |
| 	if (!dpst)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dpst->i2c_adap = i2c;
 | |
| 	mutex_init(&dpst->i2c_buffer_lock);
 | |
| 
 | |
| 	for (k = no_of_demods - 1; k >= 0; k--) {
 | |
| 		dpst->cfg = cfg[k];
 | |
| 
 | |
| 		/* designated i2c address */
 | |
| 		if (cfg[k].default_i2c_addr != 0)
 | |
| 			new_addr = cfg[k].default_i2c_addr + (k << 1);
 | |
| 		else
 | |
| 			new_addr = (0x40 + k) << 1;
 | |
| 		dpst->i2c_addr = new_addr;
 | |
| 		dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
 | |
| 		if (dib7000p_identify(dpst) != 0) {
 | |
| 			dpst->i2c_addr = default_addr;
 | |
| 			dib7000p_write_word(dpst, 1287, 0x0003);	/* sram lead in, rdy */
 | |
| 			if (dib7000p_identify(dpst) != 0) {
 | |
| 				dprintk("DiB7000P #%d: not identified\n", k);
 | |
| 				kfree(dpst);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* start diversity to pull_down div_str - just for i2c-enumeration */
 | |
| 		dib7000p_set_output_mode(dpst, OUTMODE_DIVERSITY);
 | |
| 
 | |
| 		/* set new i2c address and force divstart */
 | |
| 		dib7000p_write_word(dpst, 1285, (new_addr << 2) | 0x2);
 | |
| 
 | |
| 		dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr);
 | |
| 	}
 | |
| 
 | |
| 	for (k = 0; k < no_of_demods; k++) {
 | |
| 		dpst->cfg = cfg[k];
 | |
| 		if (cfg[k].default_i2c_addr != 0)
 | |
| 			dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
 | |
| 		else
 | |
| 			dpst->i2c_addr = (0x40 + k) << 1;
 | |
| 
 | |
| 		// unforce divstr
 | |
| 		dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2);
 | |
| 
 | |
| 		/* deactivate div - it was just for i2c-enumeration */
 | |
| 		dib7000p_set_output_mode(dpst, OUTMODE_HIGH_Z);
 | |
| 	}
 | |
| 
 | |
| 	kfree(dpst);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const s32 lut_1000ln_mant[] = {
 | |
| 	6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
 | |
| };
 | |
| 
 | |
| static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u32 tmp_val = 0, exp = 0, mant = 0;
 | |
| 	s32 pow_i;
 | |
| 	u16 buf[2];
 | |
| 	u8 ix = 0;
 | |
| 
 | |
| 	buf[0] = dib7000p_read_word(state, 0x184);
 | |
| 	buf[1] = dib7000p_read_word(state, 0x185);
 | |
| 	pow_i = (buf[0] << 16) | buf[1];
 | |
| 	dprintk("raw pow_i = %d\n", pow_i);
 | |
| 
 | |
| 	tmp_val = pow_i;
 | |
| 	while (tmp_val >>= 1)
 | |
| 		exp++;
 | |
| 
 | |
| 	mant = (pow_i * 1000 / (1 << exp));
 | |
| 	dprintk(" mant = %d exp = %d\n", mant / 1000, exp);
 | |
| 
 | |
| 	ix = (u8) ((mant - 1000) / 100);	/* index of the LUT */
 | |
| 	dprintk(" ix = %d\n", ix);
 | |
| 
 | |
| 	pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
 | |
| 	pow_i = (pow_i << 8) / 1000;
 | |
| 	dprintk(" pow_i = %d\n", pow_i);
 | |
| 
 | |
| 	return pow_i;
 | |
| }
 | |
| 
 | |
| static int map_addr_to_serpar_number(struct i2c_msg *msg)
 | |
| {
 | |
| 	if ((msg->buf[0] <= 15))
 | |
| 		msg->buf[0] -= 1;
 | |
| 	else if (msg->buf[0] == 17)
 | |
| 		msg->buf[0] = 15;
 | |
| 	else if (msg->buf[0] == 16)
 | |
| 		msg->buf[0] = 17;
 | |
| 	else if (msg->buf[0] == 19)
 | |
| 		msg->buf[0] = 16;
 | |
| 	else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
 | |
| 		msg->buf[0] -= 3;
 | |
| 	else if (msg->buf[0] == 28)
 | |
| 		msg->buf[0] = 23;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
 | |
| {
 | |
| 	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
 | |
| 	u8 n_overflow = 1;
 | |
| 	u16 i = 1000;
 | |
| 	u16 serpar_num = msg[0].buf[0];
 | |
| 
 | |
| 	while (n_overflow == 1 && i) {
 | |
| 		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
 | |
| 		i--;
 | |
| 		if (i == 0)
 | |
| 			dprintk("Tuner ITF: write busy (overflow)\n");
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
 | |
| 	dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
 | |
| 
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
 | |
| {
 | |
| 	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
 | |
| 	u8 n_overflow = 1, n_empty = 1;
 | |
| 	u16 i = 1000;
 | |
| 	u16 serpar_num = msg[0].buf[0];
 | |
| 	u16 read_word;
 | |
| 
 | |
| 	while (n_overflow == 1 && i) {
 | |
| 		n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
 | |
| 		i--;
 | |
| 		if (i == 0)
 | |
| 			dprintk("TunerITF: read busy (overflow)\n");
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));
 | |
| 
 | |
| 	i = 1000;
 | |
| 	while (n_empty == 1 && i) {
 | |
| 		n_empty = dib7000p_read_word(state, 1984) & 0x1;
 | |
| 		i--;
 | |
| 		if (i == 0)
 | |
| 			dprintk("TunerITF: read busy (empty)\n");
 | |
| 	}
 | |
| 	read_word = dib7000p_read_word(state, 1987);
 | |
| 	msg[1].buf[0] = (read_word >> 8) & 0xff;
 | |
| 	msg[1].buf[1] = (read_word) & 0xff;
 | |
| 
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
 | |
| {
 | |
| 	if (map_addr_to_serpar_number(&msg[0]) == 0) {	/* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */
 | |
| 		if (num == 1) {	/* write */
 | |
| 			return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
 | |
| 		} else {	/* read */
 | |
| 			return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
 | |
| 		}
 | |
| 	}
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| static int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap,
 | |
| 		struct i2c_msg msg[], int num, u16 apb_address)
 | |
| {
 | |
| 	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
 | |
| 	u16 word;
 | |
| 
 | |
| 	if (num == 1) {		/* write */
 | |
| 		dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
 | |
| 	} else {
 | |
| 		word = dib7000p_read_word(state, apb_address);
 | |
| 		msg[1].buf[0] = (word >> 8) & 0xff;
 | |
| 		msg[1].buf[1] = (word) & 0xff;
 | |
| 	}
 | |
| 
 | |
| 	return num;
 | |
| }
 | |
| 
 | |
| static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
 | |
| {
 | |
| 	struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
 | |
| 
 | |
| 	u16 apb_address = 0, word;
 | |
| 	int i = 0;
 | |
| 	switch (msg[0].buf[0]) {
 | |
| 	case 0x12:
 | |
| 		apb_address = 1920;
 | |
| 		break;
 | |
| 	case 0x14:
 | |
| 		apb_address = 1921;
 | |
| 		break;
 | |
| 	case 0x24:
 | |
| 		apb_address = 1922;
 | |
| 		break;
 | |
| 	case 0x1a:
 | |
| 		apb_address = 1923;
 | |
| 		break;
 | |
| 	case 0x22:
 | |
| 		apb_address = 1924;
 | |
| 		break;
 | |
| 	case 0x33:
 | |
| 		apb_address = 1926;
 | |
| 		break;
 | |
| 	case 0x34:
 | |
| 		apb_address = 1927;
 | |
| 		break;
 | |
| 	case 0x35:
 | |
| 		apb_address = 1928;
 | |
| 		break;
 | |
| 	case 0x36:
 | |
| 		apb_address = 1929;
 | |
| 		break;
 | |
| 	case 0x37:
 | |
| 		apb_address = 1930;
 | |
| 		break;
 | |
| 	case 0x38:
 | |
| 		apb_address = 1931;
 | |
| 		break;
 | |
| 	case 0x39:
 | |
| 		apb_address = 1932;
 | |
| 		break;
 | |
| 	case 0x2a:
 | |
| 		apb_address = 1935;
 | |
| 		break;
 | |
| 	case 0x2b:
 | |
| 		apb_address = 1936;
 | |
| 		break;
 | |
| 	case 0x2c:
 | |
| 		apb_address = 1937;
 | |
| 		break;
 | |
| 	case 0x2d:
 | |
| 		apb_address = 1938;
 | |
| 		break;
 | |
| 	case 0x2e:
 | |
| 		apb_address = 1939;
 | |
| 		break;
 | |
| 	case 0x2f:
 | |
| 		apb_address = 1940;
 | |
| 		break;
 | |
| 	case 0x30:
 | |
| 		apb_address = 1941;
 | |
| 		break;
 | |
| 	case 0x31:
 | |
| 		apb_address = 1942;
 | |
| 		break;
 | |
| 	case 0x32:
 | |
| 		apb_address = 1943;
 | |
| 		break;
 | |
| 	case 0x3e:
 | |
| 		apb_address = 1944;
 | |
| 		break;
 | |
| 	case 0x3f:
 | |
| 		apb_address = 1945;
 | |
| 		break;
 | |
| 	case 0x40:
 | |
| 		apb_address = 1948;
 | |
| 		break;
 | |
| 	case 0x25:
 | |
| 		apb_address = 914;
 | |
| 		break;
 | |
| 	case 0x26:
 | |
| 		apb_address = 915;
 | |
| 		break;
 | |
| 	case 0x27:
 | |
| 		apb_address = 917;
 | |
| 		break;
 | |
| 	case 0x28:
 | |
| 		apb_address = 916;
 | |
| 		break;
 | |
| 	case 0x1d:
 | |
| 		i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
 | |
| 		word = dib7000p_read_word(state, 384 + i);
 | |
| 		msg[1].buf[0] = (word >> 8) & 0xff;
 | |
| 		msg[1].buf[1] = (word) & 0xff;
 | |
| 		return num;
 | |
| 	case 0x1f:
 | |
| 		if (num == 1) {	/* write */
 | |
| 			word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
 | |
| 			word &= 0x3;
 | |
| 			word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12);
 | |
| 			dib7000p_write_word(state, 72, word);	/* Set the proper input */
 | |
| 			return num;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (apb_address != 0)	/* R/W acces via APB */
 | |
| 		return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
 | |
| 	else			/* R/W access via SERPAR  */
 | |
| 		return w7090p_tuner_rw_serpar(i2c_adap, msg, num);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
 | |
| {
 | |
| 	return I2C_FUNC_I2C;
 | |
| }
 | |
| 
 | |
| static const struct i2c_algorithm dib7090_tuner_xfer_algo = {
 | |
| 	.master_xfer = dib7090_tuner_xfer,
 | |
| 	.functionality = dib7000p_i2c_func,
 | |
| };
 | |
| 
 | |
| static struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct dib7000p_state *st = fe->demodulator_priv;
 | |
| 	return &st->dib7090_tuner_adap;
 | |
| }
 | |
| 
 | |
| static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
 | |
| {
 | |
| 	u16 reg;
 | |
| 
 | |
| 	/* drive host bus 2, 3, 4 */
 | |
| 	reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
 | |
| 	reg |= (drive << 12) | (drive << 6) | drive;
 | |
| 	dib7000p_write_word(state, 1798, reg);
 | |
| 
 | |
| 	/* drive host bus 5,6 */
 | |
| 	reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
 | |
| 	reg |= (drive << 8) | (drive << 2);
 | |
| 	dib7000p_write_word(state, 1799, reg);
 | |
| 
 | |
| 	/* drive host bus 7, 8, 9 */
 | |
| 	reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
 | |
| 	reg |= (drive << 12) | (drive << 6) | drive;
 | |
| 	dib7000p_write_word(state, 1800, reg);
 | |
| 
 | |
| 	/* drive host bus 10, 11 */
 | |
| 	reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
 | |
| 	reg |= (drive << 8) | (drive << 2);
 | |
| 	dib7000p_write_word(state, 1801, reg);
 | |
| 
 | |
| 	/* drive host bus 12, 13, 14 */
 | |
| 	reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
 | |
| 	reg |= (drive << 12) | (drive << 6) | drive;
 | |
| 	dib7000p_write_word(state, 1802, reg);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
 | |
| {
 | |
| 	u32 quantif = 3;
 | |
| 	u32 nom = (insertExtSynchro * P_Kin + syncSize);
 | |
| 	u32 denom = P_Kout;
 | |
| 	u32 syncFreq = ((nom << quantif) / denom);
 | |
| 
 | |
| 	if ((syncFreq & ((1 << quantif) - 1)) != 0)
 | |
| 		syncFreq = (syncFreq >> quantif) + 1;
 | |
| 	else
 | |
| 		syncFreq = (syncFreq >> quantif);
 | |
| 
 | |
| 	if (syncFreq != 0)
 | |
| 		syncFreq = syncFreq - 1;
 | |
| 
 | |
| 	return syncFreq;
 | |
| }
 | |
| 
 | |
| static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
 | |
| {
 | |
| 	dprintk("Configure DibStream Tx\n");
 | |
| 
 | |
| 	dib7000p_write_word(state, 1615, 1);
 | |
| 	dib7000p_write_word(state, 1603, P_Kin);
 | |
| 	dib7000p_write_word(state, 1605, P_Kout);
 | |
| 	dib7000p_write_word(state, 1606, insertExtSynchro);
 | |
| 	dib7000p_write_word(state, 1608, synchroMode);
 | |
| 	dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
 | |
| 	dib7000p_write_word(state, 1610, syncWord & 0xffff);
 | |
| 	dib7000p_write_word(state, 1612, syncSize);
 | |
| 	dib7000p_write_word(state, 1615, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
 | |
| 		u32 dataOutRate)
 | |
| {
 | |
| 	u32 syncFreq;
 | |
| 
 | |
| 	dprintk("Configure DibStream Rx\n");
 | |
| 	if ((P_Kin != 0) && (P_Kout != 0)) {
 | |
| 		syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
 | |
| 		dib7000p_write_word(state, 1542, syncFreq);
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 1554, 1);
 | |
| 	dib7000p_write_word(state, 1536, P_Kin);
 | |
| 	dib7000p_write_word(state, 1537, P_Kout);
 | |
| 	dib7000p_write_word(state, 1539, synchroMode);
 | |
| 	dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
 | |
| 	dib7000p_write_word(state, 1541, syncWord & 0xffff);
 | |
| 	dib7000p_write_word(state, 1543, syncSize);
 | |
| 	dib7000p_write_word(state, 1544, dataOutRate);
 | |
| 	dib7000p_write_word(state, 1554, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7090_enMpegMux(struct dib7000p_state *state, int onoff)
 | |
| {
 | |
| 	u16 reg_1287 = dib7000p_read_word(state, 1287);
 | |
| 
 | |
| 	switch (onoff) {
 | |
| 	case 1:
 | |
| 			reg_1287 &= ~(1<<7);
 | |
| 			break;
 | |
| 	case 0:
 | |
| 			reg_1287 |= (1<<7);
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	dib7000p_write_word(state, 1287, reg_1287);
 | |
| }
 | |
| 
 | |
| static void dib7090_configMpegMux(struct dib7000p_state *state,
 | |
| 		u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
 | |
| {
 | |
| 	dprintk("Enable Mpeg mux\n");
 | |
| 
 | |
| 	dib7090_enMpegMux(state, 0);
 | |
| 
 | |
| 	/* If the input mode is MPEG do not divide the serial clock */
 | |
| 	if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
 | |
| 		enSerialClkDiv2 = 0;
 | |
| 
 | |
| 	dib7000p_write_word(state, 1287, ((pulseWidth & 0x1f) << 2)
 | |
| 			| ((enSerialMode & 0x1) << 1)
 | |
| 			| (enSerialClkDiv2 & 0x1));
 | |
| 
 | |
| 	dib7090_enMpegMux(state, 1);
 | |
| }
 | |
| 
 | |
| static void dib7090_setDibTxMux(struct dib7000p_state *state, int mode)
 | |
| {
 | |
| 	u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 7);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case MPEG_ON_DIBTX:
 | |
| 			dprintk("SET MPEG ON DIBSTREAM TX\n");
 | |
| 			dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
 | |
| 			reg_1288 |= (1<<9);
 | |
| 			break;
 | |
| 	case DIV_ON_DIBTX:
 | |
| 			dprintk("SET DIV_OUT ON DIBSTREAM TX\n");
 | |
| 			dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
 | |
| 			reg_1288 |= (1<<8);
 | |
| 			break;
 | |
| 	case ADC_ON_DIBTX:
 | |
| 			dprintk("SET ADC_OUT ON DIBSTREAM TX\n");
 | |
| 			dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
 | |
| 			reg_1288 |= (1<<7);
 | |
| 			break;
 | |
| 	default:
 | |
| 			break;
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 1288, reg_1288);
 | |
| }
 | |
| 
 | |
| static void dib7090_setHostBusMux(struct dib7000p_state *state, int mode)
 | |
| {
 | |
| 	u16 reg_1288 = dib7000p_read_word(state, 1288) & ~(0x7 << 4);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case DEMOUT_ON_HOSTBUS:
 | |
| 			dprintk("SET DEM OUT OLD INTERF ON HOST BUS\n");
 | |
| 			dib7090_enMpegMux(state, 0);
 | |
| 			reg_1288 |= (1<<6);
 | |
| 			break;
 | |
| 	case DIBTX_ON_HOSTBUS:
 | |
| 			dprintk("SET DIBSTREAM TX ON HOST BUS\n");
 | |
| 			dib7090_enMpegMux(state, 0);
 | |
| 			reg_1288 |= (1<<5);
 | |
| 			break;
 | |
| 	case MPEG_ON_HOSTBUS:
 | |
| 			dprintk("SET MPEG MUX ON HOST BUS\n");
 | |
| 			reg_1288 |= (1<<4);
 | |
| 			break;
 | |
| 	default:
 | |
| 			break;
 | |
| 	}
 | |
| 	dib7000p_write_word(state, 1288, reg_1288);
 | |
| }
 | |
| 
 | |
| static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 reg_1287;
 | |
| 
 | |
| 	switch (onoff) {
 | |
| 	case 0: /* only use the internal way - not the diversity input */
 | |
| 			dprintk("%s mode OFF : by default Enable Mpeg INPUT\n", __func__);
 | |
| 			dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);
 | |
| 
 | |
| 			/* Do not divide the serial clock of MPEG MUX */
 | |
| 			/* in SERIAL MODE in case input mode MPEG is used */
 | |
| 			reg_1287 = dib7000p_read_word(state, 1287);
 | |
| 			/* enSerialClkDiv2 == 1 ? */
 | |
| 			if ((reg_1287 & 0x1) == 1) {
 | |
| 				/* force enSerialClkDiv2 = 0 */
 | |
| 				reg_1287 &= ~0x1;
 | |
| 				dib7000p_write_word(state, 1287, reg_1287);
 | |
| 			}
 | |
| 			state->input_mode_mpeg = 1;
 | |
| 			break;
 | |
| 	case 1: /* both ways */
 | |
| 	case 2: /* only the diversity input */
 | |
| 			dprintk("%s ON : Enable diversity INPUT\n", __func__);
 | |
| 			dib7090_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
 | |
| 			state->input_mode_mpeg = 0;
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	dib7000p_set_diversity_in(&state->demod, onoff);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 
 | |
| 	u16 outreg, smo_mode, fifo_threshold;
 | |
| 	u8 prefer_mpeg_mux_use = 1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	dib7090_host_bus_drive(state, 1);
 | |
| 
 | |
| 	fifo_threshold = 1792;
 | |
| 	smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
 | |
| 	outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case OUTMODE_HIGH_Z:
 | |
| 		outreg = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case OUTMODE_MPEG2_SERIAL:
 | |
| 		if (prefer_mpeg_mux_use) {
 | |
| 			dprintk("setting output mode TS_SERIAL using Mpeg Mux\n");
 | |
| 			dib7090_configMpegMux(state, 3, 1, 1);
 | |
| 			dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
 | |
| 		} else {/* Use Smooth block */
 | |
| 			dprintk("setting output mode TS_SERIAL using Smooth bloc\n");
 | |
| 			dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
 | |
| 			outreg |= (2<<6) | (0 << 1);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case OUTMODE_MPEG2_PAR_GATED_CLK:
 | |
| 		if (prefer_mpeg_mux_use) {
 | |
| 			dprintk("setting output mode TS_PARALLEL_GATED using Mpeg Mux\n");
 | |
| 			dib7090_configMpegMux(state, 2, 0, 0);
 | |
| 			dib7090_setHostBusMux(state, MPEG_ON_HOSTBUS);
 | |
| 		} else { /* Use Smooth block */
 | |
| 			dprintk("setting output mode TS_PARALLEL_GATED using Smooth block\n");
 | |
| 			dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
 | |
| 			outreg |= (0<<6);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case OUTMODE_MPEG2_PAR_CONT_CLK:	/* Using Smooth block only */
 | |
| 		dprintk("setting output mode TS_PARALLEL_CONT using Smooth block\n");
 | |
| 		dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
 | |
| 		outreg |= (1<<6);
 | |
| 		break;
 | |
| 
 | |
| 	case OUTMODE_MPEG2_FIFO:	/* Using Smooth block because not supported by new Mpeg Mux bloc */
 | |
| 		dprintk("setting output mode TS_FIFO using Smooth block\n");
 | |
| 		dib7090_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
 | |
| 		outreg |= (5<<6);
 | |
| 		smo_mode |= (3 << 1);
 | |
| 		fifo_threshold = 512;
 | |
| 		break;
 | |
| 
 | |
| 	case OUTMODE_DIVERSITY:
 | |
| 		dprintk("setting output mode MODE_DIVERSITY\n");
 | |
| 		dib7090_setDibTxMux(state, DIV_ON_DIBTX);
 | |
| 		dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
 | |
| 		break;
 | |
| 
 | |
| 	case OUTMODE_ANALOG_ADC:
 | |
| 		dprintk("setting output mode MODE_ANALOG_ADC\n");
 | |
| 		dib7090_setDibTxMux(state, ADC_ON_DIBTX);
 | |
| 		dib7090_setHostBusMux(state, DIBTX_ON_HOSTBUS);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (mode != OUTMODE_HIGH_Z)
 | |
| 		outreg |= (1 << 10);
 | |
| 
 | |
| 	if (state->cfg.output_mpeg2_in_188_bytes)
 | |
| 		smo_mode |= (1 << 5);
 | |
| 
 | |
| 	ret |= dib7000p_write_word(state, 235, smo_mode);
 | |
| 	ret |= dib7000p_write_word(state, 236, fifo_threshold);	/* synchronous fread */
 | |
| 	ret |= dib7000p_write_word(state, 1286, outreg);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 en_cur_state;
 | |
| 
 | |
| 	dprintk("sleep dib7090: %d\n", onoff);
 | |
| 
 | |
| 	en_cur_state = dib7000p_read_word(state, 1922);
 | |
| 
 | |
| 	if (en_cur_state > 0xff)
 | |
| 		state->tuner_enable = en_cur_state;
 | |
| 
 | |
| 	if (onoff)
 | |
| 		en_cur_state &= 0x00ff;
 | |
| 	else {
 | |
| 		if (state->tuner_enable != 0)
 | |
| 			en_cur_state = state->tuner_enable;
 | |
| 	}
 | |
| 
 | |
| 	dib7000p_write_word(state, 1922, en_cur_state);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7090_get_adc_power(struct dvb_frontend *fe)
 | |
| {
 | |
| 	return dib7000p_get_adc_power(fe);
 | |
| }
 | |
| 
 | |
| static int dib7090_slave_reset(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct dib7000p_state *state = fe->demodulator_priv;
 | |
| 	u16 reg;
 | |
| 
 | |
| 	reg = dib7000p_read_word(state, 1794);
 | |
| 	dib7000p_write_word(state, 1794, reg | (4 << 12));
 | |
| 
 | |
| 	dib7000p_write_word(state, 1032, 0xffff);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct dvb_frontend_ops dib7000p_ops;
 | |
| static struct dvb_frontend *dib7000p_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
 | |
| {
 | |
| 	struct dvb_frontend *demod;
 | |
| 	struct dib7000p_state *st;
 | |
| 	st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL);
 | |
| 	if (st == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config));
 | |
| 	st->i2c_adap = i2c_adap;
 | |
| 	st->i2c_addr = i2c_addr;
 | |
| 	st->gpio_val = cfg->gpio_val;
 | |
| 	st->gpio_dir = cfg->gpio_dir;
 | |
| 
 | |
| 	/* Ensure the output mode remains at the previous default if it's
 | |
| 	 * not specifically set by the caller.
 | |
| 	 */
 | |
| 	if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
 | |
| 		st->cfg.output_mode = OUTMODE_MPEG2_FIFO;
 | |
| 
 | |
| 	demod = &st->demod;
 | |
| 	demod->demodulator_priv = st;
 | |
| 	memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
 | |
| 	mutex_init(&st->i2c_buffer_lock);
 | |
| 
 | |
| 	dib7000p_write_word(st, 1287, 0x0003);	/* sram lead in, rdy */
 | |
| 
 | |
| 	if (dib7000p_identify(st) != 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	st->version = dib7000p_read_word(st, 897);
 | |
| 
 | |
| 	/* FIXME: make sure the dev.parent field is initialized, or else
 | |
| 	   request_firmware() will hit an OOPS (this should be moved somewhere
 | |
| 	   more common) */
 | |
| 	st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent;
 | |
| 
 | |
| 	dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);
 | |
| 
 | |
| 	/* init 7090 tuner adapter */
 | |
| 	strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name));
 | |
| 	st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
 | |
| 	st->dib7090_tuner_adap.algo_data = NULL;
 | |
| 	st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
 | |
| 	i2c_set_adapdata(&st->dib7090_tuner_adap, st);
 | |
| 	i2c_add_adapter(&st->dib7090_tuner_adap);
 | |
| 
 | |
| 	dib7000p_demod_reset(st);
 | |
| 
 | |
| 	dib7000p_reset_stats(demod);
 | |
| 
 | |
| 	if (st->version == SOC7090) {
 | |
| 		dib7090_set_output_mode(demod, st->cfg.output_mode);
 | |
| 		dib7090_set_diversity_in(demod, 0);
 | |
| 	}
 | |
| 
 | |
| 	return demod;
 | |
| 
 | |
| error:
 | |
| 	kfree(st);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void *dib7000p_attach(struct dib7000p_ops *ops)
 | |
| {
 | |
| 	if (!ops)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ops->slave_reset = dib7090_slave_reset;
 | |
| 	ops->get_adc_power = dib7090_get_adc_power;
 | |
| 	ops->dib7000pc_detection = dib7000pc_detection;
 | |
| 	ops->get_i2c_tuner = dib7090_get_i2c_tuner;
 | |
| 	ops->tuner_sleep = dib7090_tuner_sleep;
 | |
| 	ops->init = dib7000p_init;
 | |
| 	ops->set_agc1_min = dib7000p_set_agc1_min;
 | |
| 	ops->set_gpio = dib7000p_set_gpio;
 | |
| 	ops->i2c_enumeration = dib7000p_i2c_enumeration;
 | |
| 	ops->pid_filter = dib7000p_pid_filter;
 | |
| 	ops->pid_filter_ctrl = dib7000p_pid_filter_ctrl;
 | |
| 	ops->get_i2c_master = dib7000p_get_i2c_master;
 | |
| 	ops->update_pll = dib7000p_update_pll;
 | |
| 	ops->ctrl_timf = dib7000p_ctrl_timf;
 | |
| 	ops->get_agc_values = dib7000p_get_agc_values;
 | |
| 	ops->set_wbd_ref = dib7000p_set_wbd_ref;
 | |
| 
 | |
| 	return ops;
 | |
| }
 | |
| EXPORT_SYMBOL(dib7000p_attach);
 | |
| 
 | |
| static const struct dvb_frontend_ops dib7000p_ops = {
 | |
| 	.delsys = { SYS_DVBT },
 | |
| 	.info = {
 | |
| 		 .name = "DiBcom 7000PC",
 | |
| 		 .frequency_min = 44250000,
 | |
| 		 .frequency_max = 867250000,
 | |
| 		 .frequency_stepsize = 62500,
 | |
| 		 .caps = FE_CAN_INVERSION_AUTO |
 | |
| 		 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
 | |
| 		 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
 | |
| 		 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
 | |
| 		 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
 | |
| 		 },
 | |
| 
 | |
| 	.release = dib7000p_release,
 | |
| 
 | |
| 	.init = dib7000p_wakeup,
 | |
| 	.sleep = dib7000p_sleep,
 | |
| 
 | |
| 	.set_frontend = dib7000p_set_frontend,
 | |
| 	.get_tune_settings = dib7000p_fe_get_tune_settings,
 | |
| 	.get_frontend = dib7000p_get_frontend,
 | |
| 
 | |
| 	.read_status = dib7000p_read_status,
 | |
| 	.read_ber = dib7000p_read_ber,
 | |
| 	.read_signal_strength = dib7000p_read_signal_strength,
 | |
| 	.read_snr = dib7000p_read_snr,
 | |
| 	.read_ucblocks = dib7000p_read_unc_blocks,
 | |
| };
 | |
| 
 | |
| MODULE_AUTHOR("Olivier Grenie <olivie.grenie@parrot.com>");
 | |
| MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>");
 | |
| MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
 | |
| MODULE_LICENSE("GPL");
 |