12843 lines
		
	
	
		
			336 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			12843 lines
		
	
	
		
			336 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * derived from drivers/kvm/kvm_main.c
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright (C) 2008 Qumranet, Inc.
 | |
|  * Copyright IBM Corporation, 2008
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Amit Shah    <amit.shah@qumranet.com>
 | |
|  *   Ben-Ami Yassour <benami@il.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include "irq.h"
 | |
| #include "ioapic.h"
 | |
| #include "mmu.h"
 | |
| #include "i8254.h"
 | |
| #include "tss.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "kvm_emulate.h"
 | |
| #include "x86.h"
 | |
| #include "cpuid.h"
 | |
| #include "pmu.h"
 | |
| #include "hyperv.h"
 | |
| #include "lapic.h"
 | |
| #include "xen.h"
 | |
| #include "smm.h"
 | |
| 
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kvm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/intel-iommu.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/user-return-notifier.h>
 | |
| #include <linux/srcu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/timekeeper_internal.h>
 | |
| #include <linux/pvclock_gtod.h>
 | |
| #include <linux/kvm_irqfd.h>
 | |
| #include <linux/irqbypass.h>
 | |
| #include <linux/sched/stat.h>
 | |
| #include <linux/sched/isolation.h>
 | |
| #include <linux/mem_encrypt.h>
 | |
| #include <linux/suspend.h>
 | |
| #include <linux/smp.h>
 | |
| 
 | |
| #include <trace/events/ipi.h>
 | |
| #include <trace/events/kvm.h>
 | |
| 
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/mce.h>
 | |
| #include <asm/pkru.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <asm/fpu/api.h>
 | |
| #include <asm/fpu/xcr.h>
 | |
| #include <asm/fpu/xstate.h>
 | |
| #include <asm/pvclock.h>
 | |
| #include <asm/div64.h>
 | |
| #include <asm/irq_remapping.h>
 | |
| #include <asm/mshyperv.h>
 | |
| #include <asm/hypervisor.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/intel_pt.h>
 | |
| #include <clocksource/hyperv_timer.h>
 | |
| #include <asm/sgx.h>
 | |
| #include <asm/emulate_prefix.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "trace.h"
 | |
| 
 | |
| #define MAX_IO_MSRS 256
 | |
| #define KVM_MAX_MCE_BANKS 32
 | |
| u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
 | |
| EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
 | |
| 
 | |
| #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
 | |
| 
 | |
| #define emul_to_vcpu(ctxt) \
 | |
| 	((struct kvm_vcpu *)(ctxt)->vcpu)
 | |
| 
 | |
| /* EFER defaults:
 | |
|  * - enable syscall per default because its emulated by KVM
 | |
|  * - enable LME and LMA per default on 64 bit KVM
 | |
|  */
 | |
| #ifdef CONFIG_X86_64
 | |
| static
 | |
| u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
 | |
| #else
 | |
| static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
 | |
| #endif
 | |
| 
 | |
| static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
 | |
| 
 | |
| #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
 | |
| 
 | |
| #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
 | |
| 
 | |
| #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
 | |
|                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 | |
| static void process_nmi(struct kvm_vcpu *vcpu);
 | |
| static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 | |
| static void store_regs(struct kvm_vcpu *vcpu);
 | |
| static int sync_regs(struct kvm_vcpu *vcpu);
 | |
| static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 | |
| static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
 | |
| 
 | |
| struct kvm_x86_ops kvm_x86_ops __read_mostly;
 | |
| 
 | |
| #define KVM_X86_OP(func)					     \
 | |
| 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
 | |
| 				*(((struct kvm_x86_ops *)0)->func));
 | |
| #define KVM_X86_OP_OPTIONAL KVM_X86_OP
 | |
| #include <asm/kvm-x86-ops.h>
 | |
| EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
 | |
| EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
 | |
| 
 | |
| static bool __read_mostly ignore_msrs = 0;
 | |
| module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| bool __read_mostly report_ignored_msrs = true;
 | |
| module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
 | |
| EXPORT_SYMBOL_GPL(report_ignored_msrs);
 | |
| 
 | |
| unsigned int min_timer_period_us = 200;
 | |
| module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| static bool __read_mostly kvmclock_periodic_sync = true;
 | |
| module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 | |
| 
 | |
| bool __read_mostly kvm_has_tsc_control;
 | |
| EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 | |
| u32  __read_mostly kvm_max_guest_tsc_khz;
 | |
| EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 | |
| u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 | |
| EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 | |
| u64  __read_mostly kvm_max_tsc_scaling_ratio;
 | |
| EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 | |
| u64 __read_mostly kvm_default_tsc_scaling_ratio;
 | |
| EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 | |
| bool __read_mostly kvm_has_bus_lock_exit;
 | |
| EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
 | |
| 
 | |
| /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 | |
| static u32 __read_mostly tsc_tolerance_ppm = 250;
 | |
| module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| /*
 | |
|  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
 | |
|  * adaptive tuning starting from default advancment of 1000ns.  '0' disables
 | |
|  * advancement entirely.  Any other value is used as-is and disables adaptive
 | |
|  * tuning, i.e. allows priveleged userspace to set an exact advancement time.
 | |
|  */
 | |
| static int __read_mostly lapic_timer_advance_ns = -1;
 | |
| module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| static bool __read_mostly vector_hashing = true;
 | |
| module_param(vector_hashing, bool, S_IRUGO);
 | |
| 
 | |
| bool __read_mostly enable_vmware_backdoor = false;
 | |
| module_param(enable_vmware_backdoor, bool, S_IRUGO);
 | |
| EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
 | |
| 
 | |
| static bool __read_mostly force_emulation_prefix = false;
 | |
| module_param(force_emulation_prefix, bool, S_IRUGO);
 | |
| 
 | |
| int __read_mostly pi_inject_timer = -1;
 | |
| module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| /* Enable/disable PMU virtualization */
 | |
| bool __read_mostly enable_pmu = true;
 | |
| EXPORT_SYMBOL_GPL(enable_pmu);
 | |
| module_param(enable_pmu, bool, 0444);
 | |
| 
 | |
| bool __read_mostly eager_page_split = true;
 | |
| module_param(eager_page_split, bool, 0644);
 | |
| 
 | |
| /*
 | |
|  * Restoring the host value for MSRs that are only consumed when running in
 | |
|  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
 | |
|  * returns to userspace, i.e. the kernel can run with the guest's value.
 | |
|  */
 | |
| #define KVM_MAX_NR_USER_RETURN_MSRS 16
 | |
| 
 | |
| struct kvm_user_return_msrs {
 | |
| 	struct user_return_notifier urn;
 | |
| 	bool registered;
 | |
| 	struct kvm_user_return_msr_values {
 | |
| 		u64 host;
 | |
| 		u64 curr;
 | |
| 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
 | |
| };
 | |
| 
 | |
| u32 __read_mostly kvm_nr_uret_msrs;
 | |
| EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
 | |
| static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
 | |
| static struct kvm_user_return_msrs __percpu *user_return_msrs;
 | |
| 
 | |
| #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
 | |
| 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
 | |
| 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
 | |
| 				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
 | |
| 
 | |
| u64 __read_mostly host_efer;
 | |
| EXPORT_SYMBOL_GPL(host_efer);
 | |
| 
 | |
| bool __read_mostly allow_smaller_maxphyaddr = 0;
 | |
| EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
 | |
| 
 | |
| bool __read_mostly enable_apicv = true;
 | |
| EXPORT_SYMBOL_GPL(enable_apicv);
 | |
| 
 | |
| u64 __read_mostly host_xss;
 | |
| EXPORT_SYMBOL_GPL(host_xss);
 | |
| u64 __read_mostly supported_xss;
 | |
| EXPORT_SYMBOL_GPL(supported_xss);
 | |
| 
 | |
| const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
 | |
| 	KVM_GENERIC_VM_STATS(),
 | |
| 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
 | |
| 	STATS_DESC_COUNTER(VM, mmu_pte_write),
 | |
| 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
 | |
| 	STATS_DESC_COUNTER(VM, mmu_flooded),
 | |
| 	STATS_DESC_COUNTER(VM, mmu_recycled),
 | |
| 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
 | |
| 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
 | |
| 	STATS_DESC_ICOUNTER(VM, pages_4k),
 | |
| 	STATS_DESC_ICOUNTER(VM, pages_2m),
 | |
| 	STATS_DESC_ICOUNTER(VM, pages_1g),
 | |
| 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
 | |
| 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
 | |
| 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
 | |
| };
 | |
| 
 | |
| const struct kvm_stats_header kvm_vm_stats_header = {
 | |
| 	.name_size = KVM_STATS_NAME_SIZE,
 | |
| 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
 | |
| 	.id_offset = sizeof(struct kvm_stats_header),
 | |
| 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 | |
| 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 | |
| 		       sizeof(kvm_vm_stats_desc),
 | |
| };
 | |
| 
 | |
| const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
 | |
| 	KVM_GENERIC_VCPU_STATS(),
 | |
| 	STATS_DESC_COUNTER(VCPU, pf_fixed),
 | |
| 	STATS_DESC_COUNTER(VCPU, pf_guest),
 | |
| 	STATS_DESC_COUNTER(VCPU, tlb_flush),
 | |
| 	STATS_DESC_COUNTER(VCPU, invlpg),
 | |
| 	STATS_DESC_COUNTER(VCPU, exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, io_exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, mmio_exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, signal_exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, l1d_flush),
 | |
| 	STATS_DESC_COUNTER(VCPU, halt_exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, irq_exits),
 | |
| 	STATS_DESC_COUNTER(VCPU, host_state_reload),
 | |
| 	STATS_DESC_COUNTER(VCPU, fpu_reload),
 | |
| 	STATS_DESC_COUNTER(VCPU, insn_emulation),
 | |
| 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
 | |
| 	STATS_DESC_COUNTER(VCPU, hypercalls),
 | |
| 	STATS_DESC_COUNTER(VCPU, irq_injections),
 | |
| 	STATS_DESC_COUNTER(VCPU, nmi_injections),
 | |
| 	STATS_DESC_COUNTER(VCPU, req_event),
 | |
| 	STATS_DESC_COUNTER(VCPU, nested_run),
 | |
| 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
 | |
| 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
 | |
| 	STATS_DESC_COUNTER(VCPU, preemption_reported),
 | |
| 	STATS_DESC_COUNTER(VCPU, preemption_other),
 | |
| 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
 | |
| };
 | |
| 
 | |
| const struct kvm_stats_header kvm_vcpu_stats_header = {
 | |
| 	.name_size = KVM_STATS_NAME_SIZE,
 | |
| 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
 | |
| 	.id_offset = sizeof(struct kvm_stats_header),
 | |
| 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
 | |
| 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
 | |
| 		       sizeof(kvm_vcpu_stats_desc),
 | |
| };
 | |
| 
 | |
| u64 __read_mostly host_xcr0;
 | |
| u64 __read_mostly supported_xcr0;
 | |
| EXPORT_SYMBOL_GPL(supported_xcr0);
 | |
| 
 | |
| static struct kmem_cache *x86_emulator_cache;
 | |
| 
 | |
| /*
 | |
|  * When called, it means the previous get/set msr reached an invalid msr.
 | |
|  * Return true if we want to ignore/silent this failed msr access.
 | |
|  */
 | |
| static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
 | |
| {
 | |
| 	const char *op = write ? "wrmsr" : "rdmsr";
 | |
| 
 | |
| 	if (ignore_msrs) {
 | |
| 		if (report_ignored_msrs)
 | |
| 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
 | |
| 				      op, msr, data);
 | |
| 		/* Mask the error */
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
 | |
| 				      op, msr, data);
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct kmem_cache *kvm_alloc_emulator_cache(void)
 | |
| {
 | |
| 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
 | |
| 	unsigned int size = sizeof(struct x86_emulate_ctxt);
 | |
| 
 | |
| 	return kmem_cache_create_usercopy("x86_emulator", size,
 | |
| 					  __alignof__(struct x86_emulate_ctxt),
 | |
| 					  SLAB_ACCOUNT, useroffset,
 | |
| 					  size - useroffset, NULL);
 | |
| }
 | |
| 
 | |
| static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 | |
| 
 | |
| static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
 | |
| 		vcpu->arch.apf.gfns[i] = ~0;
 | |
| }
 | |
| 
 | |
| static void kvm_on_user_return(struct user_return_notifier *urn)
 | |
| {
 | |
| 	unsigned slot;
 | |
| 	struct kvm_user_return_msrs *msrs
 | |
| 		= container_of(urn, struct kvm_user_return_msrs, urn);
 | |
| 	struct kvm_user_return_msr_values *values;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disabling irqs at this point since the following code could be
 | |
| 	 * interrupted and executed through kvm_arch_hardware_disable()
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	if (msrs->registered) {
 | |
| 		msrs->registered = false;
 | |
| 		user_return_notifier_unregister(urn);
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
 | |
| 		values = &msrs->values[slot];
 | |
| 		if (values->host != values->curr) {
 | |
| 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
 | |
| 			values->curr = values->host;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvm_probe_user_return_msr(u32 msr)
 | |
| {
 | |
| 	u64 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 	ret = rdmsrl_safe(msr, &val);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	ret = wrmsrl_safe(msr, val);
 | |
| out:
 | |
| 	preempt_enable();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int kvm_add_user_return_msr(u32 msr)
 | |
| {
 | |
| 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
 | |
| 
 | |
| 	if (kvm_probe_user_return_msr(msr))
 | |
| 		return -1;
 | |
| 
 | |
| 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
 | |
| 	return kvm_nr_uret_msrs++;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
 | |
| 
 | |
| int kvm_find_user_return_msr(u32 msr)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 | |
| 		if (kvm_uret_msrs_list[i] == msr)
 | |
| 			return i;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
 | |
| 
 | |
| static void kvm_user_return_msr_cpu_online(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 | |
| 	u64 value;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
 | |
| 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
 | |
| 		msrs->values[i].host = value;
 | |
| 		msrs->values[i].curr = value;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 | |
| 	int err;
 | |
| 
 | |
| 	value = (value & mask) | (msrs->values[slot].host & ~mask);
 | |
| 	if (value == msrs->values[slot].curr)
 | |
| 		return 0;
 | |
| 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
 | |
| 	if (err)
 | |
| 		return 1;
 | |
| 
 | |
| 	msrs->values[slot].curr = value;
 | |
| 	if (!msrs->registered) {
 | |
| 		msrs->urn.on_user_return = kvm_on_user_return;
 | |
| 		user_return_notifier_register(&msrs->urn);
 | |
| 		msrs->registered = true;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
 | |
| 
 | |
| static void drop_user_return_notifiers(void)
 | |
| {
 | |
| 	unsigned int cpu = smp_processor_id();
 | |
| 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
 | |
| 
 | |
| 	if (msrs->registered)
 | |
| 		kvm_on_user_return(&msrs->urn);
 | |
| }
 | |
| 
 | |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.apic_base;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 | |
| 
 | |
| enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
 | |
| 
 | |
| int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
 | |
| 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
 | |
| 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
 | |
| 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
 | |
| 
 | |
| 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
 | |
| 		return 1;
 | |
| 	if (!msr_info->host_initiated) {
 | |
| 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
 | |
| 			return 1;
 | |
| 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	kvm_lapic_set_base(vcpu, msr_info->data);
 | |
| 	kvm_recalculate_apic_map(vcpu->kvm);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 | |
| 
 | |
| /*
 | |
|  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
 | |
|  *
 | |
|  * Hardware virtualization extension instructions may fault if a reboot turns
 | |
|  * off virtualization while processes are running.  Usually after catching the
 | |
|  * fault we just panic; during reboot instead the instruction is ignored.
 | |
|  */
 | |
| noinstr void kvm_spurious_fault(void)
 | |
| {
 | |
| 	/* Fault while not rebooting.  We want the trace. */
 | |
| 	BUG_ON(!kvm_rebooting);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 | |
| 
 | |
| #define EXCPT_BENIGN		0
 | |
| #define EXCPT_CONTRIBUTORY	1
 | |
| #define EXCPT_PF		2
 | |
| 
 | |
| static int exception_class(int vector)
 | |
| {
 | |
| 	switch (vector) {
 | |
| 	case PF_VECTOR:
 | |
| 		return EXCPT_PF;
 | |
| 	case DE_VECTOR:
 | |
| 	case TS_VECTOR:
 | |
| 	case NP_VECTOR:
 | |
| 	case SS_VECTOR:
 | |
| 	case GP_VECTOR:
 | |
| 		return EXCPT_CONTRIBUTORY;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return EXCPT_BENIGN;
 | |
| }
 | |
| 
 | |
| #define EXCPT_FAULT		0
 | |
| #define EXCPT_TRAP		1
 | |
| #define EXCPT_ABORT		2
 | |
| #define EXCPT_INTERRUPT		3
 | |
| 
 | |
| static int exception_type(int vector)
 | |
| {
 | |
| 	unsigned int mask;
 | |
| 
 | |
| 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 | |
| 		return EXCPT_INTERRUPT;
 | |
| 
 | |
| 	mask = 1 << vector;
 | |
| 
 | |
| 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
 | |
| 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 | |
| 		return EXCPT_TRAP;
 | |
| 
 | |
| 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 | |
| 		return EXCPT_ABORT;
 | |
| 
 | |
| 	/* Reserved exceptions will result in fault */
 | |
| 	return EXCPT_FAULT;
 | |
| }
 | |
| 
 | |
| void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned nr = vcpu->arch.exception.nr;
 | |
| 	bool has_payload = vcpu->arch.exception.has_payload;
 | |
| 	unsigned long payload = vcpu->arch.exception.payload;
 | |
| 
 | |
| 	if (!has_payload)
 | |
| 		return;
 | |
| 
 | |
| 	switch (nr) {
 | |
| 	case DB_VECTOR:
 | |
| 		/*
 | |
| 		 * "Certain debug exceptions may clear bit 0-3.  The
 | |
| 		 * remaining contents of the DR6 register are never
 | |
| 		 * cleared by the processor".
 | |
| 		 */
 | |
| 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
 | |
| 		/*
 | |
| 		 * In order to reflect the #DB exception payload in guest
 | |
| 		 * dr6, three components need to be considered: active low
 | |
| 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
 | |
| 		 * DR6_BS and DR6_BT)
 | |
| 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
 | |
| 		 * In the target guest dr6:
 | |
| 		 * FIXED_1 bits should always be set.
 | |
| 		 * Active low bits should be cleared if 1-setting in payload.
 | |
| 		 * Active high bits should be set if 1-setting in payload.
 | |
| 		 *
 | |
| 		 * Note, the payload is compatible with the pending debug
 | |
| 		 * exceptions/exit qualification under VMX, that active_low bits
 | |
| 		 * are active high in payload.
 | |
| 		 * So they need to be flipped for DR6.
 | |
| 		 */
 | |
| 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
 | |
| 		vcpu->arch.dr6 |= payload;
 | |
| 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
 | |
| 
 | |
| 		/*
 | |
| 		 * The #DB payload is defined as compatible with the 'pending
 | |
| 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
 | |
| 		 * defined in the 'pending debug exceptions' field (enabled
 | |
| 		 * breakpoint), it is reserved and must be zero in DR6.
 | |
| 		 */
 | |
| 		vcpu->arch.dr6 &= ~BIT(12);
 | |
| 		break;
 | |
| 	case PF_VECTOR:
 | |
| 		vcpu->arch.cr2 = payload;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.exception.has_payload = false;
 | |
| 	vcpu->arch.exception.payload = 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
 | |
| 
 | |
| static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 | |
| 		unsigned nr, bool has_error, u32 error_code,
 | |
| 	        bool has_payload, unsigned long payload, bool reinject)
 | |
| {
 | |
| 	u32 prev_nr;
 | |
| 	int class1, class2;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
 | |
| 	queue:
 | |
| 		if (reinject) {
 | |
| 			/*
 | |
| 			 * On vmentry, vcpu->arch.exception.pending is only
 | |
| 			 * true if an event injection was blocked by
 | |
| 			 * nested_run_pending.  In that case, however,
 | |
| 			 * vcpu_enter_guest requests an immediate exit,
 | |
| 			 * and the guest shouldn't proceed far enough to
 | |
| 			 * need reinjection.
 | |
| 			 */
 | |
| 			WARN_ON_ONCE(vcpu->arch.exception.pending);
 | |
| 			vcpu->arch.exception.injected = true;
 | |
| 			if (WARN_ON_ONCE(has_payload)) {
 | |
| 				/*
 | |
| 				 * A reinjected event has already
 | |
| 				 * delivered its payload.
 | |
| 				 */
 | |
| 				has_payload = false;
 | |
| 				payload = 0;
 | |
| 			}
 | |
| 		} else {
 | |
| 			vcpu->arch.exception.pending = true;
 | |
| 			vcpu->arch.exception.injected = false;
 | |
| 		}
 | |
| 		vcpu->arch.exception.has_error_code = has_error;
 | |
| 		vcpu->arch.exception.nr = nr;
 | |
| 		vcpu->arch.exception.error_code = error_code;
 | |
| 		vcpu->arch.exception.has_payload = has_payload;
 | |
| 		vcpu->arch.exception.payload = payload;
 | |
| 		if (!is_guest_mode(vcpu))
 | |
| 			kvm_deliver_exception_payload(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* to check exception */
 | |
| 	prev_nr = vcpu->arch.exception.nr;
 | |
| 	if (prev_nr == DF_VECTOR) {
 | |
| 		/* triple fault -> shutdown */
 | |
| 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 	class1 = exception_class(prev_nr);
 | |
| 	class2 = exception_class(nr);
 | |
| 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 | |
| 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 | |
| 		/*
 | |
| 		 * Generate double fault per SDM Table 5-5.  Set
 | |
| 		 * exception.pending = true so that the double fault
 | |
| 		 * can trigger a nested vmexit.
 | |
| 		 */
 | |
| 		vcpu->arch.exception.pending = true;
 | |
| 		vcpu->arch.exception.injected = false;
 | |
| 		vcpu->arch.exception.has_error_code = true;
 | |
| 		vcpu->arch.exception.nr = DF_VECTOR;
 | |
| 		vcpu->arch.exception.error_code = 0;
 | |
| 		vcpu->arch.exception.has_payload = false;
 | |
| 		vcpu->arch.exception.payload = 0;
 | |
| 	} else
 | |
| 		/* replace previous exception with a new one in a hope
 | |
| 		   that instruction re-execution will regenerate lost
 | |
| 		   exception */
 | |
| 		goto queue;
 | |
| }
 | |
| 
 | |
| void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception);
 | |
| 
 | |
| void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 | |
| 
 | |
| void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
 | |
| 			   unsigned long payload)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
 | |
| 
 | |
| static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
 | |
| 				    u32 error_code, unsigned long payload)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, true, error_code,
 | |
| 			       true, payload, false);
 | |
| }
 | |
| 
 | |
| int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 | |
| {
 | |
| 	if (err)
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 	else
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 | |
| 
 | |
| static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
 | |
| {
 | |
| 	if (err) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
 | |
| 				       EMULTYPE_COMPLETE_USER_EXIT);
 | |
| }
 | |
| 
 | |
| void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 | |
| {
 | |
| 	++vcpu->stat.pf_guest;
 | |
| 	vcpu->arch.exception.nested_apf =
 | |
| 		is_guest_mode(vcpu) && fault->async_page_fault;
 | |
| 	if (vcpu->arch.exception.nested_apf) {
 | |
| 		vcpu->arch.apf.nested_apf_token = fault->address;
 | |
| 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 | |
| 	} else {
 | |
| 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
 | |
| 					fault->address);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 | |
| 
 | |
| bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
 | |
| 				    struct x86_exception *fault)
 | |
| {
 | |
| 	struct kvm_mmu *fault_mmu;
 | |
| 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
 | |
| 
 | |
| 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
 | |
| 					       vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Invalidate the TLB entry for the faulting address, if it exists,
 | |
| 	 * else the access will fault indefinitely (and to emulate hardware).
 | |
| 	 */
 | |
| 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
 | |
| 	    !(fault->error_code & PFERR_RSVD_MASK))
 | |
| 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
 | |
| 				       fault_mmu->root.hpa);
 | |
| 
 | |
| 	fault_mmu->inject_page_fault(vcpu, fault);
 | |
| 	return fault->nested_page_fault;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
 | |
| 
 | |
| void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	atomic_inc(&vcpu->arch.nmi_queued);
 | |
| 	kvm_make_request(KVM_REQ_NMI, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 | |
| 
 | |
| void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 | |
| 
 | |
| void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 | |
| {
 | |
| 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 | |
| 
 | |
| /*
 | |
|  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 | |
|  * a #GP and return false.
 | |
|  */
 | |
| bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 | |
| {
 | |
| 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
 | |
| 		return true;
 | |
| 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_require_cpl);
 | |
| 
 | |
| bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 | |
| {
 | |
| 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 | |
| 		return true;
 | |
| 
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_require_dr);
 | |
| 
 | |
| static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
 | |
|  */
 | |
| int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 | |
| 	gpa_t real_gpa;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 | |
| 
 | |
| 	/*
 | |
| 	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
 | |
| 	 * to an L1 GPA.
 | |
| 	 */
 | |
| 	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
 | |
| 				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
 | |
| 	if (real_gpa == UNMAPPED_GVA)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
 | |
| 	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
 | |
| 				       cr3 & GENMASK(11, 5), sizeof(pdpte));
 | |
| 	if (ret < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 | |
| 		if ((pdpte[i] & PT_PRESENT_MASK) &&
 | |
| 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
 | |
| 	 * Shadow page roots need to be reconstructed instead.
 | |
| 	 */
 | |
| 	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
 | |
| 		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
 | |
| 
 | |
| 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 | |
| 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 | |
| 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
 | |
| 	vcpu->arch.pdptrs_from_userspace = false;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(load_pdptrs);
 | |
| 
 | |
| void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
 | |
| {
 | |
| 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 | |
| 		kvm_clear_async_pf_completion_queue(vcpu);
 | |
| 		kvm_async_pf_hash_reset(vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Clearing CR0.PG is defined to flush the TLB from the guest's
 | |
| 		 * perspective.
 | |
| 		 */
 | |
| 		if (!(cr0 & X86_CR0_PG))
 | |
| 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 | |
| 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 | |
| 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 | |
| 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
 | |
| 
 | |
| int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 | |
| {
 | |
| 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
 | |
| 
 | |
| 	cr0 |= X86_CR0_ET;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (cr0 & 0xffffffff00000000UL)
 | |
| 		return 1;
 | |
| #endif
 | |
| 
 | |
| 	cr0 &= ~CR0_RESERVED_BITS;
 | |
| 
 | |
| 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 | |
| 		return 1;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
 | |
| 	    (cr0 & X86_CR0_PG)) {
 | |
| 		int cs_db, cs_l;
 | |
| 
 | |
| 		if (!is_pae(vcpu))
 | |
| 			return 1;
 | |
| 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
 | |
| 		if (cs_l)
 | |
| 			return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
 | |
| 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
 | |
| 	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!(cr0 & X86_CR0_PG) &&
 | |
| 	    (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
 | |
| 		return 1;
 | |
| 
 | |
| 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
 | |
| 
 | |
| 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr0);
 | |
| 
 | |
| void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 | |
| {
 | |
| 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_lmsw);
 | |
| 
 | |
| void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return;
 | |
| 
 | |
| 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 | |
| 
 | |
| 		if (vcpu->arch.xcr0 != host_xcr0)
 | |
| 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 | |
| 
 | |
| 		if (vcpu->arch.xsaves_enabled &&
 | |
| 		    vcpu->arch.ia32_xss != host_xss)
 | |
| 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
 | |
| 	}
 | |
| 
 | |
| 	if (static_cpu_has(X86_FEATURE_PKU) &&
 | |
| 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 | |
| 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
 | |
| 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
 | |
| 		write_pkru(vcpu->arch.pkru);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
 | |
| 
 | |
| void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return;
 | |
| 
 | |
| 	if (static_cpu_has(X86_FEATURE_PKU) &&
 | |
| 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
 | |
| 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
 | |
| 		vcpu->arch.pkru = rdpkru();
 | |
| 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
 | |
| 			write_pkru(vcpu->arch.host_pkru);
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
 | |
| 
 | |
| 		if (vcpu->arch.xcr0 != host_xcr0)
 | |
| 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 | |
| 
 | |
| 		if (vcpu->arch.xsaves_enabled &&
 | |
| 		    vcpu->arch.ia32_xss != host_xss)
 | |
| 			wrmsrl(MSR_IA32_XSS, host_xss);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 | |
| {
 | |
| 	u64 xcr0 = xcr;
 | |
| 	u64 old_xcr0 = vcpu->arch.xcr0;
 | |
| 	u64 valid_bits;
 | |
| 
 | |
| 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 | |
| 	if (index != XCR_XFEATURE_ENABLED_MASK)
 | |
| 		return 1;
 | |
| 	if (!(xcr0 & XFEATURE_MASK_FP))
 | |
| 		return 1;
 | |
| 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not allow the guest to set bits that we do not support
 | |
| 	 * saving.  However, xcr0 bit 0 is always set, even if the
 | |
| 	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
 | |
| 	 */
 | |
| 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 | |
| 	if (xcr0 & ~valid_bits)
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
 | |
| 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (xcr0 & XFEATURE_MASK_AVX512) {
 | |
| 		if (!(xcr0 & XFEATURE_MASK_YMM))
 | |
| 			return 1;
 | |
| 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if ((xcr0 & XFEATURE_MASK_XTILE) &&
 | |
| 	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
 | |
| 		return 1;
 | |
| 
 | |
| 	vcpu->arch.xcr0 = xcr0;
 | |
| 
 | |
| 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
 | |
| 		kvm_update_cpuid_runtime(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
 | |
| 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
 | |
| 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
 | |
| 
 | |
| bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	if (cr4 & cr4_reserved_bits)
 | |
| 		return false;
 | |
| 
 | |
| 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
 | |
| 		return false;
 | |
| 
 | |
| 	return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
 | |
| 
 | |
| void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
 | |
| {
 | |
| 	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
 | |
| 	 * according to the SDM; however, stale prev_roots could be reused
 | |
| 	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
 | |
| 	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
 | |
| 	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
 | |
| 	 * so fall through.
 | |
| 	 */
 | |
| 	if (!tdp_enabled &&
 | |
| 	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
 | |
| 		kvm_mmu_unload(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * The TLB has to be flushed for all PCIDs if any of the following
 | |
| 	 * (architecturally required) changes happen:
 | |
| 	 * - CR4.PCIDE is changed from 1 to 0
 | |
| 	 * - CR4.PGE is toggled
 | |
| 	 *
 | |
| 	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
 | |
| 	 */
 | |
| 	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
 | |
| 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * The TLB has to be flushed for the current PCID if any of the
 | |
| 	 * following (architecturally required) changes happen:
 | |
| 	 * - CR4.SMEP is changed from 0 to 1
 | |
| 	 * - CR4.PAE is toggled
 | |
| 	 */
 | |
| 	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
 | |
| 		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
 | |
| 
 | |
| int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
 | |
| 
 | |
| 	if (!kvm_is_valid_cr4(vcpu, cr4))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		if (!(cr4 & X86_CR4_PAE))
 | |
| 			return 1;
 | |
| 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
 | |
| 			return 1;
 | |
| 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 | |
| 		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
 | |
| 		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 | |
| 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
 | |
| 			return 1;
 | |
| 
 | |
| 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 | |
| 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
 | |
| 
 | |
| 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr4);
 | |
| 
 | |
| static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	unsigned long roots_to_free = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
 | |
| 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
 | |
| 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
 | |
| 	 * the invalidation, but the guest's TLB entries need to be flushed as
 | |
| 	 * the CPU may have cached entries in its TLB for the target PCID.
 | |
| 	 */
 | |
| 	if (unlikely(tdp_enabled)) {
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If neither the current CR3 nor any of the prev_roots use the given
 | |
| 	 * PCID, then nothing needs to be done here because a resync will
 | |
| 	 * happen anyway before switching to any other CR3.
 | |
| 	 */
 | |
| 	if (kvm_get_active_pcid(vcpu) == pcid) {
 | |
| 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If PCID is disabled, there is no need to free prev_roots even if the
 | |
| 	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
 | |
| 	 * with PCIDE=0.
 | |
| 	 */
 | |
| 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
 | |
| 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
 | |
| 
 | |
| 	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
 | |
| }
 | |
| 
 | |
| int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	bool skip_tlb_flush = false;
 | |
| 	unsigned long pcid = 0;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
 | |
| 
 | |
| 	if (pcid_enabled) {
 | |
| 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
 | |
| 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
 | |
| 		pcid = cr3 & X86_CR3_PCID_MASK;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* PDPTRs are always reloaded for PAE paging. */
 | |
| 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
 | |
| 		goto handle_tlb_flush;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not condition the GPA check on long mode, this helper is used to
 | |
| 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
 | |
| 	 * the current vCPU mode is accurate.
 | |
| 	 */
 | |
| 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (cr3 != kvm_read_cr3(vcpu))
 | |
| 		kvm_mmu_new_pgd(vcpu, cr3);
 | |
| 
 | |
| 	vcpu->arch.cr3 = cr3;
 | |
| 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
 | |
| 	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
 | |
| 
 | |
| handle_tlb_flush:
 | |
| 	/*
 | |
| 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
 | |
| 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
 | |
| 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
 | |
| 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
 | |
| 	 * i.e. only PCID=0 can be relevant.
 | |
| 	 */
 | |
| 	if (!skip_tlb_flush)
 | |
| 		kvm_invalidate_pcid(vcpu, pcid);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr3);
 | |
| 
 | |
| int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 | |
| {
 | |
| 	if (cr8 & CR8_RESERVED_BITS)
 | |
| 		return 1;
 | |
| 	if (lapic_in_kernel(vcpu))
 | |
| 		kvm_lapic_set_tpr(vcpu, cr8);
 | |
| 	else
 | |
| 		vcpu->arch.cr8 = cr8;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr8);
 | |
| 
 | |
| unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (lapic_in_kernel(vcpu))
 | |
| 		return kvm_lapic_get_cr8(vcpu);
 | |
| 	else
 | |
| 		return vcpu->arch.cr8;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_cr8);
 | |
| 
 | |
| static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; i++)
 | |
| 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_update_dr7(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long dr7;
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 | |
| 		dr7 = vcpu->arch.guest_debug_dr7;
 | |
| 	else
 | |
| 		dr7 = vcpu->arch.dr7;
 | |
| 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
 | |
| 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
 | |
| 	if (dr7 & DR7_BP_EN_MASK)
 | |
| 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_update_dr7);
 | |
| 
 | |
| static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 fixed = DR6_FIXED_1;
 | |
| 
 | |
| 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
 | |
| 		fixed |= DR6_RTM;
 | |
| 
 | |
| 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
 | |
| 		fixed |= DR6_BUS_LOCK;
 | |
| 	return fixed;
 | |
| }
 | |
| 
 | |
| int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 | |
| {
 | |
| 	size_t size = ARRAY_SIZE(vcpu->arch.db);
 | |
| 
 | |
| 	switch (dr) {
 | |
| 	case 0 ... 3:
 | |
| 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
 | |
| 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 | |
| 			vcpu->arch.eff_db[dr] = val;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		/* fall through */
 | |
| 	case 6:
 | |
| 		if (!kvm_dr6_valid(val))
 | |
| 			return 1; /* #GP */
 | |
| 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		/* fall through */
 | |
| 	default: /* 7 */
 | |
| 		if (!kvm_dr7_valid(val))
 | |
| 			return 1; /* #GP */
 | |
| 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 | |
| 		kvm_update_dr7(vcpu);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_dr);
 | |
| 
 | |
| void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 | |
| {
 | |
| 	size_t size = ARRAY_SIZE(vcpu->arch.db);
 | |
| 
 | |
| 	switch (dr) {
 | |
| 	case 0 ... 3:
 | |
| 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		/* fall through */
 | |
| 	case 6:
 | |
| 		*val = vcpu->arch.dr6;
 | |
| 		break;
 | |
| 	case 5:
 | |
| 		/* fall through */
 | |
| 	default: /* 7 */
 | |
| 		*val = vcpu->arch.dr7;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_dr);
 | |
| 
 | |
| int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 ecx = kvm_rcx_read(vcpu);
 | |
| 	u64 data;
 | |
| 
 | |
| 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	kvm_rax_write(vcpu, (u32)data);
 | |
| 	kvm_rdx_write(vcpu, data >> 32);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
 | |
| 
 | |
| /*
 | |
|  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 | |
|  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 | |
|  *
 | |
|  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
 | |
|  * extract the supported MSRs from the related const lists.
 | |
|  * msrs_to_save is selected from the msrs_to_save_all to reflect the
 | |
|  * capabilities of the host cpu. This capabilities test skips MSRs that are
 | |
|  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
 | |
|  * may depend on host virtualization features rather than host cpu features.
 | |
|  */
 | |
| 
 | |
| static const u32 msrs_to_save_all[] = {
 | |
| 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 | |
| 	MSR_STAR,
 | |
| #ifdef CONFIG_X86_64
 | |
| 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 | |
| #endif
 | |
| 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
 | |
| 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
 | |
| 	MSR_IA32_SPEC_CTRL,
 | |
| 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
 | |
| 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
 | |
| 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
 | |
| 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
 | |
| 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
 | |
| 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
 | |
| 	MSR_IA32_UMWAIT_CONTROL,
 | |
| 
 | |
| 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
 | |
| 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
 | |
| 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
 | |
| 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
 | |
| 	MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
 | |
| 	MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
 | |
| 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
 | |
| 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
 | |
| 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
 | |
| 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
 | |
| 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
 | |
| 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
 | |
| 	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
 | |
| };
 | |
| 
 | |
| static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
 | |
| static unsigned num_msrs_to_save;
 | |
| 
 | |
| static const u32 emulated_msrs_all[] = {
 | |
| 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 | |
| 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 | |
| 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 | |
| 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
 | |
| 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
 | |
| 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
 | |
| 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
 | |
| 	HV_X64_MSR_RESET,
 | |
| 	HV_X64_MSR_VP_INDEX,
 | |
| 	HV_X64_MSR_VP_RUNTIME,
 | |
| 	HV_X64_MSR_SCONTROL,
 | |
| 	HV_X64_MSR_STIMER0_CONFIG,
 | |
| 	HV_X64_MSR_VP_ASSIST_PAGE,
 | |
| 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
 | |
| 	HV_X64_MSR_TSC_EMULATION_STATUS,
 | |
| 	HV_X64_MSR_SYNDBG_OPTIONS,
 | |
| 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
 | |
| 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
 | |
| 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
 | |
| 
 | |
| 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
 | |
| 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
 | |
| 
 | |
| 	MSR_IA32_TSC_ADJUST,
 | |
| 	MSR_IA32_TSC_DEADLINE,
 | |
| 	MSR_IA32_ARCH_CAPABILITIES,
 | |
| 	MSR_IA32_PERF_CAPABILITIES,
 | |
| 	MSR_IA32_MISC_ENABLE,
 | |
| 	MSR_IA32_MCG_STATUS,
 | |
| 	MSR_IA32_MCG_CTL,
 | |
| 	MSR_IA32_MCG_EXT_CTL,
 | |
| 	MSR_IA32_SMBASE,
 | |
| 	MSR_SMI_COUNT,
 | |
| 	MSR_PLATFORM_INFO,
 | |
| 	MSR_MISC_FEATURES_ENABLES,
 | |
| 	MSR_AMD64_VIRT_SPEC_CTRL,
 | |
| 	MSR_AMD64_TSC_RATIO,
 | |
| 	MSR_IA32_POWER_CTL,
 | |
| 	MSR_IA32_UCODE_REV,
 | |
| 
 | |
| 	/*
 | |
| 	 * The following list leaves out MSRs whose values are determined
 | |
| 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
 | |
| 	 * We always support the "true" VMX control MSRs, even if the host
 | |
| 	 * processor does not, so I am putting these registers here rather
 | |
| 	 * than in msrs_to_save_all.
 | |
| 	 */
 | |
| 	MSR_IA32_VMX_BASIC,
 | |
| 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
 | |
| 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
 | |
| 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
 | |
| 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
 | |
| 	MSR_IA32_VMX_MISC,
 | |
| 	MSR_IA32_VMX_CR0_FIXED0,
 | |
| 	MSR_IA32_VMX_CR4_FIXED0,
 | |
| 	MSR_IA32_VMX_VMCS_ENUM,
 | |
| 	MSR_IA32_VMX_PROCBASED_CTLS2,
 | |
| 	MSR_IA32_VMX_EPT_VPID_CAP,
 | |
| 	MSR_IA32_VMX_VMFUNC,
 | |
| 
 | |
| 	MSR_K7_HWCR,
 | |
| 	MSR_KVM_POLL_CONTROL,
 | |
| };
 | |
| 
 | |
| static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
 | |
| static unsigned num_emulated_msrs;
 | |
| 
 | |
| /*
 | |
|  * List of msr numbers which are used to expose MSR-based features that
 | |
|  * can be used by a hypervisor to validate requested CPU features.
 | |
|  */
 | |
| static const u32 msr_based_features_all[] = {
 | |
| 	MSR_IA32_VMX_BASIC,
 | |
| 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
 | |
| 	MSR_IA32_VMX_PINBASED_CTLS,
 | |
| 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
 | |
| 	MSR_IA32_VMX_PROCBASED_CTLS,
 | |
| 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
 | |
| 	MSR_IA32_VMX_EXIT_CTLS,
 | |
| 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
 | |
| 	MSR_IA32_VMX_ENTRY_CTLS,
 | |
| 	MSR_IA32_VMX_MISC,
 | |
| 	MSR_IA32_VMX_CR0_FIXED0,
 | |
| 	MSR_IA32_VMX_CR0_FIXED1,
 | |
| 	MSR_IA32_VMX_CR4_FIXED0,
 | |
| 	MSR_IA32_VMX_CR4_FIXED1,
 | |
| 	MSR_IA32_VMX_VMCS_ENUM,
 | |
| 	MSR_IA32_VMX_PROCBASED_CTLS2,
 | |
| 	MSR_IA32_VMX_EPT_VPID_CAP,
 | |
| 	MSR_IA32_VMX_VMFUNC,
 | |
| 
 | |
| 	MSR_AMD64_DE_CFG,
 | |
| 	MSR_IA32_UCODE_REV,
 | |
| 	MSR_IA32_ARCH_CAPABILITIES,
 | |
| 	MSR_IA32_PERF_CAPABILITIES,
 | |
| };
 | |
| 
 | |
| static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
 | |
| static unsigned int num_msr_based_features;
 | |
| 
 | |
| static u64 kvm_get_arch_capabilities(void)
 | |
| {
 | |
| 	u64 data = 0;
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
 | |
| 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
 | |
| 
 | |
| 	/*
 | |
| 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
 | |
| 	 * the nested hypervisor runs with NX huge pages.  If it is not,
 | |
| 	 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
 | |
| 	 * L1 guests, so it need not worry about its own (L2) guests.
 | |
| 	 */
 | |
| 	data |= ARCH_CAP_PSCHANGE_MC_NO;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're doing cache flushes (either "always" or "cond")
 | |
| 	 * we will do one whenever the guest does a vmlaunch/vmresume.
 | |
| 	 * If an outer hypervisor is doing the cache flush for us
 | |
| 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
 | |
| 	 * capability to the guest too, and if EPT is disabled we're not
 | |
| 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
 | |
| 	 * require a nested hypervisor to do a flush of its own.
 | |
| 	 */
 | |
| 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
 | |
| 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
 | |
| 
 | |
| 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
 | |
| 		data |= ARCH_CAP_RDCL_NO;
 | |
| 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
 | |
| 		data |= ARCH_CAP_SSB_NO;
 | |
| 	if (!boot_cpu_has_bug(X86_BUG_MDS))
 | |
| 		data |= ARCH_CAP_MDS_NO;
 | |
| 	if (!boot_cpu_has_bug(X86_BUG_RFDS))
 | |
| 		data |= ARCH_CAP_RFDS_NO;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
 | |
| 		/*
 | |
| 		 * If RTM=0 because the kernel has disabled TSX, the host might
 | |
| 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
 | |
| 		 * and therefore knows that there cannot be TAA) but keep
 | |
| 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
 | |
| 		 * and we want to allow migrating those guests to tsx=off hosts.
 | |
| 		 */
 | |
| 		data &= ~ARCH_CAP_TAA_NO;
 | |
| 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
 | |
| 		data |= ARCH_CAP_TAA_NO;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Nothing to do here; we emulate TSX_CTRL if present on the
 | |
| 		 * host so the guest can choose between disabling TSX or
 | |
| 		 * using VERW to clear CPU buffers.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	/* Guests don't need to know "Fill buffer clear control" exists */
 | |
| 	data &= ~ARCH_CAP_FB_CLEAR_CTRL;
 | |
| 
 | |
| 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
 | |
| 		data |= ARCH_CAP_GDS_NO;
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
 | |
| {
 | |
| 	switch (msr->index) {
 | |
| 	case MSR_IA32_ARCH_CAPABILITIES:
 | |
| 		msr->data = kvm_get_arch_capabilities();
 | |
| 		break;
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 		rdmsrl_safe(msr->index, &msr->data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return static_call(kvm_x86_get_msr_feature)(msr);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 | |
| {
 | |
| 	struct kvm_msr_entry msr;
 | |
| 	int r;
 | |
| 
 | |
| 	msr.index = index;
 | |
| 	r = kvm_get_msr_feature(&msr);
 | |
| 
 | |
| 	if (r == KVM_MSR_RET_INVALID) {
 | |
| 		/* Unconditionally clear the output for simplicity */
 | |
| 		*data = 0;
 | |
| 		if (kvm_msr_ignored_check(index, 0, false))
 | |
| 			r = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	*data = msr.data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
 | |
| 		return false;
 | |
| 
 | |
| 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
 | |
| 		return false;
 | |
| 
 | |
| 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
 | |
| 		return false;
 | |
| 
 | |
| 	if (efer & (EFER_LME | EFER_LMA) &&
 | |
| 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
 | |
| 		return false;
 | |
| 
 | |
| 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| 
 | |
| }
 | |
| bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	if (efer & efer_reserved_bits)
 | |
| 		return false;
 | |
| 
 | |
| 	return __kvm_valid_efer(vcpu, efer);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_valid_efer);
 | |
| 
 | |
| static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	u64 old_efer = vcpu->arch.efer;
 | |
| 	u64 efer = msr_info->data;
 | |
| 	int r;
 | |
| 
 | |
| 	if (efer & efer_reserved_bits)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!msr_info->host_initiated) {
 | |
| 		if (!__kvm_valid_efer(vcpu, efer))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (is_paging(vcpu) &&
 | |
| 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	efer &= ~EFER_LMA;
 | |
| 	efer |= vcpu->arch.efer & EFER_LMA;
 | |
| 
 | |
| 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
 | |
| 	if (r) {
 | |
| 		WARN_ON(r > 0);
 | |
| 		return r;
 | |
| 	}
 | |
| 
 | |
| 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_enable_efer_bits(u64 mask)
 | |
| {
 | |
|        efer_reserved_bits &= ~mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 | |
| 
 | |
| bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
 | |
| {
 | |
| 	struct kvm_x86_msr_filter *msr_filter;
 | |
| 	struct msr_bitmap_range *ranges;
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	bool allowed;
 | |
| 	int idx;
 | |
| 	u32 i;
 | |
| 
 | |
| 	/* x2APIC MSRs do not support filtering. */
 | |
| 	if (index >= 0x800 && index <= 0x8ff)
 | |
| 		return true;
 | |
| 
 | |
| 	idx = srcu_read_lock(&kvm->srcu);
 | |
| 
 | |
| 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
 | |
| 	if (!msr_filter) {
 | |
| 		allowed = true;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	allowed = msr_filter->default_allow;
 | |
| 	ranges = msr_filter->ranges;
 | |
| 
 | |
| 	for (i = 0; i < msr_filter->count; i++) {
 | |
| 		u32 start = ranges[i].base;
 | |
| 		u32 end = start + ranges[i].nmsrs;
 | |
| 		u32 flags = ranges[i].flags;
 | |
| 		unsigned long *bitmap = ranges[i].bitmap;
 | |
| 
 | |
| 		if ((index >= start) && (index < end) && (flags & type)) {
 | |
| 			allowed = !!test_bit(index - start, bitmap);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	srcu_read_unlock(&kvm->srcu, idx);
 | |
| 
 | |
| 	return allowed;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_msr_allowed);
 | |
| 
 | |
| /*
 | |
|  * Write @data into the MSR specified by @index.  Select MSR specific fault
 | |
|  * checks are bypassed if @host_initiated is %true.
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
 | |
| 			 bool host_initiated)
 | |
| {
 | |
| 	struct msr_data msr;
 | |
| 
 | |
| 	switch (index) {
 | |
| 	case MSR_FS_BASE:
 | |
| 	case MSR_GS_BASE:
 | |
| 	case MSR_KERNEL_GS_BASE:
 | |
| 	case MSR_CSTAR:
 | |
| 	case MSR_LSTAR:
 | |
| 		if (is_noncanonical_address(data, vcpu))
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 		/*
 | |
| 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
 | |
| 		 * non-canonical address is written on Intel but not on
 | |
| 		 * AMD (which ignores the top 32-bits, because it does
 | |
| 		 * not implement 64-bit SYSENTER).
 | |
| 		 *
 | |
| 		 * 64-bit code should hence be able to write a non-canonical
 | |
| 		 * value on AMD.  Making the address canonical ensures that
 | |
| 		 * vmentry does not fail on Intel after writing a non-canonical
 | |
| 		 * value, and that something deterministic happens if the guest
 | |
| 		 * invokes 64-bit SYSENTER.
 | |
| 		 */
 | |
| 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
 | |
| 		break;
 | |
| 	case MSR_TSC_AUX:
 | |
| 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (!host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
 | |
| 		 * incomplete and conflicting architectural behavior.  Current
 | |
| 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
 | |
| 		 * reserved and always read as zeros.  Enforce Intel's reserved
 | |
| 		 * bits check if and only if the guest CPU is Intel, and clear
 | |
| 		 * the bits in all other cases.  This ensures cross-vendor
 | |
| 		 * migration will provide consistent behavior for the guest.
 | |
| 		 */
 | |
| 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
 | |
| 			return 1;
 | |
| 
 | |
| 		data = (u32)data;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	msr.data = data;
 | |
| 	msr.index = index;
 | |
| 	msr.host_initiated = host_initiated;
 | |
| 
 | |
| 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
 | |
| }
 | |
| 
 | |
| static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
 | |
| 				     u32 index, u64 data, bool host_initiated)
 | |
| {
 | |
| 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
 | |
| 
 | |
| 	if (ret == KVM_MSR_RET_INVALID)
 | |
| 		if (kvm_msr_ignored_check(index, data, true))
 | |
| 			ret = 0;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the MSR specified by @index into @data.  Select MSR specific fault
 | |
|  * checks are bypassed if @host_initiated is %true.
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
 | |
| 		  bool host_initiated)
 | |
| {
 | |
| 	struct msr_data msr;
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (index) {
 | |
| 	case MSR_TSC_AUX:
 | |
| 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (!host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	msr.index = index;
 | |
| 	msr.host_initiated = host_initiated;
 | |
| 
 | |
| 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
 | |
| 	if (!ret)
 | |
| 		*data = msr.data;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
 | |
| 				     u32 index, u64 *data, bool host_initiated)
 | |
| {
 | |
| 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
 | |
| 
 | |
| 	if (ret == KVM_MSR_RET_INVALID) {
 | |
| 		/* Unconditionally clear *data for simplicity */
 | |
| 		*data = 0;
 | |
| 		if (kvm_msr_ignored_check(index, 0, false))
 | |
| 			ret = 0;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
 | |
| {
 | |
| 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
 | |
| 		return KVM_MSR_RET_FILTERED;
 | |
| 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
 | |
| }
 | |
| 
 | |
| static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
 | |
| {
 | |
| 	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
 | |
| 		return KVM_MSR_RET_FILTERED;
 | |
| 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
 | |
| }
 | |
| 
 | |
| int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
 | |
| {
 | |
| 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_msr);
 | |
| 
 | |
| int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
 | |
| {
 | |
| 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_msr);
 | |
| 
 | |
| static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!vcpu->run->msr.error) {
 | |
| 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
 | |
| 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
 | |
| }
 | |
| 
 | |
| static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	complete_userspace_rdmsr(vcpu);
 | |
| 	return complete_emulated_msr_access(vcpu);
 | |
| }
 | |
| 
 | |
| static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
 | |
| }
 | |
| 
 | |
| static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	complete_userspace_rdmsr(vcpu);
 | |
| 	return complete_fast_msr_access(vcpu);
 | |
| }
 | |
| 
 | |
| static u64 kvm_msr_reason(int r)
 | |
| {
 | |
| 	switch (r) {
 | |
| 	case KVM_MSR_RET_INVALID:
 | |
| 		return KVM_MSR_EXIT_REASON_UNKNOWN;
 | |
| 	case KVM_MSR_RET_FILTERED:
 | |
| 		return KVM_MSR_EXIT_REASON_FILTER;
 | |
| 	default:
 | |
| 		return KVM_MSR_EXIT_REASON_INVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
 | |
| 			      u32 exit_reason, u64 data,
 | |
| 			      int (*completion)(struct kvm_vcpu *vcpu),
 | |
| 			      int r)
 | |
| {
 | |
| 	u64 msr_reason = kvm_msr_reason(r);
 | |
| 
 | |
| 	/* Check if the user wanted to know about this MSR fault */
 | |
| 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
 | |
| 		return 0;
 | |
| 
 | |
| 	vcpu->run->exit_reason = exit_reason;
 | |
| 	vcpu->run->msr.error = 0;
 | |
| 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
 | |
| 	vcpu->run->msr.reason = msr_reason;
 | |
| 	vcpu->run->msr.index = index;
 | |
| 	vcpu->run->msr.data = data;
 | |
| 	vcpu->arch.complete_userspace_io = completion;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 ecx = kvm_rcx_read(vcpu);
 | |
| 	u64 data;
 | |
| 	int r;
 | |
| 
 | |
| 	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
 | |
| 
 | |
| 	if (!r) {
 | |
| 		trace_kvm_msr_read(ecx, data);
 | |
| 
 | |
| 		kvm_rax_write(vcpu, data & -1u);
 | |
| 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
 | |
| 	} else {
 | |
| 		/* MSR read failed? See if we should ask user space */
 | |
| 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
 | |
| 				       complete_fast_rdmsr, r))
 | |
| 			return 0;
 | |
| 		trace_kvm_msr_read_ex(ecx);
 | |
| 	}
 | |
| 
 | |
| 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
 | |
| 
 | |
| int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 ecx = kvm_rcx_read(vcpu);
 | |
| 	u64 data = kvm_read_edx_eax(vcpu);
 | |
| 	int r;
 | |
| 
 | |
| 	r = kvm_set_msr_with_filter(vcpu, ecx, data);
 | |
| 
 | |
| 	if (!r) {
 | |
| 		trace_kvm_msr_write(ecx, data);
 | |
| 	} else {
 | |
| 		/* MSR write failed? See if we should ask user space */
 | |
| 		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
 | |
| 				       complete_fast_msr_access, r))
 | |
| 			return 0;
 | |
| 		/* Signal all other negative errors to userspace */
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 		trace_kvm_msr_write_ex(ecx, data);
 | |
| 	}
 | |
| 
 | |
| 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
 | |
| 
 | |
| int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
 | |
| 
 | |
| int kvm_emulate_invd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Treat an INVD instruction as a NOP and just skip it. */
 | |
| 	return kvm_emulate_as_nop(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_invd);
 | |
| 
 | |
| int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
 | |
| 	return kvm_emulate_as_nop(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
 | |
| 
 | |
| int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
 | |
| 
 | |
| int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
 | |
| 	return kvm_emulate_as_nop(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
 | |
| 
 | |
| static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
 | |
| 		need_resched() || signal_pending(current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The fast path for frequent and performance sensitive wrmsr emulation,
 | |
|  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
 | |
|  * the latency of virtual IPI by avoiding the expensive bits of transitioning
 | |
|  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
 | |
|  * other cases which must be called after interrupts are enabled on the host.
 | |
|  */
 | |
| static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
 | |
| 	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
 | |
| 	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
 | |
| 	    ((u32)(data >> 32) != X2APIC_BROADCAST))
 | |
| 		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	if (!kvm_can_use_hv_timer(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 msr = kvm_rcx_read(vcpu);
 | |
| 	u64 data;
 | |
| 	fastpath_t ret = EXIT_FASTPATH_NONE;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case APIC_BASE_MSR + (APIC_ICR >> 4):
 | |
| 		data = kvm_read_edx_eax(vcpu);
 | |
| 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
 | |
| 			kvm_skip_emulated_instruction(vcpu);
 | |
| 			ret = EXIT_FASTPATH_EXIT_HANDLED;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC_DEADLINE:
 | |
| 		data = kvm_read_edx_eax(vcpu);
 | |
| 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
 | |
| 			kvm_skip_emulated_instruction(vcpu);
 | |
| 			ret = EXIT_FASTPATH_REENTER_GUEST;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (ret != EXIT_FASTPATH_NONE)
 | |
| 		trace_kvm_msr_write(msr, data);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
 | |
| 
 | |
| /*
 | |
|  * Adapt set_msr() to msr_io()'s calling convention
 | |
|  */
 | |
| static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 | |
| {
 | |
| 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
 | |
| }
 | |
| 
 | |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 | |
| {
 | |
| 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| struct pvclock_clock {
 | |
| 	int vclock_mode;
 | |
| 	u64 cycle_last;
 | |
| 	u64 mask;
 | |
| 	u32 mult;
 | |
| 	u32 shift;
 | |
| 	u64 base_cycles;
 | |
| 	u64 offset;
 | |
| };
 | |
| 
 | |
| struct pvclock_gtod_data {
 | |
| 	seqcount_t	seq;
 | |
| 
 | |
| 	struct pvclock_clock clock; /* extract of a clocksource struct */
 | |
| 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
 | |
| 
 | |
| 	ktime_t		offs_boot;
 | |
| 	u64		wall_time_sec;
 | |
| };
 | |
| 
 | |
| static struct pvclock_gtod_data pvclock_gtod_data;
 | |
| 
 | |
| static void update_pvclock_gtod(struct timekeeper *tk)
 | |
| {
 | |
| 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
 | |
| 
 | |
| 	write_seqcount_begin(&vdata->seq);
 | |
| 
 | |
| 	/* copy pvclock gtod data */
 | |
| 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
 | |
| 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
 | |
| 	vdata->clock.mask		= tk->tkr_mono.mask;
 | |
| 	vdata->clock.mult		= tk->tkr_mono.mult;
 | |
| 	vdata->clock.shift		= tk->tkr_mono.shift;
 | |
| 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
 | |
| 	vdata->clock.offset		= tk->tkr_mono.base;
 | |
| 
 | |
| 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
 | |
| 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
 | |
| 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
 | |
| 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
 | |
| 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
 | |
| 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
 | |
| 	vdata->raw_clock.offset		= tk->tkr_raw.base;
 | |
| 
 | |
| 	vdata->wall_time_sec            = tk->xtime_sec;
 | |
| 
 | |
| 	vdata->offs_boot		= tk->offs_boot;
 | |
| 
 | |
| 	write_seqcount_end(&vdata->seq);
 | |
| }
 | |
| 
 | |
| static s64 get_kvmclock_base_ns(void)
 | |
| {
 | |
| 	/* Count up from boot time, but with the frequency of the raw clock.  */
 | |
| 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
 | |
| }
 | |
| #else
 | |
| static s64 get_kvmclock_base_ns(void)
 | |
| {
 | |
| 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
 | |
| 	return ktime_get_boottime_ns();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
 | |
| {
 | |
| 	int version;
 | |
| 	int r;
 | |
| 	struct pvclock_wall_clock wc;
 | |
| 	u32 wc_sec_hi;
 | |
| 	u64 wall_nsec;
 | |
| 
 | |
| 	if (!wall_clock)
 | |
| 		return;
 | |
| 
 | |
| 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| 	if (r)
 | |
| 		return;
 | |
| 
 | |
| 	if (version & 1)
 | |
| 		++version;  /* first time write, random junk */
 | |
| 
 | |
| 	++version;
 | |
| 
 | |
| 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * The guest calculates current wall clock time by adding
 | |
| 	 * system time (updated by kvm_guest_time_update below) to the
 | |
| 	 * wall clock specified here.  We do the reverse here.
 | |
| 	 */
 | |
| 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
 | |
| 
 | |
| 	wc.nsec = do_div(wall_nsec, 1000000000);
 | |
| 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
 | |
| 	wc.version = version;
 | |
| 
 | |
| 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
 | |
| 
 | |
| 	if (sec_hi_ofs) {
 | |
| 		wc_sec_hi = wall_nsec >> 32;
 | |
| 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
 | |
| 				&wc_sec_hi, sizeof(wc_sec_hi));
 | |
| 	}
 | |
| 
 | |
| 	version++;
 | |
| 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| }
 | |
| 
 | |
| static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
 | |
| 				  bool old_msr, bool host_initiated)
 | |
| {
 | |
| 	struct kvm_arch *ka = &vcpu->kvm->arch;
 | |
| 
 | |
| 	if (vcpu->vcpu_id == 0 && !host_initiated) {
 | |
| 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
 | |
| 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
 | |
| 
 | |
| 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.time = system_time;
 | |
| 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
 | |
| 
 | |
| 	/* we verify if the enable bit is set... */
 | |
| 	vcpu->arch.pv_time_enabled = false;
 | |
| 	if (!(system_time & 1))
 | |
| 		return;
 | |
| 
 | |
| 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
 | |
| 				       &vcpu->arch.pv_time, system_time & ~1ULL,
 | |
| 				       sizeof(struct pvclock_vcpu_time_info)))
 | |
| 		vcpu->arch.pv_time_enabled = true;
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
 | |
| {
 | |
| 	do_shl32_div32(dividend, divisor);
 | |
| 	return dividend;
 | |
| }
 | |
| 
 | |
| static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
 | |
| 			       s8 *pshift, u32 *pmultiplier)
 | |
| {
 | |
| 	uint64_t scaled64;
 | |
| 	int32_t  shift = 0;
 | |
| 	uint64_t tps64;
 | |
| 	uint32_t tps32;
 | |
| 
 | |
| 	tps64 = base_hz;
 | |
| 	scaled64 = scaled_hz;
 | |
| 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
 | |
| 		tps64 >>= 1;
 | |
| 		shift--;
 | |
| 	}
 | |
| 
 | |
| 	tps32 = (uint32_t)tps64;
 | |
| 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
 | |
| 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
 | |
| 			scaled64 >>= 1;
 | |
| 		else
 | |
| 			tps32 <<= 1;
 | |
| 		shift++;
 | |
| 	}
 | |
| 
 | |
| 	*pshift = shift;
 | |
| 	*pmultiplier = div_frac(scaled64, tps32);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
 | |
| #endif
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
 | |
| static unsigned long max_tsc_khz;
 | |
| 
 | |
| static u32 adjust_tsc_khz(u32 khz, s32 ppm)
 | |
| {
 | |
| 	u64 v = (u64)khz * (1000000 + ppm);
 | |
| 	do_div(v, 1000000);
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
 | |
| 
 | |
| static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
 | |
| {
 | |
| 	u64 ratio;
 | |
| 
 | |
| 	/* Guest TSC same frequency as host TSC? */
 | |
| 	if (!scale) {
 | |
| 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* TSC scaling supported? */
 | |
| 	if (!kvm_has_tsc_control) {
 | |
| 		if (user_tsc_khz > tsc_khz) {
 | |
| 			vcpu->arch.tsc_catchup = 1;
 | |
| 			vcpu->arch.tsc_always_catchup = 1;
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* TSC scaling required  - calculate ratio */
 | |
| 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
 | |
| 				user_tsc_khz, tsc_khz);
 | |
| 
 | |
| 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
 | |
| 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
 | |
| 			            user_tsc_khz);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
 | |
| {
 | |
| 	u32 thresh_lo, thresh_hi;
 | |
| 	int use_scaling = 0;
 | |
| 
 | |
| 	/* tsc_khz can be zero if TSC calibration fails */
 | |
| 	if (user_tsc_khz == 0) {
 | |
| 		/* set tsc_scaling_ratio to a safe value */
 | |
| 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Compute a scale to convert nanoseconds in TSC cycles */
 | |
| 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
 | |
| 			   &vcpu->arch.virtual_tsc_shift,
 | |
| 			   &vcpu->arch.virtual_tsc_mult);
 | |
| 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute the variation in TSC rate which is acceptable
 | |
| 	 * within the range of tolerance and decide if the
 | |
| 	 * rate being applied is within that bounds of the hardware
 | |
| 	 * rate.  If so, no scaling or compensation need be done.
 | |
| 	 */
 | |
| 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
 | |
| 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
 | |
| 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
 | |
| 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
 | |
| 		use_scaling = 1;
 | |
| 	}
 | |
| 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
 | |
| }
 | |
| 
 | |
| static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
 | |
| {
 | |
| 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
 | |
| 				      vcpu->arch.virtual_tsc_mult,
 | |
| 				      vcpu->arch.virtual_tsc_shift);
 | |
| 	tsc += vcpu->arch.this_tsc_write;
 | |
| 	return tsc;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static inline int gtod_is_based_on_tsc(int mode)
 | |
| {
 | |
| 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	bool vcpus_matched;
 | |
| 	struct kvm_arch *ka = &vcpu->kvm->arch;
 | |
| 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
 | |
| 
 | |
| 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
 | |
| 			 atomic_read(&vcpu->kvm->online_vcpus));
 | |
| 
 | |
| 	/*
 | |
| 	 * Once the masterclock is enabled, always perform request in
 | |
| 	 * order to update it.
 | |
| 	 *
 | |
| 	 * In order to enable masterclock, the host clocksource must be TSC
 | |
| 	 * and the vcpus need to have matched TSCs.  When that happens,
 | |
| 	 * perform request to enable masterclock.
 | |
| 	 */
 | |
| 	if (ka->use_master_clock ||
 | |
| 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
 | |
| 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
 | |
| 
 | |
| 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
 | |
| 			    atomic_read(&vcpu->kvm->online_vcpus),
 | |
| 		            ka->use_master_clock, gtod->clock.vclock_mode);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Multiply tsc by a fixed point number represented by ratio.
 | |
|  *
 | |
|  * The most significant 64-N bits (mult) of ratio represent the
 | |
|  * integral part of the fixed point number; the remaining N bits
 | |
|  * (frac) represent the fractional part, ie. ratio represents a fixed
 | |
|  * point number (mult + frac * 2^(-N)).
 | |
|  *
 | |
|  * N equals to kvm_tsc_scaling_ratio_frac_bits.
 | |
|  */
 | |
| static inline u64 __scale_tsc(u64 ratio, u64 tsc)
 | |
| {
 | |
| 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
 | |
| }
 | |
| 
 | |
| u64 kvm_scale_tsc(u64 tsc, u64 ratio)
 | |
| {
 | |
| 	u64 _tsc = tsc;
 | |
| 
 | |
| 	if (ratio != kvm_default_tsc_scaling_ratio)
 | |
| 		_tsc = __scale_tsc(ratio, tsc);
 | |
| 
 | |
| 	return _tsc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_scale_tsc);
 | |
| 
 | |
| static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
 | |
| {
 | |
| 	u64 tsc;
 | |
| 
 | |
| 	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
 | |
| 
 | |
| 	return target_tsc - tsc;
 | |
| }
 | |
| 
 | |
| u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
 | |
| {
 | |
| 	return vcpu->arch.l1_tsc_offset +
 | |
| 		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
 | |
| 
 | |
| u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
 | |
| {
 | |
| 	u64 nested_offset;
 | |
| 
 | |
| 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
 | |
| 		nested_offset = l1_offset;
 | |
| 	else
 | |
| 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
 | |
| 						kvm_tsc_scaling_ratio_frac_bits);
 | |
| 
 | |
| 	nested_offset += l2_offset;
 | |
| 	return nested_offset;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
 | |
| 
 | |
| u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
 | |
| {
 | |
| 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
 | |
| 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
 | |
| 				       kvm_tsc_scaling_ratio_frac_bits);
 | |
| 
 | |
| 	return l1_multiplier;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
 | |
| 
 | |
| static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
 | |
| {
 | |
| 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
 | |
| 				   vcpu->arch.l1_tsc_offset,
 | |
| 				   l1_offset);
 | |
| 
 | |
| 	vcpu->arch.l1_tsc_offset = l1_offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are here because L1 chose not to trap WRMSR to TSC then
 | |
| 	 * according to the spec this should set L1's TSC (as opposed to
 | |
| 	 * setting L1's offset for L2).
 | |
| 	 */
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
 | |
| 			l1_offset,
 | |
| 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
 | |
| 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
 | |
| 	else
 | |
| 		vcpu->arch.tsc_offset = l1_offset;
 | |
| 
 | |
| 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
 | |
| {
 | |
| 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
 | |
| 
 | |
| 	/* Userspace is changing the multiplier while L2 is active */
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
 | |
| 			l1_multiplier,
 | |
| 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
 | |
| 	else
 | |
| 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
 | |
| 
 | |
| 	if (kvm_has_tsc_control)
 | |
| 		static_call(kvm_x86_write_tsc_multiplier)(
 | |
| 			vcpu, vcpu->arch.tsc_scaling_ratio);
 | |
| }
 | |
| 
 | |
| static inline bool kvm_check_tsc_unstable(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/*
 | |
| 	 * TSC is marked unstable when we're running on Hyper-V,
 | |
| 	 * 'TSC page' clocksource is good.
 | |
| 	 */
 | |
| 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
 | |
| 		return false;
 | |
| #endif
 | |
| 	return check_tsc_unstable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
 | |
|  * offset for the vcpu and tracks the TSC matching generation that the vcpu
 | |
|  * participates in.
 | |
|  */
 | |
| static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
 | |
| 				  u64 ns, bool matched)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We also track th most recent recorded KHZ, write and time to
 | |
| 	 * allow the matching interval to be extended at each write.
 | |
| 	 */
 | |
| 	kvm->arch.last_tsc_nsec = ns;
 | |
| 	kvm->arch.last_tsc_write = tsc;
 | |
| 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
 | |
| 	kvm->arch.last_tsc_offset = offset;
 | |
| 
 | |
| 	vcpu->arch.last_guest_tsc = tsc;
 | |
| 
 | |
| 	kvm_vcpu_write_tsc_offset(vcpu, offset);
 | |
| 
 | |
| 	if (!matched) {
 | |
| 		/*
 | |
| 		 * We split periods of matched TSC writes into generations.
 | |
| 		 * For each generation, we track the original measured
 | |
| 		 * nanosecond time, offset, and write, so if TSCs are in
 | |
| 		 * sync, we can match exact offset, and if not, we can match
 | |
| 		 * exact software computation in compute_guest_tsc()
 | |
| 		 *
 | |
| 		 * These values are tracked in kvm->arch.cur_xxx variables.
 | |
| 		 */
 | |
| 		kvm->arch.cur_tsc_generation++;
 | |
| 		kvm->arch.cur_tsc_nsec = ns;
 | |
| 		kvm->arch.cur_tsc_write = tsc;
 | |
| 		kvm->arch.cur_tsc_offset = offset;
 | |
| 		kvm->arch.nr_vcpus_matched_tsc = 0;
 | |
| 	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
 | |
| 		kvm->arch.nr_vcpus_matched_tsc++;
 | |
| 	}
 | |
| 
 | |
| 	/* Keep track of which generation this VCPU has synchronized to */
 | |
| 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
 | |
| 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
 | |
| 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
 | |
| 
 | |
| 	kvm_track_tsc_matching(vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	u64 offset, ns, elapsed;
 | |
| 	unsigned long flags;
 | |
| 	bool matched = false;
 | |
| 	bool synchronizing = false;
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
 | |
| 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
 | |
| 	ns = get_kvmclock_base_ns();
 | |
| 	elapsed = ns - kvm->arch.last_tsc_nsec;
 | |
| 
 | |
| 	if (vcpu->arch.virtual_tsc_khz) {
 | |
| 		if (data == 0) {
 | |
| 			/*
 | |
| 			 * detection of vcpu initialization -- need to sync
 | |
| 			 * with other vCPUs. This particularly helps to keep
 | |
| 			 * kvm_clock stable after CPU hotplug
 | |
| 			 */
 | |
| 			synchronizing = true;
 | |
| 		} else {
 | |
| 			u64 tsc_exp = kvm->arch.last_tsc_write +
 | |
| 						nsec_to_cycles(vcpu, elapsed);
 | |
| 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
 | |
| 			/*
 | |
| 			 * Special case: TSC write with a small delta (1 second)
 | |
| 			 * of virtual cycle time against real time is
 | |
| 			 * interpreted as an attempt to synchronize the CPU.
 | |
| 			 */
 | |
| 			synchronizing = data < tsc_exp + tsc_hz &&
 | |
| 					data + tsc_hz > tsc_exp;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
 | |
| 	 * TSC, we add elapsed time in this computation.  We could let the
 | |
| 	 * compensation code attempt to catch up if we fall behind, but
 | |
| 	 * it's better to try to match offsets from the beginning.
 | |
|          */
 | |
| 	if (synchronizing &&
 | |
| 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
 | |
| 		if (!kvm_check_tsc_unstable()) {
 | |
| 			offset = kvm->arch.cur_tsc_offset;
 | |
| 		} else {
 | |
| 			u64 delta = nsec_to_cycles(vcpu, elapsed);
 | |
| 			data += delta;
 | |
| 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
 | |
| 		}
 | |
| 		matched = true;
 | |
| 	}
 | |
| 
 | |
| 	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
 | |
| 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
 | |
| }
 | |
| 
 | |
| static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
 | |
| 					   s64 adjustment)
 | |
| {
 | |
| 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
 | |
| 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
 | |
| }
 | |
| 
 | |
| static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
 | |
| {
 | |
| 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
 | |
| 		WARN_ON(adjustment < 0);
 | |
| 	adjustment = kvm_scale_tsc((u64) adjustment,
 | |
| 				   vcpu->arch.l1_tsc_scaling_ratio);
 | |
| 	adjust_tsc_offset_guest(vcpu, adjustment);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static u64 read_tsc(void)
 | |
| {
 | |
| 	u64 ret = (u64)rdtsc_ordered();
 | |
| 	u64 last = pvclock_gtod_data.clock.cycle_last;
 | |
| 
 | |
| 	if (likely(ret >= last))
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * GCC likes to generate cmov here, but this branch is extremely
 | |
| 	 * predictable (it's just a function of time and the likely is
 | |
| 	 * very likely) and there's a data dependence, so force GCC
 | |
| 	 * to generate a branch instead.  I don't barrier() because
 | |
| 	 * we don't actually need a barrier, and if this function
 | |
| 	 * ever gets inlined it will generate worse code.
 | |
| 	 */
 | |
| 	asm volatile ("");
 | |
| 	return last;
 | |
| }
 | |
| 
 | |
| static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
 | |
| 			  int *mode)
 | |
| {
 | |
| 	long v;
 | |
| 	u64 tsc_pg_val;
 | |
| 
 | |
| 	switch (clock->vclock_mode) {
 | |
| 	case VDSO_CLOCKMODE_HVCLOCK:
 | |
| 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
 | |
| 						  tsc_timestamp);
 | |
| 		if (tsc_pg_val != U64_MAX) {
 | |
| 			/* TSC page valid */
 | |
| 			*mode = VDSO_CLOCKMODE_HVCLOCK;
 | |
| 			v = (tsc_pg_val - clock->cycle_last) &
 | |
| 				clock->mask;
 | |
| 		} else {
 | |
| 			/* TSC page invalid */
 | |
| 			*mode = VDSO_CLOCKMODE_NONE;
 | |
| 		}
 | |
| 		break;
 | |
| 	case VDSO_CLOCKMODE_TSC:
 | |
| 		*mode = VDSO_CLOCKMODE_TSC;
 | |
| 		*tsc_timestamp = read_tsc();
 | |
| 		v = (*tsc_timestamp - clock->cycle_last) &
 | |
| 			clock->mask;
 | |
| 		break;
 | |
| 	default:
 | |
| 		*mode = VDSO_CLOCKMODE_NONE;
 | |
| 	}
 | |
| 
 | |
| 	if (*mode == VDSO_CLOCKMODE_NONE)
 | |
| 		*tsc_timestamp = v = 0;
 | |
| 
 | |
| 	return v * clock->mult;
 | |
| }
 | |
| 
 | |
| static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
 | |
| {
 | |
| 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
 | |
| 	unsigned long seq;
 | |
| 	int mode;
 | |
| 	u64 ns;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(>od->seq);
 | |
| 		ns = gtod->raw_clock.base_cycles;
 | |
| 		ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
 | |
| 		ns >>= gtod->raw_clock.shift;
 | |
| 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
 | |
| 	} while (unlikely(read_seqcount_retry(>od->seq, seq)));
 | |
| 	*t = ns;
 | |
| 
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
 | |
| {
 | |
| 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
 | |
| 	unsigned long seq;
 | |
| 	int mode;
 | |
| 	u64 ns;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(>od->seq);
 | |
| 		ts->tv_sec = gtod->wall_time_sec;
 | |
| 		ns = gtod->clock.base_cycles;
 | |
| 		ns += vgettsc(>od->clock, tsc_timestamp, &mode);
 | |
| 		ns >>= gtod->clock.shift;
 | |
| 	} while (unlikely(read_seqcount_retry(>od->seq, seq)));
 | |
| 
 | |
| 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
 | |
| 	ts->tv_nsec = ns;
 | |
| 
 | |
| 	return mode;
 | |
| }
 | |
| 
 | |
| /* returns true if host is using TSC based clocksource */
 | |
| static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
 | |
| {
 | |
| 	/* checked again under seqlock below */
 | |
| 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
 | |
| 		return false;
 | |
| 
 | |
| 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
 | |
| 						      tsc_timestamp));
 | |
| }
 | |
| 
 | |
| /* returns true if host is using TSC based clocksource */
 | |
| static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
 | |
| 					   u64 *tsc_timestamp)
 | |
| {
 | |
| 	/* checked again under seqlock below */
 | |
| 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
 | |
| 		return false;
 | |
| 
 | |
| 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *
 | |
|  * Assuming a stable TSC across physical CPUS, and a stable TSC
 | |
|  * across virtual CPUs, the following condition is possible.
 | |
|  * Each numbered line represents an event visible to both
 | |
|  * CPUs at the next numbered event.
 | |
|  *
 | |
|  * "timespecX" represents host monotonic time. "tscX" represents
 | |
|  * RDTSC value.
 | |
|  *
 | |
|  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
 | |
|  *
 | |
|  * 1.  read timespec0,tsc0
 | |
|  * 2.					| timespec1 = timespec0 + N
 | |
|  * 					| tsc1 = tsc0 + M
 | |
|  * 3. transition to guest		| transition to guest
 | |
|  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
 | |
|  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
 | |
|  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
 | |
|  *
 | |
|  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
 | |
|  *
 | |
|  * 	- ret0 < ret1
 | |
|  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
 | |
|  *		...
 | |
|  *	- 0 < N - M => M < N
 | |
|  *
 | |
|  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
 | |
|  * always the case (the difference between two distinct xtime instances
 | |
|  * might be smaller then the difference between corresponding TSC reads,
 | |
|  * when updating guest vcpus pvclock areas).
 | |
|  *
 | |
|  * To avoid that problem, do not allow visibility of distinct
 | |
|  * system_timestamp/tsc_timestamp values simultaneously: use a master
 | |
|  * copy of host monotonic time values. Update that master copy
 | |
|  * in lockstep.
 | |
|  *
 | |
|  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	struct kvm_arch *ka = &kvm->arch;
 | |
| 	int vclock_mode;
 | |
| 	bool host_tsc_clocksource, vcpus_matched;
 | |
| 
 | |
| 	lockdep_assert_held(&kvm->arch.tsc_write_lock);
 | |
| 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
 | |
| 			atomic_read(&kvm->online_vcpus));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the host uses TSC clock, then passthrough TSC as stable
 | |
| 	 * to the guest.
 | |
| 	 */
 | |
| 	host_tsc_clocksource = kvm_get_time_and_clockread(
 | |
| 					&ka->master_kernel_ns,
 | |
| 					&ka->master_cycle_now);
 | |
| 
 | |
| 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
 | |
| 				&& !ka->backwards_tsc_observed
 | |
| 				&& !ka->boot_vcpu_runs_old_kvmclock;
 | |
| 
 | |
| 	if (ka->use_master_clock)
 | |
| 		atomic_set(&kvm_guest_has_master_clock, 1);
 | |
| 
 | |
| 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
 | |
| 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
 | |
| 					vcpus_matched);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
 | |
| }
 | |
| 
 | |
| static void __kvm_start_pvclock_update(struct kvm *kvm)
 | |
| {
 | |
| 	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
 | |
| 	write_seqcount_begin(&kvm->arch.pvclock_sc);
 | |
| }
 | |
| 
 | |
| static void kvm_start_pvclock_update(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_make_mclock_inprogress_request(kvm);
 | |
| 
 | |
| 	/* no guest entries from this point */
 | |
| 	__kvm_start_pvclock_update(kvm);
 | |
| }
 | |
| 
 | |
| static void kvm_end_pvclock_update(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_arch *ka = &kvm->arch;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	write_seqcount_end(&ka->pvclock_sc);
 | |
| 	raw_spin_unlock_irq(&ka->tsc_write_lock);
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 
 | |
| 	/* guest entries allowed */
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_update_masterclock(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_hv_request_tsc_page_update(kvm);
 | |
| 	kvm_start_pvclock_update(kvm);
 | |
| 	pvclock_update_vm_gtod_copy(kvm);
 | |
| 	kvm_end_pvclock_update(kvm);
 | |
| }
 | |
| 
 | |
| /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
 | |
| static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
 | |
| {
 | |
| 	struct kvm_arch *ka = &kvm->arch;
 | |
| 	struct pvclock_vcpu_time_info hv_clock;
 | |
| 
 | |
| 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
 | |
| 	get_cpu();
 | |
| 
 | |
| 	data->flags = 0;
 | |
| 	if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
 | |
| #ifdef CONFIG_X86_64
 | |
| 		struct timespec64 ts;
 | |
| 
 | |
| 		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
 | |
| 			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
 | |
| 			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
 | |
| 		} else
 | |
| #endif
 | |
| 		data->host_tsc = rdtsc();
 | |
| 
 | |
| 		data->flags |= KVM_CLOCK_TSC_STABLE;
 | |
| 		hv_clock.tsc_timestamp = ka->master_cycle_now;
 | |
| 		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
 | |
| 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
 | |
| 				   &hv_clock.tsc_shift,
 | |
| 				   &hv_clock.tsc_to_system_mul);
 | |
| 		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
 | |
| 	} else {
 | |
| 		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
 | |
| 	}
 | |
| 
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
 | |
| {
 | |
| 	struct kvm_arch *ka = &kvm->arch;
 | |
| 	unsigned seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&ka->pvclock_sc);
 | |
| 		__get_kvmclock(kvm, data);
 | |
| 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
 | |
| }
 | |
| 
 | |
| u64 get_kvmclock_ns(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_clock_data data;
 | |
| 
 | |
| 	get_kvmclock(kvm, &data);
 | |
| 	return data.clock;
 | |
| }
 | |
| 
 | |
| static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
 | |
| 				   struct gfn_to_hva_cache *cache,
 | |
| 				   unsigned int offset)
 | |
| {
 | |
| 	struct kvm_vcpu_arch *vcpu = &v->arch;
 | |
| 	struct pvclock_vcpu_time_info guest_hv_clock;
 | |
| 
 | |
| 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
 | |
| 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
 | |
| 		return;
 | |
| 
 | |
| 	/* This VCPU is paused, but it's legal for a guest to read another
 | |
| 	 * VCPU's kvmclock, so we really have to follow the specification where
 | |
| 	 * it says that version is odd if data is being modified, and even after
 | |
| 	 * it is consistent.
 | |
| 	 *
 | |
| 	 * Version field updates must be kept separate.  This is because
 | |
| 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
 | |
| 	 * writes within a string instruction are weakly ordered.  So there
 | |
| 	 * are three writes overall.
 | |
| 	 *
 | |
| 	 * As a small optimization, only write the version field in the first
 | |
| 	 * and third write.  The vcpu->pv_time cache is still valid, because the
 | |
| 	 * version field is the first in the struct.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
 | |
| 
 | |
| 	if (guest_hv_clock.version & 1)
 | |
| 		++guest_hv_clock.version;  /* first time write, random junk */
 | |
| 
 | |
| 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
 | |
| 	kvm_write_guest_offset_cached(v->kvm, cache,
 | |
| 				      &vcpu->hv_clock, offset,
 | |
| 				      sizeof(vcpu->hv_clock.version));
 | |
| 
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
 | |
| 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
 | |
| 
 | |
| 	if (vcpu->pvclock_set_guest_stopped_request) {
 | |
| 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
 | |
| 		vcpu->pvclock_set_guest_stopped_request = false;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
 | |
| 
 | |
| 	kvm_write_guest_offset_cached(v->kvm, cache,
 | |
| 				      &vcpu->hv_clock, offset,
 | |
| 				      sizeof(vcpu->hv_clock));
 | |
| 
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	vcpu->hv_clock.version++;
 | |
| 	kvm_write_guest_offset_cached(v->kvm, cache,
 | |
| 				     &vcpu->hv_clock, offset,
 | |
| 				     sizeof(vcpu->hv_clock.version));
 | |
| }
 | |
| 
 | |
| static int kvm_guest_time_update(struct kvm_vcpu *v)
 | |
| {
 | |
| 	unsigned long flags, tgt_tsc_khz;
 | |
| 	unsigned seq;
 | |
| 	struct kvm_vcpu_arch *vcpu = &v->arch;
 | |
| 	struct kvm_arch *ka = &v->kvm->arch;
 | |
| 	s64 kernel_ns;
 | |
| 	u64 tsc_timestamp, host_tsc;
 | |
| 	u8 pvclock_flags;
 | |
| 	bool use_master_clock;
 | |
| 
 | |
| 	kernel_ns = 0;
 | |
| 	host_tsc = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the host uses TSC clock, then passthrough TSC as stable
 | |
| 	 * to the guest.
 | |
| 	 */
 | |
| 	do {
 | |
| 		seq = read_seqcount_begin(&ka->pvclock_sc);
 | |
| 		use_master_clock = ka->use_master_clock;
 | |
| 		if (use_master_clock) {
 | |
| 			host_tsc = ka->master_cycle_now;
 | |
| 			kernel_ns = ka->master_kernel_ns;
 | |
| 		}
 | |
| 	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
 | |
| 
 | |
| 	/* Keep irq disabled to prevent changes to the clock */
 | |
| 	local_irq_save(flags);
 | |
| 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
 | |
| 	if (unlikely(tgt_tsc_khz == 0)) {
 | |
| 		local_irq_restore(flags);
 | |
| 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	if (!use_master_clock) {
 | |
| 		host_tsc = rdtsc();
 | |
| 		kernel_ns = get_kvmclock_base_ns();
 | |
| 	}
 | |
| 
 | |
| 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
 | |
| 
 | |
| 	/*
 | |
| 	 * We may have to catch up the TSC to match elapsed wall clock
 | |
| 	 * time for two reasons, even if kvmclock is used.
 | |
| 	 *   1) CPU could have been running below the maximum TSC rate
 | |
| 	 *   2) Broken TSC compensation resets the base at each VCPU
 | |
| 	 *      entry to avoid unknown leaps of TSC even when running
 | |
| 	 *      again on the same CPU.  This may cause apparent elapsed
 | |
| 	 *      time to disappear, and the guest to stand still or run
 | |
| 	 *	very slowly.
 | |
| 	 */
 | |
| 	if (vcpu->tsc_catchup) {
 | |
| 		u64 tsc = compute_guest_tsc(v, kernel_ns);
 | |
| 		if (tsc > tsc_timestamp) {
 | |
| 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
 | |
| 			tsc_timestamp = tsc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* With all the info we got, fill in the values */
 | |
| 
 | |
| 	if (kvm_has_tsc_control)
 | |
| 		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
 | |
| 					    v->arch.l1_tsc_scaling_ratio);
 | |
| 
 | |
| 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
 | |
| 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
 | |
| 				   &vcpu->hv_clock.tsc_shift,
 | |
| 				   &vcpu->hv_clock.tsc_to_system_mul);
 | |
| 		vcpu->hw_tsc_khz = tgt_tsc_khz;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
 | |
| 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
 | |
| 	vcpu->last_guest_tsc = tsc_timestamp;
 | |
| 
 | |
| 	/* If the host uses TSC clocksource, then it is stable */
 | |
| 	pvclock_flags = 0;
 | |
| 	if (use_master_clock)
 | |
| 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
 | |
| 
 | |
| 	vcpu->hv_clock.flags = pvclock_flags;
 | |
| 
 | |
| 	if (vcpu->pv_time_enabled)
 | |
| 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
 | |
| 	if (vcpu->xen.vcpu_info_set)
 | |
| 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
 | |
| 				       offsetof(struct compat_vcpu_info, time));
 | |
| 	if (vcpu->xen.vcpu_time_info_set)
 | |
| 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
 | |
| 	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kvmclock updates which are isolated to a given vcpu, such as
 | |
|  * vcpu->cpu migration, should not allow system_timestamp from
 | |
|  * the rest of the vcpus to remain static. Otherwise ntp frequency
 | |
|  * correction applies to one vcpu's system_timestamp but not
 | |
|  * the others.
 | |
|  *
 | |
|  * So in those cases, request a kvmclock update for all vcpus.
 | |
|  * We need to rate-limit these requests though, as they can
 | |
|  * considerably slow guests that have a large number of vcpus.
 | |
|  * The time for a remote vcpu to update its kvmclock is bound
 | |
|  * by the delay we use to rate-limit the updates.
 | |
|  */
 | |
| 
 | |
| #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
 | |
| 
 | |
| static void kvmclock_update_fn(struct work_struct *work)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct delayed_work *dwork = to_delayed_work(work);
 | |
| 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
 | |
| 					   kvmclock_update_work);
 | |
| 	struct kvm *kvm = container_of(ka, struct kvm, arch);
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
 | |
| {
 | |
| 	struct kvm *kvm = v->kvm;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
 | |
| 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
 | |
| 					KVMCLOCK_UPDATE_DELAY);
 | |
| }
 | |
| 
 | |
| #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
 | |
| 
 | |
| static void kvmclock_sync_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct delayed_work *dwork = to_delayed_work(work);
 | |
| 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
 | |
| 					   kvmclock_sync_work);
 | |
| 	struct kvm *kvm = container_of(ka, struct kvm, arch);
 | |
| 
 | |
| 	if (!kvmclock_periodic_sync)
 | |
| 		return;
 | |
| 
 | |
| 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
 | |
| 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
 | |
| 					KVMCLOCK_SYNC_PERIOD);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
 | |
|  */
 | |
| static bool can_set_mci_status(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* McStatusWrEn enabled? */
 | |
| 	if (guest_cpuid_is_amd(vcpu))
 | |
| 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 	u32 msr = msr_info->index;
 | |
| 	u64 data = msr_info->data;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 		vcpu->arch.mcg_status = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 		if (!(mcg_cap & MCG_CTL_P) &&
 | |
| 		    (data || !msr_info->host_initiated))
 | |
| 			return 1;
 | |
| 		if (data != 0 && data != ~(u64)0)
 | |
| 			return 1;
 | |
| 		vcpu->arch.mcg_ctl = data;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr >= MSR_IA32_MC0_CTL &&
 | |
| 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
 | |
| 			u32 offset = array_index_nospec(
 | |
| 				msr - MSR_IA32_MC0_CTL,
 | |
| 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
 | |
| 
 | |
| 			/* only 0 or all 1s can be written to IA32_MCi_CTL
 | |
| 			 * some Linux kernels though clear bit 10 in bank 4 to
 | |
| 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
 | |
| 			 * this to avoid an uncatched #GP in the guest
 | |
| 			 */
 | |
| 			if ((offset & 0x3) == 0 &&
 | |
| 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
 | |
| 				return -1;
 | |
| 
 | |
| 			/* MCi_STATUS */
 | |
| 			if (!msr_info->host_initiated &&
 | |
| 			    (offset & 0x3) == 1 && data != 0) {
 | |
| 				if (!can_set_mci_status(vcpu))
 | |
| 					return -1;
 | |
| 			}
 | |
| 
 | |
| 			vcpu->arch.mce_banks[offset] = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
 | |
| 
 | |
| 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
 | |
| }
 | |
| 
 | |
| static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	gpa_t gpa = data & ~0x3f;
 | |
| 
 | |
| 	/* Bits 4:5 are reserved, Should be zero */
 | |
| 	if (data & 0x30)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
 | |
| 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
 | |
| 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!lapic_in_kernel(vcpu))
 | |
| 		return data ? 1 : 0;
 | |
| 
 | |
| 	vcpu->arch.apf.msr_en_val = data;
 | |
| 
 | |
| 	if (!kvm_pv_async_pf_enabled(vcpu)) {
 | |
| 		kvm_clear_async_pf_completion_queue(vcpu);
 | |
| 		kvm_async_pf_hash_reset(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
 | |
| 					sizeof(u64)))
 | |
| 		return 1;
 | |
| 
 | |
| 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
 | |
| 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
 | |
| 
 | |
| 	kvm_async_pf_wakeup_all(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	/* Bits 8-63 are reserved */
 | |
| 	if (data >> 8)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!lapic_in_kernel(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	vcpu->arch.apf.msr_int_val = data;
 | |
| 
 | |
| 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvmclock_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.pv_time_enabled = false;
 | |
| 	vcpu->arch.time = 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.tlb_flush;
 | |
| 	static_call(kvm_x86_flush_tlb_all)(vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.tlb_flush;
 | |
| 
 | |
| 	if (!tdp_enabled) {
 | |
| 		/*
 | |
| 		 * A TLB flush on behalf of the guest is equivalent to
 | |
| 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
 | |
| 		 * a forced sync of the shadow page tables.  Ensure all the
 | |
| 		 * roots are synced and the guest TLB in hardware is clean.
 | |
| 		 */
 | |
| 		kvm_mmu_sync_roots(vcpu);
 | |
| 		kvm_mmu_sync_prev_roots(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	static_call(kvm_x86_flush_tlb_guest)(vcpu);
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.tlb_flush;
 | |
| 	static_call(kvm_x86_flush_tlb_current)(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Service "local" TLB flush requests, which are specific to the current MMU
 | |
|  * context.  In addition to the generic event handling in vcpu_enter_guest(),
 | |
|  * TLB flushes that are targeted at an MMU context also need to be serviced
 | |
|  * prior before nested VM-Enter/VM-Exit.
 | |
|  */
 | |
| void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
 | |
| 		kvm_vcpu_flush_tlb_current(vcpu);
 | |
| 
 | |
| 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
 | |
| 		kvm_vcpu_flush_tlb_guest(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
 | |
| 
 | |
| static void record_steal_time(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
 | |
| 	struct kvm_steal_time __user *st;
 | |
| 	struct kvm_memslots *slots;
 | |
| 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
 | |
| 	u64 steal;
 | |
| 	u32 version;
 | |
| 
 | |
| 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
 | |
| 		kvm_xen_runstate_set_running(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
 | |
| 		return;
 | |
| 
 | |
| 	slots = kvm_memslots(vcpu->kvm);
 | |
| 
 | |
| 	if (unlikely(slots->generation != ghc->generation ||
 | |
| 		     gpa != ghc->gpa ||
 | |
| 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
 | |
| 		/* We rely on the fact that it fits in a single page. */
 | |
| 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
 | |
| 
 | |
| 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
 | |
| 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	st = (struct kvm_steal_time __user *)ghc->hva;
 | |
| 	/*
 | |
| 	 * Doing a TLB flush here, on the guest's behalf, can avoid
 | |
| 	 * expensive IPIs.
 | |
| 	 */
 | |
| 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
 | |
| 		u8 st_preempted = 0;
 | |
| 		int err = -EFAULT;
 | |
| 
 | |
| 		if (!user_access_begin(st, sizeof(*st)))
 | |
| 			return;
 | |
| 
 | |
| 		asm volatile("1: xchgb %0, %2\n"
 | |
| 			     "xor %1, %1\n"
 | |
| 			     "2:\n"
 | |
| 			     _ASM_EXTABLE_UA(1b, 2b)
 | |
| 			     : "+q" (st_preempted),
 | |
| 			       "+&r" (err),
 | |
| 			       "+m" (st->preempted));
 | |
| 		if (err)
 | |
| 			goto out;
 | |
| 
 | |
| 		user_access_end();
 | |
| 
 | |
| 		vcpu->arch.st.preempted = 0;
 | |
| 
 | |
| 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
 | |
| 				       st_preempted & KVM_VCPU_FLUSH_TLB);
 | |
| 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
 | |
| 			kvm_vcpu_flush_tlb_guest(vcpu);
 | |
| 
 | |
| 		if (!user_access_begin(st, sizeof(*st)))
 | |
| 			goto dirty;
 | |
| 	} else {
 | |
| 		if (!user_access_begin(st, sizeof(*st)))
 | |
| 			return;
 | |
| 
 | |
| 		unsafe_put_user(0, &st->preempted, out);
 | |
| 		vcpu->arch.st.preempted = 0;
 | |
| 	}
 | |
| 
 | |
| 	unsafe_get_user(version, &st->version, out);
 | |
| 	if (version & 1)
 | |
| 		version += 1;  /* first time write, random junk */
 | |
| 
 | |
| 	version += 1;
 | |
| 	unsafe_put_user(version, &st->version, out);
 | |
| 
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	unsafe_get_user(steal, &st->steal, out);
 | |
| 	steal += current->sched_info.run_delay -
 | |
| 		vcpu->arch.st.last_steal;
 | |
| 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
 | |
| 	unsafe_put_user(steal, &st->steal, out);
 | |
| 
 | |
| 	version += 1;
 | |
| 	unsafe_put_user(version, &st->version, out);
 | |
| 
 | |
|  out:
 | |
| 	user_access_end();
 | |
|  dirty:
 | |
| 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
 | |
| }
 | |
| 
 | |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	bool pr = false;
 | |
| 	u32 msr = msr_info->index;
 | |
| 	u64 data = msr_info->data;
 | |
| 
 | |
| 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
 | |
| 		return kvm_xen_write_hypercall_page(vcpu, data);
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_AMD64_NB_CFG:
 | |
| 	case MSR_IA32_UCODE_WRITE:
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 	case MSR_AMD64_PATCH_LOADER:
 | |
| 	case MSR_AMD64_BU_CFG2:
 | |
| 	case MSR_AMD64_DC_CFG:
 | |
| 	case MSR_F15H_EX_CFG:
 | |
| 		break;
 | |
| 
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 		if (msr_info->host_initiated)
 | |
| 			vcpu->arch.microcode_version = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_ARCH_CAPABILITIES:
 | |
| 		if (!msr_info->host_initiated)
 | |
| 			return 1;
 | |
| 		vcpu->arch.arch_capabilities = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_PERF_CAPABILITIES: {
 | |
| 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
 | |
| 
 | |
| 		if (!msr_info->host_initiated)
 | |
| 			return 1;
 | |
| 		if (kvm_get_msr_feature(&msr_ent))
 | |
| 			return 1;
 | |
| 		if (data & ~msr_ent.data)
 | |
| 			return 1;
 | |
| 
 | |
| 		vcpu->arch.perf_capabilities = data;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 	case MSR_IA32_PRED_CMD: {
 | |
| 		u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB);
 | |
| 
 | |
| 		if (!msr_info->host_initiated) {
 | |
| 			if ((!guest_has_pred_cmd_msr(vcpu)))
 | |
| 				return 1;
 | |
| 
 | |
| 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
 | |
| 			    !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB))
 | |
| 				reserved_bits |= PRED_CMD_IBPB;
 | |
| 
 | |
| 			if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB))
 | |
| 				reserved_bits |= PRED_CMD_SBPB;
 | |
| 		}
 | |
| 
 | |
| 		if (!boot_cpu_has(X86_FEATURE_IBPB))
 | |
| 			reserved_bits |= PRED_CMD_IBPB;
 | |
| 
 | |
| 		if (!boot_cpu_has(X86_FEATURE_SBPB))
 | |
| 			reserved_bits |= PRED_CMD_SBPB;
 | |
| 
 | |
| 		if (data & reserved_bits)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (!data)
 | |
| 			break;
 | |
| 
 | |
| 		wrmsrl(MSR_IA32_PRED_CMD, data);
 | |
| 		break;
 | |
| 	}
 | |
| 	case MSR_IA32_FLUSH_CMD:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
 | |
| 			return 1;
 | |
| 		if (!data)
 | |
| 			break;
 | |
| 
 | |
| 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
 | |
| 		break;
 | |
| 	case MSR_EFER:
 | |
| 		return set_efer(vcpu, msr_info);
 | |
| 	case MSR_K7_HWCR:
 | |
| 		data &= ~(u64)0x40;	/* ignore flush filter disable */
 | |
| 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
 | |
| 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
 | |
| 
 | |
| 		/* Handle McStatusWrEn */
 | |
| 		if (data == BIT_ULL(18)) {
 | |
| 			vcpu->arch.msr_hwcr = data;
 | |
| 		} else if (data != 0) {
 | |
| 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
 | |
| 				    data);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_FAM10H_MMIO_CONF_BASE:
 | |
| 		if (data != 0) {
 | |
| 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
 | |
| 				    "0x%llx\n", data);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0x200 ... 0x2ff:
 | |
| 		return kvm_mtrr_set_msr(vcpu, msr, data);
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		return kvm_set_apic_base(vcpu, msr_info);
 | |
| 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
 | |
| 		return kvm_x2apic_msr_write(vcpu, msr, data);
 | |
| 	case MSR_IA32_TSC_DEADLINE:
 | |
| 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC_ADJUST:
 | |
| 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
 | |
| 			if (!msr_info->host_initiated) {
 | |
| 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
 | |
| 				adjust_tsc_offset_guest(vcpu, adj);
 | |
| 				/* Before back to guest, tsc_timestamp must be adjusted
 | |
| 				 * as well, otherwise guest's percpu pvclock time could jump.
 | |
| 				 */
 | |
| 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 			}
 | |
| 			vcpu->arch.ia32_tsc_adjust_msr = data;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_IA32_MISC_ENABLE:
 | |
| 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
 | |
| 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
 | |
| 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
 | |
| 				return 1;
 | |
| 			vcpu->arch.ia32_misc_enable_msr = data;
 | |
| 			kvm_update_cpuid_runtime(vcpu);
 | |
| 		} else {
 | |
| 			vcpu->arch.ia32_misc_enable_msr = data;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_IA32_SMBASE:
 | |
| 		if (!msr_info->host_initiated)
 | |
| 			return 1;
 | |
| 		vcpu->arch.smbase = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_POWER_CTL:
 | |
| 		vcpu->arch.msr_ia32_power_ctl = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC:
 | |
| 		if (msr_info->host_initiated) {
 | |
| 			kvm_synchronize_tsc(vcpu, data);
 | |
| 		} else {
 | |
| 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
 | |
| 			adjust_tsc_offset_guest(vcpu, adj);
 | |
| 			vcpu->arch.ia32_tsc_adjust_msr += adj;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_IA32_XSS:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
 | |
| 			return 1;
 | |
| 		/*
 | |
| 		 * KVM supports exposing PT to the guest, but does not support
 | |
| 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
 | |
| 		 * XSAVES/XRSTORS to save/restore PT MSRs.
 | |
| 		 */
 | |
| 		if (data & ~supported_xss)
 | |
| 			return 1;
 | |
| 		vcpu->arch.ia32_xss = data;
 | |
| 		kvm_update_cpuid_runtime(vcpu);
 | |
| 		break;
 | |
| 	case MSR_SMI_COUNT:
 | |
| 		if (!msr_info->host_initiated)
 | |
| 			return 1;
 | |
| 		vcpu->arch.smi_count = data;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK_NEW:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
 | |
| 			return 1;
 | |
| 
 | |
| 		vcpu->kvm->arch.wall_clock = data;
 | |
| 		kvm_write_wall_clock(vcpu->kvm, data, 0);
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
 | |
| 			return 1;
 | |
| 
 | |
| 		vcpu->kvm->arch.wall_clock = data;
 | |
| 		kvm_write_wall_clock(vcpu->kvm, data, 0);
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME_NEW:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
 | |
| 			return 1;
 | |
| 
 | |
| 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
 | |
| 			return 1;
 | |
| 
 | |
| 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
 | |
| 		break;
 | |
| 	case MSR_KVM_ASYNC_PF_EN:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (kvm_pv_enable_async_pf(vcpu, data))
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	case MSR_KVM_ASYNC_PF_INT:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (kvm_pv_enable_async_pf_int(vcpu, data))
 | |
| 			return 1;
 | |
| 		break;
 | |
| 	case MSR_KVM_ASYNC_PF_ACK:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
 | |
| 			return 1;
 | |
| 		if (data & 0x1) {
 | |
| 			vcpu->arch.apf.pageready_pending = false;
 | |
| 			kvm_check_async_pf_completion(vcpu);
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_KVM_STEAL_TIME:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (unlikely(!sched_info_on()))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (data & KVM_STEAL_RESERVED_MASK)
 | |
| 			return 1;
 | |
| 
 | |
| 		vcpu->arch.st.msr_val = data;
 | |
| 
 | |
| 		if (!(data & KVM_MSR_ENABLED))
 | |
| 			break;
 | |
| 
 | |
| 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
 | |
| 
 | |
| 		break;
 | |
| 	case MSR_KVM_PV_EOI_EN:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
 | |
| 			return 1;
 | |
| 		break;
 | |
| 
 | |
| 	case MSR_KVM_POLL_CONTROL:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
 | |
| 			return 1;
 | |
| 
 | |
| 		/* only enable bit supported */
 | |
| 		if (data & (-1ULL << 1))
 | |
| 			return 1;
 | |
| 
 | |
| 		vcpu->arch.msr_kvm_poll_control = data;
 | |
| 		break;
 | |
| 
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
 | |
| 		return set_msr_mce(vcpu, msr_info);
 | |
| 
 | |
| 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
 | |
| 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
 | |
| 		pr = true; /* fall through */
 | |
| 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
 | |
| 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
 | |
| 		if (kvm_pmu_is_valid_msr(vcpu, msr))
 | |
| 			return kvm_pmu_set_msr(vcpu, msr_info);
 | |
| 
 | |
| 		if (pr || data != 0)
 | |
| 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
 | |
| 				    "0x%x data 0x%llx\n", msr, data);
 | |
| 		break;
 | |
| 	case MSR_K7_CLK_CTL:
 | |
| 		/*
 | |
| 		 * Ignore all writes to this no longer documented MSR.
 | |
| 		 * Writes are only relevant for old K7 processors,
 | |
| 		 * all pre-dating SVM, but a recommended workaround from
 | |
| 		 * AMD for these chips. It is possible to specify the
 | |
| 		 * affected processor models on the command line, hence
 | |
| 		 * the need to ignore the workaround.
 | |
| 		 */
 | |
| 		break;
 | |
| 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
 | |
| 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
 | |
| 	case HV_X64_MSR_SYNDBG_OPTIONS:
 | |
| 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
 | |
| 	case HV_X64_MSR_CRASH_CTL:
 | |
| 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
 | |
| 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
 | |
| 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
 | |
| 	case HV_X64_MSR_TSC_EMULATION_STATUS:
 | |
| 		return kvm_hv_set_msr_common(vcpu, msr, data,
 | |
| 					     msr_info->host_initiated);
 | |
| 	case MSR_IA32_BBL_CR_CTL3:
 | |
| 		/* Drop writes to this legacy MSR -- see rdmsr
 | |
| 		 * counterpart for further detail.
 | |
| 		 */
 | |
| 		if (report_ignored_msrs)
 | |
| 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
 | |
| 				msr, data);
 | |
| 		break;
 | |
| 	case MSR_AMD64_OSVW_ID_LENGTH:
 | |
| 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
 | |
| 			return 1;
 | |
| 		vcpu->arch.osvw.length = data;
 | |
| 		break;
 | |
| 	case MSR_AMD64_OSVW_STATUS:
 | |
| 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
 | |
| 			return 1;
 | |
| 		vcpu->arch.osvw.status = data;
 | |
| 		break;
 | |
| 	case MSR_PLATFORM_INFO:
 | |
| 		if (!msr_info->host_initiated ||
 | |
| 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
 | |
| 		     cpuid_fault_enabled(vcpu)))
 | |
| 			return 1;
 | |
| 		vcpu->arch.msr_platform_info = data;
 | |
| 		break;
 | |
| 	case MSR_MISC_FEATURES_ENABLES:
 | |
| 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
 | |
| 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
 | |
| 		     !supports_cpuid_fault(vcpu)))
 | |
| 			return 1;
 | |
| 		vcpu->arch.msr_misc_features_enables = data;
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case MSR_IA32_XFD:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (data & ~kvm_guest_supported_xfd(vcpu))
 | |
| 			return 1;
 | |
| 
 | |
| 		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_XFD_ERR:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (data & ~kvm_guest_supported_xfd(vcpu))
 | |
| 			return 1;
 | |
| 
 | |
| 		vcpu->arch.guest_fpu.xfd_err = data;
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		if (kvm_pmu_is_valid_msr(vcpu, msr))
 | |
| 			return kvm_pmu_set_msr(vcpu, msr_info);
 | |
| 		return KVM_MSR_RET_INVALID;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common);
 | |
| 
 | |
| static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
 | |
| {
 | |
| 	u64 data;
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_P5_MC_ADDR:
 | |
| 	case MSR_IA32_P5_MC_TYPE:
 | |
| 		data = 0;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CAP:
 | |
| 		data = vcpu->arch.mcg_cap;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 		if (!(mcg_cap & MCG_CTL_P) && !host)
 | |
| 			return 1;
 | |
| 		data = vcpu->arch.mcg_ctl;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 		data = vcpu->arch.mcg_status;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr >= MSR_IA32_MC0_CTL &&
 | |
| 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
 | |
| 			u32 offset = array_index_nospec(
 | |
| 				msr - MSR_IA32_MC0_CTL,
 | |
| 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
 | |
| 
 | |
| 			data = vcpu->arch.mce_banks[offset];
 | |
| 			break;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	switch (msr_info->index) {
 | |
| 	case MSR_IA32_PLATFORM_ID:
 | |
| 	case MSR_IA32_EBL_CR_POWERON:
 | |
| 	case MSR_IA32_LASTBRANCHFROMIP:
 | |
| 	case MSR_IA32_LASTBRANCHTOIP:
 | |
| 	case MSR_IA32_LASTINTFROMIP:
 | |
| 	case MSR_IA32_LASTINTTOIP:
 | |
| 	case MSR_AMD64_SYSCFG:
 | |
| 	case MSR_K8_TSEG_ADDR:
 | |
| 	case MSR_K8_TSEG_MASK:
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 	case MSR_K8_INT_PENDING_MSG:
 | |
| 	case MSR_AMD64_NB_CFG:
 | |
| 	case MSR_FAM10H_MMIO_CONF_BASE:
 | |
| 	case MSR_AMD64_BU_CFG2:
 | |
| 	case MSR_IA32_PERF_CTL:
 | |
| 	case MSR_AMD64_DC_CFG:
 | |
| 	case MSR_F15H_EX_CFG:
 | |
| 	/*
 | |
| 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
 | |
| 	 * limit) MSRs. Just return 0, as we do not want to expose the host
 | |
| 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
 | |
| 	 * so for existing CPU-specific MSRs.
 | |
| 	 */
 | |
| 	case MSR_RAPL_POWER_UNIT:
 | |
| 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
 | |
| 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
 | |
| 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
 | |
| 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
 | |
| 		msr_info->data = 0;
 | |
| 		break;
 | |
| 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
 | |
| 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
 | |
| 			return kvm_pmu_get_msr(vcpu, msr_info);
 | |
| 		if (!msr_info->host_initiated)
 | |
| 			return 1;
 | |
| 		msr_info->data = 0;
 | |
| 		break;
 | |
| 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
 | |
| 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
 | |
| 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
 | |
| 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
 | |
| 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
 | |
| 			return kvm_pmu_get_msr(vcpu, msr_info);
 | |
| 		msr_info->data = 0;
 | |
| 		break;
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 		msr_info->data = vcpu->arch.microcode_version;
 | |
| 		break;
 | |
| 	case MSR_IA32_ARCH_CAPABILITIES:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.arch_capabilities;
 | |
| 		break;
 | |
| 	case MSR_IA32_PERF_CAPABILITIES:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.perf_capabilities;
 | |
| 		break;
 | |
| 	case MSR_IA32_POWER_CTL:
 | |
| 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC: {
 | |
| 		/*
 | |
| 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
 | |
| 		 * even when not intercepted. AMD manual doesn't explicitly
 | |
| 		 * state this but appears to behave the same.
 | |
| 		 *
 | |
| 		 * Unconditionally return L1's TSC offset on userspace reads
 | |
| 		 * so that userspace reads and writes always operate on L1's
 | |
| 		 * offset, e.g. to ensure deterministic behavior for migration.
 | |
| 		 */
 | |
| 		u64 offset, ratio;
 | |
| 
 | |
| 		if (msr_info->host_initiated) {
 | |
| 			offset = vcpu->arch.l1_tsc_offset;
 | |
| 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
 | |
| 		} else {
 | |
| 			offset = vcpu->arch.tsc_offset;
 | |
| 			ratio = vcpu->arch.tsc_scaling_ratio;
 | |
| 		}
 | |
| 
 | |
| 		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
 | |
| 		break;
 | |
| 	}
 | |
| 	case MSR_MTRRcap:
 | |
| 	case 0x200 ... 0x2ff:
 | |
| 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
 | |
| 	case 0xcd: /* fsb frequency */
 | |
| 		msr_info->data = 3;
 | |
| 		break;
 | |
| 		/*
 | |
| 		 * MSR_EBC_FREQUENCY_ID
 | |
| 		 * Conservative value valid for even the basic CPU models.
 | |
| 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
 | |
| 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
 | |
| 		 * and 266MHz for model 3, or 4. Set Core Clock
 | |
| 		 * Frequency to System Bus Frequency Ratio to 1 (bits
 | |
| 		 * 31:24) even though these are only valid for CPU
 | |
| 		 * models > 2, however guests may end up dividing or
 | |
| 		 * multiplying by zero otherwise.
 | |
| 		 */
 | |
| 	case MSR_EBC_FREQUENCY_ID:
 | |
| 		msr_info->data = 1 << 24;
 | |
| 		break;
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		msr_info->data = kvm_get_apic_base(vcpu);
 | |
| 		break;
 | |
| 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
 | |
| 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
 | |
| 	case MSR_IA32_TSC_DEADLINE:
 | |
| 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
 | |
| 		break;
 | |
| 	case MSR_IA32_TSC_ADJUST:
 | |
| 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
 | |
| 		break;
 | |
| 	case MSR_IA32_MISC_ENABLE:
 | |
| 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
 | |
| 		break;
 | |
| 	case MSR_IA32_SMBASE:
 | |
| 		if (!msr_info->host_initiated)
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.smbase;
 | |
| 		break;
 | |
| 	case MSR_SMI_COUNT:
 | |
| 		msr_info->data = vcpu->arch.smi_count;
 | |
| 		break;
 | |
| 	case MSR_IA32_PERF_STATUS:
 | |
| 		/* TSC increment by tick */
 | |
| 		msr_info->data = 1000ULL;
 | |
| 		/* CPU multiplier */
 | |
| 		msr_info->data |= (((uint64_t)4ULL) << 40);
 | |
| 		break;
 | |
| 	case MSR_EFER:
 | |
| 		msr_info->data = vcpu->arch.efer;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->kvm->arch.wall_clock;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK_NEW:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->kvm->arch.wall_clock;
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.time;
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME_NEW:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.time;
 | |
| 		break;
 | |
| 	case MSR_KVM_ASYNC_PF_EN:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.apf.msr_en_val;
 | |
| 		break;
 | |
| 	case MSR_KVM_ASYNC_PF_INT:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.apf.msr_int_val;
 | |
| 		break;
 | |
| 	case MSR_KVM_ASYNC_PF_ACK:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = 0;
 | |
| 		break;
 | |
| 	case MSR_KVM_STEAL_TIME:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.st.msr_val;
 | |
| 		break;
 | |
| 	case MSR_KVM_PV_EOI_EN:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
 | |
| 		break;
 | |
| 	case MSR_KVM_POLL_CONTROL:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
 | |
| 		break;
 | |
| 	case MSR_IA32_P5_MC_ADDR:
 | |
| 	case MSR_IA32_P5_MC_TYPE:
 | |
| 	case MSR_IA32_MCG_CAP:
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
 | |
| 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
 | |
| 				   msr_info->host_initiated);
 | |
| 	case MSR_IA32_XSS:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.ia32_xss;
 | |
| 		break;
 | |
| 	case MSR_K7_CLK_CTL:
 | |
| 		/*
 | |
| 		 * Provide expected ramp-up count for K7. All other
 | |
| 		 * are set to zero, indicating minimum divisors for
 | |
| 		 * every field.
 | |
| 		 *
 | |
| 		 * This prevents guest kernels on AMD host with CPU
 | |
| 		 * type 6, model 8 and higher from exploding due to
 | |
| 		 * the rdmsr failing.
 | |
| 		 */
 | |
| 		msr_info->data = 0x20000000;
 | |
| 		break;
 | |
| 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
 | |
| 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
 | |
| 	case HV_X64_MSR_SYNDBG_OPTIONS:
 | |
| 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
 | |
| 	case HV_X64_MSR_CRASH_CTL:
 | |
| 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
 | |
| 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
 | |
| 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
 | |
| 	case HV_X64_MSR_TSC_EMULATION_STATUS:
 | |
| 		return kvm_hv_get_msr_common(vcpu,
 | |
| 					     msr_info->index, &msr_info->data,
 | |
| 					     msr_info->host_initiated);
 | |
| 	case MSR_IA32_BBL_CR_CTL3:
 | |
| 		/* This legacy MSR exists but isn't fully documented in current
 | |
| 		 * silicon.  It is however accessed by winxp in very narrow
 | |
| 		 * scenarios where it sets bit #19, itself documented as
 | |
| 		 * a "reserved" bit.  Best effort attempt to source coherent
 | |
| 		 * read data here should the balance of the register be
 | |
| 		 * interpreted by the guest:
 | |
| 		 *
 | |
| 		 * L2 cache control register 3: 64GB range, 256KB size,
 | |
| 		 * enabled, latency 0x1, configured
 | |
| 		 */
 | |
| 		msr_info->data = 0xbe702111;
 | |
| 		break;
 | |
| 	case MSR_AMD64_OSVW_ID_LENGTH:
 | |
| 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.osvw.length;
 | |
| 		break;
 | |
| 	case MSR_AMD64_OSVW_STATUS:
 | |
| 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.osvw.status;
 | |
| 		break;
 | |
| 	case MSR_PLATFORM_INFO:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
 | |
| 			return 1;
 | |
| 		msr_info->data = vcpu->arch.msr_platform_info;
 | |
| 		break;
 | |
| 	case MSR_MISC_FEATURES_ENABLES:
 | |
| 		msr_info->data = vcpu->arch.msr_misc_features_enables;
 | |
| 		break;
 | |
| 	case MSR_K7_HWCR:
 | |
| 		msr_info->data = vcpu->arch.msr_hwcr;
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case MSR_IA32_XFD:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
 | |
| 		break;
 | |
| 	case MSR_IA32_XFD_ERR:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
 | |
| 			return kvm_pmu_get_msr(vcpu, msr_info);
 | |
| 		return KVM_MSR_RET_INVALID;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common);
 | |
| 
 | |
| /*
 | |
|  * Read or write a bunch of msrs. All parameters are kernel addresses.
 | |
|  *
 | |
|  * @return number of msrs set successfully.
 | |
|  */
 | |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
 | |
| 		    struct kvm_msr_entry *entries,
 | |
| 		    int (*do_msr)(struct kvm_vcpu *vcpu,
 | |
| 				  unsigned index, u64 *data))
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < msrs->nmsrs; ++i)
 | |
| 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
 | |
| 			break;
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read or write a bunch of msrs. Parameters are user addresses.
 | |
|  *
 | |
|  * @return number of msrs set successfully.
 | |
|  */
 | |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
 | |
| 		  int (*do_msr)(struct kvm_vcpu *vcpu,
 | |
| 				unsigned index, u64 *data),
 | |
| 		  int writeback)
 | |
| {
 | |
| 	struct kvm_msrs msrs;
 | |
| 	struct kvm_msr_entry *entries;
 | |
| 	int r, n;
 | |
| 	unsigned size;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
 | |
| 		goto out;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (msrs.nmsrs >= MAX_IO_MSRS)
 | |
| 		goto out;
 | |
| 
 | |
| 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
 | |
| 	entries = memdup_user(user_msrs->entries, size);
 | |
| 	if (IS_ERR(entries)) {
 | |
| 		r = PTR_ERR(entries);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
 | |
| 	if (r < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = n;
 | |
| 
 | |
| out_free:
 | |
| 	kfree(entries);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static inline bool kvm_can_mwait_in_guest(void)
 | |
| {
 | |
| 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
 | |
| 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
 | |
| 		boot_cpu_has(X86_FEATURE_ARAT);
 | |
| }
 | |
| 
 | |
| static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
 | |
| 					    struct kvm_cpuid2 __user *cpuid_arg)
 | |
| {
 | |
| 	struct kvm_cpuid2 cpuid;
 | |
| 	int r;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
 | |
| 		return r;
 | |
| 
 | |
| 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
 | |
| 		return r;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	switch (ext) {
 | |
| 	case KVM_CAP_IRQCHIP:
 | |
| 	case KVM_CAP_HLT:
 | |
| 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
 | |
| 	case KVM_CAP_SET_TSS_ADDR:
 | |
| 	case KVM_CAP_EXT_CPUID:
 | |
| 	case KVM_CAP_EXT_EMUL_CPUID:
 | |
| 	case KVM_CAP_CLOCKSOURCE:
 | |
| 	case KVM_CAP_PIT:
 | |
| 	case KVM_CAP_NOP_IO_DELAY:
 | |
| 	case KVM_CAP_MP_STATE:
 | |
| 	case KVM_CAP_SYNC_MMU:
 | |
| 	case KVM_CAP_USER_NMI:
 | |
| 	case KVM_CAP_REINJECT_CONTROL:
 | |
| 	case KVM_CAP_IRQ_INJECT_STATUS:
 | |
| 	case KVM_CAP_IOEVENTFD:
 | |
| 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
 | |
| 	case KVM_CAP_PIT2:
 | |
| 	case KVM_CAP_PIT_STATE2:
 | |
| 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
 | |
| 	case KVM_CAP_VCPU_EVENTS:
 | |
| 	case KVM_CAP_HYPERV:
 | |
| 	case KVM_CAP_HYPERV_VAPIC:
 | |
| 	case KVM_CAP_HYPERV_SPIN:
 | |
| 	case KVM_CAP_HYPERV_SYNIC:
 | |
| 	case KVM_CAP_HYPERV_SYNIC2:
 | |
| 	case KVM_CAP_HYPERV_VP_INDEX:
 | |
| 	case KVM_CAP_HYPERV_EVENTFD:
 | |
| 	case KVM_CAP_HYPERV_TLBFLUSH:
 | |
| 	case KVM_CAP_HYPERV_SEND_IPI:
 | |
| 	case KVM_CAP_HYPERV_CPUID:
 | |
| 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
 | |
| 	case KVM_CAP_SYS_HYPERV_CPUID:
 | |
| 	case KVM_CAP_PCI_SEGMENT:
 | |
| 	case KVM_CAP_DEBUGREGS:
 | |
| 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
 | |
| 	case KVM_CAP_XSAVE:
 | |
| 	case KVM_CAP_ASYNC_PF:
 | |
| 	case KVM_CAP_ASYNC_PF_INT:
 | |
| 	case KVM_CAP_GET_TSC_KHZ:
 | |
| 	case KVM_CAP_KVMCLOCK_CTRL:
 | |
| 	case KVM_CAP_READONLY_MEM:
 | |
| 	case KVM_CAP_HYPERV_TIME:
 | |
| 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
 | |
| 	case KVM_CAP_TSC_DEADLINE_TIMER:
 | |
| 	case KVM_CAP_DISABLE_QUIRKS:
 | |
| 	case KVM_CAP_SET_BOOT_CPU_ID:
 | |
|  	case KVM_CAP_SPLIT_IRQCHIP:
 | |
| 	case KVM_CAP_IMMEDIATE_EXIT:
 | |
| 	case KVM_CAP_PMU_EVENT_FILTER:
 | |
| 	case KVM_CAP_GET_MSR_FEATURES:
 | |
| 	case KVM_CAP_MSR_PLATFORM_INFO:
 | |
| 	case KVM_CAP_EXCEPTION_PAYLOAD:
 | |
| 	case KVM_CAP_SET_GUEST_DEBUG:
 | |
| 	case KVM_CAP_LAST_CPU:
 | |
| 	case KVM_CAP_X86_USER_SPACE_MSR:
 | |
| 	case KVM_CAP_X86_MSR_FILTER:
 | |
| 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
 | |
| #ifdef CONFIG_X86_SGX_KVM
 | |
| 	case KVM_CAP_SGX_ATTRIBUTE:
 | |
| #endif
 | |
| 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
 | |
| 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
 | |
| 	case KVM_CAP_SREGS2:
 | |
| 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
 | |
| 	case KVM_CAP_VCPU_ATTRIBUTES:
 | |
| 	case KVM_CAP_SYS_ATTRIBUTES:
 | |
| 	case KVM_CAP_VAPIC:
 | |
| 	case KVM_CAP_ENABLE_CAP:
 | |
| 		r = 1;
 | |
| 		break;
 | |
| 	case KVM_CAP_EXIT_HYPERCALL:
 | |
| 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
 | |
| 		break;
 | |
| 	case KVM_CAP_SET_GUEST_DEBUG2:
 | |
| 		return KVM_GUESTDBG_VALID_MASK;
 | |
| #ifdef CONFIG_KVM_XEN
 | |
| 	case KVM_CAP_XEN_HVM:
 | |
| 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
 | |
| 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
 | |
| 		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
 | |
| 		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
 | |
| 		if (sched_info_on())
 | |
| 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
 | |
| 		break;
 | |
| #endif
 | |
| 	case KVM_CAP_SYNC_REGS:
 | |
| 		r = KVM_SYNC_X86_VALID_FIELDS;
 | |
| 		break;
 | |
| 	case KVM_CAP_ADJUST_CLOCK:
 | |
| 		r = KVM_CLOCK_VALID_FLAGS;
 | |
| 		break;
 | |
| 	case KVM_CAP_X86_DISABLE_EXITS:
 | |
| 		r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
 | |
| 		      KVM_X86_DISABLE_EXITS_CSTATE;
 | |
| 		if(kvm_can_mwait_in_guest())
 | |
| 			r |= KVM_X86_DISABLE_EXITS_MWAIT;
 | |
| 		break;
 | |
| 	case KVM_CAP_X86_SMM:
 | |
| 		/* SMBASE is usually relocated above 1M on modern chipsets,
 | |
| 		 * and SMM handlers might indeed rely on 4G segment limits,
 | |
| 		 * so do not report SMM to be available if real mode is
 | |
| 		 * emulated via vm86 mode.  Still, do not go to great lengths
 | |
| 		 * to avoid userspace's usage of the feature, because it is a
 | |
| 		 * fringe case that is not enabled except via specific settings
 | |
| 		 * of the module parameters.
 | |
| 		 */
 | |
| 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
 | |
| 		break;
 | |
| 	case KVM_CAP_NR_VCPUS:
 | |
| 		r = KVM_SOFT_MAX_VCPUS;
 | |
| 		break;
 | |
| 	case KVM_CAP_MAX_VCPUS:
 | |
| 		r = KVM_MAX_VCPUS;
 | |
| 		break;
 | |
| 	case KVM_CAP_MAX_VCPU_ID:
 | |
| 		r = KVM_MAX_VCPU_IDS;
 | |
| 		break;
 | |
| 	case KVM_CAP_PV_MMU:	/* obsolete */
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_MCE:
 | |
| 		r = KVM_MAX_MCE_BANKS;
 | |
| 		break;
 | |
| 	case KVM_CAP_XCRS:
 | |
| 		r = boot_cpu_has(X86_FEATURE_XSAVE);
 | |
| 		break;
 | |
| 	case KVM_CAP_TSC_CONTROL:
 | |
| 		r = kvm_has_tsc_control;
 | |
| 		break;
 | |
| 	case KVM_CAP_X2APIC_API:
 | |
| 		r = KVM_X2APIC_API_VALID_FLAGS;
 | |
| 		break;
 | |
| 	case KVM_CAP_NESTED_STATE:
 | |
| 		r = kvm_x86_ops.nested_ops->get_state ?
 | |
| 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
 | |
| 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
 | |
| 		break;
 | |
| 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
 | |
| 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
 | |
| 		break;
 | |
| 	case KVM_CAP_SMALLER_MAXPHYADDR:
 | |
| 		r = (int) allow_smaller_maxphyaddr;
 | |
| 		break;
 | |
| 	case KVM_CAP_STEAL_TIME:
 | |
| 		r = sched_info_on();
 | |
| 		break;
 | |
| 	case KVM_CAP_X86_BUS_LOCK_EXIT:
 | |
| 		if (kvm_has_bus_lock_exit)
 | |
| 			r = KVM_BUS_LOCK_DETECTION_OFF |
 | |
| 			    KVM_BUS_LOCK_DETECTION_EXIT;
 | |
| 		else
 | |
| 			r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_XSAVE2: {
 | |
| 		u64 guest_perm = xstate_get_guest_group_perm();
 | |
| 
 | |
| 		r = xstate_required_size(supported_xcr0 & guest_perm, false);
 | |
| 		if (r < sizeof(struct kvm_xsave))
 | |
| 			r = sizeof(struct kvm_xsave);
 | |
| 		break;
 | |
| 	case KVM_CAP_PMU_CAPABILITY:
 | |
| 		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_CAP_DISABLE_QUIRKS2:
 | |
| 		r = KVM_X86_VALID_QUIRKS;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
 | |
| {
 | |
| 	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
 | |
| 
 | |
| 	if ((u64)(unsigned long)uaddr != attr->addr)
 | |
| 		return ERR_PTR_USR(-EFAULT);
 | |
| 	return uaddr;
 | |
| }
 | |
| 
 | |
| static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
 | |
| {
 | |
| 	u64 __user *uaddr = kvm_get_attr_addr(attr);
 | |
| 
 | |
| 	if (attr->group)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	if (IS_ERR(uaddr))
 | |
| 		return PTR_ERR(uaddr);
 | |
| 
 | |
| 	switch (attr->attr) {
 | |
| 	case KVM_X86_XCOMP_GUEST_SUPP:
 | |
| 		if (put_user(supported_xcr0, uaddr))
 | |
| 			return -EFAULT;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -ENXIO;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
 | |
| {
 | |
| 	if (attr->group)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	switch (attr->attr) {
 | |
| 	case KVM_X86_XCOMP_GUEST_SUPP:
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| long kvm_arch_dev_ioctl(struct file *filp,
 | |
| 			unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	long r;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_GET_MSR_INDEX_LIST: {
 | |
| 		struct kvm_msr_list __user *user_msr_list = argp;
 | |
| 		struct kvm_msr_list msr_list;
 | |
| 		unsigned n;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
 | |
| 			goto out;
 | |
| 		n = msr_list.nmsrs;
 | |
| 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
 | |
| 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
 | |
| 			goto out;
 | |
| 		r = -E2BIG;
 | |
| 		if (n < msr_list.nmsrs)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
 | |
| 				 num_msrs_to_save * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
 | |
| 				 &emulated_msrs,
 | |
| 				 num_emulated_msrs * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_SUPPORTED_CPUID:
 | |
| 	case KVM_GET_EMULATED_CPUID: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
 | |
| 			goto out;
 | |
| 
 | |
| 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
 | |
| 					    ioctl);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &kvm_mce_cap_supported,
 | |
| 				 sizeof(kvm_mce_cap_supported)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
 | |
| 		struct kvm_msr_list __user *user_msr_list = argp;
 | |
| 		struct kvm_msr_list msr_list;
 | |
| 		unsigned int n;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
 | |
| 			goto out;
 | |
| 		n = msr_list.nmsrs;
 | |
| 		msr_list.nmsrs = num_msr_based_features;
 | |
| 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
 | |
| 			goto out;
 | |
| 		r = -E2BIG;
 | |
| 		if (n < msr_list.nmsrs)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
 | |
| 				 num_msr_based_features * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_MSRS:
 | |
| 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
 | |
| 		break;
 | |
| 	case KVM_GET_SUPPORTED_HV_CPUID:
 | |
| 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
 | |
| 		break;
 | |
| 	case KVM_GET_DEVICE_ATTR: {
 | |
| 		struct kvm_device_attr attr;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
 | |
| 			break;
 | |
| 		r = kvm_x86_dev_get_attr(&attr);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_HAS_DEVICE_ATTR: {
 | |
| 		struct kvm_device_attr attr;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
 | |
| 			break;
 | |
| 		r = kvm_x86_dev_has_attr(&attr);
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void wbinvd_ipi(void *garbage)
 | |
| {
 | |
| 	wbinvd();
 | |
| }
 | |
| 
 | |
| static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	/* Address WBINVD may be executed by guest */
 | |
| 	if (need_emulate_wbinvd(vcpu)) {
 | |
| 		if (static_call(kvm_x86_has_wbinvd_exit)())
 | |
| 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
 | |
| 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
 | |
| 			smp_call_function_single(vcpu->cpu,
 | |
| 					wbinvd_ipi, NULL, 1);
 | |
| 	}
 | |
| 
 | |
| 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
 | |
| 
 | |
| 	/* Save host pkru register if supported */
 | |
| 	vcpu->arch.host_pkru = read_pkru();
 | |
| 
 | |
| 	/* Apply any externally detected TSC adjustments (due to suspend) */
 | |
| 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
 | |
| 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
 | |
| 		vcpu->arch.tsc_offset_adjustment = 0;
 | |
| 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
 | |
| 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
 | |
| 				rdtsc() - vcpu->arch.last_host_tsc;
 | |
| 		if (tsc_delta < 0)
 | |
| 			mark_tsc_unstable("KVM discovered backwards TSC");
 | |
| 
 | |
| 		if (kvm_check_tsc_unstable()) {
 | |
| 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
 | |
| 						vcpu->arch.last_guest_tsc);
 | |
| 			kvm_vcpu_write_tsc_offset(vcpu, offset);
 | |
| 			vcpu->arch.tsc_catchup = 1;
 | |
| 		}
 | |
| 
 | |
| 		if (kvm_lapic_hv_timer_in_use(vcpu))
 | |
| 			kvm_lapic_restart_hv_timer(vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * On a host with synchronized TSC, there is no need to update
 | |
| 		 * kvmclock on vcpu->cpu migration
 | |
| 		 */
 | |
| 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
 | |
| 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
 | |
| 		if (vcpu->cpu != cpu)
 | |
| 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
 | |
| 		vcpu->cpu = cpu;
 | |
| 	}
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
 | |
| 	struct kvm_steal_time __user *st;
 | |
| 	struct kvm_memslots *slots;
 | |
| 	static const u8 preempted = KVM_VCPU_PREEMPTED;
 | |
| 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
 | |
| 
 | |
| 	/*
 | |
| 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
 | |
| 	 * an instruction boundary and will not trigger guest emulation of any
 | |
| 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
 | |
| 	 * when this is true, for example allowing the vCPU to be marked
 | |
| 	 * preempted if and only if the VM-Exit was due to a host interrupt.
 | |
| 	 */
 | |
| 	if (!vcpu->arch.at_instruction_boundary) {
 | |
| 		vcpu->stat.preemption_other++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->stat.preemption_reported++;
 | |
| 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
 | |
| 		return;
 | |
| 
 | |
| 	if (vcpu->arch.st.preempted)
 | |
| 		return;
 | |
| 
 | |
| 	/* This happens on process exit */
 | |
| 	if (unlikely(current->mm != vcpu->kvm->mm))
 | |
| 		return;
 | |
| 
 | |
| 	slots = kvm_memslots(vcpu->kvm);
 | |
| 
 | |
| 	if (unlikely(slots->generation != ghc->generation ||
 | |
| 		     gpa != ghc->gpa ||
 | |
| 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
 | |
| 		return;
 | |
| 
 | |
| 	st = (struct kvm_steal_time __user *)ghc->hva;
 | |
| 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
 | |
| 
 | |
| 	if (!probe_user_write(&st->preempted, &preempted, sizeof(preempted)))
 | |
| 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
 | |
| 
 | |
| 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	if (vcpu->preempted && !vcpu->arch.guest_state_protected)
 | |
| 		vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take the srcu lock as memslots will be accessed to check the gfn
 | |
| 	 * cache generation against the memslots generation.
 | |
| 	 */
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	if (kvm_xen_msr_enabled(vcpu->kvm))
 | |
| 		kvm_xen_runstate_set_preempted(vcpu);
 | |
| 	else
 | |
| 		kvm_steal_time_set_preempted(vcpu);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 
 | |
| 	static_call(kvm_x86_vcpu_put)(vcpu);
 | |
| 	vcpu->arch.last_host_tsc = rdtsc();
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_lapic_state *s)
 | |
| {
 | |
| 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
 | |
| 
 | |
| 	return kvm_apic_get_state(vcpu, s);
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_lapic_state *s)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = kvm_apic_set_state(vcpu, s);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	update_cr8_intercept(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * We can accept userspace's request for interrupt injection
 | |
| 	 * as long as we have a place to store the interrupt number.
 | |
| 	 * The actual injection will happen when the CPU is able to
 | |
| 	 * deliver the interrupt.
 | |
| 	 */
 | |
| 	if (kvm_cpu_has_extint(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
 | |
| 	return (!lapic_in_kernel(vcpu) ||
 | |
| 		kvm_apic_accept_pic_intr(vcpu));
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Do not cause an interrupt window exit if an exception
 | |
| 	 * is pending or an event needs reinjection; userspace
 | |
| 	 * might want to inject the interrupt manually using KVM_SET_REGS
 | |
| 	 * or KVM_SET_SREGS.  For that to work, we must be at an
 | |
| 	 * instruction boundary and with no events half-injected.
 | |
| 	 */
 | |
| 	return (kvm_arch_interrupt_allowed(vcpu) &&
 | |
| 		kvm_cpu_accept_dm_intr(vcpu) &&
 | |
| 		!kvm_event_needs_reinjection(vcpu) &&
 | |
| 		!vcpu->arch.exception.pending);
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_interrupt *irq)
 | |
| {
 | |
| 	if (irq->irq >= KVM_NR_INTERRUPTS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!irqchip_in_kernel(vcpu->kvm)) {
 | |
| 		kvm_queue_interrupt(vcpu, irq->irq, false);
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
 | |
| 	 * fail for in-kernel 8259.
 | |
| 	 */
 | |
| 	if (pic_in_kernel(vcpu->kvm))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	if (vcpu->arch.pending_external_vector != -1)
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	vcpu->arch.pending_external_vector = irq->irq;
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_inject_nmi(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
 | |
| 					   struct kvm_tpr_access_ctl *tac)
 | |
| {
 | |
| 	if (tac->flags)
 | |
| 		return -EINVAL;
 | |
| 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
 | |
| 					u64 mcg_cap)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned bank_num = mcg_cap & 0xff, bank;
 | |
| 
 | |
| 	r = -EINVAL;
 | |
| 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
 | |
| 		goto out;
 | |
| 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
 | |
| 		goto out;
 | |
| 	r = 0;
 | |
| 	vcpu->arch.mcg_cap = mcg_cap;
 | |
| 	/* Init IA32_MCG_CTL to all 1s */
 | |
| 	if (mcg_cap & MCG_CTL_P)
 | |
| 		vcpu->arch.mcg_ctl = ~(u64)0;
 | |
| 	/* Init IA32_MCi_CTL to all 1s */
 | |
| 	for (bank = 0; bank < bank_num; bank++)
 | |
| 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
 | |
| 
 | |
| 	static_call(kvm_x86_setup_mce)(vcpu);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
 | |
| 				      struct kvm_x86_mce *mce)
 | |
| {
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 	u64 *banks = vcpu->arch.mce_banks;
 | |
| 
 | |
| 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
 | |
| 	 * reporting is disabled
 | |
| 	 */
 | |
| 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
 | |
| 	    vcpu->arch.mcg_ctl != ~(u64)0)
 | |
| 		return 0;
 | |
| 	banks += 4 * mce->bank;
 | |
| 	/*
 | |
| 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
 | |
| 	 * reporting is disabled for the bank
 | |
| 	 */
 | |
| 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
 | |
| 		return 0;
 | |
| 	if (mce->status & MCI_STATUS_UC) {
 | |
| 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
 | |
| 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
 | |
| 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (banks[1] & MCI_STATUS_VAL)
 | |
| 			mce->status |= MCI_STATUS_OVER;
 | |
| 		banks[2] = mce->addr;
 | |
| 		banks[3] = mce->misc;
 | |
| 		vcpu->arch.mcg_status = mce->mcg_status;
 | |
| 		banks[1] = mce->status;
 | |
| 		kvm_queue_exception(vcpu, MC_VECTOR);
 | |
| 	} else if (!(banks[1] & MCI_STATUS_VAL)
 | |
| 		   || !(banks[1] & MCI_STATUS_UC)) {
 | |
| 		if (banks[1] & MCI_STATUS_VAL)
 | |
| 			mce->status |= MCI_STATUS_OVER;
 | |
| 		banks[2] = mce->addr;
 | |
| 		banks[3] = mce->misc;
 | |
| 		banks[1] = mce->status;
 | |
| 	} else
 | |
| 		banks[1] |= MCI_STATUS_OVER;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
 | |
| 					       struct kvm_vcpu_events *events)
 | |
| {
 | |
| 	process_nmi(vcpu);
 | |
| 
 | |
| 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
 | |
| 		process_smi(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * In guest mode, payload delivery should be deferred,
 | |
| 	 * so that the L1 hypervisor can intercept #PF before
 | |
| 	 * CR2 is modified (or intercept #DB before DR6 is
 | |
| 	 * modified under nVMX). Unless the per-VM capability,
 | |
| 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
 | |
| 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
 | |
| 	 * opportunistically defer the exception payload, deliver it if the
 | |
| 	 * capability hasn't been requested before processing a
 | |
| 	 * KVM_GET_VCPU_EVENTS.
 | |
| 	 */
 | |
| 	if (!vcpu->kvm->arch.exception_payload_enabled &&
 | |
| 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
 | |
| 		kvm_deliver_exception_payload(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * The API doesn't provide the instruction length for software
 | |
| 	 * exceptions, so don't report them. As long as the guest RIP
 | |
| 	 * isn't advanced, we should expect to encounter the exception
 | |
| 	 * again.
 | |
| 	 */
 | |
| 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
 | |
| 		events->exception.injected = 0;
 | |
| 		events->exception.pending = 0;
 | |
| 	} else {
 | |
| 		events->exception.injected = vcpu->arch.exception.injected;
 | |
| 		events->exception.pending = vcpu->arch.exception.pending;
 | |
| 		/*
 | |
| 		 * For ABI compatibility, deliberately conflate
 | |
| 		 * pending and injected exceptions when
 | |
| 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
 | |
| 		 */
 | |
| 		if (!vcpu->kvm->arch.exception_payload_enabled)
 | |
| 			events->exception.injected |=
 | |
| 				vcpu->arch.exception.pending;
 | |
| 	}
 | |
| 	events->exception.nr = vcpu->arch.exception.nr;
 | |
| 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
 | |
| 	events->exception.error_code = vcpu->arch.exception.error_code;
 | |
| 	events->exception_has_payload = vcpu->arch.exception.has_payload;
 | |
| 	events->exception_payload = vcpu->arch.exception.payload;
 | |
| 
 | |
| 	events->interrupt.injected =
 | |
| 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
 | |
| 	events->interrupt.nr = vcpu->arch.interrupt.nr;
 | |
| 	events->interrupt.soft = 0;
 | |
| 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
 | |
| 
 | |
| 	events->nmi.injected = vcpu->arch.nmi_injected;
 | |
| 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
 | |
| 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
 | |
| 	events->nmi.pad = 0;
 | |
| 
 | |
| 	events->sipi_vector = 0; /* never valid when reporting to user space */
 | |
| 
 | |
| 	events->smi.smm = is_smm(vcpu);
 | |
| 	events->smi.pending = vcpu->arch.smi_pending;
 | |
| 	events->smi.smm_inside_nmi =
 | |
| 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
 | |
| 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
 | |
| 
 | |
| 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
 | |
| 			 | KVM_VCPUEVENT_VALID_SHADOW
 | |
| 			 | KVM_VCPUEVENT_VALID_SMM);
 | |
| 	if (vcpu->kvm->arch.exception_payload_enabled)
 | |
| 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
 | |
| 
 | |
| 	memset(&events->reserved, 0, sizeof(events->reserved));
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
 | |
| 					      struct kvm_vcpu_events *events)
 | |
| {
 | |
| 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
 | |
| 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
 | |
| 			      | KVM_VCPUEVENT_VALID_SHADOW
 | |
| 			      | KVM_VCPUEVENT_VALID_SMM
 | |
| 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
 | |
| 		if (!vcpu->kvm->arch.exception_payload_enabled)
 | |
| 			return -EINVAL;
 | |
| 		if (events->exception.pending)
 | |
| 			events->exception.injected = 0;
 | |
| 		else
 | |
| 			events->exception_has_payload = 0;
 | |
| 	} else {
 | |
| 		events->exception.pending = 0;
 | |
| 		events->exception_has_payload = 0;
 | |
| 	}
 | |
| 
 | |
| 	if ((events->exception.injected || events->exception.pending) &&
 | |
| 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* INITs are latched while in SMM */
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
 | |
| 	    (events->smi.smm || events->smi.pending) &&
 | |
| 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	process_nmi(vcpu);
 | |
| 	vcpu->arch.exception.injected = events->exception.injected;
 | |
| 	vcpu->arch.exception.pending = events->exception.pending;
 | |
| 	vcpu->arch.exception.nr = events->exception.nr;
 | |
| 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
 | |
| 	vcpu->arch.exception.error_code = events->exception.error_code;
 | |
| 	vcpu->arch.exception.has_payload = events->exception_has_payload;
 | |
| 	vcpu->arch.exception.payload = events->exception_payload;
 | |
| 
 | |
| 	vcpu->arch.interrupt.injected = events->interrupt.injected;
 | |
| 	vcpu->arch.interrupt.nr = events->interrupt.nr;
 | |
| 	vcpu->arch.interrupt.soft = events->interrupt.soft;
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
 | |
| 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
 | |
| 						events->interrupt.shadow);
 | |
| 
 | |
| 	vcpu->arch.nmi_injected = events->nmi.injected;
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
 | |
| 		vcpu->arch.nmi_pending = events->nmi.pending;
 | |
| 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
 | |
| 
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
 | |
| 	    lapic_in_kernel(vcpu))
 | |
| 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
 | |
| 
 | |
| 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
 | |
| 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
 | |
| 			kvm_x86_ops.nested_ops->leave_nested(vcpu);
 | |
| 			kvm_smm_changed(vcpu, events->smi.smm);
 | |
| 		}
 | |
| 
 | |
| 		vcpu->arch.smi_pending = events->smi.pending;
 | |
| 
 | |
| 		if (events->smi.smm) {
 | |
| 			if (events->smi.smm_inside_nmi)
 | |
| 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
 | |
| 			else
 | |
| 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
 | |
| 		}
 | |
| 
 | |
| 		if (lapic_in_kernel(vcpu)) {
 | |
| 			if (events->smi.latched_init)
 | |
| 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
 | |
| 			else
 | |
| 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
 | |
| 					     struct kvm_debugregs *dbgregs)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	memset(dbgregs, 0, sizeof(*dbgregs));
 | |
| 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
 | |
| 	kvm_get_dr(vcpu, 6, &val);
 | |
| 	dbgregs->dr6 = val;
 | |
| 	dbgregs->dr7 = vcpu->arch.dr7;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
 | |
| 					    struct kvm_debugregs *dbgregs)
 | |
| {
 | |
| 	if (dbgregs->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!kvm_dr6_valid(dbgregs->dr6))
 | |
| 		return -EINVAL;
 | |
| 	if (!kvm_dr7_valid(dbgregs->dr7))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
 | |
| 	kvm_update_dr0123(vcpu);
 | |
| 	vcpu->arch.dr6 = dbgregs->dr6;
 | |
| 	vcpu->arch.dr7 = dbgregs->dr7;
 | |
| 	kvm_update_dr7(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
 | |
| 					  u8 *state, unsigned int size)
 | |
| {
 | |
| 	/*
 | |
| 	 * Only copy state for features that are enabled for the guest.  The
 | |
| 	 * state itself isn't problematic, but setting bits in the header for
 | |
| 	 * features that are supported in *this* host but not exposed to the
 | |
| 	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
 | |
| 	 * compatible host without the features that are NOT exposed to the
 | |
| 	 * guest.
 | |
| 	 *
 | |
| 	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
 | |
| 	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
 | |
| 	 * supported by the host.
 | |
| 	 */
 | |
| 	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
 | |
| 			     XFEATURE_MASK_FPSSE;
 | |
| 
 | |
| 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
 | |
| 		return;
 | |
| 
 | |
| 	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
 | |
| 				       supported_xcr0, vcpu->arch.pkru);
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
 | |
| 					 struct kvm_xsave *guest_xsave)
 | |
| {
 | |
| 	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
 | |
| 					     sizeof(guest_xsave->region));
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_xsave *guest_xsave)
 | |
| {
 | |
| 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
 | |
| 					      guest_xsave->region,
 | |
| 					      supported_xcr0, &vcpu->arch.pkru);
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_xcrs *guest_xcrs)
 | |
| {
 | |
| 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
 | |
| 		guest_xcrs->nr_xcrs = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	guest_xcrs->nr_xcrs = 1;
 | |
| 	guest_xcrs->flags = 0;
 | |
| 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
 | |
| 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
 | |
| 				       struct kvm_xcrs *guest_xcrs)
 | |
| {
 | |
| 	int i, r = 0;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
 | |
| 		/* Only support XCR0 currently */
 | |
| 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
 | |
| 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
 | |
| 				guest_xcrs->xcrs[i].value);
 | |
| 			break;
 | |
| 		}
 | |
| 	if (r)
 | |
| 		r = -EINVAL;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kvm_set_guest_paused() indicates to the guest kernel that it has been
 | |
|  * stopped by the hypervisor.  This function will be called from the host only.
 | |
|  * EINVAL is returned when the host attempts to set the flag for a guest that
 | |
|  * does not support pv clocks.
 | |
|  */
 | |
| static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!vcpu->arch.pv_time_enabled)
 | |
| 		return -EINVAL;
 | |
| 	vcpu->arch.pvclock_set_guest_stopped_request = true;
 | |
| 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
 | |
| 				 struct kvm_device_attr *attr)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	switch (attr->attr) {
 | |
| 	case KVM_VCPU_TSC_OFFSET:
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
 | |
| 				 struct kvm_device_attr *attr)
 | |
| {
 | |
| 	u64 __user *uaddr = kvm_get_attr_addr(attr);
 | |
| 	int r;
 | |
| 
 | |
| 	if (IS_ERR(uaddr))
 | |
| 		return PTR_ERR(uaddr);
 | |
| 
 | |
| 	switch (attr->attr) {
 | |
| 	case KVM_VCPU_TSC_OFFSET:
 | |
| 		r = -EFAULT;
 | |
| 		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
 | |
| 				 struct kvm_device_attr *attr)
 | |
| {
 | |
| 	u64 __user *uaddr = kvm_get_attr_addr(attr);
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	int r;
 | |
| 
 | |
| 	if (IS_ERR(uaddr))
 | |
| 		return PTR_ERR(uaddr);
 | |
| 
 | |
| 	switch (attr->attr) {
 | |
| 	case KVM_VCPU_TSC_OFFSET: {
 | |
| 		u64 offset, tsc, ns;
 | |
| 		unsigned long flags;
 | |
| 		bool matched;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (get_user(offset, uaddr))
 | |
| 			break;
 | |
| 
 | |
| 		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
 | |
| 
 | |
| 		matched = (vcpu->arch.virtual_tsc_khz &&
 | |
| 			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
 | |
| 			   kvm->arch.last_tsc_offset == offset);
 | |
| 
 | |
| 		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
 | |
| 		ns = get_kvmclock_base_ns();
 | |
| 
 | |
| 		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
 | |
| 		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
 | |
| 
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		r = -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
 | |
| 				      unsigned int ioctl,
 | |
| 				      void __user *argp)
 | |
| {
 | |
| 	struct kvm_device_attr attr;
 | |
| 	int r;
 | |
| 
 | |
| 	if (copy_from_user(&attr, argp, sizeof(attr)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (attr.group != KVM_VCPU_TSC_CTRL)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_HAS_DEVICE_ATTR:
 | |
| 		r = kvm_arch_tsc_has_attr(vcpu, &attr);
 | |
| 		break;
 | |
| 	case KVM_GET_DEVICE_ATTR:
 | |
| 		r = kvm_arch_tsc_get_attr(vcpu, &attr);
 | |
| 		break;
 | |
| 	case KVM_SET_DEVICE_ATTR:
 | |
| 		r = kvm_arch_tsc_set_attr(vcpu, &attr);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 | |
| 				     struct kvm_enable_cap *cap)
 | |
| {
 | |
| 	int r;
 | |
| 	uint16_t vmcs_version;
 | |
| 	void __user *user_ptr;
 | |
| 
 | |
| 	if (cap->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (cap->cap) {
 | |
| 	case KVM_CAP_HYPERV_SYNIC2:
 | |
| 		if (cap->args[0])
 | |
| 			return -EINVAL;
 | |
| 		/* fall through */
 | |
| 
 | |
| 	case KVM_CAP_HYPERV_SYNIC:
 | |
| 		if (!irqchip_in_kernel(vcpu->kvm))
 | |
| 			return -EINVAL;
 | |
| 		return kvm_hv_activate_synic(vcpu, cap->cap ==
 | |
| 					     KVM_CAP_HYPERV_SYNIC2);
 | |
| 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
 | |
| 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
 | |
| 			return -ENOTTY;
 | |
| 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
 | |
| 		if (!r) {
 | |
| 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
 | |
| 			if (copy_to_user(user_ptr, &vmcs_version,
 | |
| 					 sizeof(vmcs_version)))
 | |
| 				r = -EFAULT;
 | |
| 		}
 | |
| 		return r;
 | |
| 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
 | |
| 		if (!kvm_x86_ops.enable_direct_tlbflush)
 | |
| 			return -ENOTTY;
 | |
| 
 | |
| 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
 | |
| 
 | |
| 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
 | |
| 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
 | |
| 
 | |
| 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
 | |
| 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
 | |
| 		if (vcpu->arch.pv_cpuid.enforce)
 | |
| 			kvm_update_pv_runtime(vcpu);
 | |
| 
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| long kvm_arch_vcpu_ioctl(struct file *filp,
 | |
| 			 unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = filp->private_data;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int r;
 | |
| 	union {
 | |
| 		struct kvm_sregs2 *sregs2;
 | |
| 		struct kvm_lapic_state *lapic;
 | |
| 		struct kvm_xsave *xsave;
 | |
| 		struct kvm_xcrs *xcrs;
 | |
| 		void *buffer;
 | |
| 	} u;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	u.buffer = NULL;
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_GET_LAPIC: {
 | |
| 		r = -EINVAL;
 | |
| 		if (!lapic_in_kernel(vcpu))
 | |
| 			goto out;
 | |
| 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
 | |
| 				GFP_KERNEL_ACCOUNT);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.lapic)
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_LAPIC: {
 | |
| 		r = -EINVAL;
 | |
| 		if (!lapic_in_kernel(vcpu))
 | |
| 			goto out;
 | |
| 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
 | |
| 		if (IS_ERR(u.lapic)) {
 | |
| 			r = PTR_ERR(u.lapic);
 | |
| 			goto out_nofree;
 | |
| 		}
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_INTERRUPT: {
 | |
| 		struct kvm_interrupt irq;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&irq, argp, sizeof(irq)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_NMI: {
 | |
| 		r = kvm_vcpu_ioctl_nmi(vcpu);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SMI: {
 | |
| 		r = kvm_inject_smi(vcpu);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CPUID: {
 | |
| 		struct kvm_cpuid __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CPUID2: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
 | |
| 					      cpuid_arg->entries);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_CPUID2: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
 | |
| 					      cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_MSRS: {
 | |
| 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 		r = msr_io(vcpu, argp, do_get_msr, 1);
 | |
| 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_MSRS: {
 | |
| 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 		r = msr_io(vcpu, argp, do_set_msr, 0);
 | |
| 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_TPR_ACCESS_REPORTING: {
 | |
| 		struct kvm_tpr_access_ctl tac;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&tac, argp, sizeof(tac)))
 | |
| 			goto out;
 | |
| 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &tac, sizeof(tac)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	};
 | |
| 	case KVM_SET_VAPIC_ADDR: {
 | |
| 		struct kvm_vapic_addr va;
 | |
| 		int idx;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (!lapic_in_kernel(vcpu))
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&va, argp, sizeof(va)))
 | |
| 			goto out;
 | |
| 		idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
 | |
| 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_SETUP_MCE: {
 | |
| 		u64 mcg_cap;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_SET_MCE: {
 | |
| 		struct kvm_x86_mce mce;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&mce, argp, sizeof(mce)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_VCPU_EVENTS: {
 | |
| 		struct kvm_vcpu_events events;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_VCPU_EVENTS: {
 | |
| 		struct kvm_vcpu_events events;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_DEBUGREGS: {
 | |
| 		struct kvm_debugregs dbgregs;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &dbgregs,
 | |
| 				 sizeof(struct kvm_debugregs)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_DEBUGREGS: {
 | |
| 		struct kvm_debugregs dbgregs;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&dbgregs, argp,
 | |
| 				   sizeof(struct kvm_debugregs)))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_XSAVE: {
 | |
| 		r = -EINVAL;
 | |
| 		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
 | |
| 			break;
 | |
| 
 | |
| 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xsave)
 | |
| 			break;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_XSAVE: {
 | |
| 		int size = vcpu->arch.guest_fpu.uabi_size;
 | |
| 
 | |
| 		u.xsave = memdup_user(argp, size);
 | |
| 		if (IS_ERR(u.xsave)) {
 | |
| 			r = PTR_ERR(u.xsave);
 | |
| 			goto out_nofree;
 | |
| 		}
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case KVM_GET_XSAVE2: {
 | |
| 		int size = vcpu->arch.guest_fpu.uabi_size;
 | |
| 
 | |
| 		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xsave)
 | |
| 			break;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.xsave, size))
 | |
| 			break;
 | |
| 
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case KVM_GET_XCRS: {
 | |
| 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.xcrs)
 | |
| 			break;
 | |
| 
 | |
| 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.xcrs,
 | |
| 				 sizeof(struct kvm_xcrs)))
 | |
| 			break;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_XCRS: {
 | |
| 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
 | |
| 		if (IS_ERR(u.xcrs)) {
 | |
| 			r = PTR_ERR(u.xcrs);
 | |
| 			goto out_nofree;
 | |
| 		}
 | |
| 
 | |
| 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_TSC_KHZ: {
 | |
| 		u32 user_tsc_khz;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		user_tsc_khz = (u32)arg;
 | |
| 
 | |
| 		if (kvm_has_tsc_control &&
 | |
| 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
 | |
| 			goto out;
 | |
| 
 | |
| 		if (user_tsc_khz == 0)
 | |
| 			user_tsc_khz = tsc_khz;
 | |
| 
 | |
| 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
 | |
| 			r = 0;
 | |
| 
 | |
| 		goto out;
 | |
| 	}
 | |
| 	case KVM_GET_TSC_KHZ: {
 | |
| 		r = vcpu->arch.virtual_tsc_khz;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	case KVM_KVMCLOCK_CTRL: {
 | |
| 		r = kvm_set_guest_paused(vcpu);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	case KVM_ENABLE_CAP: {
 | |
| 		struct kvm_enable_cap cap;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cap, argp, sizeof(cap)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_NESTED_STATE: {
 | |
| 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
 | |
| 		u32 user_data_size;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (!kvm_x86_ops.nested_ops->get_state)
 | |
| 			break;
 | |
| 
 | |
| 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
 | |
| 		r = -EFAULT;
 | |
| 		if (get_user(user_data_size, &user_kvm_nested_state->size))
 | |
| 			break;
 | |
| 
 | |
| 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
 | |
| 						     user_data_size);
 | |
| 		if (r < 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (r > user_data_size) {
 | |
| 			if (put_user(r, &user_kvm_nested_state->size))
 | |
| 				r = -EFAULT;
 | |
| 			else
 | |
| 				r = -E2BIG;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_NESTED_STATE: {
 | |
| 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
 | |
| 		struct kvm_nested_state kvm_state;
 | |
| 		int idx;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (!kvm_x86_ops.nested_ops->set_state)
 | |
| 			break;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
 | |
| 			break;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (kvm_state.size < sizeof(kvm_state))
 | |
| 			break;
 | |
| 
 | |
| 		if (kvm_state.flags &
 | |
| 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
 | |
| 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
 | |
| 		      | KVM_STATE_NESTED_GIF_SET))
 | |
| 			break;
 | |
| 
 | |
| 		/* nested_run_pending implies guest_mode.  */
 | |
| 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
 | |
| 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
 | |
| 			break;
 | |
| 
 | |
| 		idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
 | |
| 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_SUPPORTED_HV_CPUID:
 | |
| 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
 | |
| 		break;
 | |
| #ifdef CONFIG_KVM_XEN
 | |
| 	case KVM_XEN_VCPU_GET_ATTR: {
 | |
| 		struct kvm_xen_vcpu_attr xva;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&xva, argp, sizeof(xva)))
 | |
| 			goto out;
 | |
| 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
 | |
| 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
 | |
| 			r = -EFAULT;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_XEN_VCPU_SET_ATTR: {
 | |
| 		struct kvm_xen_vcpu_attr xva;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&xva, argp, sizeof(xva)))
 | |
| 			goto out;
 | |
| 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
 | |
| 		break;
 | |
| 	}
 | |
| #endif
 | |
| 	case KVM_GET_SREGS2: {
 | |
| 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!u.sregs2)
 | |
| 			goto out;
 | |
| 		__get_sregs2(vcpu, u.sregs2);
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_SREGS2: {
 | |
| 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
 | |
| 		if (IS_ERR(u.sregs2)) {
 | |
| 			r = PTR_ERR(u.sregs2);
 | |
| 			u.sregs2 = NULL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		r = __set_sregs2(vcpu, u.sregs2);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_HAS_DEVICE_ATTR:
 | |
| 	case KVM_GET_DEVICE_ATTR:
 | |
| 	case KVM_SET_DEVICE_ATTR:
 | |
| 		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	kfree(u.buffer);
 | |
| out_nofree:
 | |
| 	vcpu_put(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 | |
| {
 | |
| 	return VM_FAULT_SIGBUS;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
 | |
| 		return -EINVAL;
 | |
| 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
 | |
| 					      u64 ident_addr)
 | |
| {
 | |
| 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
 | |
| 					 unsigned long kvm_nr_mmu_pages)
 | |
| {
 | |
| 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_lock);
 | |
| 
 | |
| 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
 | |
| 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
 | |
| 
 | |
| 	mutex_unlock(&kvm->slots_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
 | |
| {
 | |
| 	return kvm->arch.n_max_mmu_pages;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
 | |
| {
 | |
| 	struct kvm_pic *pic = kvm->arch.vpic;
 | |
| 	int r;
 | |
| 
 | |
| 	r = 0;
 | |
| 	switch (chip->chip_id) {
 | |
| 	case KVM_IRQCHIP_PIC_MASTER:
 | |
| 		memcpy(&chip->chip.pic, &pic->pics[0],
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_PIC_SLAVE:
 | |
| 		memcpy(&chip->chip.pic, &pic->pics[1],
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_IOAPIC:
 | |
| 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
 | |
| {
 | |
| 	struct kvm_pic *pic = kvm->arch.vpic;
 | |
| 	int r;
 | |
| 
 | |
| 	r = 0;
 | |
| 	switch (chip->chip_id) {
 | |
| 	case KVM_IRQCHIP_PIC_MASTER:
 | |
| 		spin_lock(&pic->lock);
 | |
| 		memcpy(&pic->pics[0], &chip->chip.pic,
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		spin_unlock(&pic->lock);
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_PIC_SLAVE:
 | |
| 		spin_lock(&pic->lock);
 | |
| 		memcpy(&pic->pics[1], &chip->chip.pic,
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		spin_unlock(&pic->lock);
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_IOAPIC:
 | |
| 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	kvm_pic_update_irq(pic);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
 | |
| {
 | |
| 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
 | |
| 
 | |
| 	mutex_lock(&kps->lock);
 | |
| 	memcpy(ps, &kps->channels, sizeof(*ps));
 | |
| 	mutex_unlock(&kps->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_pit *pit = kvm->arch.vpit;
 | |
| 
 | |
| 	mutex_lock(&pit->pit_state.lock);
 | |
| 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
 | |
| 	for (i = 0; i < 3; i++)
 | |
| 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
 | |
| 	mutex_unlock(&pit->pit_state.lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
 | |
| {
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
 | |
| 		sizeof(ps->channels));
 | |
| 	ps->flags = kvm->arch.vpit->pit_state.flags;
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memset(&ps->reserved, 0, sizeof(ps->reserved));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
 | |
| {
 | |
| 	int start = 0;
 | |
| 	int i;
 | |
| 	u32 prev_legacy, cur_legacy;
 | |
| 	struct kvm_pit *pit = kvm->arch.vpit;
 | |
| 
 | |
| 	mutex_lock(&pit->pit_state.lock);
 | |
| 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
 | |
| 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
 | |
| 	if (!prev_legacy && cur_legacy)
 | |
| 		start = 1;
 | |
| 	memcpy(&pit->pit_state.channels, &ps->channels,
 | |
| 	       sizeof(pit->pit_state.channels));
 | |
| 	pit->pit_state.flags = ps->flags;
 | |
| 	for (i = 0; i < 3; i++)
 | |
| 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
 | |
| 				   start && i == 0);
 | |
| 	mutex_unlock(&pit->pit_state.lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_reinject(struct kvm *kvm,
 | |
| 				 struct kvm_reinject_control *control)
 | |
| {
 | |
| 	struct kvm_pit *pit = kvm->arch.vpit;
 | |
| 
 | |
| 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
 | |
| 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
 | |
| 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
 | |
| 	 */
 | |
| 	mutex_lock(&pit->pit_state.lock);
 | |
| 	kvm_pit_set_reinject(pit, control->pit_reinject);
 | |
| 	mutex_unlock(&pit->pit_state.lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
 | |
| 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
 | |
| 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
 | |
| 	 * VM-Exit.
 | |
| 	 */
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
 | |
| 			bool line_status)
 | |
| {
 | |
| 	if (!irqchip_in_kernel(kvm))
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
 | |
| 					irq_event->irq, irq_event->level,
 | |
| 					line_status);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
 | |
| 			    struct kvm_enable_cap *cap)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	if (cap->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (cap->cap) {
 | |
| 	case KVM_CAP_DISABLE_QUIRKS2:
 | |
| 		r = -EINVAL;
 | |
| 		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
 | |
| 			break;
 | |
| 		fallthrough;
 | |
| 	case KVM_CAP_DISABLE_QUIRKS:
 | |
| 		kvm->arch.disabled_quirks = cap->args[0];
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_SPLIT_IRQCHIP: {
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		r = -EINVAL;
 | |
| 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
 | |
| 			goto split_irqchip_unlock;
 | |
| 		r = -EEXIST;
 | |
| 		if (irqchip_in_kernel(kvm))
 | |
| 			goto split_irqchip_unlock;
 | |
| 		if (kvm->created_vcpus)
 | |
| 			goto split_irqchip_unlock;
 | |
| 		r = kvm_setup_empty_irq_routing(kvm);
 | |
| 		if (r)
 | |
| 			goto split_irqchip_unlock;
 | |
| 		/* Pairs with irqchip_in_kernel. */
 | |
| 		smp_wmb();
 | |
| 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
 | |
| 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
 | |
| 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
 | |
| 		r = 0;
 | |
| split_irqchip_unlock:
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_CAP_X2APIC_API:
 | |
| 		r = -EINVAL;
 | |
| 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
 | |
| 			break;
 | |
| 
 | |
| 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
 | |
| 			kvm->arch.x2apic_format = true;
 | |
| 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
 | |
| 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
 | |
| 
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_X86_DISABLE_EXITS:
 | |
| 		r = -EINVAL;
 | |
| 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
 | |
| 			break;
 | |
| 
 | |
| 		if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
 | |
| 			kvm_can_mwait_in_guest())
 | |
| 			kvm->arch.mwait_in_guest = true;
 | |
| 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
 | |
| 			kvm->arch.hlt_in_guest = true;
 | |
| 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
 | |
| 			kvm->arch.pause_in_guest = true;
 | |
| 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
 | |
| 			kvm->arch.cstate_in_guest = true;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_MSR_PLATFORM_INFO:
 | |
| 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_EXCEPTION_PAYLOAD:
 | |
| 		kvm->arch.exception_payload_enabled = cap->args[0];
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_X86_USER_SPACE_MSR:
 | |
| 		kvm->arch.user_space_msr_mask = cap->args[0];
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_X86_BUS_LOCK_EXIT:
 | |
| 		r = -EINVAL;
 | |
| 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
 | |
| 			break;
 | |
| 
 | |
| 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
 | |
| 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
 | |
| 			break;
 | |
| 
 | |
| 		if (kvm_has_bus_lock_exit &&
 | |
| 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
 | |
| 			kvm->arch.bus_lock_detection_enabled = true;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_SGX_KVM
 | |
| 	case KVM_CAP_SGX_ATTRIBUTE: {
 | |
| 		unsigned long allowed_attributes = 0;
 | |
| 
 | |
| 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
 | |
| 		if (r)
 | |
| 			break;
 | |
| 
 | |
| 		/* KVM only supports the PROVISIONKEY privileged attribute. */
 | |
| 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
 | |
| 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
 | |
| 			kvm->arch.sgx_provisioning_allowed = true;
 | |
| 		else
 | |
| 			r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| #endif
 | |
| 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
 | |
| 		r = -EINVAL;
 | |
| 		if (!kvm_x86_ops.vm_copy_enc_context_from)
 | |
| 			break;
 | |
| 
 | |
| 		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
 | |
| 		break;
 | |
| 	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
 | |
| 		r = -EINVAL;
 | |
| 		if (!kvm_x86_ops.vm_move_enc_context_from)
 | |
| 			break;
 | |
| 
 | |
| 		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
 | |
| 		break;
 | |
| 	case KVM_CAP_EXIT_HYPERCALL:
 | |
| 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		kvm->arch.hypercall_exit_enabled = cap->args[0];
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
 | |
| 		r = -EINVAL;
 | |
| 		if (cap->args[0] & ~1)
 | |
| 			break;
 | |
| 		kvm->arch.exit_on_emulation_error = cap->args[0];
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	case KVM_CAP_PMU_CAPABILITY:
 | |
| 		r = -EINVAL;
 | |
| 		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
 | |
| 			break;
 | |
| 
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		if (!kvm->created_vcpus) {
 | |
| 			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
 | |
| 			r = 0;
 | |
| 		}
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
 | |
| {
 | |
| 	struct kvm_x86_msr_filter *msr_filter;
 | |
| 
 | |
| 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
 | |
| 	if (!msr_filter)
 | |
| 		return NULL;
 | |
| 
 | |
| 	msr_filter->default_allow = default_allow;
 | |
| 	return msr_filter;
 | |
| }
 | |
| 
 | |
| static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
 | |
| {
 | |
| 	u32 i;
 | |
| 
 | |
| 	if (!msr_filter)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < msr_filter->count; i++)
 | |
| 		kfree(msr_filter->ranges[i].bitmap);
 | |
| 
 | |
| 	kfree(msr_filter);
 | |
| }
 | |
| 
 | |
| static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
 | |
| 			      struct kvm_msr_filter_range *user_range)
 | |
| {
 | |
| 	unsigned long *bitmap = NULL;
 | |
| 	size_t bitmap_size;
 | |
| 
 | |
| 	if (!user_range->nmsrs)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!user_range->flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
 | |
| 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
 | |
| 	if (IS_ERR(bitmap))
 | |
| 		return PTR_ERR(bitmap);
 | |
| 
 | |
| 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
 | |
| 		.flags = user_range->flags,
 | |
| 		.base = user_range->base,
 | |
| 		.nmsrs = user_range->nmsrs,
 | |
| 		.bitmap = bitmap,
 | |
| 	};
 | |
| 
 | |
| 	msr_filter->count++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
 | |
| {
 | |
| 	struct kvm_msr_filter __user *user_msr_filter = argp;
 | |
| 	struct kvm_x86_msr_filter *new_filter, *old_filter;
 | |
| 	struct kvm_msr_filter filter;
 | |
| 	bool default_allow;
 | |
| 	bool empty = true;
 | |
| 	int r = 0;
 | |
| 	u32 i;
 | |
| 
 | |
| 	if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
 | |
| 		empty &= !filter.ranges[i].nmsrs;
 | |
| 
 | |
| 	default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
 | |
| 	if (empty && !default_allow)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	new_filter = kvm_alloc_msr_filter(default_allow);
 | |
| 	if (!new_filter)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
 | |
| 		r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
 | |
| 		if (r) {
 | |
| 			kvm_free_msr_filter(new_filter);
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 
 | |
| 	/* The per-VM filter is protected by kvm->lock... */
 | |
| 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
 | |
| 
 | |
| 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
 | |
| 	synchronize_srcu(&kvm->srcu);
 | |
| 
 | |
| 	kvm_free_msr_filter(old_filter);
 | |
| 
 | |
| 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
 | |
| static int kvm_arch_suspend_notifier(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		if (!vcpu->arch.pv_time_enabled)
 | |
| 			continue;
 | |
| 
 | |
| 		ret = kvm_set_guest_paused(vcpu);
 | |
| 		if (ret) {
 | |
| 			kvm_err("Failed to pause guest VCPU%d: %d\n",
 | |
| 				vcpu->vcpu_id, ret);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 
 | |
| 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
 | |
| {
 | |
| 	switch (state) {
 | |
| 	case PM_HIBERNATION_PREPARE:
 | |
| 	case PM_SUSPEND_PREPARE:
 | |
| 		return kvm_arch_suspend_notifier(kvm);
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
 | |
| 
 | |
| static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
 | |
| {
 | |
| 	struct kvm_clock_data data = { 0 };
 | |
| 
 | |
| 	get_kvmclock(kvm, &data);
 | |
| 	if (copy_to_user(argp, &data, sizeof(data)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
 | |
| {
 | |
| 	struct kvm_arch *ka = &kvm->arch;
 | |
| 	struct kvm_clock_data data;
 | |
| 	u64 now_raw_ns;
 | |
| 
 | |
| 	if (copy_from_user(&data, argp, sizeof(data)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
 | |
| 	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
 | |
| 	 */
 | |
| 	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	kvm_hv_request_tsc_page_update(kvm);
 | |
| 	kvm_start_pvclock_update(kvm);
 | |
| 	pvclock_update_vm_gtod_copy(kvm);
 | |
| 
 | |
| 	/*
 | |
| 	 * This pairs with kvm_guest_time_update(): when masterclock is
 | |
| 	 * in use, we use master_kernel_ns + kvmclock_offset to set
 | |
| 	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
 | |
| 	 * is slightly ahead) here we risk going negative on unsigned
 | |
| 	 * 'system_time' when 'data.clock' is very small.
 | |
| 	 */
 | |
| 	if (data.flags & KVM_CLOCK_REALTIME) {
 | |
| 		u64 now_real_ns = ktime_get_real_ns();
 | |
| 
 | |
| 		/*
 | |
| 		 * Avoid stepping the kvmclock backwards.
 | |
| 		 */
 | |
| 		if (now_real_ns > data.realtime)
 | |
| 			data.clock += now_real_ns - data.realtime;
 | |
| 	}
 | |
| 
 | |
| 	if (ka->use_master_clock)
 | |
| 		now_raw_ns = ka->master_kernel_ns;
 | |
| 	else
 | |
| 		now_raw_ns = get_kvmclock_base_ns();
 | |
| 	ka->kvmclock_offset = data.clock - now_raw_ns;
 | |
| 	kvm_end_pvclock_update(kvm);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long kvm_arch_vm_ioctl(struct file *filp,
 | |
| 		       unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	struct kvm *kvm = filp->private_data;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int r = -ENOTTY;
 | |
| 	/*
 | |
| 	 * This union makes it completely explicit to gcc-3.x
 | |
| 	 * that these two variables' stack usage should be
 | |
| 	 * combined, not added together.
 | |
| 	 */
 | |
| 	union {
 | |
| 		struct kvm_pit_state ps;
 | |
| 		struct kvm_pit_state2 ps2;
 | |
| 		struct kvm_pit_config pit_config;
 | |
| 	} u;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_SET_TSS_ADDR:
 | |
| 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
 | |
| 		break;
 | |
| 	case KVM_SET_IDENTITY_MAP_ADDR: {
 | |
| 		u64 ident_addr;
 | |
| 
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		r = -EINVAL;
 | |
| 		if (kvm->created_vcpus)
 | |
| 			goto set_identity_unlock;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
 | |
| 			goto set_identity_unlock;
 | |
| 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
 | |
| set_identity_unlock:
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_NR_MMU_PAGES:
 | |
| 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
 | |
| 		break;
 | |
| 	case KVM_GET_NR_MMU_PAGES:
 | |
| 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
 | |
| 		break;
 | |
| 	case KVM_CREATE_IRQCHIP: {
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 
 | |
| 		r = -EEXIST;
 | |
| 		if (irqchip_in_kernel(kvm))
 | |
| 			goto create_irqchip_unlock;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (kvm->created_vcpus)
 | |
| 			goto create_irqchip_unlock;
 | |
| 
 | |
| 		r = kvm_pic_init(kvm);
 | |
| 		if (r)
 | |
| 			goto create_irqchip_unlock;
 | |
| 
 | |
| 		r = kvm_ioapic_init(kvm);
 | |
| 		if (r) {
 | |
| 			kvm_pic_destroy(kvm);
 | |
| 			goto create_irqchip_unlock;
 | |
| 		}
 | |
| 
 | |
| 		r = kvm_setup_default_irq_routing(kvm);
 | |
| 		if (r) {
 | |
| 			kvm_ioapic_destroy(kvm);
 | |
| 			kvm_pic_destroy(kvm);
 | |
| 			goto create_irqchip_unlock;
 | |
| 		}
 | |
| 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
 | |
| 		smp_wmb();
 | |
| 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
 | |
| 		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
 | |
| 	create_irqchip_unlock:
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_CREATE_PIT:
 | |
| 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
 | |
| 		goto create_pit;
 | |
| 	case KVM_CREATE_PIT2:
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.pit_config, argp,
 | |
| 				   sizeof(struct kvm_pit_config)))
 | |
| 			goto out;
 | |
| 	create_pit:
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		r = -EEXIST;
 | |
| 		if (kvm->arch.vpit)
 | |
| 			goto create_pit_unlock;
 | |
| 		r = -ENOMEM;
 | |
| 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
 | |
| 		if (kvm->arch.vpit)
 | |
| 			r = 0;
 | |
| 	create_pit_unlock:
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	case KVM_GET_IRQCHIP: {
 | |
| 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
 | |
| 		struct kvm_irqchip *chip;
 | |
| 
 | |
| 		chip = memdup_user(argp, sizeof(*chip));
 | |
| 		if (IS_ERR(chip)) {
 | |
| 			r = PTR_ERR(chip);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		r = -ENXIO;
 | |
| 		if (!irqchip_kernel(kvm))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
 | |
| 		if (r)
 | |
| 			goto get_irqchip_out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, chip, sizeof(*chip)))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = 0;
 | |
| 	get_irqchip_out:
 | |
| 		kfree(chip);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_IRQCHIP: {
 | |
| 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
 | |
| 		struct kvm_irqchip *chip;
 | |
| 
 | |
| 		chip = memdup_user(argp, sizeof(*chip));
 | |
| 		if (IS_ERR(chip)) {
 | |
| 			r = PTR_ERR(chip);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		r = -ENXIO;
 | |
| 		if (!irqchip_kernel(kvm))
 | |
| 			goto set_irqchip_out;
 | |
| 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
 | |
| 	set_irqchip_out:
 | |
| 		kfree(chip);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_PIT: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PIT: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
 | |
| 			goto out;
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto set_pit_out;
 | |
| 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
 | |
| set_pit_out:
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_PIT2: {
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PIT2: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
 | |
| 			goto out;
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto set_pit2_out;
 | |
| 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
 | |
| set_pit2_out:
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_REINJECT_CONTROL: {
 | |
| 		struct kvm_reinject_control control;
 | |
| 		r =  -EFAULT;
 | |
| 		if (copy_from_user(&control, argp, sizeof(control)))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_reinject(kvm, &control);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_BOOT_CPU_ID:
 | |
| 		r = 0;
 | |
| 		mutex_lock(&kvm->lock);
 | |
| 		if (kvm->created_vcpus)
 | |
| 			r = -EBUSY;
 | |
| 		else
 | |
| 			kvm->arch.bsp_vcpu_id = arg;
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		break;
 | |
| #ifdef CONFIG_KVM_XEN
 | |
| 	case KVM_XEN_HVM_CONFIG: {
 | |
| 		struct kvm_xen_hvm_config xhc;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
 | |
| 			goto out;
 | |
| 		r = kvm_xen_hvm_config(kvm, &xhc);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_XEN_HVM_GET_ATTR: {
 | |
| 		struct kvm_xen_hvm_attr xha;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&xha, argp, sizeof(xha)))
 | |
| 			goto out;
 | |
| 		r = kvm_xen_hvm_get_attr(kvm, &xha);
 | |
| 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
 | |
| 			r = -EFAULT;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_XEN_HVM_SET_ATTR: {
 | |
| 		struct kvm_xen_hvm_attr xha;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&xha, argp, sizeof(xha)))
 | |
| 			goto out;
 | |
| 		r = kvm_xen_hvm_set_attr(kvm, &xha);
 | |
| 		break;
 | |
| 	}
 | |
| #endif
 | |
| 	case KVM_SET_CLOCK:
 | |
| 		r = kvm_vm_ioctl_set_clock(kvm, argp);
 | |
| 		break;
 | |
| 	case KVM_GET_CLOCK:
 | |
| 		r = kvm_vm_ioctl_get_clock(kvm, argp);
 | |
| 		break;
 | |
| 	case KVM_MEMORY_ENCRYPT_OP: {
 | |
| 		r = -ENOTTY;
 | |
| 		if (!kvm_x86_ops.mem_enc_ioctl)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
 | |
| 		struct kvm_enc_region region;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(®ion, argp, sizeof(region)))
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -ENOTTY;
 | |
| 		if (!kvm_x86_ops.mem_enc_register_region)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
 | |
| 		struct kvm_enc_region region;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(®ion, argp, sizeof(region)))
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -ENOTTY;
 | |
| 		if (!kvm_x86_ops.mem_enc_unregister_region)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_HYPERV_EVENTFD: {
 | |
| 		struct kvm_hyperv_eventfd hvevfd;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PMU_EVENT_FILTER:
 | |
| 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
 | |
| 		break;
 | |
| 	case KVM_X86_SET_MSR_FILTER:
 | |
| 		r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -ENOTTY;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void kvm_init_msr_list(void)
 | |
| {
 | |
| 	struct x86_pmu_capability x86_pmu;
 | |
| 	u32 dummy[2];
 | |
| 	unsigned i;
 | |
| 
 | |
| 	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
 | |
| 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
 | |
| 
 | |
| 	perf_get_x86_pmu_capability(&x86_pmu);
 | |
| 
 | |
| 	num_msrs_to_save = 0;
 | |
| 	num_emulated_msrs = 0;
 | |
| 	num_msr_based_features = 0;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
 | |
| 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Even MSRs that are valid in the host may not be exposed
 | |
| 		 * to the guests in some cases.
 | |
| 		 */
 | |
| 		switch (msrs_to_save_all[i]) {
 | |
| 		case MSR_IA32_BNDCFGS:
 | |
| 			if (!kvm_mpx_supported())
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_TSC_AUX:
 | |
| 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
 | |
| 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_IA32_UMWAIT_CONTROL:
 | |
| 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_IA32_RTIT_CTL:
 | |
| 		case MSR_IA32_RTIT_STATUS:
 | |
| 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_IA32_RTIT_CR3_MATCH:
 | |
| 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
 | |
| 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_IA32_RTIT_OUTPUT_BASE:
 | |
| 		case MSR_IA32_RTIT_OUTPUT_MASK:
 | |
| 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
 | |
| 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
 | |
| 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
 | |
| 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
 | |
| 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
 | |
| 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
 | |
| 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
 | |
| 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
 | |
| 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
 | |
| 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case MSR_IA32_XFD:
 | |
| 		case MSR_IA32_XFD_ERR:
 | |
| 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
 | |
| 				continue;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
 | |
| 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
 | |
| 			continue;
 | |
| 
 | |
| 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
 | |
| 		struct kvm_msr_entry msr;
 | |
| 
 | |
| 		msr.index = msr_based_features_all[i];
 | |
| 		if (kvm_get_msr_feature(&msr))
 | |
| 			continue;
 | |
| 
 | |
| 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
 | |
| 			   const void *v)
 | |
| {
 | |
| 	int handled = 0;
 | |
| 	int n;
 | |
| 
 | |
| 	do {
 | |
| 		n = min(len, 8);
 | |
| 		if (!(lapic_in_kernel(vcpu) &&
 | |
| 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
 | |
| 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
 | |
| 			break;
 | |
| 		handled += n;
 | |
| 		addr += n;
 | |
| 		len -= n;
 | |
| 		v += n;
 | |
| 	} while (len);
 | |
| 
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
 | |
| {
 | |
| 	int handled = 0;
 | |
| 	int n;
 | |
| 
 | |
| 	do {
 | |
| 		n = min(len, 8);
 | |
| 		if (!(lapic_in_kernel(vcpu) &&
 | |
| 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
 | |
| 					 addr, n, v))
 | |
| 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
 | |
| 			break;
 | |
| 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
 | |
| 		handled += n;
 | |
| 		addr += n;
 | |
| 		len -= n;
 | |
| 		v += n;
 | |
| 	} while (len);
 | |
| 
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| void kvm_set_segment(struct kvm_vcpu *vcpu,
 | |
| 		     struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
 | |
| }
 | |
| 
 | |
| void kvm_get_segment(struct kvm_vcpu *vcpu,
 | |
| 		     struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
 | |
| }
 | |
| 
 | |
| gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
 | |
| 			   struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	gpa_t t_gpa;
 | |
| 
 | |
| 	BUG_ON(!mmu_is_nested(vcpu));
 | |
| 
 | |
| 	/* NPT walks are always user-walks */
 | |
| 	access |= PFERR_USER_MASK;
 | |
| 	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
 | |
| 
 | |
| 	return t_gpa;
 | |
| }
 | |
| 
 | |
| gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 			      struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
 | |
| 
 | |
|  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 				struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	access |= PFERR_FETCH_MASK;
 | |
| 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
 | |
| }
 | |
| 
 | |
| gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 			       struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	access |= PFERR_WRITE_MASK;
 | |
| 	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
 | |
| 
 | |
| /* uses this to access any guest's mapped memory without checking CPL */
 | |
| gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 				struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 
 | |
| 	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
 | |
| }
 | |
| 
 | |
| static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
 | |
| 				      struct kvm_vcpu *vcpu, u64 access,
 | |
| 				      struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 	void *data = val;
 | |
| 	int r = X86EMUL_CONTINUE;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
 | |
| 		unsigned offset = addr & (PAGE_SIZE-1);
 | |
| 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA)
 | |
| 			return X86EMUL_PROPAGATE_FAULT;
 | |
| 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
 | |
| 					       offset, toread);
 | |
| 		if (ret < 0) {
 | |
| 			r = X86EMUL_IO_NEEDED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes -= toread;
 | |
| 		data += toread;
 | |
| 		addr += toread;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /* used for instruction fetching */
 | |
| static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
 | |
| 				gva_t addr, void *val, unsigned int bytes,
 | |
| 				struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 	unsigned offset;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Inline kvm_read_guest_virt_helper for speed.  */
 | |
| 	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
 | |
| 				    exception);
 | |
| 	if (unlikely(gpa == UNMAPPED_GVA))
 | |
| 		return X86EMUL_PROPAGATE_FAULT;
 | |
| 
 | |
| 	offset = addr & (PAGE_SIZE-1);
 | |
| 	if (WARN_ON(offset + bytes > PAGE_SIZE))
 | |
| 		bytes = (unsigned)PAGE_SIZE - offset;
 | |
| 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
 | |
| 				       offset, bytes);
 | |
| 	if (unlikely(ret < 0))
 | |
| 		return X86EMUL_IO_NEEDED;
 | |
| 
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
 | |
| 			       gva_t addr, void *val, unsigned int bytes,
 | |
| 			       struct x86_exception *exception)
 | |
| {
 | |
| 	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
 | |
| 	 * is returned, but our callers are not ready for that and they blindly
 | |
| 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
 | |
| 	 * uninitialized kernel stack memory into cr2 and error code.
 | |
| 	 */
 | |
| 	memset(exception, 0, sizeof(*exception));
 | |
| 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
 | |
| 					  exception);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
 | |
| 
 | |
| static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
 | |
| 			     gva_t addr, void *val, unsigned int bytes,
 | |
| 			     struct x86_exception *exception, bool system)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	u64 access = 0;
 | |
| 
 | |
| 	if (system)
 | |
| 		access |= PFERR_IMPLICIT_ACCESS;
 | |
| 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
 | |
| 		access |= PFERR_USER_MASK;
 | |
| 
 | |
| 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
 | |
| }
 | |
| 
 | |
| static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
 | |
| 				      struct kvm_vcpu *vcpu, u64 access,
 | |
| 				      struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 	void *data = val;
 | |
| 	int r = X86EMUL_CONTINUE;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
 | |
| 		unsigned offset = addr & (PAGE_SIZE-1);
 | |
| 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA)
 | |
| 			return X86EMUL_PROPAGATE_FAULT;
 | |
| 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
 | |
| 		if (ret < 0) {
 | |
| 			r = X86EMUL_IO_NEEDED;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes -= towrite;
 | |
| 		data += towrite;
 | |
| 		addr += towrite;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
 | |
| 			      unsigned int bytes, struct x86_exception *exception,
 | |
| 			      bool system)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	u64 access = PFERR_WRITE_MASK;
 | |
| 
 | |
| 	if (system)
 | |
| 		access |= PFERR_IMPLICIT_ACCESS;
 | |
| 	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
 | |
| 		access |= PFERR_USER_MASK;
 | |
| 
 | |
| 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
 | |
| 					   access, exception);
 | |
| }
 | |
| 
 | |
| int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
 | |
| 				unsigned int bytes, struct x86_exception *exception)
 | |
| {
 | |
| 	/* kvm_write_guest_virt_system can pull in tons of pages. */
 | |
| 	vcpu->arch.l1tf_flush_l1d = true;
 | |
| 
 | |
| 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
 | |
| 					   PFERR_WRITE_MASK, exception);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
 | |
| 
 | |
| static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
 | |
| 				void *insn, int insn_len)
 | |
| {
 | |
| 	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
 | |
| 							    insn, insn_len);
 | |
| }
 | |
| 
 | |
| int handle_ud(struct kvm_vcpu *vcpu)
 | |
| {
 | |
|        static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
 | |
| 	int emul_type = EMULTYPE_TRAP_UD;
 | |
| 	char sig[5]; /* ud2; .ascii "kvm" */
 | |
| 	struct x86_exception e;
 | |
| 
 | |
| 	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (force_emulation_prefix &&
 | |
| 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
 | |
| 				sig, sizeof(sig), &e) == 0 &&
 | |
| 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
 | |
| 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
 | |
| 		emul_type = EMULTYPE_TRAP_UD_FORCED;
 | |
| 	}
 | |
| 
 | |
| 	return kvm_emulate_instruction(vcpu, emul_type);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(handle_ud);
 | |
| 
 | |
| static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
 | |
| 			    gpa_t gpa, bool write)
 | |
| {
 | |
| 	/* For APIC access vmexit */
 | |
| 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
 | |
| 		trace_vcpu_match_mmio(gva, gpa, write, true);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
 | |
| 				gpa_t *gpa, struct x86_exception *exception,
 | |
| 				bool write)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
 | |
| 		| (write ? PFERR_WRITE_MASK : 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * currently PKRU is only applied to ept enabled guest so
 | |
| 	 * there is no pkey in EPT page table for L1 guest or EPT
 | |
| 	 * shadow page table for L2 guest.
 | |
| 	 */
 | |
| 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
 | |
| 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
 | |
| 			      vcpu->arch.mmio_access, 0, access))) {
 | |
| 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
 | |
| 					(gva & (PAGE_SIZE - 1));
 | |
| 		trace_vcpu_match_mmio(gva, *gpa, write, false);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
 | |
| 
 | |
| 	if (*gpa == UNMAPPED_GVA)
 | |
| 		return -1;
 | |
| 
 | |
| 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
 | |
| }
 | |
| 
 | |
| int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			const void *val, int bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
 | |
| 	if (ret < 0)
 | |
| 		return 0;
 | |
| 	kvm_page_track_write(vcpu, gpa, val, bytes);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| struct read_write_emulator_ops {
 | |
| 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
 | |
| 				  int bytes);
 | |
| 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 				  void *val, int bytes);
 | |
| 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			       int bytes, void *val);
 | |
| 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 				    void *val, int bytes);
 | |
| 	bool write;
 | |
| };
 | |
| 
 | |
| static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
 | |
| {
 | |
| 	if (vcpu->mmio_read_completed) {
 | |
| 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
 | |
| 			       vcpu->mmio_fragments[0].gpa, val);
 | |
| 		vcpu->mmio_read_completed = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			void *val, int bytes)
 | |
| {
 | |
| 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
 | |
| }
 | |
| 
 | |
| static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			 void *val, int bytes)
 | |
| {
 | |
| 	return emulator_write_phys(vcpu, gpa, val, bytes);
 | |
| }
 | |
| 
 | |
| static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
 | |
| {
 | |
| 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
 | |
| 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
 | |
| }
 | |
| 
 | |
| static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			  void *val, int bytes)
 | |
| {
 | |
| 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
 | |
| 	return X86EMUL_IO_NEEDED;
 | |
| }
 | |
| 
 | |
| static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			   void *val, int bytes)
 | |
| {
 | |
| 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
 | |
| 
 | |
| 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| static const struct read_write_emulator_ops read_emultor = {
 | |
| 	.read_write_prepare = read_prepare,
 | |
| 	.read_write_emulate = read_emulate,
 | |
| 	.read_write_mmio = vcpu_mmio_read,
 | |
| 	.read_write_exit_mmio = read_exit_mmio,
 | |
| };
 | |
| 
 | |
| static const struct read_write_emulator_ops write_emultor = {
 | |
| 	.read_write_emulate = write_emulate,
 | |
| 	.read_write_mmio = write_mmio,
 | |
| 	.read_write_exit_mmio = write_exit_mmio,
 | |
| 	.write = true,
 | |
| };
 | |
| 
 | |
| static int emulator_read_write_onepage(unsigned long addr, void *val,
 | |
| 				       unsigned int bytes,
 | |
| 				       struct x86_exception *exception,
 | |
| 				       struct kvm_vcpu *vcpu,
 | |
| 				       const struct read_write_emulator_ops *ops)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 	int handled, ret;
 | |
| 	bool write = ops->write;
 | |
| 	struct kvm_mmio_fragment *frag;
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the exit was due to a NPF we may already have a GPA.
 | |
| 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
 | |
| 	 * Note, this cannot be used on string operations since string
 | |
| 	 * operation using rep will only have the initial GPA from the NPF
 | |
| 	 * occurred.
 | |
| 	 */
 | |
| 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
 | |
| 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
 | |
| 		gpa = ctxt->gpa_val;
 | |
| 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
 | |
| 	} else {
 | |
| 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
 | |
| 		if (ret < 0)
 | |
| 			return X86EMUL_PROPAGATE_FAULT;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Is this MMIO handled locally?
 | |
| 	 */
 | |
| 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
 | |
| 	if (handled == bytes)
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	gpa += handled;
 | |
| 	bytes -= handled;
 | |
| 	val += handled;
 | |
| 
 | |
| 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
 | |
| 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
 | |
| 	frag->gpa = gpa;
 | |
| 	frag->data = val;
 | |
| 	frag->len = bytes;
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
 | |
| 			unsigned long addr,
 | |
| 			void *val, unsigned int bytes,
 | |
| 			struct x86_exception *exception,
 | |
| 			const struct read_write_emulator_ops *ops)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	gpa_t gpa;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (ops->read_write_prepare &&
 | |
| 		  ops->read_write_prepare(vcpu, val, bytes))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	vcpu->mmio_nr_fragments = 0;
 | |
| 
 | |
| 	/* Crossing a page boundary? */
 | |
| 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
 | |
| 		int now;
 | |
| 
 | |
| 		now = -addr & ~PAGE_MASK;
 | |
| 		rc = emulator_read_write_onepage(addr, val, now, exception,
 | |
| 						 vcpu, ops);
 | |
| 
 | |
| 		if (rc != X86EMUL_CONTINUE)
 | |
| 			return rc;
 | |
| 		addr += now;
 | |
| 		if (ctxt->mode != X86EMUL_MODE_PROT64)
 | |
| 			addr = (u32)addr;
 | |
| 		val += now;
 | |
| 		bytes -= now;
 | |
| 	}
 | |
| 
 | |
| 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
 | |
| 					 vcpu, ops);
 | |
| 	if (rc != X86EMUL_CONTINUE)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (!vcpu->mmio_nr_fragments)
 | |
| 		return rc;
 | |
| 
 | |
| 	gpa = vcpu->mmio_fragments[0].gpa;
 | |
| 
 | |
| 	vcpu->mmio_needed = 1;
 | |
| 	vcpu->mmio_cur_fragment = 0;
 | |
| 
 | |
| 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
 | |
| 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
 | |
| 	vcpu->run->mmio.phys_addr = gpa;
 | |
| 
 | |
| 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
 | |
| }
 | |
| 
 | |
| static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 				  unsigned long addr,
 | |
| 				  void *val,
 | |
| 				  unsigned int bytes,
 | |
| 				  struct x86_exception *exception)
 | |
| {
 | |
| 	return emulator_read_write(ctxt, addr, val, bytes,
 | |
| 				   exception, &read_emultor);
 | |
| }
 | |
| 
 | |
| static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 			    unsigned long addr,
 | |
| 			    const void *val,
 | |
| 			    unsigned int bytes,
 | |
| 			    struct x86_exception *exception)
 | |
| {
 | |
| 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
 | |
| 				   exception, &write_emultor);
 | |
| }
 | |
| 
 | |
| #define CMPXCHG_TYPE(t, ptr, old, new) \
 | |
| 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
 | |
| #else
 | |
| #  define CMPXCHG64(ptr, old, new) \
 | |
| 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
 | |
| #endif
 | |
| 
 | |
| static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 				     unsigned long addr,
 | |
| 				     const void *old,
 | |
| 				     const void *new,
 | |
| 				     unsigned int bytes,
 | |
| 				     struct x86_exception *exception)
 | |
| {
 | |
| 	struct kvm_host_map map;
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	u64 page_line_mask;
 | |
| 	gpa_t gpa;
 | |
| 	char *kaddr;
 | |
| 	bool exchanged;
 | |
| 
 | |
| 	/* guests cmpxchg8b have to be emulated atomically */
 | |
| 	if (bytes > 8 || (bytes & (bytes - 1)))
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA ||
 | |
| 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	/*
 | |
| 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
 | |
| 	 * enabled in the host and the access splits a cache line.
 | |
| 	 */
 | |
| 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
 | |
| 		page_line_mask = ~(cache_line_size() - 1);
 | |
| 	else
 | |
| 		page_line_mask = PAGE_MASK;
 | |
| 
 | |
| 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
 | |
| 		goto emul_write;
 | |
| 
 | |
| 	kaddr = map.hva + offset_in_page(gpa);
 | |
| 
 | |
| 	switch (bytes) {
 | |
| 	case 1:
 | |
| 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		exchanged = CMPXCHG64(kaddr, old, new);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	kvm_vcpu_unmap(vcpu, &map, true);
 | |
| 
 | |
| 	if (!exchanged)
 | |
| 		return X86EMUL_CMPXCHG_FAILED;
 | |
| 
 | |
| 	kvm_page_track_write(vcpu, gpa, new, bytes);
 | |
| 
 | |
| 	return X86EMUL_CONTINUE;
 | |
| 
 | |
| emul_write:
 | |
| 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
 | |
| 
 | |
| 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
 | |
| }
 | |
| 
 | |
| static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
 | |
| {
 | |
| 	int r = 0, i;
 | |
| 
 | |
| 	for (i = 0; i < vcpu->arch.pio.count; i++) {
 | |
| 		if (vcpu->arch.pio.in)
 | |
| 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
 | |
| 					    vcpu->arch.pio.size, pd);
 | |
| 		else
 | |
| 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
 | |
| 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
 | |
| 					     pd);
 | |
| 		if (r)
 | |
| 			break;
 | |
| 		pd += vcpu->arch.pio.size;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
 | |
| 			       unsigned short port,
 | |
| 			       unsigned int count, bool in)
 | |
| {
 | |
| 	vcpu->arch.pio.port = port;
 | |
| 	vcpu->arch.pio.in = in;
 | |
| 	vcpu->arch.pio.count  = count;
 | |
| 	vcpu->arch.pio.size = size;
 | |
| 
 | |
| 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
 | |
| 		return 1;
 | |
| 
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_IO;
 | |
| 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
 | |
| 	vcpu->run->io.size = size;
 | |
| 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
 | |
| 	vcpu->run->io.count = count;
 | |
| 	vcpu->run->io.port = port;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
 | |
| 			     unsigned short port, unsigned int count)
 | |
| {
 | |
| 	WARN_ON(vcpu->arch.pio.count);
 | |
| 	memset(vcpu->arch.pio_data, 0, size * count);
 | |
| 	return emulator_pio_in_out(vcpu, size, port, count, true);
 | |
| }
 | |
| 
 | |
| static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
 | |
| {
 | |
| 	int size = vcpu->arch.pio.size;
 | |
| 	unsigned count = vcpu->arch.pio.count;
 | |
| 	memcpy(val, vcpu->arch.pio_data, size * count);
 | |
| 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
 | |
| 	vcpu->arch.pio.count = 0;
 | |
| }
 | |
| 
 | |
| static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
 | |
| 			   unsigned short port, void *val, unsigned int count)
 | |
| {
 | |
| 	if (vcpu->arch.pio.count) {
 | |
| 		/*
 | |
| 		 * Complete a previous iteration that required userspace I/O.
 | |
| 		 * Note, @count isn't guaranteed to match pio.count as userspace
 | |
| 		 * can modify ECX before rerunning the vCPU.  Ignore any such
 | |
| 		 * shenanigans as KVM doesn't support modifying the rep count,
 | |
| 		 * and the emulator ensures @count doesn't overflow the buffer.
 | |
| 		 */
 | |
| 	} else {
 | |
| 		int r = __emulator_pio_in(vcpu, size, port, count);
 | |
| 		if (!r)
 | |
| 			return r;
 | |
| 
 | |
| 		/* Results already available, fall through.  */
 | |
| 	}
 | |
| 
 | |
| 	complete_emulator_pio_in(vcpu, val);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 				    int size, unsigned short port, void *val,
 | |
| 				    unsigned int count)
 | |
| {
 | |
| 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
 | |
| 
 | |
| }
 | |
| 
 | |
| static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
 | |
| 			    unsigned short port, const void *val,
 | |
| 			    unsigned int count)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	memcpy(vcpu->arch.pio_data, val, size * count);
 | |
| 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
 | |
| 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
 | |
| 	if (ret)
 | |
|                 vcpu->arch.pio.count = 0;
 | |
| 
 | |
|         return ret;
 | |
| }
 | |
| 
 | |
| static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
 | |
| 				     int size, unsigned short port,
 | |
| 				     const void *val, unsigned int count)
 | |
| {
 | |
| 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
 | |
| }
 | |
| 
 | |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
 | |
| }
 | |
| 
 | |
| static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
 | |
| {
 | |
| 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
 | |
| }
 | |
| 
 | |
| static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!need_emulate_wbinvd(vcpu))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
 | |
| 		int cpu = get_cpu();
 | |
| 
 | |
| 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
 | |
| 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
 | |
| 				wbinvd_ipi, NULL, 1);
 | |
| 		put_cpu();
 | |
| 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
 | |
| 	} else
 | |
| 		wbinvd();
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_emulate_wbinvd_noskip(vcpu);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
 | |
| 
 | |
| 
 | |
| 
 | |
| static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
 | |
| }
 | |
| 
 | |
| static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
 | |
| 			    unsigned long *dest)
 | |
| {
 | |
| 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
 | |
| }
 | |
| 
 | |
| static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
 | |
| 			   unsigned long value)
 | |
| {
 | |
| 
 | |
| 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
 | |
| }
 | |
| 
 | |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val)
 | |
| {
 | |
| 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
 | |
| }
 | |
| 
 | |
| static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		value = kvm_read_cr0(vcpu);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		value = vcpu->arch.cr2;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		value = kvm_read_cr3(vcpu);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		value = kvm_read_cr4(vcpu);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		value = kvm_get_cr8(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	int res = 0;
 | |
| 
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		vcpu->arch.cr2 = val;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		res = kvm_set_cr3(vcpu, val);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		res = kvm_set_cr8(vcpu, val);
 | |
| 		break;
 | |
| 	default:
 | |
| 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
 | |
| 		res = -1;
 | |
| 	}
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
 | |
| }
 | |
| 
 | |
| static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
 | |
| {
 | |
| 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
 | |
| }
 | |
| 
 | |
| static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
 | |
| {
 | |
| 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
 | |
| }
 | |
| 
 | |
| static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
 | |
| {
 | |
| 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
 | |
| }
 | |
| 
 | |
| static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
 | |
| {
 | |
| 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
 | |
| }
 | |
| 
 | |
| static unsigned long emulator_get_cached_segment_base(
 | |
| 	struct x86_emulate_ctxt *ctxt, int seg)
 | |
| {
 | |
| 	return get_segment_base(emul_to_vcpu(ctxt), seg);
 | |
| }
 | |
| 
 | |
| static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
 | |
| 				 struct desc_struct *desc, u32 *base3,
 | |
| 				 int seg)
 | |
| {
 | |
| 	struct kvm_segment var;
 | |
| 
 | |
| 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
 | |
| 	*selector = var.selector;
 | |
| 
 | |
| 	if (var.unusable) {
 | |
| 		memset(desc, 0, sizeof(*desc));
 | |
| 		if (base3)
 | |
| 			*base3 = 0;
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (var.g)
 | |
| 		var.limit >>= 12;
 | |
| 	set_desc_limit(desc, var.limit);
 | |
| 	set_desc_base(desc, (unsigned long)var.base);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (base3)
 | |
| 		*base3 = var.base >> 32;
 | |
| #endif
 | |
| 	desc->type = var.type;
 | |
| 	desc->s = var.s;
 | |
| 	desc->dpl = var.dpl;
 | |
| 	desc->p = var.present;
 | |
| 	desc->avl = var.avl;
 | |
| 	desc->l = var.l;
 | |
| 	desc->d = var.db;
 | |
| 	desc->g = var.g;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
 | |
| 				 struct desc_struct *desc, u32 base3,
 | |
| 				 int seg)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	struct kvm_segment var;
 | |
| 
 | |
| 	var.selector = selector;
 | |
| 	var.base = get_desc_base(desc);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	var.base |= ((u64)base3) << 32;
 | |
| #endif
 | |
| 	var.limit = get_desc_limit(desc);
 | |
| 	if (desc->g)
 | |
| 		var.limit = (var.limit << 12) | 0xfff;
 | |
| 	var.type = desc->type;
 | |
| 	var.dpl = desc->dpl;
 | |
| 	var.db = desc->d;
 | |
| 	var.s = desc->s;
 | |
| 	var.l = desc->l;
 | |
| 	var.g = desc->g;
 | |
| 	var.avl = desc->avl;
 | |
| 	var.present = desc->p;
 | |
| 	var.unusable = !var.present;
 | |
| 	var.padding = 0;
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &var, seg);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
 | |
| 					u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	int r;
 | |
| 
 | |
| 	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
 | |
| 
 | |
| 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
 | |
| 				    complete_emulated_rdmsr, r)) {
 | |
| 		/* Bounce to user space */
 | |
| 		return X86EMUL_IO_NEEDED;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
 | |
| 					u32 msr_index, u64 data)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	int r;
 | |
| 
 | |
| 	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
 | |
| 
 | |
| 	if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
 | |
| 				    complete_emulated_msr_access, r)) {
 | |
| 		/* Bounce to user space */
 | |
| 		return X86EMUL_IO_NEEDED;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
 | |
| 			    u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
 | |
| }
 | |
| 
 | |
| static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
 | |
| 			      u32 pmc)
 | |
| {
 | |
| 	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
 | |
| 		return 0;
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
 | |
| 			     u32 pmc, u64 *pdata)
 | |
| {
 | |
| 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
 | |
| }
 | |
| 
 | |
| static void emulator_halt(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
 | |
| }
 | |
| 
 | |
| static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
 | |
| 			      struct x86_instruction_info *info,
 | |
| 			      enum x86_intercept_stage stage)
 | |
| {
 | |
| 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
 | |
| 					    &ctxt->exception);
 | |
| }
 | |
| 
 | |
| static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
 | |
| 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
 | |
| 			      bool exact_only)
 | |
| {
 | |
| 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
 | |
| }
 | |
| 
 | |
| static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
 | |
| }
 | |
| 
 | |
| static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
 | |
| }
 | |
| 
 | |
| static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
 | |
| }
 | |
| 
 | |
| static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
 | |
| }
 | |
| 
 | |
| static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
 | |
| {
 | |
| 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
 | |
| }
 | |
| 
 | |
| static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
 | |
| {
 | |
| 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
 | |
| }
 | |
| 
 | |
| static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
 | |
| {
 | |
| 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
 | |
| }
 | |
| 
 | |
| static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	return emul_to_vcpu(ctxt)->arch.hflags;
 | |
| }
 | |
| 
 | |
| static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
 | |
| }
 | |
| 
 | |
| static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
 | |
| {
 | |
| 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
 | |
| }
 | |
| 
 | |
| static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
 | |
| 
 | |
| 	if (!kvm->vm_bugged)
 | |
| 		kvm_vm_bugged(kvm);
 | |
| }
 | |
| 
 | |
| static const struct x86_emulate_ops emulate_ops = {
 | |
| 	.vm_bugged           = emulator_vm_bugged,
 | |
| 	.read_gpr            = emulator_read_gpr,
 | |
| 	.write_gpr           = emulator_write_gpr,
 | |
| 	.read_std            = emulator_read_std,
 | |
| 	.write_std           = emulator_write_std,
 | |
| 	.fetch               = kvm_fetch_guest_virt,
 | |
| 	.read_emulated       = emulator_read_emulated,
 | |
| 	.write_emulated      = emulator_write_emulated,
 | |
| 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
 | |
| 	.invlpg              = emulator_invlpg,
 | |
| 	.pio_in_emulated     = emulator_pio_in_emulated,
 | |
| 	.pio_out_emulated    = emulator_pio_out_emulated,
 | |
| 	.get_segment         = emulator_get_segment,
 | |
| 	.set_segment         = emulator_set_segment,
 | |
| 	.get_cached_segment_base = emulator_get_cached_segment_base,
 | |
| 	.get_gdt             = emulator_get_gdt,
 | |
| 	.get_idt	     = emulator_get_idt,
 | |
| 	.set_gdt             = emulator_set_gdt,
 | |
| 	.set_idt	     = emulator_set_idt,
 | |
| 	.get_cr              = emulator_get_cr,
 | |
| 	.set_cr              = emulator_set_cr,
 | |
| 	.cpl                 = emulator_get_cpl,
 | |
| 	.get_dr              = emulator_get_dr,
 | |
| 	.set_dr              = emulator_set_dr,
 | |
| 	.set_msr_with_filter = emulator_set_msr_with_filter,
 | |
| 	.get_msr_with_filter = emulator_get_msr_with_filter,
 | |
| 	.get_msr             = emulator_get_msr,
 | |
| 	.check_pmc	     = emulator_check_pmc,
 | |
| 	.read_pmc            = emulator_read_pmc,
 | |
| 	.halt                = emulator_halt,
 | |
| 	.wbinvd              = emulator_wbinvd,
 | |
| 	.fix_hypercall       = emulator_fix_hypercall,
 | |
| 	.intercept           = emulator_intercept,
 | |
| 	.get_cpuid           = emulator_get_cpuid,
 | |
| 	.guest_has_long_mode = emulator_guest_has_long_mode,
 | |
| 	.guest_has_movbe     = emulator_guest_has_movbe,
 | |
| 	.guest_has_fxsr      = emulator_guest_has_fxsr,
 | |
| 	.guest_has_rdpid     = emulator_guest_has_rdpid,
 | |
| 	.set_nmi_mask        = emulator_set_nmi_mask,
 | |
| 	.get_hflags          = emulator_get_hflags,
 | |
| 	.leave_smm           = emulator_leave_smm,
 | |
| 	.triple_fault        = emulator_triple_fault,
 | |
| 	.set_xcr             = emulator_set_xcr,
 | |
| };
 | |
| 
 | |
| static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
 | |
| {
 | |
| 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
 | |
| 	/*
 | |
| 	 * an sti; sti; sequence only disable interrupts for the first
 | |
| 	 * instruction. So, if the last instruction, be it emulated or
 | |
| 	 * not, left the system with the INT_STI flag enabled, it
 | |
| 	 * means that the last instruction is an sti. We should not
 | |
| 	 * leave the flag on in this case. The same goes for mov ss
 | |
| 	 */
 | |
| 	if (int_shadow & mask)
 | |
| 		mask = 0;
 | |
| 	if (unlikely(int_shadow || mask)) {
 | |
| 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
 | |
| 		if (!mask)
 | |
| 			kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 	if (ctxt->exception.vector == PF_VECTOR)
 | |
| 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
 | |
| 
 | |
| 	if (ctxt->exception.error_code_valid)
 | |
| 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
 | |
| 				      ctxt->exception.error_code);
 | |
| 	else
 | |
| 		kvm_queue_exception(vcpu, ctxt->exception.vector);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt;
 | |
| 
 | |
| 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
 | |
| 	if (!ctxt) {
 | |
| 		pr_err("kvm: failed to allocate vcpu's emulator\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ctxt->vcpu = vcpu;
 | |
| 	ctxt->ops = &emulate_ops;
 | |
| 	vcpu->arch.emulate_ctxt = ctxt;
 | |
| 
 | |
| 	return ctxt;
 | |
| }
 | |
| 
 | |
| static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 	int cs_db, cs_l;
 | |
| 
 | |
| 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
 | |
| 
 | |
| 	ctxt->gpa_available = false;
 | |
| 	ctxt->eflags = kvm_get_rflags(vcpu);
 | |
| 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
 | |
| 
 | |
| 	ctxt->eip = kvm_rip_read(vcpu);
 | |
| 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
 | |
| 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
 | |
| 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
 | |
| 		     cs_db				? X86EMUL_MODE_PROT32 :
 | |
| 							  X86EMUL_MODE_PROT16;
 | |
| 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
 | |
| 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
 | |
| 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
 | |
| 
 | |
| 	ctxt->interruptibility = 0;
 | |
| 	ctxt->have_exception = false;
 | |
| 	ctxt->exception.vector = -1;
 | |
| 	ctxt->perm_ok = false;
 | |
| 
 | |
| 	init_decode_cache(ctxt);
 | |
| 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
 | |
| }
 | |
| 
 | |
| void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 	int ret;
 | |
| 
 | |
| 	init_emulate_ctxt(vcpu);
 | |
| 
 | |
| 	ctxt->op_bytes = 2;
 | |
| 	ctxt->ad_bytes = 2;
 | |
| 	ctxt->_eip = ctxt->eip + inc_eip;
 | |
| 	ret = emulate_int_real(ctxt, irq);
 | |
| 
 | |
| 	if (ret != X86EMUL_CONTINUE) {
 | |
| 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 	} else {
 | |
| 		ctxt->eip = ctxt->_eip;
 | |
| 		kvm_rip_write(vcpu, ctxt->eip);
 | |
| 		kvm_set_rflags(vcpu, ctxt->eflags);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
 | |
| 
 | |
| static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
 | |
| 					   u8 ndata, u8 *insn_bytes, u8 insn_size)
 | |
| {
 | |
| 	struct kvm_run *run = vcpu->run;
 | |
| 	u64 info[5];
 | |
| 	u8 info_start;
 | |
| 
 | |
| 	/*
 | |
| 	 * Zero the whole array used to retrieve the exit info, as casting to
 | |
| 	 * u32 for select entries will leave some chunks uninitialized.
 | |
| 	 */
 | |
| 	memset(&info, 0, sizeof(info));
 | |
| 
 | |
| 	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
 | |
| 					   &info[2], (u32 *)&info[3],
 | |
| 					   (u32 *)&info[4]);
 | |
| 
 | |
| 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
 | |
| 
 | |
| 	/*
 | |
| 	 * There's currently space for 13 entries, but 5 are used for the exit
 | |
| 	 * reason and info.  Restrict to 4 to reduce the maintenance burden
 | |
| 	 * when expanding kvm_run.emulation_failure in the future.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(ndata > 4))
 | |
| 		ndata = 4;
 | |
| 
 | |
| 	/* Always include the flags as a 'data' entry. */
 | |
| 	info_start = 1;
 | |
| 	run->emulation_failure.flags = 0;
 | |
| 
 | |
| 	if (insn_size) {
 | |
| 		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
 | |
| 			      sizeof(run->emulation_failure.insn_bytes) != 16));
 | |
| 		info_start += 2;
 | |
| 		run->emulation_failure.flags |=
 | |
| 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
 | |
| 		run->emulation_failure.insn_size = insn_size;
 | |
| 		memset(run->emulation_failure.insn_bytes, 0x90,
 | |
| 		       sizeof(run->emulation_failure.insn_bytes));
 | |
| 		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(&run->internal.data[info_start], info, sizeof(info));
 | |
| 	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
 | |
| 	       ndata * sizeof(data[0]));
 | |
| 
 | |
| 	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
 | |
| }
 | |
| 
 | |
| static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 
 | |
| 	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
 | |
| 				       ctxt->fetch.end - ctxt->fetch.data);
 | |
| }
 | |
| 
 | |
| void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
 | |
| 					  u8 ndata)
 | |
| {
 | |
| 	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
 | |
| 
 | |
| void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
 | |
| 
 | |
| static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	++vcpu->stat.insn_emulation_fail;
 | |
| 	trace_kvm_emulate_insn_failed(vcpu);
 | |
| 
 | |
| 	if (emulation_type & EMULTYPE_VMWARE_GP) {
 | |
| 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm->arch.exit_on_emulation_error ||
 | |
| 	    (emulation_type & EMULTYPE_SKIP)) {
 | |
| 		prepare_emulation_ctxt_failure_exit(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 
 | |
| 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
 | |
| 		prepare_emulation_ctxt_failure_exit(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 | |
| 				  bool write_fault_to_shadow_pgtable,
 | |
| 				  int emulation_type)
 | |
| {
 | |
| 	gpa_t gpa = cr2_or_gpa;
 | |
| 	kvm_pfn_t pfn;
 | |
| 
 | |
| 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
 | |
| 		return false;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
 | |
| 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!vcpu->arch.mmu->direct_map) {
 | |
| 		/*
 | |
| 		 * Write permission should be allowed since only
 | |
| 		 * write access need to be emulated.
 | |
| 		 */
 | |
| 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the mapping is invalid in guest, let cpu retry
 | |
| 		 * it to generate fault.
 | |
| 		 */
 | |
| 		if (gpa == UNMAPPED_GVA)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not retry the unhandleable instruction if it faults on the
 | |
| 	 * readonly host memory, otherwise it will goto a infinite loop:
 | |
| 	 * retry instruction -> write #PF -> emulation fail -> retry
 | |
| 	 * instruction -> ...
 | |
| 	 */
 | |
| 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the instruction failed on the error pfn, it can not be fixed,
 | |
| 	 * report the error to userspace.
 | |
| 	 */
 | |
| 	if (is_error_noslot_pfn(pfn))
 | |
| 		return false;
 | |
| 
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 
 | |
| 	/* The instructions are well-emulated on direct mmu. */
 | |
| 	if (vcpu->arch.mmu->direct_map) {
 | |
| 		unsigned int indirect_shadow_pages;
 | |
| 
 | |
| 		write_lock(&vcpu->kvm->mmu_lock);
 | |
| 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
 | |
| 		write_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 		if (indirect_shadow_pages)
 | |
| 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
 | |
| 
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * if emulation was due to access to shadowed page table
 | |
| 	 * and it failed try to unshadow page and re-enter the
 | |
| 	 * guest to let CPU execute the instruction.
 | |
| 	 */
 | |
| 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the access faults on its page table, it can not
 | |
| 	 * be fixed by unprotecting shadow page and it should
 | |
| 	 * be reported to userspace.
 | |
| 	 */
 | |
| 	return !write_fault_to_shadow_pgtable;
 | |
| }
 | |
| 
 | |
| static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
 | |
| 			      gpa_t cr2_or_gpa,  int emulation_type)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
 | |
| 
 | |
| 	last_retry_eip = vcpu->arch.last_retry_eip;
 | |
| 	last_retry_addr = vcpu->arch.last_retry_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the emulation is caused by #PF and it is non-page_table
 | |
| 	 * writing instruction, it means the VM-EXIT is caused by shadow
 | |
| 	 * page protected, we can zap the shadow page and retry this
 | |
| 	 * instruction directly.
 | |
| 	 *
 | |
| 	 * Note: if the guest uses a non-page-table modifying instruction
 | |
| 	 * on the PDE that points to the instruction, then we will unmap
 | |
| 	 * the instruction and go to an infinite loop. So, we cache the
 | |
| 	 * last retried eip and the last fault address, if we meet the eip
 | |
| 	 * and the address again, we can break out of the potential infinite
 | |
| 	 * loop.
 | |
| 	 */
 | |
| 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
 | |
| 
 | |
| 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
 | |
| 		return false;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
 | |
| 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
 | |
| 		return false;
 | |
| 
 | |
| 	if (x86_page_table_writing_insn(ctxt))
 | |
| 		return false;
 | |
| 
 | |
| 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
 | |
| 		return false;
 | |
| 
 | |
| 	vcpu->arch.last_retry_eip = ctxt->eip;
 | |
| 	vcpu->arch.last_retry_addr = cr2_or_gpa;
 | |
| 
 | |
| 	if (!vcpu->arch.mmu->direct_map)
 | |
| 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
 | |
| 
 | |
| 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
 | |
| static int complete_emulated_pio(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
 | |
| 				unsigned long *db)
 | |
| {
 | |
| 	u32 dr6 = 0;
 | |
| 	int i;
 | |
| 	u32 enable, rwlen;
 | |
| 
 | |
| 	enable = dr7;
 | |
| 	rwlen = dr7 >> 16;
 | |
| 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
 | |
| 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
 | |
| 			dr6 |= (1 << i);
 | |
| 	return dr6;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
 | |
| 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
 | |
| 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
 | |
| 		kvm_run->debug.arch.exception = DB_VECTOR;
 | |
| 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
 | |
| 	int r;
 | |
| 
 | |
| 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
 | |
| 	if (unlikely(!r))
 | |
| 		return 0;
 | |
| 
 | |
| 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
 | |
| 
 | |
| 	/*
 | |
| 	 * rflags is the old, "raw" value of the flags.  The new value has
 | |
| 	 * not been saved yet.
 | |
| 	 *
 | |
| 	 * This is correct even for TF set by the guest, because "the
 | |
| 	 * processor will not generate this exception after the instruction
 | |
| 	 * that sets the TF flag".
 | |
| 	 */
 | |
| 	if (unlikely(rflags & X86_EFLAGS_TF))
 | |
| 		r = kvm_vcpu_do_singlestep(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
 | |
| 
 | |
| static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
 | |
| {
 | |
| 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
 | |
| 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
 | |
| 		struct kvm_run *kvm_run = vcpu->run;
 | |
| 		unsigned long eip = kvm_get_linear_rip(vcpu);
 | |
| 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
 | |
| 					   vcpu->arch.guest_debug_dr7,
 | |
| 					   vcpu->arch.eff_db);
 | |
| 
 | |
| 		if (dr6 != 0) {
 | |
| 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
 | |
| 			kvm_run->debug.arch.pc = eip;
 | |
| 			kvm_run->debug.arch.exception = DB_VECTOR;
 | |
| 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 			*r = 0;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
 | |
| 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
 | |
| 		unsigned long eip = kvm_get_linear_rip(vcpu);
 | |
| 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
 | |
| 					   vcpu->arch.dr7,
 | |
| 					   vcpu->arch.db);
 | |
| 
 | |
| 		if (dr6 != 0) {
 | |
| 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
 | |
| 			*r = 1;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	switch (ctxt->opcode_len) {
 | |
| 	case 1:
 | |
| 		switch (ctxt->b) {
 | |
| 		case 0xe4:	/* IN */
 | |
| 		case 0xe5:
 | |
| 		case 0xec:
 | |
| 		case 0xed:
 | |
| 		case 0xe6:	/* OUT */
 | |
| 		case 0xe7:
 | |
| 		case 0xee:
 | |
| 		case 0xef:
 | |
| 		case 0x6c:	/* INS */
 | |
| 		case 0x6d:
 | |
| 		case 0x6e:	/* OUTS */
 | |
| 		case 0x6f:
 | |
| 			return true;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		switch (ctxt->b) {
 | |
| 		case 0x33:	/* RDPMC */
 | |
| 			return true;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decode an instruction for emulation.  The caller is responsible for handling
 | |
|  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
 | |
|  * (and wrong) when emulating on an intercepted fault-like exception[*], as
 | |
|  * code breakpoints have higher priority and thus have already been done by
 | |
|  * hardware.
 | |
|  *
 | |
|  * [*] Except #MC, which is higher priority, but KVM should never emulate in
 | |
|  *     response to a machine check.
 | |
|  */
 | |
| int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
 | |
| 				    void *insn, int insn_len)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 	int r;
 | |
| 
 | |
| 	init_emulate_ctxt(vcpu);
 | |
| 
 | |
| 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
 | |
| 
 | |
| 	trace_kvm_emulate_insn_start(vcpu);
 | |
| 	++vcpu->stat.insn_emulation;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
 | |
| 
 | |
| int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 | |
| 			    int emulation_type, void *insn, int insn_len)
 | |
| {
 | |
| 	int r;
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 	bool writeback = true;
 | |
| 	bool write_fault_to_spt;
 | |
| 
 | |
| 	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
 | |
| 		return 1;
 | |
| 
 | |
| 	vcpu->arch.l1tf_flush_l1d = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
 | |
| 	 * never reused.
 | |
| 	 */
 | |
| 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
 | |
| 	vcpu->arch.write_fault_to_shadow_pgtable = false;
 | |
| 
 | |
| 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
 | |
| 		kvm_clear_exception_queue(vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Return immediately if RIP hits a code breakpoint, such #DBs
 | |
| 		 * are fault-like and are higher priority than any faults on
 | |
| 		 * the code fetch itself.
 | |
| 		 */
 | |
| 		if (!(emulation_type & EMULTYPE_SKIP) &&
 | |
| 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
 | |
| 			return r;
 | |
| 
 | |
| 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
 | |
| 						    insn, insn_len);
 | |
| 		if (r != EMULATION_OK)  {
 | |
| 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
 | |
| 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
 | |
| 				kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 				return 1;
 | |
| 			}
 | |
| 			if (reexecute_instruction(vcpu, cr2_or_gpa,
 | |
| 						  write_fault_to_spt,
 | |
| 						  emulation_type))
 | |
| 				return 1;
 | |
| 			if (ctxt->have_exception) {
 | |
| 				/*
 | |
| 				 * #UD should result in just EMULATION_FAILED, and trap-like
 | |
| 				 * exception should not be encountered during decode.
 | |
| 				 */
 | |
| 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
 | |
| 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
 | |
| 				inject_emulated_exception(vcpu);
 | |
| 				return 1;
 | |
| 			}
 | |
| 			return handle_emulation_failure(vcpu, emulation_type);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
 | |
| 	    !is_vmware_backdoor_opcode(ctxt)) {
 | |
| 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
 | |
| 	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
 | |
| 	 * The caller is responsible for updating interruptibility state and
 | |
| 	 * injecting single-step #DBs.
 | |
| 	 */
 | |
| 	if (emulation_type & EMULTYPE_SKIP) {
 | |
| 		if (ctxt->mode != X86EMUL_MODE_PROT64)
 | |
| 			ctxt->eip = (u32)ctxt->_eip;
 | |
| 		else
 | |
| 			ctxt->eip = ctxt->_eip;
 | |
| 
 | |
| 		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
 | |
| 			r = 1;
 | |
| 			goto writeback;
 | |
| 		}
 | |
| 
 | |
| 		kvm_rip_write(vcpu, ctxt->eip);
 | |
| 		if (ctxt->eflags & X86_EFLAGS_RF)
 | |
| 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* this is needed for vmware backdoor interface to work since it
 | |
| 	   changes registers values  during IO operation */
 | |
| 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
 | |
| 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
 | |
| 		emulator_invalidate_register_cache(ctxt);
 | |
| 	}
 | |
| 
 | |
| restart:
 | |
| 	if (emulation_type & EMULTYPE_PF) {
 | |
| 		/* Save the faulting GPA (cr2) in the address field */
 | |
| 		ctxt->exception.address = cr2_or_gpa;
 | |
| 
 | |
| 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
 | |
| 		if (vcpu->arch.mmu->direct_map) {
 | |
| 			ctxt->gpa_available = true;
 | |
| 			ctxt->gpa_val = cr2_or_gpa;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Sanitize the address out of an abundance of paranoia. */
 | |
| 		ctxt->exception.address = 0;
 | |
| 	}
 | |
| 
 | |
| 	r = x86_emulate_insn(ctxt);
 | |
| 
 | |
| 	if (r == EMULATION_INTERCEPTED)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (r == EMULATION_FAILED) {
 | |
| 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
 | |
| 					emulation_type))
 | |
| 			return 1;
 | |
| 
 | |
| 		return handle_emulation_failure(vcpu, emulation_type);
 | |
| 	}
 | |
| 
 | |
| 	if (ctxt->have_exception) {
 | |
| 		r = 1;
 | |
| 		if (inject_emulated_exception(vcpu))
 | |
| 			return r;
 | |
| 	} else if (vcpu->arch.pio.count) {
 | |
| 		if (!vcpu->arch.pio.in) {
 | |
| 			/* FIXME: return into emulator if single-stepping.  */
 | |
| 			vcpu->arch.pio.count = 0;
 | |
| 		} else {
 | |
| 			writeback = false;
 | |
| 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
 | |
| 		}
 | |
| 		r = 0;
 | |
| 	} else if (vcpu->mmio_needed) {
 | |
| 		++vcpu->stat.mmio_exits;
 | |
| 
 | |
| 		if (!vcpu->mmio_is_write)
 | |
| 			writeback = false;
 | |
| 		r = 0;
 | |
| 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
 | |
| 	} else if (vcpu->arch.complete_userspace_io) {
 | |
| 		writeback = false;
 | |
| 		r = 0;
 | |
| 	} else if (r == EMULATION_RESTART)
 | |
| 		goto restart;
 | |
| 	else
 | |
| 		r = 1;
 | |
| 
 | |
| writeback:
 | |
| 	if (writeback) {
 | |
| 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
 | |
| 		toggle_interruptibility(vcpu, ctxt->interruptibility);
 | |
| 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
 | |
| 		if (!ctxt->have_exception ||
 | |
| 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
 | |
| 			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
 | |
| 			if (ctxt->is_branch)
 | |
| 				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
 | |
| 			kvm_rip_write(vcpu, ctxt->eip);
 | |
| 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
 | |
| 				r = kvm_vcpu_do_singlestep(vcpu);
 | |
| 			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
 | |
| 			__kvm_set_rflags(vcpu, ctxt->eflags);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
 | |
| 		 * do nothing, and it will be requested again as soon as
 | |
| 		 * the shadow expires.  But we still need to check here,
 | |
| 		 * because POPF has no interrupt shadow.
 | |
| 		 */
 | |
| 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
 | |
| 			kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	} else
 | |
| 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
 | |
| {
 | |
| 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
 | |
| 
 | |
| int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
 | |
| 					void *insn, int insn_len)
 | |
| {
 | |
| 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
 | |
| 
 | |
| static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.pio.count = 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.pio.count = 0;
 | |
| 
 | |
| 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
 | |
| 		return 1;
 | |
| 
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
 | |
| 			    unsigned short port)
 | |
| {
 | |
| 	unsigned long val = kvm_rax_read(vcpu);
 | |
| 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Workaround userspace that relies on old KVM behavior of %rip being
 | |
| 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
 | |
| 	 */
 | |
| 	if (port == 0x7e &&
 | |
| 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
 | |
| 		vcpu->arch.complete_userspace_io =
 | |
| 			complete_fast_pio_out_port_0x7e;
 | |
| 		kvm_skip_emulated_instruction(vcpu);
 | |
| 	} else {
 | |
| 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
 | |
| 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	/* We should only ever be called with arch.pio.count equal to 1 */
 | |
| 	BUG_ON(vcpu->arch.pio.count != 1);
 | |
| 
 | |
| 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
 | |
| 		vcpu->arch.pio.count = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* For size less than 4 we merge, else we zero extend */
 | |
| 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
 | |
| 	 * the copy and tracing
 | |
| 	 */
 | |
| 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
 | |
| 	kvm_rax_write(vcpu, val);
 | |
| 
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
 | |
| 			   unsigned short port)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* For size less than 4 we merge, else we zero extend */
 | |
| 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
 | |
| 
 | |
| 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
 | |
| 	if (ret) {
 | |
| 		kvm_rax_write(vcpu, val);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
 | |
| 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (in)
 | |
| 		ret = kvm_fast_pio_in(vcpu, size, port);
 | |
| 	else
 | |
| 		ret = kvm_fast_pio_out(vcpu, size, port);
 | |
| 	return ret && kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_fast_pio);
 | |
| 
 | |
| static int kvmclock_cpu_down_prep(unsigned int cpu)
 | |
| {
 | |
| 	__this_cpu_write(cpu_tsc_khz, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void tsc_khz_changed(void *data)
 | |
| {
 | |
| 	struct cpufreq_freqs *freq = data;
 | |
| 	unsigned long khz = 0;
 | |
| 
 | |
| 	if (data)
 | |
| 		khz = freq->new;
 | |
| 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 | |
| 		khz = cpufreq_quick_get(raw_smp_processor_id());
 | |
| 	if (!khz)
 | |
| 		khz = tsc_khz;
 | |
| 	__this_cpu_write(cpu_tsc_khz, khz);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void kvm_hyperv_tsc_notifier(void)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	int cpu;
 | |
| 
 | |
| 	mutex_lock(&kvm_lock);
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list)
 | |
| 		kvm_make_mclock_inprogress_request(kvm);
 | |
| 
 | |
| 	/* no guest entries from this point */
 | |
| 	hyperv_stop_tsc_emulation();
 | |
| 
 | |
| 	/* TSC frequency always matches when on Hyper-V */
 | |
| 	for_each_present_cpu(cpu)
 | |
| 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
 | |
| 	kvm_max_guest_tsc_khz = tsc_khz;
 | |
| 
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		__kvm_start_pvclock_update(kvm);
 | |
| 		pvclock_update_vm_gtod_copy(kvm);
 | |
| 		kvm_end_pvclock_update(kvm);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&kvm_lock);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	int send_ipi = 0;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We allow guests to temporarily run on slowing clocks,
 | |
| 	 * provided we notify them after, or to run on accelerating
 | |
| 	 * clocks, provided we notify them before.  Thus time never
 | |
| 	 * goes backwards.
 | |
| 	 *
 | |
| 	 * However, we have a problem.  We can't atomically update
 | |
| 	 * the frequency of a given CPU from this function; it is
 | |
| 	 * merely a notifier, which can be called from any CPU.
 | |
| 	 * Changing the TSC frequency at arbitrary points in time
 | |
| 	 * requires a recomputation of local variables related to
 | |
| 	 * the TSC for each VCPU.  We must flag these local variables
 | |
| 	 * to be updated and be sure the update takes place with the
 | |
| 	 * new frequency before any guests proceed.
 | |
| 	 *
 | |
| 	 * Unfortunately, the combination of hotplug CPU and frequency
 | |
| 	 * change creates an intractable locking scenario; the order
 | |
| 	 * of when these callouts happen is undefined with respect to
 | |
| 	 * CPU hotplug, and they can race with each other.  As such,
 | |
| 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
 | |
| 	 * undefined; you can actually have a CPU frequency change take
 | |
| 	 * place in between the computation of X and the setting of the
 | |
| 	 * variable.  To protect against this problem, all updates of
 | |
| 	 * the per_cpu tsc_khz variable are done in an interrupt
 | |
| 	 * protected IPI, and all callers wishing to update the value
 | |
| 	 * must wait for a synchronous IPI to complete (which is trivial
 | |
| 	 * if the caller is on the CPU already).  This establishes the
 | |
| 	 * necessary total order on variable updates.
 | |
| 	 *
 | |
| 	 * Note that because a guest time update may take place
 | |
| 	 * anytime after the setting of the VCPU's request bit, the
 | |
| 	 * correct TSC value must be set before the request.  However,
 | |
| 	 * to ensure the update actually makes it to any guest which
 | |
| 	 * starts running in hardware virtualization between the set
 | |
| 	 * and the acquisition of the spinlock, we must also ping the
 | |
| 	 * CPU after setting the request bit.
 | |
| 	 *
 | |
| 	 */
 | |
| 
 | |
| 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
 | |
| 
 | |
| 	mutex_lock(&kvm_lock);
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 			if (vcpu->cpu != cpu)
 | |
| 				continue;
 | |
| 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 			if (vcpu->cpu != raw_smp_processor_id())
 | |
| 				send_ipi = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&kvm_lock);
 | |
| 
 | |
| 	if (freq->old < freq->new && send_ipi) {
 | |
| 		/*
 | |
| 		 * We upscale the frequency.  Must make the guest
 | |
| 		 * doesn't see old kvmclock values while running with
 | |
| 		 * the new frequency, otherwise we risk the guest sees
 | |
| 		 * time go backwards.
 | |
| 		 *
 | |
| 		 * In case we update the frequency for another cpu
 | |
| 		 * (which might be in guest context) send an interrupt
 | |
| 		 * to kick the cpu out of guest context.  Next time
 | |
| 		 * guest context is entered kvmclock will be updated,
 | |
| 		 * so the guest will not see stale values.
 | |
| 		 */
 | |
| 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 | |
| 				     void *data)
 | |
| {
 | |
| 	struct cpufreq_freqs *freq = data;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
 | |
| 		return 0;
 | |
| 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_cpu(cpu, freq->policy->cpus)
 | |
| 		__kvmclock_cpufreq_notifier(freq, cpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block kvmclock_cpufreq_notifier_block = {
 | |
| 	.notifier_call  = kvmclock_cpufreq_notifier
 | |
| };
 | |
| 
 | |
| static int kvmclock_cpu_online(unsigned int cpu)
 | |
| {
 | |
| 	tsc_khz_changed(NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_timer_init(void)
 | |
| {
 | |
| 	max_tsc_khz = tsc_khz;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| 		struct cpufreq_policy *policy;
 | |
| 		int cpu;
 | |
| 
 | |
| 		cpu = get_cpu();
 | |
| 		policy = cpufreq_cpu_get(cpu);
 | |
| 		if (policy) {
 | |
| 			if (policy->cpuinfo.max_freq)
 | |
| 				max_tsc_khz = policy->cpuinfo.max_freq;
 | |
| 			cpufreq_cpu_put(policy);
 | |
| 		}
 | |
| 		put_cpu();
 | |
| #endif
 | |
| 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
 | |
| 					  CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 	}
 | |
| 
 | |
| 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
 | |
| 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void pvclock_gtod_update_fn(struct work_struct *work)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	mutex_lock(&kvm_lock);
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list)
 | |
| 		kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
 | |
| 	atomic_set(&kvm_guest_has_master_clock, 0);
 | |
| 	mutex_unlock(&kvm_lock);
 | |
| }
 | |
| 
 | |
| static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
 | |
| 
 | |
| /*
 | |
|  * Indirection to move queue_work() out of the tk_core.seq write held
 | |
|  * region to prevent possible deadlocks against time accessors which
 | |
|  * are invoked with work related locks held.
 | |
|  */
 | |
| static void pvclock_irq_work_fn(struct irq_work *w)
 | |
| {
 | |
| 	queue_work(system_long_wq, &pvclock_gtod_work);
 | |
| }
 | |
| 
 | |
| static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
 | |
| 
 | |
| /*
 | |
|  * Notification about pvclock gtod data update.
 | |
|  */
 | |
| static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
 | |
| 			       void *priv)
 | |
| {
 | |
| 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
 | |
| 	struct timekeeper *tk = priv;
 | |
| 
 | |
| 	update_pvclock_gtod(tk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable master clock if host does not trust, or does not use,
 | |
| 	 * TSC based clocksource. Delegate queue_work() to irq_work as
 | |
| 	 * this is invoked with tk_core.seq write held.
 | |
| 	 */
 | |
| 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
 | |
| 	    atomic_read(&kvm_guest_has_master_clock) != 0)
 | |
| 		irq_work_queue(&pvclock_irq_work);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block pvclock_gtod_notifier = {
 | |
| 	.notifier_call = pvclock_gtod_notify,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| int kvm_arch_init(void *opaque)
 | |
| {
 | |
| 	struct kvm_x86_init_ops *ops = opaque;
 | |
| 	int r;
 | |
| 
 | |
| 	if (kvm_x86_ops.hardware_enable) {
 | |
| 		pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
 | |
| 		r = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!ops->cpu_has_kvm_support()) {
 | |
| 		pr_err_ratelimited("kvm: no hardware support for '%s'\n",
 | |
| 				   ops->runtime_ops->name);
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (ops->disabled_by_bios()) {
 | |
| 		pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
 | |
| 				   ops->runtime_ops->name);
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM explicitly assumes that the guest has an FPU and
 | |
| 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
 | |
| 	 * vCPU's FPU state as a fxregs_state struct.
 | |
| 	 */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
 | |
| 		printk(KERN_ERR "kvm: inadequate fpu\n");
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
 | |
| 		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = -ENOMEM;
 | |
| 
 | |
| 	x86_emulator_cache = kvm_alloc_emulator_cache();
 | |
| 	if (!x86_emulator_cache) {
 | |
| 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
 | |
| 	if (!user_return_msrs) {
 | |
| 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
 | |
| 		goto out_free_x86_emulator_cache;
 | |
| 	}
 | |
| 	kvm_nr_uret_msrs = 0;
 | |
| 
 | |
| 	r = kvm_mmu_vendor_module_init();
 | |
| 	if (r)
 | |
| 		goto out_free_percpu;
 | |
| 
 | |
| 	kvm_timer_init();
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
 | |
| 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
 | |
| 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
 | |
| 	}
 | |
| 
 | |
| 	if (pi_inject_timer == -1)
 | |
| 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
 | |
| 
 | |
| 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
 | |
| 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_percpu:
 | |
| 	free_percpu(user_return_msrs);
 | |
| out_free_x86_emulator_cache:
 | |
| 	kmem_cache_destroy(x86_emulator_cache);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_exit(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
 | |
| 		clear_hv_tscchange_cb();
 | |
| #endif
 | |
| 	kvm_lapic_exit();
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 | |
| 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
 | |
| 					    CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
 | |
| 	irq_work_sync(&pvclock_irq_work);
 | |
| 	cancel_work_sync(&pvclock_gtod_work);
 | |
| #endif
 | |
| 	kvm_x86_ops.hardware_enable = NULL;
 | |
| 	kvm_mmu_vendor_module_exit();
 | |
| 	free_percpu(user_return_msrs);
 | |
| 	kmem_cache_destroy(x86_emulator_cache);
 | |
| #ifdef CONFIG_KVM_XEN
 | |
| 	static_key_deferred_flush(&kvm_xen_enabled);
 | |
| 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
 | |
| {
 | |
| 	/*
 | |
| 	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
 | |
| 	 * local APIC is in-kernel, the run loop will detect the non-runnable
 | |
| 	 * state and halt the vCPU.  Exit to userspace if the local APIC is
 | |
| 	 * managed by userspace, in which case userspace is responsible for
 | |
| 	 * handling wake events.
 | |
| 	 */
 | |
| 	++vcpu->stat.halt_exits;
 | |
| 	if (lapic_in_kernel(vcpu)) {
 | |
| 		vcpu->arch.mp_state = state;
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		vcpu->run->exit_reason = reason;
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
 | |
| 
 | |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int ret = kvm_skip_emulated_instruction(vcpu);
 | |
| 	/*
 | |
| 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
 | |
| 	 * KVM_EXIT_DEBUG here.
 | |
| 	 */
 | |
| 	return kvm_emulate_halt_noskip(vcpu) && ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt);
 | |
| 
 | |
| int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int ret = kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
 | |
| 					KVM_EXIT_AP_RESET_HOLD) && ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
 | |
| 			        unsigned long clock_type)
 | |
| {
 | |
| 	struct kvm_clock_pairing clock_pairing;
 | |
| 	struct timespec64 ts;
 | |
| 	u64 cycle;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
 | |
| 		return -KVM_EOPNOTSUPP;
 | |
| 
 | |
| 	/*
 | |
| 	 * When tsc is in permanent catchup mode guests won't be able to use
 | |
| 	 * pvclock_read_retry loop to get consistent view of pvclock
 | |
| 	 */
 | |
| 	if (vcpu->arch.tsc_always_catchup)
 | |
| 		return -KVM_EOPNOTSUPP;
 | |
| 
 | |
| 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
 | |
| 		return -KVM_EOPNOTSUPP;
 | |
| 
 | |
| 	clock_pairing.sec = ts.tv_sec;
 | |
| 	clock_pairing.nsec = ts.tv_nsec;
 | |
| 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
 | |
| 	clock_pairing.flags = 0;
 | |
| 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
 | |
| 
 | |
| 	ret = 0;
 | |
| 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
 | |
| 			    sizeof(struct kvm_clock_pairing)))
 | |
| 		ret = -KVM_EFAULT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * kvm_pv_kick_cpu_op:  Kick a vcpu.
 | |
|  *
 | |
|  * @apicid - apicid of vcpu to be kicked.
 | |
|  */
 | |
| static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
 | |
| {
 | |
| 	/*
 | |
| 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
 | |
| 	 * common code, e.g. for tracing. Defer initialization to the compiler.
 | |
| 	 */
 | |
| 	struct kvm_lapic_irq lapic_irq = {
 | |
| 		.delivery_mode = APIC_DM_REMRD,
 | |
| 		.dest_mode = APIC_DEST_PHYSICAL,
 | |
| 		.shorthand = APIC_DEST_NOSHORT,
 | |
| 		.dest_id = apicid,
 | |
| 	};
 | |
| 
 | |
| 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
 | |
| }
 | |
| 
 | |
| bool kvm_apicv_activated(struct kvm *kvm)
 | |
| {
 | |
| 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_apicv_activated);
 | |
| 
 | |
| bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
 | |
| 	ulong vcpu_reasons = kvm_x86_ops.vcpu_get_apicv_inhibit_reasons ?
 | |
| 			     static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu) : 0;
 | |
| 
 | |
| 	return (vm_reasons | vcpu_reasons) == 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
 | |
| 
 | |
| static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
 | |
| 				       enum kvm_apicv_inhibit reason, bool set)
 | |
| {
 | |
| 	if (set)
 | |
| 		__set_bit(reason, inhibits);
 | |
| 	else
 | |
| 		__clear_bit(reason, inhibits);
 | |
| 
 | |
| 	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
 | |
| }
 | |
| 
 | |
| static void kvm_apicv_init(struct kvm *kvm)
 | |
| {
 | |
| 	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
 | |
| 
 | |
| 	init_rwsem(&kvm->arch.apicv_update_lock);
 | |
| 
 | |
| 	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
 | |
| 
 | |
| 	if (!enable_apicv)
 | |
| 		set_or_clear_apicv_inhibit(inhibits,
 | |
| 					   APICV_INHIBIT_REASON_DISABLE, true);
 | |
| }
 | |
| 
 | |
| static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
 | |
| {
 | |
| 	struct kvm_vcpu *target = NULL;
 | |
| 	struct kvm_apic_map *map;
 | |
| 
 | |
| 	vcpu->stat.directed_yield_attempted++;
 | |
| 
 | |
| 	if (single_task_running())
 | |
| 		goto no_yield;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
 | |
| 
 | |
| 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
 | |
| 		target = map->phys_map[dest_id]->vcpu;
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	if (!target || !READ_ONCE(target->ready))
 | |
| 		goto no_yield;
 | |
| 
 | |
| 	/* Ignore requests to yield to self */
 | |
| 	if (vcpu == target)
 | |
| 		goto no_yield;
 | |
| 
 | |
| 	if (kvm_vcpu_yield_to(target) <= 0)
 | |
| 		goto no_yield;
 | |
| 
 | |
| 	vcpu->stat.directed_yield_successful++;
 | |
| 
 | |
| no_yield:
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 ret = vcpu->run->hypercall.ret;
 | |
| 
 | |
| 	if (!is_64_bit_mode(vcpu))
 | |
| 		ret = (u32)ret;
 | |
| 	kvm_rax_write(vcpu, ret);
 | |
| 	++vcpu->stat.hypercalls;
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long nr, a0, a1, a2, a3, ret;
 | |
| 	int op_64_bit;
 | |
| 
 | |
| 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
 | |
| 		return kvm_xen_hypercall(vcpu);
 | |
| 
 | |
| 	if (kvm_hv_hypercall_enabled(vcpu))
 | |
| 		return kvm_hv_hypercall(vcpu);
 | |
| 
 | |
| 	nr = kvm_rax_read(vcpu);
 | |
| 	a0 = kvm_rbx_read(vcpu);
 | |
| 	a1 = kvm_rcx_read(vcpu);
 | |
| 	a2 = kvm_rdx_read(vcpu);
 | |
| 	a3 = kvm_rsi_read(vcpu);
 | |
| 
 | |
| 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
 | |
| 
 | |
| 	op_64_bit = is_64_bit_hypercall(vcpu);
 | |
| 	if (!op_64_bit) {
 | |
| 		nr &= 0xFFFFFFFF;
 | |
| 		a0 &= 0xFFFFFFFF;
 | |
| 		a1 &= 0xFFFFFFFF;
 | |
| 		a2 &= 0xFFFFFFFF;
 | |
| 		a3 &= 0xFFFFFFFF;
 | |
| 	}
 | |
| 
 | |
| 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
 | |
| 		ret = -KVM_EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = -KVM_ENOSYS;
 | |
| 
 | |
| 	switch (nr) {
 | |
| 	case KVM_HC_VAPIC_POLL_IRQ:
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	case KVM_HC_KICK_CPU:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
 | |
| 			break;
 | |
| 
 | |
| 		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
 | |
| 		kvm_sched_yield(vcpu, a1);
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case KVM_HC_CLOCK_PAIRING:
 | |
| 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
 | |
| 		break;
 | |
| #endif
 | |
| 	case KVM_HC_SEND_IPI:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
 | |
| 			break;
 | |
| 
 | |
| 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
 | |
| 		break;
 | |
| 	case KVM_HC_SCHED_YIELD:
 | |
| 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
 | |
| 			break;
 | |
| 
 | |
| 		kvm_sched_yield(vcpu, a0);
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	case KVM_HC_MAP_GPA_RANGE: {
 | |
| 		u64 gpa = a0, npages = a1, attrs = a2;
 | |
| 
 | |
| 		ret = -KVM_ENOSYS;
 | |
| 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
 | |
| 			break;
 | |
| 
 | |
| 		if (!PAGE_ALIGNED(gpa) || !npages ||
 | |
| 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
 | |
| 			ret = -KVM_EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
 | |
| 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
 | |
| 		vcpu->run->hypercall.args[0]  = gpa;
 | |
| 		vcpu->run->hypercall.args[1]  = npages;
 | |
| 		vcpu->run->hypercall.args[2]  = attrs;
 | |
| 		vcpu->run->hypercall.longmode = op_64_bit;
 | |
| 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	default:
 | |
| 		ret = -KVM_ENOSYS;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	if (!op_64_bit)
 | |
| 		ret = (u32)ret;
 | |
| 	kvm_rax_write(vcpu, ret);
 | |
| 
 | |
| 	++vcpu->stat.hypercalls;
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
 | |
| 
 | |
| static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
 | |
| 	char instruction[3];
 | |
| 	unsigned long rip = kvm_rip_read(vcpu);
 | |
| 
 | |
| 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
 | |
| 
 | |
| 	return emulator_write_emulated(ctxt, rip, instruction, 3,
 | |
| 		&ctxt->exception);
 | |
| }
 | |
| 
 | |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->run->request_interrupt_window &&
 | |
| 		likely(!pic_in_kernel(vcpu->kvm));
 | |
| }
 | |
| 
 | |
| /* Called within kvm->srcu read side.  */
 | |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 
 | |
| 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
 | |
| 	kvm_run->cr8 = kvm_get_cr8(vcpu);
 | |
| 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
 | |
| 
 | |
| 	kvm_run->ready_for_interrupt_injection =
 | |
| 		pic_in_kernel(vcpu->kvm) ||
 | |
| 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
 | |
| 
 | |
| 	if (is_smm(vcpu))
 | |
| 		kvm_run->flags |= KVM_RUN_X86_SMM;
 | |
| }
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int max_irr, tpr;
 | |
| 
 | |
| 	if (!kvm_x86_ops.update_cr8_intercept)
 | |
| 		return;
 | |
| 
 | |
| 	if (!lapic_in_kernel(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	if (vcpu->arch.apicv_active)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.apic->vapic_addr)
 | |
| 		max_irr = kvm_lapic_find_highest_irr(vcpu);
 | |
| 	else
 | |
| 		max_irr = -1;
 | |
| 
 | |
| 	if (max_irr != -1)
 | |
| 		max_irr >>= 4;
 | |
| 
 | |
| 	tpr = kvm_lapic_get_cr8(vcpu);
 | |
| 
 | |
| 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
 | |
| }
 | |
| 
 | |
| 
 | |
| int kvm_check_nested_events(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
 | |
| 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return kvm_x86_ops.nested_ops->check_events(vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_inject_exception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
 | |
| 		vcpu->arch.exception.error_code = false;
 | |
| 	static_call(kvm_x86_queue_exception)(vcpu);
 | |
| }
 | |
| 
 | |
| static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
 | |
| {
 | |
| 	int r;
 | |
| 	bool can_inject = true;
 | |
| 
 | |
| 	/* try to reinject previous events if any */
 | |
| 
 | |
| 	if (vcpu->arch.exception.injected) {
 | |
| 		kvm_inject_exception(vcpu);
 | |
| 		can_inject = false;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Do not inject an NMI or interrupt if there is a pending
 | |
| 	 * exception.  Exceptions and interrupts are recognized at
 | |
| 	 * instruction boundaries, i.e. the start of an instruction.
 | |
| 	 * Trap-like exceptions, e.g. #DB, have higher priority than
 | |
| 	 * NMIs and interrupts, i.e. traps are recognized before an
 | |
| 	 * NMI/interrupt that's pending on the same instruction.
 | |
| 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
 | |
| 	 * priority, but are only generated (pended) during instruction
 | |
| 	 * execution, i.e. a pending fault-like exception means the
 | |
| 	 * fault occurred on the *previous* instruction and must be
 | |
| 	 * serviced prior to recognizing any new events in order to
 | |
| 	 * fully complete the previous instruction.
 | |
| 	 */
 | |
| 	else if (!vcpu->arch.exception.pending) {
 | |
| 		if (vcpu->arch.nmi_injected) {
 | |
| 			static_call(kvm_x86_inject_nmi)(vcpu);
 | |
| 			can_inject = false;
 | |
| 		} else if (vcpu->arch.interrupt.injected) {
 | |
| 			static_call(kvm_x86_inject_irq)(vcpu);
 | |
| 			can_inject = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
 | |
| 		     vcpu->arch.exception.pending);
 | |
| 
 | |
| 	/*
 | |
| 	 * Call check_nested_events() even if we reinjected a previous event
 | |
| 	 * in order for caller to determine if it should require immediate-exit
 | |
| 	 * from L2 to L1 due to pending L1 events which require exit
 | |
| 	 * from L2 to L1.
 | |
| 	 */
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		r = kvm_check_nested_events(vcpu);
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* try to inject new event if pending */
 | |
| 	if (vcpu->arch.exception.pending) {
 | |
| 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
 | |
| 					vcpu->arch.exception.has_error_code,
 | |
| 					vcpu->arch.exception.error_code);
 | |
| 
 | |
| 		vcpu->arch.exception.pending = false;
 | |
| 		vcpu->arch.exception.injected = true;
 | |
| 
 | |
| 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
 | |
| 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
 | |
| 					     X86_EFLAGS_RF);
 | |
| 
 | |
| 		if (vcpu->arch.exception.nr == DB_VECTOR) {
 | |
| 			kvm_deliver_exception_payload(vcpu);
 | |
| 			if (vcpu->arch.dr7 & DR7_GD) {
 | |
| 				vcpu->arch.dr7 &= ~DR7_GD;
 | |
| 				kvm_update_dr7(vcpu);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		kvm_inject_exception(vcpu);
 | |
| 		can_inject = false;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't inject interrupts if the user asked to avoid doing so */
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, inject interrupt events.  If an event cannot be injected
 | |
| 	 * due to architectural conditions (e.g. IF=0) a window-open exit
 | |
| 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
 | |
| 	 * and can architecturally be injected, but we cannot do it right now:
 | |
| 	 * an interrupt could have arrived just now and we have to inject it
 | |
| 	 * as a vmexit, or there could already an event in the queue, which is
 | |
| 	 * indicated by can_inject.  In that case we request an immediate exit
 | |
| 	 * in order to make progress and get back here for another iteration.
 | |
| 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
 | |
| 	 */
 | |
| 	if (vcpu->arch.smi_pending) {
 | |
| 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 		if (r) {
 | |
| 			vcpu->arch.smi_pending = false;
 | |
| 			++vcpu->arch.smi_count;
 | |
| 			enter_smm(vcpu);
 | |
| 			can_inject = false;
 | |
| 		} else
 | |
| 			static_call(kvm_x86_enable_smi_window)(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.nmi_pending) {
 | |
| 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 		if (r) {
 | |
| 			--vcpu->arch.nmi_pending;
 | |
| 			vcpu->arch.nmi_injected = true;
 | |
| 			static_call(kvm_x86_inject_nmi)(vcpu);
 | |
| 			can_inject = false;
 | |
| 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
 | |
| 		}
 | |
| 		if (vcpu->arch.nmi_pending)
 | |
| 			static_call(kvm_x86_enable_nmi_window)(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_cpu_has_injectable_intr(vcpu)) {
 | |
| 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 		if (r) {
 | |
| 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
 | |
| 			static_call(kvm_x86_inject_irq)(vcpu);
 | |
| 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
 | |
| 		}
 | |
| 		if (kvm_cpu_has_injectable_intr(vcpu))
 | |
| 			static_call(kvm_x86_enable_irq_window)(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (is_guest_mode(vcpu) &&
 | |
| 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
 | |
| 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
 | |
| 		*req_immediate_exit = true;
 | |
| 
 | |
| 	WARN_ON(vcpu->arch.exception.pending);
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	if (r == -EBUSY) {
 | |
| 		*req_immediate_exit = true;
 | |
| 		r = 0;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void process_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned limit = 2;
 | |
| 
 | |
| 	/*
 | |
| 	 * x86 is limited to one NMI running, and one NMI pending after it.
 | |
| 	 * If an NMI is already in progress, limit further NMIs to just one.
 | |
| 	 * Otherwise, allow two (and we'll inject the first one immediately).
 | |
| 	 */
 | |
| 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
 | |
| 		limit = 1;
 | |
| 
 | |
| 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
 | |
| 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
 | |
| 				       unsigned long *vcpu_bitmap)
 | |
| {
 | |
| 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
 | |
| }
 | |
| 
 | |
| void kvm_make_scan_ioapic_request(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
 | |
| }
 | |
| 
 | |
| void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	bool activate;
 | |
| 
 | |
| 	if (!lapic_in_kernel(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	down_read(&vcpu->kvm->arch.apicv_update_lock);
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	/* Do not activate APICV when APIC is disabled */
 | |
| 	activate = kvm_vcpu_apicv_activated(vcpu) &&
 | |
| 		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
 | |
| 
 | |
| 	if (vcpu->arch.apicv_active == activate)
 | |
| 		goto out;
 | |
| 
 | |
| 	vcpu->arch.apicv_active = activate;
 | |
| 	kvm_apic_update_apicv(vcpu);
 | |
| 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * When APICv gets disabled, we may still have injected interrupts
 | |
| 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
 | |
| 	 * still active when the interrupt got accepted. Make sure
 | |
| 	 * inject_pending_event() is called to check for that.
 | |
| 	 */
 | |
| 	if (!vcpu->arch.apicv_active)
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| out:
 | |
| 	preempt_enable();
 | |
| 	up_read(&vcpu->kvm->arch.apicv_update_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
 | |
| 
 | |
| static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!lapic_in_kernel(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
 | |
| 	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
 | |
| 	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
 | |
| 	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
 | |
| 	 * this case so that KVM can the AVIC doorbell to inject interrupts to
 | |
| 	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
 | |
| 	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
 | |
| 	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
 | |
| 	 * access page is sticky.
 | |
| 	 */
 | |
| 	if (apic_x2apic_mode(vcpu->arch.apic) &&
 | |
| 	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
 | |
| 		kvm_inhibit_apic_access_page(vcpu);
 | |
| 
 | |
| 	__kvm_vcpu_update_apicv(vcpu);
 | |
| }
 | |
| 
 | |
| void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
 | |
| 				      enum kvm_apicv_inhibit reason, bool set)
 | |
| {
 | |
| 	unsigned long old, new;
 | |
| 
 | |
| 	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
 | |
| 
 | |
| 	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
 | |
| 		return;
 | |
| 
 | |
| 	old = new = kvm->arch.apicv_inhibit_reasons;
 | |
| 
 | |
| 	set_or_clear_apicv_inhibit(&new, reason, set);
 | |
| 
 | |
| 	if (!!old != !!new) {
 | |
| 		/*
 | |
| 		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
 | |
| 		 * false positives in the sanity check WARN in svm_vcpu_run().
 | |
| 		 * This task will wait for all vCPUs to ack the kick IRQ before
 | |
| 		 * updating apicv_inhibit_reasons, and all other vCPUs will
 | |
| 		 * block on acquiring apicv_update_lock so that vCPUs can't
 | |
| 		 * redo svm_vcpu_run() without seeing the new inhibit state.
 | |
| 		 *
 | |
| 		 * Note, holding apicv_update_lock and taking it in the read
 | |
| 		 * side (handling the request) also prevents other vCPUs from
 | |
| 		 * servicing the request with a stale apicv_inhibit_reasons.
 | |
| 		 */
 | |
| 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
 | |
| 		kvm->arch.apicv_inhibit_reasons = new;
 | |
| 		if (new) {
 | |
| 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
 | |
| 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		kvm->arch.apicv_inhibit_reasons = new;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
 | |
| 				    enum kvm_apicv_inhibit reason, bool set)
 | |
| {
 | |
| 	if (!enable_apicv)
 | |
| 		return;
 | |
| 
 | |
| 	down_write(&kvm->arch.apicv_update_lock);
 | |
| 	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
 | |
| 	up_write(&kvm->arch.apicv_update_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
 | |
| 
 | |
| static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!kvm_apic_present(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
 | |
| 
 | |
| 	if (irqchip_split(vcpu->kvm))
 | |
| 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
 | |
| 	else {
 | |
| 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
 | |
| 		if (ioapic_in_kernel(vcpu->kvm))
 | |
| 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
 | |
| 	}
 | |
| 
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		vcpu->arch.load_eoi_exitmap_pending = true;
 | |
| 	else
 | |
| 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
 | |
| }
 | |
| 
 | |
| static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 eoi_exit_bitmap[4];
 | |
| 
 | |
| 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
 | |
| 		return;
 | |
| 
 | |
| 	if (to_hv_vcpu(vcpu)) {
 | |
| 		bitmap_or((ulong *)eoi_exit_bitmap,
 | |
| 			  vcpu->arch.ioapic_handled_vectors,
 | |
| 			  to_hv_synic(vcpu)->vec_bitmap, 256);
 | |
| 		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	static_call_cond(kvm_x86_load_eoi_exitmap)(
 | |
| 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
 | |
| }
 | |
| 
 | |
| void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 | |
| 					    unsigned long start, unsigned long end)
 | |
| {
 | |
| 	unsigned long apic_address;
 | |
| 
 | |
| 	/*
 | |
| 	 * The physical address of apic access page is stored in the VMCS.
 | |
| 	 * Update it when it becomes invalid.
 | |
| 	 */
 | |
| 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
 | |
| 	if (start <= apic_address && apic_address < end)
 | |
| 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
 | |
| }
 | |
| 
 | |
| void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
 | |
| {
 | |
| 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
 | |
| }
 | |
| 
 | |
| static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!lapic_in_kernel(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
 | |
| }
 | |
| 
 | |
| void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	smp_send_reschedule(vcpu->cpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
 | |
| 
 | |
| /*
 | |
|  * Called within kvm->srcu read side.
 | |
|  * Returns 1 to let vcpu_run() continue the guest execution loop without
 | |
|  * exiting to the userspace.  Otherwise, the value will be returned to the
 | |
|  * userspace.
 | |
|  */
 | |
| static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 	bool req_int_win =
 | |
| 		dm_request_for_irq_injection(vcpu) &&
 | |
| 		kvm_cpu_accept_dm_intr(vcpu);
 | |
| 	fastpath_t exit_fastpath;
 | |
| 
 | |
| 	bool req_immediate_exit = false;
 | |
| 
 | |
| 	/* Forbid vmenter if vcpu dirty ring is soft-full */
 | |
| 	if (unlikely(vcpu->kvm->dirty_ring_size &&
 | |
| 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
 | |
| 		trace_kvm_dirty_ring_exit(vcpu);
 | |
| 		r = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_request_pending(vcpu)) {
 | |
| 		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
 | |
| 			r = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
 | |
| 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
 | |
| 				r = 0;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
 | |
| 			kvm_mmu_free_obsolete_roots(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
 | |
| 			__kvm_migrate_timers(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
 | |
| 			kvm_update_masterclock(vcpu->kvm);
 | |
| 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
 | |
| 			kvm_gen_kvmclock_update(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
 | |
| 			r = kvm_guest_time_update(vcpu);
 | |
| 			if (unlikely(r))
 | |
| 				goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
 | |
| 			kvm_mmu_sync_roots(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
 | |
| 			kvm_mmu_load_pgd(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
 | |
| 			kvm_vcpu_flush_tlb_all(vcpu);
 | |
| 
 | |
| 			/* Flushing all ASIDs flushes the current ASID... */
 | |
| 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
 | |
| 		}
 | |
| 		kvm_service_local_tlb_flush_requests(vcpu);
 | |
| 
 | |
| 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
 | |
| 			if (is_guest_mode(vcpu)) {
 | |
| 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
 | |
| 			} else {
 | |
| 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
 | |
| 				vcpu->mmio_needed = 0;
 | |
| 				r = 0;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
 | |
| 			/* Page is swapped out. Do synthetic halt */
 | |
| 			vcpu->arch.apf.halted = true;
 | |
| 			r = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
 | |
| 			record_steal_time(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
 | |
| 			process_smi(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
 | |
| 			process_nmi(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
 | |
| 			kvm_pmu_handle_event(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
 | |
| 			kvm_pmu_deliver_pmi(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
 | |
| 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
 | |
| 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
 | |
| 				     vcpu->arch.ioapic_handled_vectors)) {
 | |
| 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
 | |
| 				vcpu->run->eoi.vector =
 | |
| 						vcpu->arch.pending_ioapic_eoi;
 | |
| 				r = 0;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
 | |
| 			vcpu_scan_ioapic(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
 | |
| 			vcpu_load_eoi_exitmap(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
 | |
| 			kvm_vcpu_reload_apic_access_page(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
 | |
| 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
 | |
| 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
 | |
| 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
 | |
| 
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
 | |
| 			vcpu->run->hyperv = hv_vcpu->exit;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * KVM_REQ_HV_STIMER has to be processed after
 | |
| 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
 | |
| 		 * depend on the guest clock being up-to-date
 | |
| 		 */
 | |
| 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
 | |
| 			kvm_hv_process_stimers(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
 | |
| 			kvm_vcpu_update_apicv(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
 | |
| 			kvm_check_async_pf_completion(vcpu);
 | |
| 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
 | |
| 			static_call(kvm_x86_msr_filter_changed)(vcpu);
 | |
| 
 | |
| 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
 | |
| 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
 | |
| 	    kvm_xen_has_interrupt(vcpu)) {
 | |
| 		++vcpu->stat.req_event;
 | |
| 		r = kvm_apic_accept_events(vcpu);
 | |
| 		if (r < 0) {
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
 | |
| 			r = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		r = inject_pending_event(vcpu, &req_immediate_exit);
 | |
| 		if (r < 0) {
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (req_int_win)
 | |
| 			static_call(kvm_x86_enable_irq_window)(vcpu);
 | |
| 
 | |
| 		if (kvm_lapic_enabled(vcpu)) {
 | |
| 			update_cr8_intercept(vcpu);
 | |
| 			kvm_lapic_sync_to_vapic(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_mmu_reload(vcpu);
 | |
| 	if (unlikely(r)) {
 | |
| 		goto cancel_injection;
 | |
| 	}
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
 | |
| 	 * IPI are then delayed after guest entry, which ensures that they
 | |
| 	 * result in virtual interrupt delivery.
 | |
| 	 */
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	/* Store vcpu->apicv_active before vcpu->mode.  */
 | |
| 	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
 | |
| 
 | |
| 	kvm_vcpu_srcu_read_unlock(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * 1) We should set ->mode before checking ->requests.  Please see
 | |
| 	 * the comment in kvm_vcpu_exiting_guest_mode().
 | |
| 	 *
 | |
| 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
 | |
| 	 * pairs with the memory barrier implicit in pi_test_and_set_on
 | |
| 	 * (see vmx_deliver_posted_interrupt).
 | |
| 	 *
 | |
| 	 * 3) This also orders the write to mode from any reads to the page
 | |
| 	 * tables done while the VCPU is running.  Please see the comment
 | |
| 	 * in kvm_flush_remote_tlbs.
 | |
| 	 */
 | |
| 	smp_mb__after_srcu_read_unlock();
 | |
| 
 | |
| 	/*
 | |
| 	 * Process pending posted interrupts to handle the case where the
 | |
| 	 * notification IRQ arrived in the host, or was never sent (because the
 | |
| 	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
 | |
| 	 * status, KVM doesn't update assigned devices when APICv is inhibited,
 | |
| 	 * i.e. they can post interrupts even if APICv is temporarily disabled.
 | |
| 	 */
 | |
| 	if (kvm_lapic_enabled(vcpu))
 | |
| 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
 | |
| 
 | |
| 	if (kvm_vcpu_exit_request(vcpu)) {
 | |
| 		vcpu->mode = OUTSIDE_GUEST_MODE;
 | |
| 		smp_wmb();
 | |
| 		local_irq_enable();
 | |
| 		preempt_enable();
 | |
| 		kvm_vcpu_srcu_read_lock(vcpu);
 | |
| 		r = 1;
 | |
| 		goto cancel_injection;
 | |
| 	}
 | |
| 
 | |
| 	if (req_immediate_exit) {
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 		static_call(kvm_x86_request_immediate_exit)(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	fpregs_assert_state_consistent();
 | |
| 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
 | |
| 		switch_fpu_return();
 | |
| 
 | |
| 	if (vcpu->arch.guest_fpu.xfd_err)
 | |
| 		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.switch_db_regs)) {
 | |
| 		set_debugreg(0, 7);
 | |
| 		set_debugreg(vcpu->arch.eff_db[0], 0);
 | |
| 		set_debugreg(vcpu->arch.eff_db[1], 1);
 | |
| 		set_debugreg(vcpu->arch.eff_db[2], 2);
 | |
| 		set_debugreg(vcpu->arch.eff_db[3], 3);
 | |
| 	} else if (unlikely(hw_breakpoint_active())) {
 | |
| 		set_debugreg(0, 7);
 | |
| 	}
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
 | |
| 		 * update must kick and wait for all vCPUs before toggling the
 | |
| 		 * per-VM state, and responsing vCPUs must wait for the update
 | |
| 		 * to complete before servicing KVM_REQ_APICV_UPDATE.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
 | |
| 			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
 | |
| 
 | |
| 		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
 | |
| 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
 | |
| 			break;
 | |
| 
 | |
| 		if (kvm_lapic_enabled(vcpu))
 | |
| 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
 | |
| 
 | |
| 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
 | |
| 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do this here before restoring debug registers on the host.  And
 | |
| 	 * since we do this before handling the vmexit, a DR access vmexit
 | |
| 	 * can (a) read the correct value of the debug registers, (b) set
 | |
| 	 * KVM_DEBUGREG_WONT_EXIT again.
 | |
| 	 */
 | |
| 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
 | |
| 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
 | |
| 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
 | |
| 		kvm_update_dr0123(vcpu);
 | |
| 		kvm_update_dr7(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the guest has used debug registers, at least dr7
 | |
| 	 * will be disabled while returning to the host.
 | |
| 	 * If we don't have active breakpoints in the host, we don't
 | |
| 	 * care about the messed up debug address registers. But if
 | |
| 	 * we have some of them active, restore the old state.
 | |
| 	 */
 | |
| 	if (hw_breakpoint_active())
 | |
| 		hw_breakpoint_restore();
 | |
| 
 | |
| 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
 | |
| 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
 | |
| 
 | |
| 	vcpu->mode = OUTSIDE_GUEST_MODE;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Sync xfd before calling handle_exit_irqoff() which may
 | |
| 	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
 | |
| 	 * in #NM irqoff handler).
 | |
| 	 */
 | |
| 	if (vcpu->arch.xfd_no_write_intercept)
 | |
| 		fpu_sync_guest_vmexit_xfd_state();
 | |
| 
 | |
| 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
 | |
| 
 | |
| 	if (vcpu->arch.guest_fpu.xfd_err)
 | |
| 		wrmsrl(MSR_IA32_XFD_ERR, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Consume any pending interrupts, including the possible source of
 | |
| 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
 | |
| 	 * An instruction is required after local_irq_enable() to fully unblock
 | |
| 	 * interrupts on processors that implement an interrupt shadow, the
 | |
| 	 * stat.exits increment will do nicely.
 | |
| 	 */
 | |
| 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
 | |
| 	local_irq_enable();
 | |
| 	++vcpu->stat.exits;
 | |
| 	local_irq_disable();
 | |
| 	kvm_after_interrupt(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until after servicing IRQs to account guest time so that any
 | |
| 	 * ticks that occurred while running the guest are properly accounted
 | |
| 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
 | |
| 	 * of accounting via context tracking, but the loss of accuracy is
 | |
| 	 * acceptable for all known use cases.
 | |
| 	 */
 | |
| 	vtime_account_guest_exit();
 | |
| 
 | |
| 	if (lapic_in_kernel(vcpu)) {
 | |
| 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
 | |
| 		if (delta != S64_MIN) {
 | |
| 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
 | |
| 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	kvm_vcpu_srcu_read_lock(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Profile KVM exit RIPs:
 | |
| 	 */
 | |
| 	if (unlikely(prof_on == KVM_PROFILING)) {
 | |
| 		unsigned long rip = kvm_rip_read(vcpu);
 | |
| 		profile_hit(KVM_PROFILING, (void *)rip);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.tsc_always_catchup))
 | |
| 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 
 | |
| 	if (vcpu->arch.apic_attention)
 | |
| 		kvm_lapic_sync_from_vapic(vcpu);
 | |
| 
 | |
| 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
 | |
| 	return r;
 | |
| 
 | |
| cancel_injection:
 | |
| 	if (req_immediate_exit)
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	static_call(kvm_x86_cancel_injection)(vcpu);
 | |
| 	if (unlikely(vcpu->arch.apic_attention))
 | |
| 		kvm_lapic_sync_from_vapic(vcpu);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /* Called within kvm->srcu read side.  */
 | |
| static inline int vcpu_block(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	bool hv_timer;
 | |
| 
 | |
| 	if (!kvm_arch_vcpu_runnable(vcpu)) {
 | |
| 		/*
 | |
| 		 * Switch to the software timer before halt-polling/blocking as
 | |
| 		 * the guest's timer may be a break event for the vCPU, and the
 | |
| 		 * hypervisor timer runs only when the CPU is in guest mode.
 | |
| 		 * Switch before halt-polling so that KVM recognizes an expired
 | |
| 		 * timer before blocking.
 | |
| 		 */
 | |
| 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
 | |
| 		if (hv_timer)
 | |
| 			kvm_lapic_switch_to_sw_timer(vcpu);
 | |
| 
 | |
| 		kvm_vcpu_srcu_read_unlock(vcpu);
 | |
| 		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
 | |
| 			kvm_vcpu_halt(vcpu);
 | |
| 		else
 | |
| 			kvm_vcpu_block(vcpu);
 | |
| 		kvm_vcpu_srcu_read_lock(vcpu);
 | |
| 
 | |
| 		if (hv_timer)
 | |
| 			kvm_lapic_switch_to_hv_timer(vcpu);
 | |
| 
 | |
| 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_apic_accept_events(vcpu) < 0)
 | |
| 		return 0;
 | |
| 	switch(vcpu->arch.mp_state) {
 | |
| 	case KVM_MP_STATE_HALTED:
 | |
| 	case KVM_MP_STATE_AP_RESET_HOLD:
 | |
| 		vcpu->arch.pv.pv_unhalted = false;
 | |
| 		vcpu->arch.mp_state =
 | |
| 			KVM_MP_STATE_RUNNABLE;
 | |
| 		/* fall through */
 | |
| 	case KVM_MP_STATE_RUNNABLE:
 | |
| 		vcpu->arch.apf.halted = false;
 | |
| 		break;
 | |
| 	case KVM_MP_STATE_INIT_RECEIVED:
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EINTR;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		kvm_check_nested_events(vcpu);
 | |
| 
 | |
| 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
 | |
| 		!vcpu->arch.apf.halted);
 | |
| }
 | |
| 
 | |
| /* Called within kvm->srcu read side.  */
 | |
| static int vcpu_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	vcpu->arch.l1tf_flush_l1d = true;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		/*
 | |
| 		 * If another guest vCPU requests a PV TLB flush in the middle
 | |
| 		 * of instruction emulation, the rest of the emulation could
 | |
| 		 * use a stale page translation. Assume that any code after
 | |
| 		 * this point can start executing an instruction.
 | |
| 		 */
 | |
| 		vcpu->arch.at_instruction_boundary = false;
 | |
| 		if (kvm_vcpu_running(vcpu)) {
 | |
| 			r = vcpu_enter_guest(vcpu);
 | |
| 		} else {
 | |
| 			r = vcpu_block(vcpu);
 | |
| 		}
 | |
| 
 | |
| 		if (r <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
 | |
| 		if (kvm_cpu_has_pending_timer(vcpu))
 | |
| 			kvm_inject_pending_timer_irqs(vcpu);
 | |
| 
 | |
| 		if (dm_request_for_irq_injection(vcpu) &&
 | |
| 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
 | |
| 			r = 0;
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 | |
| 			++vcpu->stat.request_irq_exits;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (signal_pending(current)) {
 | |
| 			r = -EINTR;
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_INTR;
 | |
| 			++vcpu->stat.signal_exits;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (need_resched()) {
 | |
| 			kvm_vcpu_srcu_read_unlock(vcpu);
 | |
| 			cond_resched();
 | |
| 			kvm_vcpu_srcu_read_lock(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
 | |
| }
 | |
| 
 | |
| static int complete_emulated_pio(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	BUG_ON(!vcpu->arch.pio.count);
 | |
| 
 | |
| 	return complete_emulated_io(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Implements the following, as a state machine:
 | |
|  *
 | |
|  * read:
 | |
|  *   for each fragment
 | |
|  *     for each mmio piece in the fragment
 | |
|  *       write gpa, len
 | |
|  *       exit
 | |
|  *       copy data
 | |
|  *   execute insn
 | |
|  *
 | |
|  * write:
 | |
|  *   for each fragment
 | |
|  *     for each mmio piece in the fragment
 | |
|  *       write gpa, len
 | |
|  *       copy data
 | |
|  *       exit
 | |
|  */
 | |
| static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *run = vcpu->run;
 | |
| 	struct kvm_mmio_fragment *frag;
 | |
| 	unsigned len;
 | |
| 
 | |
| 	BUG_ON(!vcpu->mmio_needed);
 | |
| 
 | |
| 	/* Complete previous fragment */
 | |
| 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
 | |
| 	len = min(8u, frag->len);
 | |
| 	if (!vcpu->mmio_is_write)
 | |
| 		memcpy(frag->data, run->mmio.data, len);
 | |
| 
 | |
| 	if (frag->len <= 8) {
 | |
| 		/* Switch to the next fragment. */
 | |
| 		frag++;
 | |
| 		vcpu->mmio_cur_fragment++;
 | |
| 	} else {
 | |
| 		/* Go forward to the next mmio piece. */
 | |
| 		frag->data += len;
 | |
| 		frag->gpa += len;
 | |
| 		frag->len -= len;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
 | |
| 		vcpu->mmio_needed = 0;
 | |
| 
 | |
| 		/* FIXME: return into emulator if single-stepping.  */
 | |
| 		if (vcpu->mmio_is_write)
 | |
| 			return 1;
 | |
| 		vcpu->mmio_read_completed = 1;
 | |
| 		return complete_emulated_io(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	run->exit_reason = KVM_EXIT_MMIO;
 | |
| 	run->mmio.phys_addr = frag->gpa;
 | |
| 	if (vcpu->mmio_is_write)
 | |
| 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
 | |
| 	run->mmio.len = min(8u, frag->len);
 | |
| 	run->mmio.is_write = vcpu->mmio_is_write;
 | |
| 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Swap (qemu) user FPU context for the guest FPU context. */
 | |
| static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
 | |
| 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
 | |
| 	trace_kvm_fpu(1);
 | |
| }
 | |
| 
 | |
| /* When vcpu_run ends, restore user space FPU context. */
 | |
| static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
 | |
| 	++vcpu->stat.fpu_reload;
 | |
| 	trace_kvm_fpu(0);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 	int r;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_sigset_activate(vcpu);
 | |
| 	kvm_run->flags = 0;
 | |
| 	kvm_load_guest_fpu(vcpu);
 | |
| 
 | |
| 	kvm_vcpu_srcu_read_lock(vcpu);
 | |
| 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
 | |
| 		if (kvm_run->immediate_exit) {
 | |
| 			r = -EINTR;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * It should be impossible for the hypervisor timer to be in
 | |
| 		 * use before KVM has ever run the vCPU.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
 | |
| 
 | |
| 		kvm_vcpu_srcu_read_unlock(vcpu);
 | |
| 		kvm_vcpu_block(vcpu);
 | |
| 		kvm_vcpu_srcu_read_lock(vcpu);
 | |
| 
 | |
| 		if (kvm_apic_accept_events(vcpu) < 0) {
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 | |
| 		r = -EAGAIN;
 | |
| 		if (signal_pending(current)) {
 | |
| 			r = -EINTR;
 | |
| 			kvm_run->exit_reason = KVM_EXIT_INTR;
 | |
| 			++vcpu->stat.signal_exits;
 | |
| 		}
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
 | |
| 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
 | |
| 		r = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_run->kvm_dirty_regs) {
 | |
| 		r = sync_regs(vcpu);
 | |
| 		if (r != 0)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* re-sync apic's tpr */
 | |
| 	if (!lapic_in_kernel(vcpu)) {
 | |
| 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
 | |
| 			r = -EINVAL;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.complete_userspace_io)) {
 | |
| 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
 | |
| 		vcpu->arch.complete_userspace_io = NULL;
 | |
| 		r = cui(vcpu);
 | |
| 		if (r <= 0)
 | |
| 			goto out;
 | |
| 	} else
 | |
| 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
 | |
| 
 | |
| 	if (kvm_run->immediate_exit) {
 | |
| 		r = -EINTR;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
 | |
| 	if (r <= 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	r = vcpu_run(vcpu);
 | |
| 
 | |
| out:
 | |
| 	kvm_put_guest_fpu(vcpu);
 | |
| 	if (kvm_run->kvm_valid_regs)
 | |
| 		store_regs(vcpu);
 | |
| 	post_kvm_run_save(vcpu);
 | |
| 	kvm_vcpu_srcu_read_unlock(vcpu);
 | |
| 
 | |
| 	kvm_sigset_deactivate(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
 | |
| 		/*
 | |
| 		 * We are here if userspace calls get_regs() in the middle of
 | |
| 		 * instruction emulation. Registers state needs to be copied
 | |
| 		 * back from emulation context to vcpu. Userspace shouldn't do
 | |
| 		 * that usually, but some bad designed PV devices (vmware
 | |
| 		 * backdoor interface) need this to work
 | |
| 		 */
 | |
| 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
 | |
| 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
 | |
| 	}
 | |
| 	regs->rax = kvm_rax_read(vcpu);
 | |
| 	regs->rbx = kvm_rbx_read(vcpu);
 | |
| 	regs->rcx = kvm_rcx_read(vcpu);
 | |
| 	regs->rdx = kvm_rdx_read(vcpu);
 | |
| 	regs->rsi = kvm_rsi_read(vcpu);
 | |
| 	regs->rdi = kvm_rdi_read(vcpu);
 | |
| 	regs->rsp = kvm_rsp_read(vcpu);
 | |
| 	regs->rbp = kvm_rbp_read(vcpu);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	regs->r8 = kvm_r8_read(vcpu);
 | |
| 	regs->r9 = kvm_r9_read(vcpu);
 | |
| 	regs->r10 = kvm_r10_read(vcpu);
 | |
| 	regs->r11 = kvm_r11_read(vcpu);
 | |
| 	regs->r12 = kvm_r12_read(vcpu);
 | |
| 	regs->r13 = kvm_r13_read(vcpu);
 | |
| 	regs->r14 = kvm_r14_read(vcpu);
 | |
| 	regs->r15 = kvm_r15_read(vcpu);
 | |
| #endif
 | |
| 
 | |
| 	regs->rip = kvm_rip_read(vcpu);
 | |
| 	regs->rflags = kvm_get_rflags(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	__get_regs(vcpu, regs);
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
 | |
| 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
 | |
| 
 | |
| 	kvm_rax_write(vcpu, regs->rax);
 | |
| 	kvm_rbx_write(vcpu, regs->rbx);
 | |
| 	kvm_rcx_write(vcpu, regs->rcx);
 | |
| 	kvm_rdx_write(vcpu, regs->rdx);
 | |
| 	kvm_rsi_write(vcpu, regs->rsi);
 | |
| 	kvm_rdi_write(vcpu, regs->rdi);
 | |
| 	kvm_rsp_write(vcpu, regs->rsp);
 | |
| 	kvm_rbp_write(vcpu, regs->rbp);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	kvm_r8_write(vcpu, regs->r8);
 | |
| 	kvm_r9_write(vcpu, regs->r9);
 | |
| 	kvm_r10_write(vcpu, regs->r10);
 | |
| 	kvm_r11_write(vcpu, regs->r11);
 | |
| 	kvm_r12_write(vcpu, regs->r12);
 | |
| 	kvm_r13_write(vcpu, regs->r13);
 | |
| 	kvm_r14_write(vcpu, regs->r14);
 | |
| 	kvm_r15_write(vcpu, regs->r15);
 | |
| #endif
 | |
| 
 | |
| 	kvm_rip_write(vcpu, regs->rip);
 | |
| 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
 | |
| 
 | |
| 	vcpu->arch.exception.pending = false;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	__set_regs(vcpu, regs);
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
 | |
| {
 | |
| 	struct desc_ptr dt;
 | |
| 
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		goto skip_protected_regs;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
 | |
| 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
 | |
| 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
 | |
| 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
 | |
| 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
 | |
| 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
 | |
| 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	static_call(kvm_x86_get_idt)(vcpu, &dt);
 | |
| 	sregs->idt.limit = dt.size;
 | |
| 	sregs->idt.base = dt.address;
 | |
| 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
 | |
| 	sregs->gdt.limit = dt.size;
 | |
| 	sregs->gdt.base = dt.address;
 | |
| 
 | |
| 	sregs->cr2 = vcpu->arch.cr2;
 | |
| 	sregs->cr3 = kvm_read_cr3(vcpu);
 | |
| 
 | |
| skip_protected_regs:
 | |
| 	sregs->cr0 = kvm_read_cr0(vcpu);
 | |
| 	sregs->cr4 = kvm_read_cr4(vcpu);
 | |
| 	sregs->cr8 = kvm_get_cr8(vcpu);
 | |
| 	sregs->efer = vcpu->arch.efer;
 | |
| 	sregs->apic_base = kvm_get_apic_base(vcpu);
 | |
| }
 | |
| 
 | |
| static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
 | |
| {
 | |
| 	__get_sregs_common(vcpu, sregs);
 | |
| 
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return;
 | |
| 
 | |
| 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
 | |
| 		set_bit(vcpu->arch.interrupt.nr,
 | |
| 			(unsigned long *)sregs->interrupt_bitmap);
 | |
| }
 | |
| 
 | |
| static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
 | |
| 
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return;
 | |
| 
 | |
| 	if (is_pae_paging(vcpu)) {
 | |
| 		for (i = 0 ; i < 4 ; i++)
 | |
| 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
 | |
| 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_sregs *sregs)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	__get_sregs(vcpu, sregs);
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mp_state *mp_state)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 	if (kvm_mpx_supported())
 | |
| 		kvm_load_guest_fpu(vcpu);
 | |
| 
 | |
| 	r = kvm_apic_accept_events(vcpu);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	r = 0;
 | |
| 
 | |
| 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
 | |
| 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
 | |
| 	    vcpu->arch.pv.pv_unhalted)
 | |
| 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 	else
 | |
| 		mp_state->mp_state = vcpu->arch.mp_state;
 | |
| 
 | |
| out:
 | |
| 	if (kvm_mpx_supported())
 | |
| 		kvm_put_guest_fpu(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mp_state *mp_state)
 | |
| {
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	if (!lapic_in_kernel(vcpu) &&
 | |
| 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
 | |
| 	 * forcing the guest into INIT/SIPI if those events are supposed to be
 | |
| 	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
 | |
| 	 * if an SMI is pending as well.
 | |
| 	 */
 | |
| 	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
 | |
| 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
 | |
| 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
 | |
| 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
 | |
| 	} else
 | |
| 		vcpu->arch.mp_state = mp_state->mp_state;
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	vcpu_put(vcpu);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
 | |
| 		    int reason, bool has_error_code, u32 error_code)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 	int ret;
 | |
| 
 | |
| 	init_emulate_ctxt(vcpu);
 | |
| 
 | |
| 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
 | |
| 				   has_error_code, error_code);
 | |
| 	if (ret) {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
 | |
| 		vcpu->run->internal.ndata = 0;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	kvm_rip_write(vcpu, ctxt->eip);
 | |
| 	kvm_set_rflags(vcpu, ctxt->eflags);
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_task_switch);
 | |
| 
 | |
| static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
 | |
| {
 | |
| 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
 | |
| 		/*
 | |
| 		 * When EFER.LME and CR0.PG are set, the processor is in
 | |
| 		 * 64-bit mode (though maybe in a 32-bit code segment).
 | |
| 		 * CR4.PAE and EFER.LMA must be set.
 | |
| 		 */
 | |
| 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
 | |
| 			return false;
 | |
| 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
 | |
| 			return false;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Not in 64-bit mode: EFER.LMA is clear and the code
 | |
| 		 * segment cannot be 64-bit.
 | |
| 		 */
 | |
| 		if (sregs->efer & EFER_LMA || sregs->cs.l)
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return kvm_is_valid_cr4(vcpu, sregs->cr4);
 | |
| }
 | |
| 
 | |
| static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
 | |
| 		int *mmu_reset_needed, bool update_pdptrs)
 | |
| {
 | |
| 	struct msr_data apic_base_msr;
 | |
| 	int idx;
 | |
| 	struct desc_ptr dt;
 | |
| 
 | |
| 	if (!kvm_is_valid_sregs(vcpu, sregs))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	apic_base_msr.data = sregs->apic_base;
 | |
| 	apic_base_msr.host_initiated = true;
 | |
| 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return 0;
 | |
| 
 | |
| 	dt.size = sregs->idt.limit;
 | |
| 	dt.address = sregs->idt.base;
 | |
| 	static_call(kvm_x86_set_idt)(vcpu, &dt);
 | |
| 	dt.size = sregs->gdt.limit;
 | |
| 	dt.address = sregs->gdt.base;
 | |
| 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
 | |
| 
 | |
| 	vcpu->arch.cr2 = sregs->cr2;
 | |
| 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
 | |
| 	vcpu->arch.cr3 = sregs->cr3;
 | |
| 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
 | |
| 	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
 | |
| 
 | |
| 	kvm_set_cr8(vcpu, sregs->cr8);
 | |
| 
 | |
| 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
 | |
| 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
 | |
| 
 | |
| 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
 | |
| 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
 | |
| 	vcpu->arch.cr0 = sregs->cr0;
 | |
| 
 | |
| 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
 | |
| 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
 | |
| 
 | |
| 	if (update_pdptrs) {
 | |
| 		idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 		if (is_pae_paging(vcpu)) {
 | |
| 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
 | |
| 			*mmu_reset_needed = 1;
 | |
| 		}
 | |
| 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	}
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
 | |
| 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
 | |
| 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
 | |
| 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
 | |
| 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
 | |
| 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
 | |
| 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	update_cr8_intercept(vcpu);
 | |
| 
 | |
| 	/* Older userspace won't unhalt the vcpu on reset. */
 | |
| 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
 | |
| 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
 | |
| 	    !is_protmode(vcpu))
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
 | |
| {
 | |
| 	int pending_vec, max_bits;
 | |
| 	int mmu_reset_needed = 0;
 | |
| 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (mmu_reset_needed)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	max_bits = KVM_NR_INTERRUPTS;
 | |
| 	pending_vec = find_first_bit(
 | |
| 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
 | |
| 
 | |
| 	if (pending_vec < max_bits) {
 | |
| 		kvm_queue_interrupt(vcpu, pending_vec, false);
 | |
| 		pr_debug("Set back pending irq %d\n", pending_vec);
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
 | |
| {
 | |
| 	int mmu_reset_needed = 0;
 | |
| 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
 | |
| 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
 | |
| 		!(sregs2->efer & EFER_LMA);
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
 | |
| 				 &mmu_reset_needed, !valid_pdptrs);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (valid_pdptrs) {
 | |
| 		for (i = 0; i < 4 ; i++)
 | |
| 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
 | |
| 
 | |
| 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
 | |
| 		mmu_reset_needed = 1;
 | |
| 		vcpu->arch.pdptrs_from_userspace = true;
 | |
| 	}
 | |
| 	if (mmu_reset_needed)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_sregs *sregs)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 	ret = __set_sregs(vcpu, sregs);
 | |
| 	vcpu_put(vcpu);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
 | |
| {
 | |
| 	bool set = false;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (!enable_apicv)
 | |
| 		return;
 | |
| 
 | |
| 	down_write(&kvm->arch.apicv_update_lock);
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
 | |
| 			set = true;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
 | |
| 	up_write(&kvm->arch.apicv_update_lock);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_guest_debug *dbg)
 | |
| {
 | |
| 	unsigned long rflags;
 | |
| 	int i, r;
 | |
| 
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
 | |
| 		r = -EBUSY;
 | |
| 		if (vcpu->arch.exception.pending)
 | |
| 			goto out;
 | |
| 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
 | |
| 			kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 		else
 | |
| 			kvm_queue_exception(vcpu, BP_VECTOR);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read rflags as long as potentially injected trace flags are still
 | |
| 	 * filtered out.
 | |
| 	 */
 | |
| 	rflags = kvm_get_rflags(vcpu);
 | |
| 
 | |
| 	vcpu->guest_debug = dbg->control;
 | |
| 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
 | |
| 		vcpu->guest_debug = 0;
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
 | |
| 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
 | |
| 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
 | |
| 	} else {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; i++)
 | |
| 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
 | |
| 	}
 | |
| 	kvm_update_dr7(vcpu);
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Trigger an rflags update that will inject or remove the trace
 | |
| 	 * flags.
 | |
| 	 */
 | |
| 	kvm_set_rflags(vcpu, rflags);
 | |
| 
 | |
| 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
 | |
| 
 | |
| 	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
 | |
| 
 | |
| 	r = 0;
 | |
| 
 | |
| out:
 | |
| 	vcpu_put(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Translate a guest virtual address to a guest physical address.
 | |
|  */
 | |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_translation *tr)
 | |
| {
 | |
| 	unsigned long vaddr = tr->linear_address;
 | |
| 	gpa_t gpa;
 | |
| 	int idx;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	tr->physical_address = gpa;
 | |
| 	tr->valid = gpa != UNMAPPED_GVA;
 | |
| 	tr->writeable = 1;
 | |
| 	tr->usermode = 0;
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 | |
| {
 | |
| 	struct fxregs_state *fxsave;
 | |
| 
 | |
| 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
 | |
| 	memcpy(fpu->fpr, fxsave->st_space, 128);
 | |
| 	fpu->fcw = fxsave->cwd;
 | |
| 	fpu->fsw = fxsave->swd;
 | |
| 	fpu->ftwx = fxsave->twd;
 | |
| 	fpu->last_opcode = fxsave->fop;
 | |
| 	fpu->last_ip = fxsave->rip;
 | |
| 	fpu->last_dp = fxsave->rdp;
 | |
| 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 | |
| {
 | |
| 	struct fxregs_state *fxsave;
 | |
| 
 | |
| 	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
 | |
| 
 | |
| 	memcpy(fxsave->st_space, fpu->fpr, 128);
 | |
| 	fxsave->cwd = fpu->fcw;
 | |
| 	fxsave->swd = fpu->fsw;
 | |
| 	fxsave->twd = fpu->ftwx;
 | |
| 	fxsave->fop = fpu->last_opcode;
 | |
| 	fxsave->rip = fpu->last_ip;
 | |
| 	fxsave->rdp = fpu->last_dp;
 | |
| 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void store_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
 | |
| 
 | |
| 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
 | |
| 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
 | |
| 
 | |
| 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
 | |
| 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
 | |
| 
 | |
| 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
 | |
| 		kvm_vcpu_ioctl_x86_get_vcpu_events(
 | |
| 				vcpu, &vcpu->run->s.regs.events);
 | |
| }
 | |
| 
 | |
| static int sync_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
 | |
| 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
 | |
| 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
 | |
| 	}
 | |
| 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
 | |
| 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
 | |
| 			return -EINVAL;
 | |
| 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
 | |
| 	}
 | |
| 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
 | |
| 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
 | |
| 				vcpu, &vcpu->run->s.regs.events))
 | |
| 			return -EINVAL;
 | |
| 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
 | |
| {
 | |
| 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
 | |
| 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
 | |
| 			     "guest TSC will not be reliable\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int r;
 | |
| 
 | |
| 	vcpu->arch.last_vmentry_cpu = -1;
 | |
| 	vcpu->arch.regs_avail = ~0;
 | |
| 	vcpu->arch.regs_dirty = ~0;
 | |
| 
 | |
| 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 	else
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
 | |
| 
 | |
| 	r = kvm_mmu_create(vcpu);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	if (irqchip_in_kernel(vcpu->kvm)) {
 | |
| 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
 | |
| 		if (r < 0)
 | |
| 			goto fail_mmu_destroy;
 | |
| 
 | |
| 		/*
 | |
| 		 * Defer evaluating inhibits until the vCPU is first run, as
 | |
| 		 * this vCPU will not get notified of any changes until this
 | |
| 		 * vCPU is visible to other vCPUs (marked online and added to
 | |
| 		 * the set of vCPUs).  Opportunistically mark APICv active as
 | |
| 		 * VMX in particularly is highly unlikely to have inhibits.
 | |
| 		 * Ignore the current per-VM APICv state so that vCPU creation
 | |
| 		 * is guaranteed to run with a deterministic value, the request
 | |
| 		 * will ensure the vCPU gets the correct state before VM-Entry.
 | |
| 		 */
 | |
| 		if (enable_apicv) {
 | |
| 			vcpu->arch.apicv_active = true;
 | |
| 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
 | |
| 		}
 | |
| 	} else
 | |
| 		static_branch_inc(&kvm_has_noapic_vcpu);
 | |
| 
 | |
| 	r = -ENOMEM;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 | |
| 	if (!page)
 | |
| 		goto fail_free_lapic;
 | |
| 	vcpu->arch.pio_data = page_address(page);
 | |
| 
 | |
| 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
 | |
| 				       GFP_KERNEL_ACCOUNT);
 | |
| 	if (!vcpu->arch.mce_banks)
 | |
| 		goto fail_free_pio_data;
 | |
| 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
 | |
| 				GFP_KERNEL_ACCOUNT))
 | |
| 		goto fail_free_mce_banks;
 | |
| 
 | |
| 	if (!alloc_emulate_ctxt(vcpu))
 | |
| 		goto free_wbinvd_dirty_mask;
 | |
| 
 | |
| 	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
 | |
| 		pr_err("kvm: failed to allocate vcpu's fpu\n");
 | |
| 		goto free_emulate_ctxt;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
 | |
| 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
 | |
| 
 | |
| 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
 | |
| 
 | |
| 	kvm_async_pf_hash_reset(vcpu);
 | |
| 	kvm_pmu_init(vcpu);
 | |
| 
 | |
| 	vcpu->arch.pending_external_vector = -1;
 | |
| 	vcpu->arch.preempted_in_kernel = false;
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HYPERV)
 | |
| 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
 | |
| #endif
 | |
| 
 | |
| 	r = static_call(kvm_x86_vcpu_create)(vcpu);
 | |
| 	if (r)
 | |
| 		goto free_guest_fpu;
 | |
| 
 | |
| 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
 | |
| 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
 | |
| 	kvm_vcpu_mtrr_init(vcpu);
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
 | |
| 	kvm_vcpu_reset(vcpu, false);
 | |
| 	kvm_init_mmu(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| 
 | |
| free_guest_fpu:
 | |
| 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
 | |
| free_emulate_ctxt:
 | |
| 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
 | |
| free_wbinvd_dirty_mask:
 | |
| 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
 | |
| fail_free_mce_banks:
 | |
| 	kfree(vcpu->arch.mce_banks);
 | |
| fail_free_pio_data:
 | |
| 	free_page((unsigned long)vcpu->arch.pio_data);
 | |
| fail_free_lapic:
 | |
| 	kvm_free_lapic(vcpu);
 | |
| fail_mmu_destroy:
 | |
| 	kvm_mmu_destroy(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	if (mutex_lock_killable(&vcpu->mutex))
 | |
| 		return;
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_synchronize_tsc(vcpu, 0);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	/* poll control enabled by default */
 | |
| 	vcpu->arch.msr_kvm_poll_control = 1;
 | |
| 
 | |
| 	mutex_unlock(&vcpu->mutex);
 | |
| 
 | |
| 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
 | |
| 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
 | |
| 						KVMCLOCK_SYNC_PERIOD);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	kvmclock_reset(vcpu);
 | |
| 
 | |
| 	static_call(kvm_x86_vcpu_free)(vcpu);
 | |
| 
 | |
| 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
 | |
| 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
 | |
| 	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
 | |
| 
 | |
| 	kvm_hv_vcpu_uninit(vcpu);
 | |
| 	kvm_pmu_destroy(vcpu);
 | |
| 	kfree(vcpu->arch.mce_banks);
 | |
| 	kvm_free_lapic(vcpu);
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 	kvm_mmu_destroy(vcpu);
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	free_page((unsigned long)vcpu->arch.pio_data);
 | |
| 	kvfree(vcpu->arch.cpuid_entries);
 | |
| 	if (!lapic_in_kernel(vcpu))
 | |
| 		static_branch_dec(&kvm_has_noapic_vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *cpuid_0x1;
 | |
| 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
 | |
| 	unsigned long new_cr0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
 | |
| 	 * to handle side effects.  RESET emulation hits those flows and relies
 | |
| 	 * on emulated/virtualized registers, including those that are loaded
 | |
| 	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
 | |
| 	 * to detect improper or missing initialization.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(!init_event &&
 | |
| 		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
 | |
| 
 | |
| 	kvm_lapic_reset(vcpu, init_event);
 | |
| 
 | |
| 	vcpu->arch.hflags = 0;
 | |
| 
 | |
| 	vcpu->arch.smi_pending = 0;
 | |
| 	vcpu->arch.smi_count = 0;
 | |
| 	atomic_set(&vcpu->arch.nmi_queued, 0);
 | |
| 	vcpu->arch.nmi_pending = 0;
 | |
| 	vcpu->arch.nmi_injected = false;
 | |
| 	kvm_clear_interrupt_queue(vcpu);
 | |
| 	kvm_clear_exception_queue(vcpu);
 | |
| 
 | |
| 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
 | |
| 	kvm_update_dr0123(vcpu);
 | |
| 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
 | |
| 	vcpu->arch.dr7 = DR7_FIXED_1;
 | |
| 	kvm_update_dr7(vcpu);
 | |
| 
 | |
| 	vcpu->arch.cr2 = 0;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	vcpu->arch.apf.msr_en_val = 0;
 | |
| 	vcpu->arch.apf.msr_int_val = 0;
 | |
| 	vcpu->arch.st.msr_val = 0;
 | |
| 
 | |
| 	kvmclock_reset(vcpu);
 | |
| 
 | |
| 	kvm_clear_async_pf_completion_queue(vcpu);
 | |
| 	kvm_async_pf_hash_reset(vcpu);
 | |
| 	vcpu->arch.apf.halted = false;
 | |
| 
 | |
| 	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
 | |
| 		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
 | |
| 
 | |
| 		/*
 | |
| 		 * To avoid have the INIT path from kvm_apic_has_events() that be
 | |
| 		 * called with loaded FPU and does not let userspace fix the state.
 | |
| 		 */
 | |
| 		if (init_event)
 | |
| 			kvm_put_guest_fpu(vcpu);
 | |
| 
 | |
| 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
 | |
| 		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
 | |
| 
 | |
| 		if (init_event)
 | |
| 			kvm_load_guest_fpu(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (!init_event) {
 | |
| 		kvm_pmu_reset(vcpu);
 | |
| 		vcpu->arch.smbase = 0x30000;
 | |
| 
 | |
| 		vcpu->arch.msr_misc_features_enables = 0;
 | |
| 
 | |
| 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
 | |
| 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
 | |
| 	}
 | |
| 
 | |
| 	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
 | |
| 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
 | |
| 	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
 | |
| 	 * if no CPUID match is found.  Note, it's impossible to get a match at
 | |
| 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
 | |
| 	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
 | |
| 	 * on RESET.  But, go through the motions in case that's ever remedied.
 | |
| 	 */
 | |
| 	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
 | |
| 	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
 | |
| 
 | |
| 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
 | |
| 
 | |
| 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
 | |
| 	kvm_rip_write(vcpu, 0xfff0);
 | |
| 
 | |
| 	vcpu->arch.cr3 = 0;
 | |
| 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
 | |
| 
 | |
| 	/*
 | |
| 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
 | |
| 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
 | |
| 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
 | |
| 	 */
 | |
| 	new_cr0 = X86_CR0_ET;
 | |
| 	if (init_event)
 | |
| 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
 | |
| 	else
 | |
| 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
 | |
| 
 | |
| 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
 | |
| 	static_call(kvm_x86_set_cr4)(vcpu, 0);
 | |
| 	static_call(kvm_x86_set_efer)(vcpu, 0);
 | |
| 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * On the standard CR0/CR4/EFER modification paths, there are several
 | |
| 	 * complex conditions determining whether the MMU has to be reset and/or
 | |
| 	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
 | |
| 	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
 | |
| 	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
 | |
| 	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
 | |
| 	 */
 | |
| 	if (old_cr0 & X86_CR0_PG) {
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
 | |
| 	 * APM states the TLBs are untouched by INIT, but it also states that
 | |
| 	 * the TLBs are flushed on "External initialization of the processor."
 | |
| 	 * Flush the guest TLB regardless of vendor, there is no meaningful
 | |
| 	 * benefit in relying on the guest to flush the TLB immediately after
 | |
| 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
 | |
| 	 * performance perspective.
 | |
| 	 */
 | |
| 	if (init_event)
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
 | |
| 
 | |
| void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
 | |
| {
 | |
| 	struct kvm_segment cs;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	cs.selector = vector << 8;
 | |
| 	cs.base = vector << 12;
 | |
| 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	kvm_rip_write(vcpu, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
 | |
| 
 | |
| int kvm_arch_hardware_enable(void)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 	int ret;
 | |
| 	u64 local_tsc;
 | |
| 	u64 max_tsc = 0;
 | |
| 	bool stable, backwards_tsc = false;
 | |
| 
 | |
| 	kvm_user_return_msr_cpu_online();
 | |
| 	ret = static_call(kvm_x86_hardware_enable)();
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	local_tsc = rdtsc();
 | |
| 	stable = !kvm_check_tsc_unstable();
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 			if (!stable && vcpu->cpu == smp_processor_id())
 | |
| 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
 | |
| 				backwards_tsc = true;
 | |
| 				if (vcpu->arch.last_host_tsc > max_tsc)
 | |
| 					max_tsc = vcpu->arch.last_host_tsc;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sometimes, even reliable TSCs go backwards.  This happens on
 | |
| 	 * platforms that reset TSC during suspend or hibernate actions, but
 | |
| 	 * maintain synchronization.  We must compensate.  Fortunately, we can
 | |
| 	 * detect that condition here, which happens early in CPU bringup,
 | |
| 	 * before any KVM threads can be running.  Unfortunately, we can't
 | |
| 	 * bring the TSCs fully up to date with real time, as we aren't yet far
 | |
| 	 * enough into CPU bringup that we know how much real time has actually
 | |
| 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
 | |
| 	 * variables that haven't been updated yet.
 | |
| 	 *
 | |
| 	 * So we simply find the maximum observed TSC above, then record the
 | |
| 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
 | |
| 	 * the adjustment will be applied.  Note that we accumulate
 | |
| 	 * adjustments, in case multiple suspend cycles happen before some VCPU
 | |
| 	 * gets a chance to run again.  In the event that no KVM threads get a
 | |
| 	 * chance to run, we will miss the entire elapsed period, as we'll have
 | |
| 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
 | |
| 	 * loose cycle time.  This isn't too big a deal, since the loss will be
 | |
| 	 * uniform across all VCPUs (not to mention the scenario is extremely
 | |
| 	 * unlikely). It is possible that a second hibernate recovery happens
 | |
| 	 * much faster than a first, causing the observed TSC here to be
 | |
| 	 * smaller; this would require additional padding adjustment, which is
 | |
| 	 * why we set last_host_tsc to the local tsc observed here.
 | |
| 	 *
 | |
| 	 * N.B. - this code below runs only on platforms with reliable TSC,
 | |
| 	 * as that is the only way backwards_tsc is set above.  Also note
 | |
| 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
 | |
| 	 * have the same delta_cyc adjustment applied if backwards_tsc
 | |
| 	 * is detected.  Note further, this adjustment is only done once,
 | |
| 	 * as we reset last_host_tsc on all VCPUs to stop this from being
 | |
| 	 * called multiple times (one for each physical CPU bringup).
 | |
| 	 *
 | |
| 	 * Platforms with unreliable TSCs don't have to deal with this, they
 | |
| 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
 | |
| 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
 | |
| 	 * guarantee that they stay in perfect synchronization.
 | |
| 	 */
 | |
| 	if (backwards_tsc) {
 | |
| 		u64 delta_cyc = max_tsc - local_tsc;
 | |
| 		list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 			kvm->arch.backwards_tsc_observed = true;
 | |
| 			kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
 | |
| 				vcpu->arch.last_host_tsc = local_tsc;
 | |
| 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We have to disable TSC offset matching.. if you were
 | |
| 			 * booting a VM while issuing an S4 host suspend....
 | |
| 			 * you may have some problem.  Solving this issue is
 | |
| 			 * left as an exercise to the reader.
 | |
| 			 */
 | |
| 			kvm->arch.last_tsc_nsec = 0;
 | |
| 			kvm->arch.last_tsc_write = 0;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_disable(void)
 | |
| {
 | |
| 	static_call(kvm_x86_hardware_disable)();
 | |
| 	drop_user_return_notifiers();
 | |
| }
 | |
| 
 | |
| int kvm_arch_hardware_setup(void *opaque)
 | |
| {
 | |
| 	struct kvm_x86_init_ops *ops = opaque;
 | |
| 	int r;
 | |
| 
 | |
| 	rdmsrl_safe(MSR_EFER, &host_efer);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_XSAVES))
 | |
| 		rdmsrl(MSR_IA32_XSS, host_xss);
 | |
| 
 | |
| 	r = ops->hardware_setup();
 | |
| 	if (r != 0)
 | |
| 		return r;
 | |
| 
 | |
| 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
 | |
| 	kvm_ops_static_call_update();
 | |
| 
 | |
| 	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
 | |
| 
 | |
| 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
 | |
| 		supported_xss = 0;
 | |
| 
 | |
| #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
 | |
| 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
 | |
| #undef __kvm_cpu_cap_has
 | |
| 
 | |
| 	if (kvm_has_tsc_control) {
 | |
| 		/*
 | |
| 		 * Make sure the user can only configure tsc_khz values that
 | |
| 		 * fit into a signed integer.
 | |
| 		 * A min value is not calculated because it will always
 | |
| 		 * be 1 on all machines.
 | |
| 		 */
 | |
| 		u64 max = min(0x7fffffffULL,
 | |
| 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
 | |
| 		kvm_max_guest_tsc_khz = max;
 | |
| 	}
 | |
| 	kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
 | |
| 	kvm_init_msr_list();
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_unsetup(void)
 | |
| {
 | |
| 	kvm_unregister_perf_callbacks();
 | |
| 
 | |
| 	static_call(kvm_x86_hardware_unsetup)();
 | |
| }
 | |
| 
 | |
| int kvm_arch_check_processor_compat(void *opaque)
 | |
| {
 | |
| 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
 | |
| 	struct kvm_x86_init_ops *ops = opaque;
 | |
| 
 | |
| 	WARN_ON(!irqs_disabled());
 | |
| 
 | |
| 	if (__cr4_reserved_bits(cpu_has, c) !=
 | |
| 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return ops->check_processor_compatibility();
 | |
| }
 | |
| 
 | |
| bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
 | |
| 
 | |
| bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
 | |
| }
 | |
| 
 | |
| __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
 | |
| EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
 | |
| 
 | |
| void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
 | |
| 
 | |
| 	vcpu->arch.l1tf_flush_l1d = true;
 | |
| 	if (pmu->version && unlikely(pmu->event_count)) {
 | |
| 		pmu->need_cleanup = true;
 | |
| 		kvm_make_request(KVM_REQ_PMU, vcpu);
 | |
| 	}
 | |
| 	static_call(kvm_x86_sched_in)(vcpu, cpu);
 | |
| }
 | |
| 
 | |
| void kvm_arch_free_vm(struct kvm *kvm)
 | |
| {
 | |
| 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
 | |
| 	__kvm_arch_free_vm(kvm);
 | |
| }
 | |
| 
 | |
| 
 | |
| int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (type)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = kvm_page_track_init(kvm);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = kvm_mmu_init_vm(kvm);
 | |
| 	if (ret)
 | |
| 		goto out_page_track;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
 | |
| 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
 | |
| 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
 | |
| 
 | |
| 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
 | |
| 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
 | |
| 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
 | |
| 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
 | |
| 		&kvm->arch.irq_sources_bitmap);
 | |
| 
 | |
| 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
 | |
| 	mutex_init(&kvm->arch.apic_map_lock);
 | |
| 	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
 | |
| 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
 | |
| 
 | |
| 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
 | |
| 	pvclock_update_vm_gtod_copy(kvm);
 | |
| 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
 | |
| 
 | |
| 	kvm->arch.guest_can_read_msr_platform_info = true;
 | |
| 	kvm->arch.enable_pmu = enable_pmu;
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_HYPERV)
 | |
| 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
 | |
| 	kvm->arch.hv_root_tdp = INVALID_PAGE;
 | |
| #endif
 | |
| 
 | |
| 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
 | |
| 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
 | |
| 
 | |
| 	kvm_apicv_init(kvm);
 | |
| 	kvm_hv_init_vm(kvm);
 | |
| 	kvm_xen_init_vm(kvm);
 | |
| 
 | |
| 	return static_call(kvm_x86_vm_init)(kvm);
 | |
| 
 | |
| out_page_track:
 | |
| 	kvm_page_track_cleanup(kvm);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arch_post_init_vm(struct kvm *kvm)
 | |
| {
 | |
| 	return kvm_mmu_post_init_vm(kvm);
 | |
| }
 | |
| 
 | |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_unload_vcpu_mmus(struct kvm *kvm)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		kvm_clear_async_pf_completion_queue(vcpu);
 | |
| 		kvm_unload_vcpu_mmu(vcpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_arch_sync_events(struct kvm *kvm)
 | |
| {
 | |
| 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
 | |
| 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
 | |
| 	kvm_free_pit(kvm);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __x86_set_memory_region: Setup KVM internal memory slot
 | |
|  *
 | |
|  * @kvm: the kvm pointer to the VM.
 | |
|  * @id: the slot ID to setup.
 | |
|  * @gpa: the GPA to install the slot (unused when @size == 0).
 | |
|  * @size: the size of the slot. Set to zero to uninstall a slot.
 | |
|  *
 | |
|  * This function helps to setup a KVM internal memory slot.  Specify
 | |
|  * @size > 0 to install a new slot, while @size == 0 to uninstall a
 | |
|  * slot.  The return code can be one of the following:
 | |
|  *
 | |
|  *   HVA:           on success (uninstall will return a bogus HVA)
 | |
|  *   -errno:        on error
 | |
|  *
 | |
|  * The caller should always use IS_ERR() to check the return value
 | |
|  * before use.  Note, the KVM internal memory slots are guaranteed to
 | |
|  * remain valid and unchanged until the VM is destroyed, i.e., the
 | |
|  * GPA->HVA translation will not change.  However, the HVA is a user
 | |
|  * address, i.e. its accessibility is not guaranteed, and must be
 | |
|  * accessed via __copy_{to,from}_user().
 | |
|  */
 | |
| void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
 | |
| 				      u32 size)
 | |
| {
 | |
| 	int i, r;
 | |
| 	unsigned long hva, uninitialized_var(old_npages);
 | |
| 	struct kvm_memslots *slots = kvm_memslots(kvm);
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	/* Called with kvm->slots_lock held.  */
 | |
| 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
 | |
| 		return ERR_PTR_USR(-EINVAL);
 | |
| 
 | |
| 	slot = id_to_memslot(slots, id);
 | |
| 	if (size) {
 | |
| 		if (slot && slot->npages)
 | |
| 			return ERR_PTR_USR(-EEXIST);
 | |
| 
 | |
| 		/*
 | |
| 		 * MAP_SHARED to prevent internal slot pages from being moved
 | |
| 		 * by fork()/COW.
 | |
| 		 */
 | |
| 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
 | |
| 			      MAP_SHARED | MAP_ANONYMOUS, 0);
 | |
| 		if (IS_ERR((void *)hva))
 | |
| 			return (void __user *)hva;
 | |
| 	} else {
 | |
| 		if (!slot || !slot->npages)
 | |
| 			return NULL;
 | |
| 
 | |
| 		old_npages = slot->npages;
 | |
| 		hva = slot->userspace_addr;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 | |
| 		struct kvm_userspace_memory_region m;
 | |
| 
 | |
| 		m.slot = id | (i << 16);
 | |
| 		m.flags = 0;
 | |
| 		m.guest_phys_addr = gpa;
 | |
| 		m.userspace_addr = hva;
 | |
| 		m.memory_size = size;
 | |
| 		r = __kvm_set_memory_region(kvm, &m);
 | |
| 		if (r < 0)
 | |
| 			return ERR_PTR_USR(r);
 | |
| 	}
 | |
| 
 | |
| 	if (!size)
 | |
| 		vm_munmap(hva, old_npages * PAGE_SIZE);
 | |
| 
 | |
| 	return (void __user *)hva;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__x86_set_memory_region);
 | |
| 
 | |
| void kvm_arch_pre_destroy_vm(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_mmu_pre_destroy_vm(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_destroy_vm(struct kvm *kvm)
 | |
| {
 | |
| 	if (current->mm == kvm->mm) {
 | |
| 		/*
 | |
| 		 * Free memory regions allocated on behalf of userspace,
 | |
| 		 * unless the the memory map has changed due to process exit
 | |
| 		 * or fd copying.
 | |
| 		 */
 | |
| 		mutex_lock(&kvm->slots_lock);
 | |
| 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
 | |
| 					0, 0);
 | |
| 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
 | |
| 					0, 0);
 | |
| 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
 | |
| 		mutex_unlock(&kvm->slots_lock);
 | |
| 	}
 | |
| 	kvm_unload_vcpu_mmus(kvm);
 | |
| 	static_call_cond(kvm_x86_vm_destroy)(kvm);
 | |
| 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
 | |
| 	kvm_pic_destroy(kvm);
 | |
| 	kvm_ioapic_destroy(kvm);
 | |
| 	kvm_destroy_vcpus(kvm);
 | |
| 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
 | |
| 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
 | |
| 	kvm_mmu_uninit_vm(kvm);
 | |
| 	kvm_page_track_cleanup(kvm);
 | |
| 	kvm_xen_destroy_vm(kvm);
 | |
| 	kvm_hv_destroy_vm(kvm);
 | |
| }
 | |
| 
 | |
| static void memslot_rmap_free(struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		kvfree(slot->arch.rmap[i]);
 | |
| 		slot->arch.rmap[i] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	memslot_rmap_free(slot);
 | |
| 
 | |
| 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		kvfree(slot->arch.lpage_info[i - 1]);
 | |
| 		slot->arch.lpage_info[i - 1] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kvm_page_track_free_memslot(slot);
 | |
| }
 | |
| 
 | |
| int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
 | |
| {
 | |
| 	const int sz = sizeof(*slot->arch.rmap[0]);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		int level = i + 1;
 | |
| 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
 | |
| 
 | |
| 		if (slot->arch.rmap[i])
 | |
| 			continue;
 | |
| 
 | |
| 		slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
 | |
| 		if (!slot->arch.rmap[i]) {
 | |
| 			memslot_rmap_free(slot);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_alloc_memslot_metadata(struct kvm *kvm,
 | |
| 				      struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	unsigned long npages = slot->npages;
 | |
| 	int i, r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
 | |
| 	 * old arrays will be freed by __kvm_set_memory_region() if installing
 | |
| 	 * the new memslot is successful.
 | |
| 	 */
 | |
| 	memset(&slot->arch, 0, sizeof(slot->arch));
 | |
| 
 | |
| 	if (kvm_memslots_have_rmaps(kvm)) {
 | |
| 		r = memslot_rmap_alloc(slot, npages);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		struct kvm_lpage_info *linfo;
 | |
| 		unsigned long ugfn;
 | |
| 		int lpages;
 | |
| 		int level = i + 1;
 | |
| 
 | |
| 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
 | |
| 
 | |
| 		linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
 | |
| 		if (!linfo)
 | |
| 			goto out_free;
 | |
| 
 | |
| 		slot->arch.lpage_info[i - 1] = linfo;
 | |
| 
 | |
| 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
 | |
| 			linfo[0].disallow_lpage = 1;
 | |
| 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
 | |
| 			linfo[lpages - 1].disallow_lpage = 1;
 | |
| 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
 | |
| 		/*
 | |
| 		 * If the gfn and userspace address are not aligned wrt each
 | |
| 		 * other, disable large page support for this slot.
 | |
| 		 */
 | |
| 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
 | |
| 			unsigned long j;
 | |
| 
 | |
| 			for (j = 0; j < lpages; ++j)
 | |
| 				linfo[j].disallow_lpage = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_page_track_create_memslot(kvm, slot, npages))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free:
 | |
| 	memslot_rmap_free(slot);
 | |
| 
 | |
| 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		kvfree(slot->arch.lpage_info[i - 1]);
 | |
| 		slot->arch.lpage_info[i - 1] = NULL;
 | |
| 	}
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	/*
 | |
| 	 * memslots->generation has been incremented.
 | |
| 	 * mmio generation may have reached its maximum value.
 | |
| 	 */
 | |
| 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
 | |
| 
 | |
| 	/* Force re-initialization of steal_time cache */
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_arch_prepare_memory_region(struct kvm *kvm,
 | |
| 				   const struct kvm_memory_slot *old,
 | |
| 				   struct kvm_memory_slot *new,
 | |
| 				   enum kvm_mr_change change)
 | |
| {
 | |
| 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
 | |
| 		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		return kvm_alloc_memslot_metadata(kvm, new);
 | |
| 	}
 | |
| 
 | |
| 	if (change == KVM_MR_FLAGS_ONLY)
 | |
| 		memcpy(&new->arch, &old->arch, sizeof(old->arch));
 | |
| 	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
 | |
| {
 | |
| 	struct kvm_arch *ka = &kvm->arch;
 | |
| 
 | |
| 	if (!kvm_x86_ops.cpu_dirty_log_size)
 | |
| 		return;
 | |
| 
 | |
| 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
 | |
| 	    (!enable && --ka->cpu_dirty_logging_count == 0))
 | |
| 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
 | |
| 
 | |
| 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
 | |
| 				     struct kvm_memory_slot *old,
 | |
| 				     const struct kvm_memory_slot *new,
 | |
| 				     enum kvm_mr_change change)
 | |
| {
 | |
| 	u32 old_flags = old ? old->flags : 0;
 | |
| 	u32 new_flags = new ? new->flags : 0;
 | |
| 	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
 | |
| 
 | |
| 	/*
 | |
| 	 * Update CPU dirty logging if dirty logging is being toggled.  This
 | |
| 	 * applies to all operations.
 | |
| 	 */
 | |
| 	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
 | |
| 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
 | |
| 	 * made writable) or CREATE/MOVE/DELETE of a slot.
 | |
| 	 *
 | |
| 	 * For a memslot with dirty logging disabled:
 | |
| 	 * CREATE:      No dirty mappings will already exist.
 | |
| 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
 | |
| 	 *		kvm_arch_flush_shadow_memslot()
 | |
| 	 *
 | |
| 	 * For a memslot with dirty logging enabled:
 | |
| 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
 | |
| 	 *		and no dirty bits to clear.
 | |
| 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
 | |
| 	 *		kvm_arch_flush_shadow_memslot().
 | |
| 	 */
 | |
| 	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * READONLY and non-flags changes were filtered out above, and the only
 | |
| 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
 | |
| 	 * logging isn't being toggled on or off.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
 | |
| 		return;
 | |
| 
 | |
| 	if (!log_dirty_pages) {
 | |
| 		/*
 | |
| 		 * Dirty logging tracks sptes in 4k granularity, meaning that
 | |
| 		 * large sptes have to be split.  If live migration succeeds,
 | |
| 		 * the guest in the source machine will be destroyed and large
 | |
| 		 * sptes will be created in the destination.  However, if the
 | |
| 		 * guest continues to run in the source machine (for example if
 | |
| 		 * live migration fails), small sptes will remain around and
 | |
| 		 * cause bad performance.
 | |
| 		 *
 | |
| 		 * Scan sptes if dirty logging has been stopped, dropping those
 | |
| 		 * which can be collapsed into a single large-page spte.  Later
 | |
| 		 * page faults will create the large-page sptes.
 | |
| 		 */
 | |
| 		kvm_mmu_zap_collapsible_sptes(kvm, new);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Initially-all-set does not require write protecting any page,
 | |
| 		 * because they're all assumed to be dirty.
 | |
| 		 */
 | |
| 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
 | |
| 			return;
 | |
| 
 | |
| 		if (READ_ONCE(eager_page_split))
 | |
| 			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
 | |
| 
 | |
| 		if (kvm_x86_ops.cpu_dirty_log_size) {
 | |
| 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
 | |
| 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
 | |
| 		} else {
 | |
| 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_arch_commit_memory_region(struct kvm *kvm,
 | |
| 				struct kvm_memory_slot *old,
 | |
| 				const struct kvm_memory_slot *new,
 | |
| 				enum kvm_mr_change change)
 | |
| {
 | |
| 	if (!kvm->arch.n_requested_mmu_pages &&
 | |
| 	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
 | |
| 		unsigned long nr_mmu_pages;
 | |
| 
 | |
| 		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
 | |
| 		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
 | |
| 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
 | |
| 
 | |
| 	/* Free the arrays associated with the old memslot. */
 | |
| 	if (change == KVM_MR_MOVE)
 | |
| 		kvm_arch_free_memslot(kvm, old);
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow_all(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_mmu_zap_all(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 | |
| 				   struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	kvm_page_track_flush_slot(kvm, slot);
 | |
| }
 | |
| 
 | |
| static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return (is_guest_mode(vcpu) &&
 | |
| 			kvm_x86_ops.guest_apic_has_interrupt &&
 | |
| 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
 | |
| }
 | |
| 
 | |
| static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!list_empty_careful(&vcpu->async_pf.done))
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_apic_has_events(vcpu))
 | |
| 		return true;
 | |
| 
 | |
| 	if (vcpu->arch.pv.pv_unhalted)
 | |
| 		return true;
 | |
| 
 | |
| 	if (vcpu->arch.exception.pending)
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
 | |
| 	    (vcpu->arch.nmi_pending &&
 | |
| 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
 | |
| 	    (vcpu->arch.smi_pending &&
 | |
| 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_arch_interrupt_allowed(vcpu) &&
 | |
| 	    (kvm_cpu_has_interrupt(vcpu) ||
 | |
| 	    kvm_guest_apic_has_interrupt(vcpu)))
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_hv_has_stimer_pending(vcpu))
 | |
| 		return true;
 | |
| 
 | |
| 	if (is_guest_mode(vcpu) &&
 | |
| 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
 | |
| 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
 | |
| }
 | |
| 
 | |
| bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
 | |
| 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
 | |
| 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
 | |
| 		return true;
 | |
| 
 | |
| 	return kvm_arch_dy_has_pending_interrupt(vcpu);
 | |
| }
 | |
| 
 | |
| bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return true;
 | |
| 
 | |
| 	return vcpu->arch.preempted_in_kernel;
 | |
| }
 | |
| 
 | |
| unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_rip_read(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
 | |
| }
 | |
| 
 | |
| int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
 | |
| }
 | |
| 
 | |
| unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Can't read the RIP when guest state is protected, just return 0 */
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (is_64_bit_mode(vcpu))
 | |
| 		return kvm_rip_read(vcpu);
 | |
| 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
 | |
| 		     kvm_rip_read(vcpu));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
 | |
| 
 | |
| bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
 | |
| {
 | |
| 	return kvm_get_linear_rip(vcpu) == linear_rip;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
 | |
| 
 | |
| unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long rflags;
 | |
| 
 | |
| 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		rflags &= ~X86_EFLAGS_TF;
 | |
| 	return rflags;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_rflags);
 | |
| 
 | |
| static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 | |
| {
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
 | |
| 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
 | |
| 		rflags |= X86_EFLAGS_TF;
 | |
| 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
 | |
| }
 | |
| 
 | |
| void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 | |
| {
 | |
| 	__kvm_set_rflags(vcpu, rflags);
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_rflags);
 | |
| 
 | |
| void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
 | |
| 	      work->wakeup_all)
 | |
| 		return;
 | |
| 
 | |
| 	r = kvm_mmu_reload(vcpu);
 | |
| 	if (unlikely(r))
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.mmu->direct_map &&
 | |
| 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
 | |
| }
 | |
| 
 | |
| static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
 | |
| {
 | |
| 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
 | |
| 
 | |
| 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
 | |
| }
 | |
| 
 | |
| static inline u32 kvm_async_pf_next_probe(u32 key)
 | |
| {
 | |
| 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
 | |
| }
 | |
| 
 | |
| static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	u32 key = kvm_async_pf_hash_fn(gfn);
 | |
| 
 | |
| 	while (vcpu->arch.apf.gfns[key] != ~0)
 | |
| 		key = kvm_async_pf_next_probe(key);
 | |
| 
 | |
| 	vcpu->arch.apf.gfns[key] = gfn;
 | |
| }
 | |
| 
 | |
| static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 key = kvm_async_pf_hash_fn(gfn);
 | |
| 
 | |
| 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
 | |
| 		     (vcpu->arch.apf.gfns[key] != gfn &&
 | |
| 		      vcpu->arch.apf.gfns[key] != ~0); i++)
 | |
| 		key = kvm_async_pf_next_probe(key);
 | |
| 
 | |
| 	return key;
 | |
| }
 | |
| 
 | |
| bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
 | |
| }
 | |
| 
 | |
| static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	u32 i, j, k;
 | |
| 
 | |
| 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
 | |
| 		return;
 | |
| 
 | |
| 	while (true) {
 | |
| 		vcpu->arch.apf.gfns[i] = ~0;
 | |
| 		do {
 | |
| 			j = kvm_async_pf_next_probe(j);
 | |
| 			if (vcpu->arch.apf.gfns[j] == ~0)
 | |
| 				return;
 | |
| 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
 | |
| 			/*
 | |
| 			 * k lies cyclically in ]i,j]
 | |
| 			 * |    i.k.j |
 | |
| 			 * |....j i.k.| or  |.k..j i...|
 | |
| 			 */
 | |
| 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
 | |
| 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
 | |
| 		i = j;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
 | |
| 
 | |
| 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
 | |
| 				      sizeof(reason));
 | |
| }
 | |
| 
 | |
| static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
 | |
| {
 | |
| 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
 | |
| 
 | |
| 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
 | |
| 					     &token, offset, sizeof(token));
 | |
| }
 | |
| 
 | |
| static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
 | |
| 					 &val, offset, sizeof(val)))
 | |
| 		return false;
 | |
| 
 | |
| 	return !val;
 | |
| }
 | |
| 
 | |
| static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 
 | |
| 	if (!kvm_pv_async_pf_enabled(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (vcpu->arch.apf.send_user_only &&
 | |
| 	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
 | |
| 		return false;
 | |
| 
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		/*
 | |
| 		 * L1 needs to opt into the special #PF vmexits that are
 | |
| 		 * used to deliver async page faults.
 | |
| 		 */
 | |
| 		return vcpu->arch.apf.delivery_as_pf_vmexit;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Play it safe in case the guest temporarily disables paging.
 | |
| 		 * The real mode IDT in particular is unlikely to have a #PF
 | |
| 		 * exception setup.
 | |
| 		 */
 | |
| 		return is_paging(vcpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (unlikely(!lapic_in_kernel(vcpu) ||
 | |
| 		     kvm_event_needs_reinjection(vcpu) ||
 | |
| 		     vcpu->arch.exception.pending))
 | |
| 		return false;
 | |
| 
 | |
| 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If interrupts are off we cannot even use an artificial
 | |
| 	 * halt state.
 | |
| 	 */
 | |
| 	return kvm_arch_interrupt_allowed(vcpu);
 | |
| }
 | |
| 
 | |
| bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
 | |
| 				     struct kvm_async_pf *work)
 | |
| {
 | |
| 	struct x86_exception fault;
 | |
| 
 | |
| 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
 | |
| 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
 | |
| 
 | |
| 	if (kvm_can_deliver_async_pf(vcpu) &&
 | |
| 	    !apf_put_user_notpresent(vcpu)) {
 | |
| 		fault.vector = PF_VECTOR;
 | |
| 		fault.error_code_valid = true;
 | |
| 		fault.error_code = 0;
 | |
| 		fault.nested_page_fault = false;
 | |
| 		fault.address = work->arch.token;
 | |
| 		fault.async_page_fault = true;
 | |
| 		kvm_inject_page_fault(vcpu, &fault);
 | |
| 		return true;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * It is not possible to deliver a paravirtualized asynchronous
 | |
| 		 * page fault, but putting the guest in an artificial halt state
 | |
| 		 * can be beneficial nevertheless: if an interrupt arrives, we
 | |
| 		 * can deliver it timely and perhaps the guest will schedule
 | |
| 		 * another process.  When the instruction that triggered a page
 | |
| 		 * fault is retried, hopefully the page will be ready in the host.
 | |
| 		 */
 | |
| 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
 | |
| 				 struct kvm_async_pf *work)
 | |
| {
 | |
| 	struct kvm_lapic_irq irq = {
 | |
| 		.delivery_mode = APIC_DM_FIXED,
 | |
| 		.vector = vcpu->arch.apf.vec
 | |
| 	};
 | |
| 
 | |
| 	if (work->wakeup_all)
 | |
| 		work->arch.token = ~0; /* broadcast wakeup */
 | |
| 	else
 | |
| 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
 | |
| 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
 | |
| 
 | |
| 	if ((work->wakeup_all || work->notpresent_injected) &&
 | |
| 	    kvm_pv_async_pf_enabled(vcpu) &&
 | |
| 	    !apf_put_user_ready(vcpu, work->arch.token)) {
 | |
| 		vcpu->arch.apf.pageready_pending = true;
 | |
| 		kvm_apic_set_irq(vcpu, &irq, NULL);
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.apf.halted = false;
 | |
| 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| }
 | |
| 
 | |
| void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
 | |
| 	if (!vcpu->arch.apf.pageready_pending)
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| }
 | |
| 
 | |
| bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!kvm_pv_async_pf_enabled(vcpu))
 | |
| 		return true;
 | |
| 	else
 | |
| 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_arch_start_assignment(struct kvm *kvm)
 | |
| {
 | |
| 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
 | |
| 		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
 | |
| 
 | |
| void kvm_arch_end_assignment(struct kvm *kvm)
 | |
| {
 | |
| 	atomic_dec(&kvm->arch.assigned_device_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
 | |
| 
 | |
| bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
 | |
| {
 | |
| 	return arch_atomic_read(&kvm->arch.assigned_device_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
 | |
| 
 | |
| void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
 | |
| {
 | |
| 	atomic_inc(&kvm->arch.noncoherent_dma_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
 | |
| 
 | |
| void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
 | |
| {
 | |
| 	atomic_dec(&kvm->arch.noncoherent_dma_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
 | |
| 
 | |
| bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
 | |
| {
 | |
| 	return atomic_read(&kvm->arch.noncoherent_dma_count);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
 | |
| 
 | |
| bool kvm_arch_has_irq_bypass(void)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
 | |
| 				      struct irq_bypass_producer *prod)
 | |
| {
 | |
| 	struct kvm_kernel_irqfd *irqfd =
 | |
| 		container_of(cons, struct kvm_kernel_irqfd, consumer);
 | |
| 	int ret;
 | |
| 
 | |
| 	irqfd->producer = prod;
 | |
| 	kvm_arch_start_assignment(irqfd->kvm);
 | |
| 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
 | |
| 					 prod->irq, irqfd->gsi, 1);
 | |
| 
 | |
| 	if (ret)
 | |
| 		kvm_arch_end_assignment(irqfd->kvm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
 | |
| 				      struct irq_bypass_producer *prod)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct kvm_kernel_irqfd *irqfd =
 | |
| 		container_of(cons, struct kvm_kernel_irqfd, consumer);
 | |
| 
 | |
| 	WARN_ON(irqfd->producer != prod);
 | |
| 	irqfd->producer = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * When producer of consumer is unregistered, we change back to
 | |
| 	 * remapped mode, so we can re-use the current implementation
 | |
| 	 * when the irq is masked/disabled or the consumer side (KVM
 | |
| 	 * int this case doesn't want to receive the interrupts.
 | |
| 	*/
 | |
| 	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
 | |
| 	if (ret)
 | |
| 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
 | |
| 		       " fails: %d\n", irqfd->consumer.token, ret);
 | |
| 
 | |
| 	kvm_arch_end_assignment(irqfd->kvm);
 | |
| }
 | |
| 
 | |
| int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
 | |
| 				   uint32_t guest_irq, bool set)
 | |
| {
 | |
| 	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
 | |
| }
 | |
| 
 | |
| bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
 | |
| 				  struct kvm_kernel_irq_routing_entry *new)
 | |
| {
 | |
| 	if (new->type != KVM_IRQ_ROUTING_MSI)
 | |
| 		return true;
 | |
| 
 | |
| 	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
 | |
| }
 | |
| 
 | |
| bool kvm_vector_hashing_enabled(void)
 | |
| {
 | |
| 	return vector_hashing;
 | |
| }
 | |
| 
 | |
| bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
 | |
| 
 | |
| 
 | |
| int kvm_spec_ctrl_test_value(u64 value)
 | |
| {
 | |
| 	/*
 | |
| 	 * test that setting IA32_SPEC_CTRL to given value
 | |
| 	 * is allowed by the host processor
 | |
| 	 */
 | |
| 
 | |
| 	u64 saved_value;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
 | |
| 		ret = 1;
 | |
| 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
 | |
| 		ret = 1;
 | |
| 	else
 | |
| 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
 | |
| 
 | |
| void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
 | |
| 	struct x86_exception fault;
 | |
| 	u64 access = error_code &
 | |
| 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
 | |
| 
 | |
| 	if (!(error_code & PFERR_PRESENT_MASK) ||
 | |
| 	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
 | |
| 		/*
 | |
| 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
 | |
| 		 * tables probably do not match the TLB.  Just proceed
 | |
| 		 * with the error code that the processor gave.
 | |
| 		 */
 | |
| 		fault.vector = PF_VECTOR;
 | |
| 		fault.error_code_valid = true;
 | |
| 		fault.error_code = error_code;
 | |
| 		fault.nested_page_fault = false;
 | |
| 		fault.address = gva;
 | |
| 	}
 | |
| 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
 | |
| 
 | |
| /*
 | |
|  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
 | |
|  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
 | |
|  * indicates whether exit to userspace is needed.
 | |
|  */
 | |
| int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
 | |
| 			      struct x86_exception *e)
 | |
| {
 | |
| 	if (r == X86EMUL_PROPAGATE_FAULT) {
 | |
| 		kvm_inject_emulated_page_fault(vcpu, e);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
 | |
| 	 * while handling a VMX instruction KVM could've handled the request
 | |
| 	 * correctly by exiting to userspace and performing I/O but there
 | |
| 	 * doesn't seem to be a real use-case behind such requests, just return
 | |
| 	 * KVM_EXIT_INTERNAL_ERROR for now.
 | |
| 	 */
 | |
| 	kvm_prepare_emulation_failure_exit(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
 | |
| 
 | |
| int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
 | |
| {
 | |
| 	bool pcid_enabled;
 | |
| 	struct x86_exception e;
 | |
| 	struct {
 | |
| 		u64 pcid;
 | |
| 		u64 gla;
 | |
| 	} operand;
 | |
| 	int r;
 | |
| 
 | |
| 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
 | |
| 	if (r != X86EMUL_CONTINUE)
 | |
| 		return kvm_handle_memory_failure(vcpu, r, &e);
 | |
| 
 | |
| 	if (operand.pcid >> 12 != 0) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case INVPCID_TYPE_INDIV_ADDR:
 | |
| 		if ((!pcid_enabled && (operand.pcid != 0)) ||
 | |
| 		    is_noncanonical_address(operand.gla, vcpu)) {
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	case INVPCID_TYPE_SINGLE_CTXT:
 | |
| 		if (!pcid_enabled && (operand.pcid != 0)) {
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		kvm_invalidate_pcid(vcpu, operand.pcid);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	case INVPCID_TYPE_ALL_NON_GLOBAL:
 | |
| 		/*
 | |
| 		 * Currently, KVM doesn't mark global entries in the shadow
 | |
| 		 * page tables, so a non-global flush just degenerates to a
 | |
| 		 * global flush. If needed, we could optimize this later by
 | |
| 		 * keeping track of global entries in shadow page tables.
 | |
| 		 */
 | |
| 
 | |
| 		/* fall through */
 | |
| 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	default:
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
 | |
| 
 | |
| static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *run = vcpu->run;
 | |
| 	struct kvm_mmio_fragment *frag;
 | |
| 	unsigned int len;
 | |
| 
 | |
| 	BUG_ON(!vcpu->mmio_needed);
 | |
| 
 | |
| 	/* Complete previous fragment */
 | |
| 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
 | |
| 	len = min(8u, frag->len);
 | |
| 	if (!vcpu->mmio_is_write)
 | |
| 		memcpy(frag->data, run->mmio.data, len);
 | |
| 
 | |
| 	if (frag->len <= 8) {
 | |
| 		/* Switch to the next fragment. */
 | |
| 		frag++;
 | |
| 		vcpu->mmio_cur_fragment++;
 | |
| 	} else {
 | |
| 		/* Go forward to the next mmio piece. */
 | |
| 		frag->data += len;
 | |
| 		frag->gpa += len;
 | |
| 		frag->len -= len;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
 | |
| 		vcpu->mmio_needed = 0;
 | |
| 
 | |
| 		// VMG change, at this point, we're always done
 | |
| 		// RIP has already been advanced
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	// More MMIO is needed
 | |
| 	run->mmio.phys_addr = frag->gpa;
 | |
| 	run->mmio.len = min(8u, frag->len);
 | |
| 	run->mmio.is_write = vcpu->mmio_is_write;
 | |
| 	if (run->mmio.is_write)
 | |
| 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
 | |
| 	run->exit_reason = KVM_EXIT_MMIO;
 | |
| 
 | |
| 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
 | |
| 			  void *data)
 | |
| {
 | |
| 	int handled;
 | |
| 	struct kvm_mmio_fragment *frag;
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
 | |
| 	if (handled == bytes)
 | |
| 		return 1;
 | |
| 
 | |
| 	bytes -= handled;
 | |
| 	gpa += handled;
 | |
| 	data += handled;
 | |
| 
 | |
| 	/*TODO: Check if need to increment number of frags */
 | |
| 	frag = vcpu->mmio_fragments;
 | |
| 	vcpu->mmio_nr_fragments = 1;
 | |
| 	frag->len = bytes;
 | |
| 	frag->gpa = gpa;
 | |
| 	frag->data = data;
 | |
| 
 | |
| 	vcpu->mmio_needed = 1;
 | |
| 	vcpu->mmio_cur_fragment = 0;
 | |
| 
 | |
| 	vcpu->run->mmio.phys_addr = gpa;
 | |
| 	vcpu->run->mmio.len = min(8u, frag->len);
 | |
| 	vcpu->run->mmio.is_write = 1;
 | |
| 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
 | |
| 
 | |
| 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
 | |
| 
 | |
| int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
 | |
| 			 void *data)
 | |
| {
 | |
| 	int handled;
 | |
| 	struct kvm_mmio_fragment *frag;
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
 | |
| 	if (handled == bytes)
 | |
| 		return 1;
 | |
| 
 | |
| 	bytes -= handled;
 | |
| 	gpa += handled;
 | |
| 	data += handled;
 | |
| 
 | |
| 	/*TODO: Check if need to increment number of frags */
 | |
| 	frag = vcpu->mmio_fragments;
 | |
| 	vcpu->mmio_nr_fragments = 1;
 | |
| 	frag->len = bytes;
 | |
| 	frag->gpa = gpa;
 | |
| 	frag->data = data;
 | |
| 
 | |
| 	vcpu->mmio_needed = 1;
 | |
| 	vcpu->mmio_cur_fragment = 0;
 | |
| 
 | |
| 	vcpu->run->mmio.phys_addr = gpa;
 | |
| 	vcpu->run->mmio.len = min(8u, frag->len);
 | |
| 	vcpu->run->mmio.is_write = 0;
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
 | |
| 
 | |
| 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
 | |
| 
 | |
| static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
 | |
| 			   unsigned int port);
 | |
| 
 | |
| static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int size = vcpu->arch.pio.size;
 | |
| 	int port = vcpu->arch.pio.port;
 | |
| 
 | |
| 	vcpu->arch.pio.count = 0;
 | |
| 	if (vcpu->arch.sev_pio_count)
 | |
| 		return kvm_sev_es_outs(vcpu, size, port);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
 | |
| 			   unsigned int port)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		unsigned int count =
 | |
| 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
 | |
| 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
 | |
| 
 | |
| 		/* memcpy done already by emulator_pio_out.  */
 | |
| 		vcpu->arch.sev_pio_count -= count;
 | |
| 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		/* Emulation done by the kernel.  */
 | |
| 		if (!vcpu->arch.sev_pio_count)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
 | |
| 			  unsigned int port);
 | |
| 
 | |
| static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned count = vcpu->arch.pio.count;
 | |
| 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
 | |
| 	vcpu->arch.sev_pio_count -= count;
 | |
| 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
 | |
| }
 | |
| 
 | |
| static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int size = vcpu->arch.pio.size;
 | |
| 	int port = vcpu->arch.pio.port;
 | |
| 
 | |
| 	advance_sev_es_emulated_ins(vcpu);
 | |
| 	if (vcpu->arch.sev_pio_count)
 | |
| 		return kvm_sev_es_ins(vcpu, size, port);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
 | |
| 			  unsigned int port)
 | |
| {
 | |
| 	for (;;) {
 | |
| 		unsigned int count =
 | |
| 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
 | |
| 		if (!__emulator_pio_in(vcpu, size, port, count))
 | |
| 			break;
 | |
| 
 | |
| 		/* Emulation done by the kernel.  */
 | |
| 		advance_sev_es_emulated_ins(vcpu);
 | |
| 		if (!vcpu->arch.sev_pio_count)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
 | |
| 			 unsigned int port, void *data,  unsigned int count,
 | |
| 			 int in)
 | |
| {
 | |
| 	vcpu->arch.sev_pio_data = data;
 | |
| 	vcpu->arch.sev_pio_count = count;
 | |
| 	return in ? kvm_sev_es_ins(vcpu, size, port)
 | |
| 		  : kvm_sev_es_outs(vcpu, size, port);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
 | |
| 
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
 | |
| 
 | |
| static int __init kvm_x86_init(void)
 | |
| {
 | |
| 	kvm_mmu_x86_module_init();
 | |
| 	return 0;
 | |
| }
 | |
| module_init(kvm_x86_init);
 | |
| 
 | |
| static void __exit kvm_x86_exit(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * If module_init() is implemented, module_exit() must also be
 | |
| 	 * implemented to allow module unload.
 | |
| 	 */
 | |
| }
 | |
| module_exit(kvm_x86_exit);
 |