467 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			467 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * Macros and functions to access KVM PTEs (also known as SPTEs)
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright 2020 Red Hat, Inc. and/or its affiliates.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include "mmu.h"
 | |
| #include "mmu_internal.h"
 | |
| #include "x86.h"
 | |
| #include "spte.h"
 | |
| 
 | |
| #include <asm/e820/api.h>
 | |
| #include <asm/vmx.h>
 | |
| 
 | |
| static bool __read_mostly enable_mmio_caching = true;
 | |
| module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
 | |
| 
 | |
| u64 __read_mostly shadow_host_writable_mask;
 | |
| u64 __read_mostly shadow_mmu_writable_mask;
 | |
| u64 __read_mostly shadow_nx_mask;
 | |
| u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
 | |
| u64 __read_mostly shadow_user_mask;
 | |
| u64 __read_mostly shadow_accessed_mask;
 | |
| u64 __read_mostly shadow_dirty_mask;
 | |
| u64 __read_mostly shadow_mmio_value;
 | |
| u64 __read_mostly shadow_mmio_mask;
 | |
| u64 __read_mostly shadow_mmio_access_mask;
 | |
| u64 __read_mostly shadow_present_mask;
 | |
| u64 __read_mostly shadow_me_mask;
 | |
| u64 __read_mostly shadow_acc_track_mask;
 | |
| 
 | |
| u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
 | |
| u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
 | |
| 
 | |
| u8 __read_mostly shadow_phys_bits;
 | |
| 
 | |
| static u64 generation_mmio_spte_mask(u64 gen)
 | |
| {
 | |
| 	u64 mask;
 | |
| 
 | |
| 	WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
 | |
| 
 | |
| 	mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
 | |
| 	mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
 | |
| {
 | |
| 	u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
 | |
| 	u64 spte = generation_mmio_spte_mask(gen);
 | |
| 	u64 gpa = gfn << PAGE_SHIFT;
 | |
| 
 | |
| 	WARN_ON_ONCE(!shadow_mmio_value);
 | |
| 
 | |
| 	access &= shadow_mmio_access_mask;
 | |
| 	spte |= shadow_mmio_value | access;
 | |
| 	spte |= gpa | shadow_nonpresent_or_rsvd_mask;
 | |
| 	spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
 | |
| 		<< SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
 | |
| 
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
 | |
| {
 | |
| 	if (pfn_valid(pfn))
 | |
| 		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
 | |
| 			/*
 | |
| 			 * Some reserved pages, such as those from NVDIMM
 | |
| 			 * DAX devices, are not for MMIO, and can be mapped
 | |
| 			 * with cached memory type for better performance.
 | |
| 			 * However, the above check misconceives those pages
 | |
| 			 * as MMIO, and results in KVM mapping them with UC
 | |
| 			 * memory type, which would hurt the performance.
 | |
| 			 * Therefore, we check the host memory type in addition
 | |
| 			 * and only treat UC/UC-/WC pages as MMIO.
 | |
| 			 */
 | |
| 			(!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
 | |
| 
 | |
| 	return !e820__mapped_raw_any(pfn_to_hpa(pfn),
 | |
| 				     pfn_to_hpa(pfn + 1) - 1,
 | |
| 				     E820_TYPE_RAM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the SPTE has bits that may be set without holding mmu_lock.
 | |
|  * The caller is responsible for checking if the SPTE is shadow-present, and
 | |
|  * for determining whether or not the caller cares about non-leaf SPTEs.
 | |
|  */
 | |
| bool spte_has_volatile_bits(u64 spte)
 | |
| {
 | |
| 	/*
 | |
| 	 * Always atomically update spte if it can be updated
 | |
| 	 * out of mmu-lock, it can ensure dirty bit is not lost,
 | |
| 	 * also, it can help us to get a stable is_writable_pte()
 | |
| 	 * to ensure tlb flush is not missed.
 | |
| 	 */
 | |
| 	if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
 | |
| 		return true;
 | |
| 
 | |
| 	if (is_access_track_spte(spte))
 | |
| 		return true;
 | |
| 
 | |
| 	if (spte_ad_enabled(spte)) {
 | |
| 		if (!(spte & shadow_accessed_mask) ||
 | |
| 		    (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 	       const struct kvm_memory_slot *slot,
 | |
| 	       unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
 | |
| 	       u64 old_spte, bool prefetch, bool can_unsync,
 | |
| 	       bool host_writable, u64 *new_spte)
 | |
| {
 | |
| 	int level = sp->role.level;
 | |
| 	u64 spte = SPTE_MMU_PRESENT_MASK;
 | |
| 	bool wrprot = false;
 | |
| 
 | |
| 	if (sp->role.ad_disabled)
 | |
| 		spte |= SPTE_TDP_AD_DISABLED_MASK;
 | |
| 	else if (kvm_mmu_page_ad_need_write_protect(sp))
 | |
| 		spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * For the EPT case, shadow_present_mask is 0 if hardware
 | |
| 	 * supports exec-only page table entries.  In that case,
 | |
| 	 * ACC_USER_MASK and shadow_user_mask are used to represent
 | |
| 	 * read access.  See FNAME(gpte_access) in paging_tmpl.h.
 | |
| 	 */
 | |
| 	spte |= shadow_present_mask;
 | |
| 	if (!prefetch)
 | |
| 		spte |= spte_shadow_accessed_mask(spte);
 | |
| 
 | |
| 	if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
 | |
| 	    is_nx_huge_page_enabled()) {
 | |
| 		pte_access &= ~ACC_EXEC_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (pte_access & ACC_EXEC_MASK)
 | |
| 		spte |= shadow_x_mask;
 | |
| 	else
 | |
| 		spte |= shadow_nx_mask;
 | |
| 
 | |
| 	if (pte_access & ACC_USER_MASK)
 | |
| 		spte |= shadow_user_mask;
 | |
| 
 | |
| 	if (level > PG_LEVEL_4K)
 | |
| 		spte |= PT_PAGE_SIZE_MASK;
 | |
| 	if (tdp_enabled)
 | |
| 		spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
 | |
| 			kvm_is_mmio_pfn(pfn));
 | |
| 
 | |
| 	if (host_writable)
 | |
| 		spte |= shadow_host_writable_mask;
 | |
| 	else
 | |
| 		pte_access &= ~ACC_WRITE_MASK;
 | |
| 
 | |
| 	if (!kvm_is_mmio_pfn(pfn))
 | |
| 		spte |= shadow_me_mask;
 | |
| 
 | |
| 	spte |= (u64)pfn << PAGE_SHIFT;
 | |
| 
 | |
| 	if (pte_access & ACC_WRITE_MASK) {
 | |
| 		spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
 | |
| 
 | |
| 		/*
 | |
| 		 * Optimization: for pte sync, if spte was writable the hash
 | |
| 		 * lookup is unnecessary (and expensive). Write protection
 | |
| 		 * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
 | |
| 		 * Same reasoning can be applied to dirty page accounting.
 | |
| 		 */
 | |
| 		if (is_writable_pte(old_spte))
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * Unsync shadow pages that are reachable by the new, writable
 | |
| 		 * SPTE.  Write-protect the SPTE if the page can't be unsync'd,
 | |
| 		 * e.g. it's write-tracked (upper-level SPs) or has one or more
 | |
| 		 * shadow pages and unsync'ing pages is not allowed.
 | |
| 		 */
 | |
| 		if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
 | |
| 			pgprintk("%s: found shadow page for %llx, marking ro\n",
 | |
| 				 __func__, gfn);
 | |
| 			wrprot = true;
 | |
| 			pte_access &= ~ACC_WRITE_MASK;
 | |
| 			spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pte_access & ACC_WRITE_MASK)
 | |
| 		spte |= spte_shadow_dirty_mask(spte);
 | |
| 
 | |
| out:
 | |
| 	if (prefetch)
 | |
| 		spte = mark_spte_for_access_track(spte);
 | |
| 
 | |
| 	WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
 | |
| 		  "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
 | |
| 		  get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
 | |
| 
 | |
| 	if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
 | |
| 		/* Enforced by kvm_mmu_hugepage_adjust. */
 | |
| 		WARN_ON(level > PG_LEVEL_4K);
 | |
| 		mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
 | |
| 	}
 | |
| 
 | |
| 	*new_spte = spte;
 | |
| 	return wrprot;
 | |
| }
 | |
| 
 | |
| static u64 make_spte_executable(u64 spte)
 | |
| {
 | |
| 	bool is_access_track = is_access_track_spte(spte);
 | |
| 
 | |
| 	if (is_access_track)
 | |
| 		spte = restore_acc_track_spte(spte);
 | |
| 
 | |
| 	spte &= ~shadow_nx_mask;
 | |
| 	spte |= shadow_x_mask;
 | |
| 
 | |
| 	if (is_access_track)
 | |
| 		spte = mark_spte_for_access_track(spte);
 | |
| 
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Construct an SPTE that maps a sub-page of the given huge page SPTE where
 | |
|  * `index` identifies which sub-page.
 | |
|  *
 | |
|  * This is used during huge page splitting to build the SPTEs that make up the
 | |
|  * new page table.
 | |
|  */
 | |
| u64 make_huge_page_split_spte(u64 huge_spte, int huge_level, int index)
 | |
| {
 | |
| 	u64 child_spte;
 | |
| 	int child_level;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
 | |
| 		return 0;
 | |
| 
 | |
| 	child_spte = huge_spte;
 | |
| 	child_level = huge_level - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The child_spte already has the base address of the huge page being
 | |
| 	 * split. So we just have to OR in the offset to the page at the next
 | |
| 	 * lower level for the given index.
 | |
| 	 */
 | |
| 	child_spte |= (index * KVM_PAGES_PER_HPAGE(child_level)) << PAGE_SHIFT;
 | |
| 
 | |
| 	if (child_level == PG_LEVEL_4K) {
 | |
| 		child_spte &= ~PT_PAGE_SIZE_MASK;
 | |
| 
 | |
| 		/*
 | |
| 		 * When splitting to a 4K page, mark the page executable as the
 | |
| 		 * NX hugepage mitigation no longer applies.
 | |
| 		 */
 | |
| 		if (is_nx_huge_page_enabled())
 | |
| 			child_spte = make_spte_executable(child_spte);
 | |
| 	}
 | |
| 
 | |
| 	return child_spte;
 | |
| }
 | |
| 
 | |
| 
 | |
| u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
 | |
| {
 | |
| 	u64 spte = SPTE_MMU_PRESENT_MASK;
 | |
| 
 | |
| 	spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
 | |
| 		shadow_user_mask | shadow_x_mask | shadow_me_mask;
 | |
| 
 | |
| 	if (ad_disabled)
 | |
| 		spte |= SPTE_TDP_AD_DISABLED_MASK;
 | |
| 	else
 | |
| 		spte |= shadow_accessed_mask;
 | |
| 
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
 | |
| {
 | |
| 	u64 new_spte;
 | |
| 
 | |
| 	new_spte = old_spte & ~PT64_BASE_ADDR_MASK;
 | |
| 	new_spte |= (u64)new_pfn << PAGE_SHIFT;
 | |
| 
 | |
| 	new_spte &= ~PT_WRITABLE_MASK;
 | |
| 	new_spte &= ~shadow_host_writable_mask;
 | |
| 	new_spte &= ~shadow_mmu_writable_mask;
 | |
| 
 | |
| 	new_spte = mark_spte_for_access_track(new_spte);
 | |
| 
 | |
| 	return new_spte;
 | |
| }
 | |
| 
 | |
| static u8 kvm_get_shadow_phys_bits(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
 | |
| 	 * in CPU detection code, but the processor treats those reduced bits as
 | |
| 	 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
 | |
| 	 * the physical address bits reported by CPUID.
 | |
| 	 */
 | |
| 	if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
 | |
| 		return cpuid_eax(0x80000008) & 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
 | |
| 	 * custom CPUID.  Proceed with whatever the kernel found since these features
 | |
| 	 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
 | |
| 	 */
 | |
| 	return boot_cpu_data.x86_phys_bits;
 | |
| }
 | |
| 
 | |
| u64 mark_spte_for_access_track(u64 spte)
 | |
| {
 | |
| 	if (spte_ad_enabled(spte))
 | |
| 		return spte & ~shadow_accessed_mask;
 | |
| 
 | |
| 	if (is_access_track_spte(spte))
 | |
| 		return spte;
 | |
| 
 | |
| 	check_spte_writable_invariants(spte);
 | |
| 
 | |
| 	WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
 | |
| 			  SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
 | |
| 		  "kvm: Access Tracking saved bit locations are not zero\n");
 | |
| 
 | |
| 	spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
 | |
| 		SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
 | |
| 	spte &= ~shadow_acc_track_mask;
 | |
| 
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
 | |
| {
 | |
| 	BUG_ON((u64)(unsigned)access_mask != access_mask);
 | |
| 	WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
 | |
| 
 | |
| 	if (!enable_mmio_caching)
 | |
| 		mmio_value = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable MMIO caching if the MMIO value collides with the bits that
 | |
| 	 * are used to hold the relocated GFN when the L1TF mitigation is
 | |
| 	 * enabled.  This should never fire as there is no known hardware that
 | |
| 	 * can trigger this condition, e.g. SME/SEV CPUs that require a custom
 | |
| 	 * MMIO value are not susceptible to L1TF.
 | |
| 	 */
 | |
| 	if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
 | |
| 				  SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
 | |
| 		mmio_value = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The masked MMIO value must obviously match itself and a removed SPTE
 | |
| 	 * must not get a false positive.  Removed SPTEs and MMIO SPTEs should
 | |
| 	 * never collide as MMIO must set some RWX bits, and removed SPTEs must
 | |
| 	 * not set any RWX bits.
 | |
| 	 */
 | |
| 	if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
 | |
| 	    WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
 | |
| 		mmio_value = 0;
 | |
| 
 | |
| 	shadow_mmio_value = mmio_value;
 | |
| 	shadow_mmio_mask  = mmio_mask;
 | |
| 	shadow_mmio_access_mask = access_mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 | |
| 
 | |
| void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
 | |
| {
 | |
| 	shadow_user_mask	= VMX_EPT_READABLE_MASK;
 | |
| 	shadow_accessed_mask	= has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
 | |
| 	shadow_dirty_mask	= has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
 | |
| 	shadow_nx_mask		= 0ull;
 | |
| 	shadow_x_mask		= VMX_EPT_EXECUTABLE_MASK;
 | |
| 	shadow_present_mask	= has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
 | |
| 	shadow_acc_track_mask	= VMX_EPT_RWX_MASK;
 | |
| 	shadow_me_mask		= 0ull;
 | |
| 
 | |
| 	shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
 | |
| 	shadow_mmu_writable_mask  = EPT_SPTE_MMU_WRITABLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * EPT Misconfigurations are generated if the value of bits 2:0
 | |
| 	 * of an EPT paging-structure entry is 110b (write/execute).
 | |
| 	 */
 | |
| 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
 | |
| 				   VMX_EPT_RWX_MASK, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
 | |
| 
 | |
| void kvm_mmu_reset_all_pte_masks(void)
 | |
| {
 | |
| 	u8 low_phys_bits;
 | |
| 	u64 mask;
 | |
| 
 | |
| 	shadow_phys_bits = kvm_get_shadow_phys_bits();
 | |
| 
 | |
| 	/*
 | |
| 	 * If the CPU has 46 or less physical address bits, then set an
 | |
| 	 * appropriate mask to guard against L1TF attacks. Otherwise, it is
 | |
| 	 * assumed that the CPU is not vulnerable to L1TF.
 | |
| 	 *
 | |
| 	 * Some Intel CPUs address the L1 cache using more PA bits than are
 | |
| 	 * reported by CPUID. Use the PA width of the L1 cache when possible
 | |
| 	 * to achieve more effective mitigation, e.g. if system RAM overlaps
 | |
| 	 * the most significant bits of legal physical address space.
 | |
| 	 */
 | |
| 	shadow_nonpresent_or_rsvd_mask = 0;
 | |
| 	low_phys_bits = boot_cpu_data.x86_phys_bits;
 | |
| 	if (boot_cpu_has_bug(X86_BUG_L1TF) &&
 | |
| 	    !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
 | |
| 			  52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
 | |
| 		low_phys_bits = boot_cpu_data.x86_cache_bits
 | |
| 			- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
 | |
| 		shadow_nonpresent_or_rsvd_mask =
 | |
| 			rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
 | |
| 	}
 | |
| 
 | |
| 	shadow_nonpresent_or_rsvd_lower_gfn_mask =
 | |
| 		GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
 | |
| 
 | |
| 	shadow_user_mask	= PT_USER_MASK;
 | |
| 	shadow_accessed_mask	= PT_ACCESSED_MASK;
 | |
| 	shadow_dirty_mask	= PT_DIRTY_MASK;
 | |
| 	shadow_nx_mask		= PT64_NX_MASK;
 | |
| 	shadow_x_mask		= 0;
 | |
| 	shadow_present_mask	= PT_PRESENT_MASK;
 | |
| 	shadow_acc_track_mask	= 0;
 | |
| 	shadow_me_mask		= sme_me_mask;
 | |
| 
 | |
| 	shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
 | |
| 	shadow_mmu_writable_mask  = DEFAULT_SPTE_MMU_WRITABLE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
 | |
| 	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
 | |
| 	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
 | |
| 	 * 52-bit physical addresses then there are no reserved PA bits in the
 | |
| 	 * PTEs and so the reserved PA approach must be disabled.
 | |
| 	 */
 | |
| 	if (shadow_phys_bits < 52)
 | |
| 		mask = BIT_ULL(51) | PT_PRESENT_MASK;
 | |
| 	else
 | |
| 		mask = 0;
 | |
| 
 | |
| 	kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
 | |
| }
 |