287 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			287 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0 */
 | |
| #ifndef _ASM_X86_PGTABLE_3LEVEL_H
 | |
| #define _ASM_X86_PGTABLE_3LEVEL_H
 | |
| 
 | |
| /*
 | |
|  * Intel Physical Address Extension (PAE) Mode - three-level page
 | |
|  * tables on PPro+ CPUs.
 | |
|  *
 | |
|  * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
 | |
|  */
 | |
| 
 | |
| #define pte_ERROR(e)							\
 | |
| 	pr_err("%s:%d: bad pte %p(%08lx%08lx)\n",			\
 | |
| 	       __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
 | |
| #define pmd_ERROR(e)							\
 | |
| 	pr_err("%s:%d: bad pmd %p(%016Lx)\n",				\
 | |
| 	       __FILE__, __LINE__, &(e), pmd_val(e))
 | |
| #define pgd_ERROR(e)							\
 | |
| 	pr_err("%s:%d: bad pgd %p(%016Lx)\n",				\
 | |
| 	       __FILE__, __LINE__, &(e), pgd_val(e))
 | |
| 
 | |
| /* Rules for using set_pte: the pte being assigned *must* be
 | |
|  * either not present or in a state where the hardware will
 | |
|  * not attempt to update the pte.  In places where this is
 | |
|  * not possible, use pte_get_and_clear to obtain the old pte
 | |
|  * value and then use set_pte to update it.  -ben
 | |
|  */
 | |
| static inline void native_set_pte(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	ptep->pte_high = pte.pte_high;
 | |
| 	smp_wmb();
 | |
| 	ptep->pte_low = pte.pte_low;
 | |
| }
 | |
| 
 | |
| #define pmd_read_atomic pmd_read_atomic
 | |
| /*
 | |
|  * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with
 | |
|  * a "*pmdp" dereference done by GCC. Problem is, in certain places
 | |
|  * where pte_offset_map_lock() is called, concurrent page faults are
 | |
|  * allowed, if the mmap_lock is hold for reading. An example is mincore
 | |
|  * vs page faults vs MADV_DONTNEED. On the page fault side
 | |
|  * pmd_populate() rightfully does a set_64bit(), but if we're reading the
 | |
|  * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
 | |
|  * because GCC will not read the 64-bit value of the pmd atomically.
 | |
|  *
 | |
|  * To fix this all places running pte_offset_map_lock() while holding the
 | |
|  * mmap_lock in read mode, shall read the pmdp pointer using this
 | |
|  * function to know if the pmd is null or not, and in turn to know if
 | |
|  * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd
 | |
|  * operations.
 | |
|  *
 | |
|  * Without THP if the mmap_lock is held for reading, the pmd can only
 | |
|  * transition from null to not null while pmd_read_atomic() runs. So
 | |
|  * we can always return atomic pmd values with this function.
 | |
|  *
 | |
|  * With THP if the mmap_lock is held for reading, the pmd can become
 | |
|  * trans_huge or none or point to a pte (and in turn become "stable")
 | |
|  * at any time under pmd_read_atomic(). We could read it truly
 | |
|  * atomically here with an atomic64_read() for the THP enabled case (and
 | |
|  * it would be a whole lot simpler), but to avoid using cmpxchg8b we
 | |
|  * only return an atomic pmdval if the low part of the pmdval is later
 | |
|  * found to be stable (i.e. pointing to a pte). We are also returning a
 | |
|  * 'none' (zero) pmdval if the low part of the pmd is zero.
 | |
|  *
 | |
|  * In some cases the high and low part of the pmdval returned may not be
 | |
|  * consistent if THP is enabled (the low part may point to previously
 | |
|  * mapped hugepage, while the high part may point to a more recently
 | |
|  * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only
 | |
|  * needs the low part of the pmd to be read atomically to decide if the
 | |
|  * pmd is unstable or not, with the only exception when the low part
 | |
|  * of the pmd is zero, in which case we return a 'none' pmd.
 | |
|  */
 | |
| static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
 | |
| {
 | |
| 	pmdval_t ret;
 | |
| 	u32 *tmp = (u32 *)pmdp;
 | |
| 
 | |
| 	ret = (pmdval_t) (*tmp);
 | |
| 	if (ret) {
 | |
| 		/*
 | |
| 		 * If the low part is null, we must not read the high part
 | |
| 		 * or we can end up with a partial pmd.
 | |
| 		 */
 | |
| 		smp_rmb();
 | |
| 		ret |= ((pmdval_t)*(tmp + 1)) << 32;
 | |
| 	}
 | |
| 
 | |
| 	return (pmd_t) { ret };
 | |
| }
 | |
| 
 | |
| static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
 | |
| }
 | |
| 
 | |
| static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
 | |
| {
 | |
| 	set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
 | |
| }
 | |
| 
 | |
| static inline void native_set_pud(pud_t *pudp, pud_t pud)
 | |
| {
 | |
| 	set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
 | |
|  * entry, so clear the bottom half first and enforce ordering with a compiler
 | |
|  * barrier.
 | |
|  */
 | |
| static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
 | |
| 				    pte_t *ptep)
 | |
| {
 | |
| 	ptep->pte_low = 0;
 | |
| 	smp_wmb();
 | |
| 	ptep->pte_high = 0;
 | |
| }
 | |
| 
 | |
| static inline void native_pmd_clear(pmd_t *pmd)
 | |
| {
 | |
| 	u32 *tmp = (u32 *)pmd;
 | |
| 	*tmp = 0;
 | |
| 	smp_wmb();
 | |
| 	*(tmp + 1) = 0;
 | |
| }
 | |
| 
 | |
| static inline void native_pud_clear(pud_t *pudp)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void pud_clear(pud_t *pudp)
 | |
| {
 | |
| 	set_pud(pudp, __pud(0));
 | |
| 
 | |
| 	/*
 | |
| 	 * According to Intel App note "TLBs, Paging-Structure Caches,
 | |
| 	 * and Their Invalidation", April 2007, document 317080-001,
 | |
| 	 * section 8.1: in PAE mode we explicitly have to flush the
 | |
| 	 * TLB via cr3 if the top-level pgd is changed...
 | |
| 	 *
 | |
| 	 * Currently all places where pud_clear() is called either have
 | |
| 	 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
 | |
| 	 * pud_clear_bad()), so we don't need TLB flush here.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
 | |
| {
 | |
| 	pte_t res;
 | |
| 
 | |
| 	/* xchg acts as a barrier before the setting of the high bits */
 | |
| 	res.pte_low = xchg(&ptep->pte_low, 0);
 | |
| 	res.pte_high = ptep->pte_high;
 | |
| 	ptep->pte_high = 0;
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| #else
 | |
| #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
 | |
| #endif
 | |
| 
 | |
| union split_pmd {
 | |
| 	struct {
 | |
| 		u32 pmd_low;
 | |
| 		u32 pmd_high;
 | |
| 	};
 | |
| 	pmd_t pmd;
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
 | |
| {
 | |
| 	union split_pmd res, *orig = (union split_pmd *)pmdp;
 | |
| 
 | |
| 	/* xchg acts as a barrier before setting of the high bits */
 | |
| 	res.pmd_low = xchg(&orig->pmd_low, 0);
 | |
| 	res.pmd_high = orig->pmd_high;
 | |
| 	orig->pmd_high = 0;
 | |
| 
 | |
| 	return res.pmd;
 | |
| }
 | |
| #else
 | |
| #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
 | |
| #endif
 | |
| 
 | |
| #ifndef pmdp_establish
 | |
| #define pmdp_establish pmdp_establish
 | |
| static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
 | |
| 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
 | |
| {
 | |
| 	pmd_t old;
 | |
| 
 | |
| 	/*
 | |
| 	 * If pmd has present bit cleared we can get away without expensive
 | |
| 	 * cmpxchg64: we can update pmdp half-by-half without racing with
 | |
| 	 * anybody.
 | |
| 	 */
 | |
| 	if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
 | |
| 		union split_pmd old, new, *ptr;
 | |
| 
 | |
| 		ptr = (union split_pmd *)pmdp;
 | |
| 
 | |
| 		new.pmd = pmd;
 | |
| 
 | |
| 		/* xchg acts as a barrier before setting of the high bits */
 | |
| 		old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
 | |
| 		old.pmd_high = ptr->pmd_high;
 | |
| 		ptr->pmd_high = new.pmd_high;
 | |
| 		return old.pmd;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		old = *pmdp;
 | |
| 	} while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
 | |
| 
 | |
| 	return old;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| union split_pud {
 | |
| 	struct {
 | |
| 		u32 pud_low;
 | |
| 		u32 pud_high;
 | |
| 	};
 | |
| 	pud_t pud;
 | |
| };
 | |
| 
 | |
| static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
 | |
| {
 | |
| 	union split_pud res, *orig = (union split_pud *)pudp;
 | |
| 
 | |
| 	/* xchg acts as a barrier before setting of the high bits */
 | |
| 	res.pud_low = xchg(&orig->pud_low, 0);
 | |
| 	res.pud_high = orig->pud_high;
 | |
| 	orig->pud_high = 0;
 | |
| 
 | |
| 	return res.pud;
 | |
| }
 | |
| #else
 | |
| #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
 | |
| #endif
 | |
| 
 | |
| /* Encode and de-code a swap entry */
 | |
| #define SWP_TYPE_BITS		5
 | |
| 
 | |
| #define SWP_OFFSET_FIRST_BIT	(_PAGE_BIT_PROTNONE + 1)
 | |
| 
 | |
| /* We always extract/encode the offset by shifting it all the way up, and then down again */
 | |
| #define SWP_OFFSET_SHIFT	(SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
 | |
| 
 | |
| #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
 | |
| #define __swp_type(x)			(((x).val) & 0x1f)
 | |
| #define __swp_offset(x)			((x).val >> 5)
 | |
| #define __swp_entry(type, offset)	((swp_entry_t){(type) | (offset) << 5})
 | |
| 
 | |
| /*
 | |
|  * Normally, __swp_entry() converts from arch-independent swp_entry_t to
 | |
|  * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
 | |
|  * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
 | |
|  * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
 | |
|  * __swp_entry_to_pte() through the following helper macro based on 64bit
 | |
|  * __swp_entry().
 | |
|  */
 | |
| #define __swp_pteval_entry(type, offset) ((pteval_t) { \
 | |
| 	(~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
 | |
| 	| ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
 | |
| 
 | |
| #define __swp_entry_to_pte(x)	((pte_t){ .pte = \
 | |
| 		__swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
 | |
| /*
 | |
|  * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
 | |
|  * swp_entry_t, but also has to convert it from 64bit to the 32bit
 | |
|  * intermediate representation, using the following macros based on 64bit
 | |
|  * __swp_type() and __swp_offset().
 | |
|  */
 | |
| #define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
 | |
| #define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
 | |
| 
 | |
| #define __pte_to_swp_entry(pte)	(__swp_entry(__pteval_swp_type(pte), \
 | |
| 					     __pteval_swp_offset(pte)))
 | |
| 
 | |
| #include <asm/pgtable-invert.h>
 | |
| 
 | |
| #endif /* _ASM_X86_PGTABLE_3LEVEL_H */
 |