1087 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1087 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /* -----------------------------------------------------------------------
 | |
|  *
 | |
|  *   Copyright 2011 Intel Corporation; author Matt Fleming
 | |
|  *
 | |
|  *   This file is part of the Linux kernel, and is made available under
 | |
|  *   the terms of the GNU General Public License version 2.
 | |
|  *
 | |
|  * ----------------------------------------------------------------------- */
 | |
| 
 | |
| #include <linux/efi.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/ctype.h>
 | |
| 
 | |
| #include <asm/efi.h>
 | |
| #include <asm/e820/types.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/boot.h>
 | |
| #include <asm/kaslr.h>
 | |
| #include <asm/sev.h>
 | |
| 
 | |
| #include "../string.h"
 | |
| #include "eboot.h"
 | |
| #include "../../../../drivers/firmware/efi/libstub/efistub.h"
 | |
| #include "../../../../drivers/firmware/efi/libstub/x86-stub.h"
 | |
| 
 | |
| static efi_system_table_t *sys_table;
 | |
| static const efi_dxe_services_table_t *efi_dxe_table;
 | |
| static efi_memory_attribute_protocol_t *memattr;
 | |
| 
 | |
| static struct efi_config *efi_early;
 | |
| 
 | |
| __pure const struct efi_config *__efi_early(void)
 | |
| {
 | |
| 	return efi_early;
 | |
| }
 | |
| 
 | |
| #define BOOT_SERVICES(bits)						\
 | |
| static void setup_boot_services##bits(struct efi_config *c)		\
 | |
| {									\
 | |
| 	efi_system_table_##bits##_t *table;				\
 | |
| 									\
 | |
| 	table = (typeof(table))sys_table;				\
 | |
| 									\
 | |
| 	c->runtime_services	= table->runtime;			\
 | |
| 	c->boot_services	= table->boottime;			\
 | |
| 	c->text_output		= table->con_out;			\
 | |
| }
 | |
| BOOT_SERVICES(32);
 | |
| BOOT_SERVICES(64);
 | |
| 
 | |
| void efi_char16_printk(efi_system_table_t *table, efi_char16_t *str)
 | |
| {
 | |
| 	efi_call_proto(efi_simple_text_output_protocol, output_string,
 | |
| 		       efi_early->text_output, str);
 | |
| }
 | |
| 
 | |
| static efi_status_t
 | |
| preserve_pci_rom_image(efi_pci_io_protocol_t *pci, struct pci_setup_rom **__rom)
 | |
| {
 | |
| 	struct pci_setup_rom *rom = NULL;
 | |
| 	efi_status_t status;
 | |
| 	unsigned long size;
 | |
| 	uint64_t romsize;
 | |
| 	void *romimage;
 | |
| 
 | |
| 	/*
 | |
| 	 * Some firmware images contain EFI function pointers at the place where
 | |
| 	 * the romimage and romsize fields are supposed to be. Typically the EFI
 | |
| 	 * code is mapped at high addresses, translating to an unrealistically
 | |
| 	 * large romsize. The UEFI spec limits the size of option ROMs to 16
 | |
| 	 * MiB so we reject any ROMs over 16 MiB in size to catch this.
 | |
| 	 */
 | |
| 	romimage = efi_table_attr(efi_pci_io_protocol, romimage, pci);
 | |
| 	romsize = efi_table_attr(efi_pci_io_protocol, romsize, pci);
 | |
| 	if (!romimage || !romsize || romsize > SZ_16M)
 | |
| 		return EFI_INVALID_PARAMETER;
 | |
| 
 | |
| 	size = romsize + sizeof(*rom);
 | |
| 
 | |
| 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA, size, &rom);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "Failed to allocate memory for 'rom'\n");
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	memset(rom, 0, sizeof(*rom));
 | |
| 
 | |
| 	rom->data.type	= SETUP_PCI;
 | |
| 	rom->data.len	= size - sizeof(struct setup_data);
 | |
| 	rom->data.next	= 0;
 | |
| 	rom->pcilen	= pci->romsize;
 | |
| 	*__rom = rom;
 | |
| 
 | |
| 	status = efi_call_proto(efi_pci_io_protocol, pci.read, pci,
 | |
| 				EfiPciIoWidthUint16, PCI_VENDOR_ID, 1,
 | |
| 				&rom->vendor);
 | |
| 
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "Failed to read rom->vendor\n");
 | |
| 		goto free_struct;
 | |
| 	}
 | |
| 
 | |
| 	status = efi_call_proto(efi_pci_io_protocol, pci.read, pci,
 | |
| 				EfiPciIoWidthUint16, PCI_DEVICE_ID, 1,
 | |
| 				&rom->devid);
 | |
| 
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "Failed to read rom->devid\n");
 | |
| 		goto free_struct;
 | |
| 	}
 | |
| 
 | |
| 	status = efi_call_proto(efi_pci_io_protocol, get_location, pci,
 | |
| 				&rom->segment, &rom->bus, &rom->device,
 | |
| 				&rom->function);
 | |
| 
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		goto free_struct;
 | |
| 
 | |
| 	memcpy(rom->romdata, romimage, romsize);
 | |
| 	return status;
 | |
| 
 | |
| free_struct:
 | |
| 	efi_call_early(free_pool, rom);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * There's no way to return an informative status from this function,
 | |
|  * because any analysis (and printing of error messages) needs to be
 | |
|  * done directly at the EFI function call-site.
 | |
|  *
 | |
|  * For example, EFI_INVALID_PARAMETER could indicate a bug or maybe we
 | |
|  * just didn't find any PCI devices, but there's no way to tell outside
 | |
|  * the context of the call.
 | |
|  */
 | |
| static void setup_efi_pci(struct boot_params *params)
 | |
| {
 | |
| 	efi_status_t status;
 | |
| 	void **pci_handle = NULL;
 | |
| 	efi_guid_t pci_proto = EFI_PCI_IO_PROTOCOL_GUID;
 | |
| 	unsigned long size = 0;
 | |
| 	struct setup_data *data;
 | |
| 	efi_handle_t h;
 | |
| 	int i;
 | |
| 
 | |
| 	status = efi_call_early(locate_handle,
 | |
| 				EFI_LOCATE_BY_PROTOCOL,
 | |
| 				&pci_proto, NULL, &size, pci_handle);
 | |
| 
 | |
| 	if (status == EFI_BUFFER_TOO_SMALL) {
 | |
| 		status = efi_call_early(allocate_pool,
 | |
| 					EFI_LOADER_DATA,
 | |
| 					size, (void **)&pci_handle);
 | |
| 
 | |
| 		if (status != EFI_SUCCESS) {
 | |
| 			efi_printk(sys_table, "Failed to allocate memory for 'pci_handle'\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		status = efi_call_early(locate_handle,
 | |
| 					EFI_LOCATE_BY_PROTOCOL, &pci_proto,
 | |
| 					NULL, &size, pci_handle);
 | |
| 	}
 | |
| 
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		goto free_handle;
 | |
| 
 | |
| 	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
 | |
| 
 | |
| 	while (data && data->next)
 | |
| 		data = (struct setup_data *)(unsigned long)data->next;
 | |
| 
 | |
| 	for_each_efi_handle(h, pci_handle, size, i) {
 | |
| 		efi_pci_io_protocol_t *pci = NULL;
 | |
| 		struct pci_setup_rom *rom;
 | |
| 
 | |
| 		status = efi_call_early(handle_protocol, h,
 | |
| 					&pci_proto, (void **)&pci);
 | |
| 		if (status != EFI_SUCCESS || !pci)
 | |
| 			continue;
 | |
| 
 | |
| 		status = preserve_pci_rom_image(pci, &rom);
 | |
| 		if (status != EFI_SUCCESS)
 | |
| 			continue;
 | |
| 
 | |
| 		if (data)
 | |
| 			data->next = (unsigned long)rom;
 | |
| 		else
 | |
| 			params->hdr.setup_data = (unsigned long)rom;
 | |
| 
 | |
| 		data = (struct setup_data *)rom;
 | |
| 	}
 | |
| 
 | |
| free_handle:
 | |
| 	efi_call_early(free_pool, pci_handle);
 | |
| }
 | |
| 
 | |
| static void retrieve_apple_device_properties(struct boot_params *boot_params)
 | |
| {
 | |
| 	efi_guid_t guid = APPLE_PROPERTIES_PROTOCOL_GUID;
 | |
| 	struct setup_data *data, *new;
 | |
| 	efi_status_t status;
 | |
| 	u32 size = 0;
 | |
| 	void *p;
 | |
| 
 | |
| 	status = efi_call_early(locate_protocol, &guid, NULL, &p);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return;
 | |
| 
 | |
| 	if (efi_table_attr(apple_properties_protocol, version, p) != 0x10000) {
 | |
| 		efi_printk(sys_table, "Unsupported properties proto version\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	efi_call_proto(apple_properties_protocol, get_all, p, NULL, &size);
 | |
| 	if (!size)
 | |
| 		return;
 | |
| 
 | |
| 	do {
 | |
| 		status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
 | |
| 					size + sizeof(struct setup_data), &new);
 | |
| 		if (status != EFI_SUCCESS) {
 | |
| 			efi_printk(sys_table, "Failed to allocate memory for 'properties'\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		status = efi_call_proto(apple_properties_protocol, get_all, p,
 | |
| 					new->data, &size);
 | |
| 
 | |
| 		if (status == EFI_BUFFER_TOO_SMALL)
 | |
| 			efi_call_early(free_pool, new);
 | |
| 	} while (status == EFI_BUFFER_TOO_SMALL);
 | |
| 
 | |
| 	new->type = SETUP_APPLE_PROPERTIES;
 | |
| 	new->len  = size;
 | |
| 	new->next = 0;
 | |
| 
 | |
| 	data = (struct setup_data *)(unsigned long)boot_params->hdr.setup_data;
 | |
| 	if (!data) {
 | |
| 		boot_params->hdr.setup_data = (unsigned long)new;
 | |
| 	} else {
 | |
| 		while (data->next)
 | |
| 			data = (struct setup_data *)(unsigned long)data->next;
 | |
| 		data->next = (unsigned long)new;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| efi_status_t efi_adjust_memory_range_protection(unsigned long start,
 | |
| 						unsigned long size)
 | |
| {
 | |
| 	efi_status_t status;
 | |
| 	efi_gcd_memory_space_desc_t desc;
 | |
| 	unsigned long end, next;
 | |
| 	unsigned long rounded_start, rounded_end;
 | |
| 	unsigned long unprotect_start, unprotect_size;
 | |
| 
 | |
| 	rounded_start = rounddown(start, EFI_PAGE_SIZE);
 | |
| 	rounded_end = roundup(start + size, EFI_PAGE_SIZE);
 | |
| 
 | |
| 	if (memattr != NULL) {
 | |
| 		status = efi_call_proto(efi_memory_attribute_protocol,
 | |
| 					clear_memory_attributes, memattr,
 | |
| 					rounded_start,
 | |
| 					rounded_end - rounded_start,
 | |
| 					EFI_MEMORY_XP);
 | |
| 		if (status != EFI_SUCCESS)
 | |
| 			efi_printk(sys_table,
 | |
| 				   "Failed to clear EFI_MEMORY_XP attribute\n");
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	if (efi_dxe_table == NULL)
 | |
| 		return EFI_SUCCESS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't modify memory region attributes, they are
 | |
| 	 * already suitable, to lower the possibility to
 | |
| 	 * encounter firmware bugs.
 | |
| 	 */
 | |
| 
 | |
| 	for (end = start + size; start < end; start = next) {
 | |
| 
 | |
| 		status = efi_dxe_call(get_memory_space_descriptor, start, &desc);
 | |
| 
 | |
| 		if (status != EFI_SUCCESS)
 | |
| 			break;
 | |
| 
 | |
| 		next = desc.base_address + desc.length;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only system memory is suitable for trampoline/kernel image placement,
 | |
| 		 * so only this type of memory needs its attributes to be modified.
 | |
| 		 */
 | |
| 
 | |
| 		if (desc.gcd_memory_type != EfiGcdMemoryTypeSystemMemory ||
 | |
| 		    (desc.attributes & (EFI_MEMORY_RO | EFI_MEMORY_XP)) == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		unprotect_start = max(rounded_start, (unsigned long)desc.base_address);
 | |
| 		unprotect_size = min(rounded_end, next) - unprotect_start;
 | |
| 
 | |
| 		status = efi_dxe_call(set_memory_space_attributes,
 | |
| 				      unprotect_start, unprotect_size,
 | |
| 				      EFI_MEMORY_WB);
 | |
| 
 | |
| 		if (status != EFI_SUCCESS) {
 | |
| 			efi_printk(sys_table,
 | |
| 				   "WARNING: Unable to unprotect memory range\n");
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| static efi_char16_t *efistub_fw_vendor(void)
 | |
| {
 | |
| 	unsigned long vendor = efi_table_attr(efi_system_table, fw_vendor,
 | |
| 					      sys_table);
 | |
| 
 | |
| 	return (efi_char16_t *)vendor;
 | |
| }
 | |
| 
 | |
| static const efi_char16_t apple[] = L"Apple";
 | |
| 
 | |
| static void setup_quirks(struct boot_params *boot_params)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_APPLE_PROPERTIES) &&
 | |
| 	    !memcmp(efistub_fw_vendor(), apple, sizeof(apple)))
 | |
| 		retrieve_apple_device_properties(boot_params);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if we have Universal Graphics Adapter (UGA) protocol
 | |
|  */
 | |
| static efi_status_t
 | |
| setup_uga(struct screen_info *si, efi_guid_t *uga_proto, unsigned long size)
 | |
| {
 | |
| 	efi_status_t status;
 | |
| 	u32 width, height;
 | |
| 	void **uga_handle = NULL;
 | |
| 	efi_uga_draw_protocol_t *uga = NULL, *first_uga;
 | |
| 	efi_handle_t handle;
 | |
| 	int i;
 | |
| 
 | |
| 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
 | |
| 				size, (void **)&uga_handle);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	status = efi_call_early(locate_handle,
 | |
| 				EFI_LOCATE_BY_PROTOCOL,
 | |
| 				uga_proto, NULL, &size, uga_handle);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		goto free_handle;
 | |
| 
 | |
| 	height = 0;
 | |
| 	width = 0;
 | |
| 
 | |
| 	first_uga = NULL;
 | |
| 	for_each_efi_handle(handle, uga_handle, size, i) {
 | |
| 		efi_guid_t pciio_proto = EFI_PCI_IO_PROTOCOL_GUID;
 | |
| 		u32 w, h, depth, refresh;
 | |
| 		void *pciio;
 | |
| 
 | |
| 		status = efi_call_early(handle_protocol, handle,
 | |
| 					uga_proto, (void **)&uga);
 | |
| 		if (status != EFI_SUCCESS)
 | |
| 			continue;
 | |
| 
 | |
| 		efi_call_early(handle_protocol, handle, &pciio_proto, &pciio);
 | |
| 
 | |
| 		status = efi_call_proto(efi_uga_draw_protocol, get_mode, uga,
 | |
| 					&w, &h, &depth, &refresh);
 | |
| 		if (status == EFI_SUCCESS && (!first_uga || pciio)) {
 | |
| 			width = w;
 | |
| 			height = h;
 | |
| 
 | |
| 			/*
 | |
| 			 * Once we've found a UGA supporting PCIIO,
 | |
| 			 * don't bother looking any further.
 | |
| 			 */
 | |
| 			if (pciio)
 | |
| 				break;
 | |
| 
 | |
| 			first_uga = uga;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!width && !height)
 | |
| 		goto free_handle;
 | |
| 
 | |
| 	/* EFI framebuffer */
 | |
| 	si->orig_video_isVGA	= VIDEO_TYPE_EFI;
 | |
| 
 | |
| 	si->lfb_depth		= 32;
 | |
| 	si->lfb_width		= width;
 | |
| 	si->lfb_height		= height;
 | |
| 
 | |
| 	si->red_size		= 8;
 | |
| 	si->red_pos		= 16;
 | |
| 	si->green_size		= 8;
 | |
| 	si->green_pos		= 8;
 | |
| 	si->blue_size		= 8;
 | |
| 	si->blue_pos		= 0;
 | |
| 	si->rsvd_size		= 8;
 | |
| 	si->rsvd_pos		= 24;
 | |
| 
 | |
| free_handle:
 | |
| 	efi_call_early(free_pool, uga_handle);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| void setup_graphics(struct boot_params *boot_params)
 | |
| {
 | |
| 	efi_guid_t graphics_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
 | |
| 	struct screen_info *si;
 | |
| 	efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
 | |
| 	efi_status_t status;
 | |
| 	unsigned long size;
 | |
| 	void **gop_handle = NULL;
 | |
| 	void **uga_handle = NULL;
 | |
| 
 | |
| 	si = &boot_params->screen_info;
 | |
| 	memset(si, 0, sizeof(*si));
 | |
| 
 | |
| 	size = 0;
 | |
| 	status = efi_call_early(locate_handle,
 | |
| 				EFI_LOCATE_BY_PROTOCOL,
 | |
| 				&graphics_proto, NULL, &size, gop_handle);
 | |
| 	if (status == EFI_BUFFER_TOO_SMALL)
 | |
| 		status = efi_setup_gop(NULL, si, &graphics_proto, size);
 | |
| 
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		size = 0;
 | |
| 		status = efi_call_early(locate_handle,
 | |
| 					EFI_LOCATE_BY_PROTOCOL,
 | |
| 					&uga_proto, NULL, &size, uga_handle);
 | |
| 		if (status == EFI_BUFFER_TOO_SMALL)
 | |
| 			setup_uga(si, &uga_proto, size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __noreturn efi_exit(efi_handle_t handle, efi_status_t status)
 | |
| {
 | |
| 	efi_call_early(exit, handle, status, 0, NULL);
 | |
| 	unreachable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Because the x86 boot code expects to be passed a boot_params we
 | |
|  * need to create one ourselves (usually the bootloader would create
 | |
|  * one for us).
 | |
|  *
 | |
|  * Any error results in a call to the Exit() EFI boot service.
 | |
|  */
 | |
| struct boot_params *make_boot_params(struct efi_config *c)
 | |
| {
 | |
| 	struct boot_params *boot_params;
 | |
| 	struct apm_bios_info *bi;
 | |
| 	struct setup_header *hdr;
 | |
| 	efi_loaded_image_t *image;
 | |
| 	void *options, *handle;
 | |
| 	efi_guid_t proto = LOADED_IMAGE_PROTOCOL_GUID;
 | |
| 	int options_size = 0;
 | |
| 	efi_status_t status;
 | |
| 	char *cmdline_ptr;
 | |
| 	u16 *s2;
 | |
| 	u8 *s1;
 | |
| 	int i;
 | |
| 	unsigned long ramdisk_addr;
 | |
| 	unsigned long ramdisk_size;
 | |
| 
 | |
| 	efi_early = c;
 | |
| 	sys_table = (efi_system_table_t *)(unsigned long)efi_early->table;
 | |
| 	handle = (void *)(unsigned long)efi_early->image_handle;
 | |
| 
 | |
| 	/* Check if we were booted by the EFI firmware */
 | |
| 	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 | |
| 		efi_exit(handle, EFI_INVALID_PARAMETER);
 | |
| 
 | |
| 	if (efi_early->is64)
 | |
| 		setup_boot_services64(efi_early);
 | |
| 	else
 | |
| 		setup_boot_services32(efi_early);
 | |
| 
 | |
| 	status = efi_call_early(handle_protocol, handle,
 | |
| 				&proto, (void *)&image);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "Failed to get handle for LOADED_IMAGE_PROTOCOL\n");
 | |
| 		efi_exit(handle, status);
 | |
| 	}
 | |
| 
 | |
| 	status = efi_low_alloc(sys_table, 0x4000, 1,
 | |
| 			       (unsigned long *)&boot_params);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "Failed to allocate lowmem for boot params\n");
 | |
| 		efi_exit(handle, status);
 | |
| 	}
 | |
| 
 | |
| 	memset(boot_params, 0x0, 0x4000);
 | |
| 
 | |
| 	hdr = &boot_params->hdr;
 | |
| 	bi = &boot_params->apm_bios_info;
 | |
| 
 | |
| 	/* Copy the second sector to boot_params */
 | |
| 	memcpy(&hdr->jump, image->image_base + 512, 512);
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill out some of the header fields ourselves because the
 | |
| 	 * EFI firmware loader doesn't load the first sector.
 | |
| 	 */
 | |
| 	hdr->root_flags	= 1;
 | |
| 	hdr->vid_mode	= 0xffff;
 | |
| 	hdr->boot_flag	= 0xAA55;
 | |
| 
 | |
| 	hdr->type_of_loader = 0x21;
 | |
| 
 | |
| 	/* Convert unicode cmdline to ascii */
 | |
| 	cmdline_ptr = efi_convert_cmdline(sys_table, image, &options_size);
 | |
| 	if (!cmdline_ptr) {
 | |
| 		status = EFI_INVALID_PARAMETER;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	hdr->cmd_line_ptr = (unsigned long)cmdline_ptr;
 | |
| 	/* Fill in upper bits of command line address, NOP on 32 bit  */
 | |
| 	boot_params->ext_cmd_line_ptr = (u64)(unsigned long)cmdline_ptr >> 32;
 | |
| 
 | |
| 	hdr->ramdisk_image = 0;
 | |
| 	hdr->ramdisk_size = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disregard any setup data that was provided by the bootloader:
 | |
| 	 * setup_data could be pointing anywhere, and we have no way of
 | |
| 	 * authenticating or validating the payload.
 | |
| 	 */
 | |
| 	hdr->setup_data = 0;
 | |
| 
 | |
| 	/* Clear APM BIOS info */
 | |
| 	memset(bi, 0, sizeof(*bi));
 | |
| 
 | |
| 	status = efi_parse_options(cmdline_ptr);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		goto fail2;
 | |
| 
 | |
| 	status = handle_cmdline_files(sys_table, image,
 | |
| 				      (char *)(unsigned long)hdr->cmd_line_ptr,
 | |
| 				      "initrd=", hdr->initrd_addr_max,
 | |
| 				      &ramdisk_addr, &ramdisk_size);
 | |
| 
 | |
| 	if (status != EFI_SUCCESS &&
 | |
| 	    hdr->xloadflags & XLF_CAN_BE_LOADED_ABOVE_4G) {
 | |
| 		efi_printk(sys_table, "Trying to load files to higher address\n");
 | |
| 		status = handle_cmdline_files(sys_table, image,
 | |
| 				      (char *)(unsigned long)hdr->cmd_line_ptr,
 | |
| 				      "initrd=", -1UL,
 | |
| 				      &ramdisk_addr, &ramdisk_size);
 | |
| 	}
 | |
| 
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		goto fail2;
 | |
| 	hdr->ramdisk_image = ramdisk_addr & 0xffffffff;
 | |
| 	hdr->ramdisk_size  = ramdisk_size & 0xffffffff;
 | |
| 	boot_params->ext_ramdisk_image = (u64)ramdisk_addr >> 32;
 | |
| 	boot_params->ext_ramdisk_size  = (u64)ramdisk_size >> 32;
 | |
| 
 | |
| 	return boot_params;
 | |
| 
 | |
| fail2:
 | |
| 	efi_free(sys_table, options_size, hdr->cmd_line_ptr);
 | |
| fail:
 | |
| 	efi_free(sys_table, 0x4000, (unsigned long)boot_params);
 | |
| 
 | |
| 	efi_exit(handle, status);
 | |
| }
 | |
| 
 | |
| static void add_e820ext(struct boot_params *params,
 | |
| 			struct setup_data *e820ext, u32 nr_entries)
 | |
| {
 | |
| 	struct setup_data *data;
 | |
| 	efi_status_t status;
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	e820ext->type = SETUP_E820_EXT;
 | |
| 	e820ext->len  = nr_entries * sizeof(struct boot_e820_entry);
 | |
| 	e820ext->next = 0;
 | |
| 
 | |
| 	data = (struct setup_data *)(unsigned long)params->hdr.setup_data;
 | |
| 
 | |
| 	while (data && data->next)
 | |
| 		data = (struct setup_data *)(unsigned long)data->next;
 | |
| 
 | |
| 	if (data)
 | |
| 		data->next = (unsigned long)e820ext;
 | |
| 	else
 | |
| 		params->hdr.setup_data = (unsigned long)e820ext;
 | |
| }
 | |
| 
 | |
| static efi_status_t
 | |
| setup_e820(struct boot_params *params, struct setup_data *e820ext, u32 e820ext_size)
 | |
| {
 | |
| 	struct boot_e820_entry *entry = params->e820_table;
 | |
| 	struct efi_info *efi = ¶ms->efi_info;
 | |
| 	struct boot_e820_entry *prev = NULL;
 | |
| 	u32 nr_entries;
 | |
| 	u32 nr_desc;
 | |
| 	int i;
 | |
| 
 | |
| 	nr_entries = 0;
 | |
| 	nr_desc = efi->efi_memmap_size / efi->efi_memdesc_size;
 | |
| 
 | |
| 	for (i = 0; i < nr_desc; i++) {
 | |
| 		efi_memory_desc_t *d;
 | |
| 		unsigned int e820_type = 0;
 | |
| 		unsigned long m = efi->efi_memmap;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 		m |= (u64)efi->efi_memmap_hi << 32;
 | |
| #endif
 | |
| 
 | |
| 		d = efi_early_memdesc_ptr(m, efi->efi_memdesc_size, i);
 | |
| 		switch (d->type) {
 | |
| 		case EFI_RESERVED_TYPE:
 | |
| 		case EFI_RUNTIME_SERVICES_CODE:
 | |
| 		case EFI_RUNTIME_SERVICES_DATA:
 | |
| 		case EFI_MEMORY_MAPPED_IO:
 | |
| 		case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
 | |
| 		case EFI_PAL_CODE:
 | |
| 			e820_type = E820_TYPE_RESERVED;
 | |
| 			break;
 | |
| 
 | |
| 		case EFI_UNUSABLE_MEMORY:
 | |
| 			e820_type = E820_TYPE_UNUSABLE;
 | |
| 			break;
 | |
| 
 | |
| 		case EFI_ACPI_RECLAIM_MEMORY:
 | |
| 			e820_type = E820_TYPE_ACPI;
 | |
| 			break;
 | |
| 
 | |
| 		case EFI_LOADER_CODE:
 | |
| 		case EFI_LOADER_DATA:
 | |
| 		case EFI_BOOT_SERVICES_CODE:
 | |
| 		case EFI_BOOT_SERVICES_DATA:
 | |
| 		case EFI_CONVENTIONAL_MEMORY:
 | |
| 			if (efi_soft_reserve_enabled() &&
 | |
| 			    (d->attribute & EFI_MEMORY_SP))
 | |
| 				e820_type = E820_TYPE_SOFT_RESERVED;
 | |
| 			else
 | |
| 				e820_type = E820_TYPE_RAM;
 | |
| 			break;
 | |
| 
 | |
| 		case EFI_ACPI_MEMORY_NVS:
 | |
| 			e820_type = E820_TYPE_NVS;
 | |
| 			break;
 | |
| 
 | |
| 		case EFI_PERSISTENT_MEMORY:
 | |
| 			e820_type = E820_TYPE_PMEM;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Merge adjacent mappings */
 | |
| 		if (prev && prev->type == e820_type &&
 | |
| 		    (prev->addr + prev->size) == d->phys_addr) {
 | |
| 			prev->size += d->num_pages << 12;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (nr_entries == ARRAY_SIZE(params->e820_table)) {
 | |
| 			u32 need = (nr_desc - i) * sizeof(struct e820_entry) +
 | |
| 				   sizeof(struct setup_data);
 | |
| 
 | |
| 			if (!e820ext || e820ext_size < need)
 | |
| 				return EFI_BUFFER_TOO_SMALL;
 | |
| 
 | |
| 			/* boot_params map full, switch to e820 extended */
 | |
| 			entry = (struct boot_e820_entry *)e820ext->data;
 | |
| 		}
 | |
| 
 | |
| 		entry->addr = d->phys_addr;
 | |
| 		entry->size = d->num_pages << PAGE_SHIFT;
 | |
| 		entry->type = e820_type;
 | |
| 		prev = entry++;
 | |
| 		nr_entries++;
 | |
| 	}
 | |
| 
 | |
| 	if (nr_entries > ARRAY_SIZE(params->e820_table)) {
 | |
| 		u32 nr_e820ext = nr_entries - ARRAY_SIZE(params->e820_table);
 | |
| 
 | |
| 		add_e820ext(params, e820ext, nr_e820ext);
 | |
| 		nr_entries -= nr_e820ext;
 | |
| 	}
 | |
| 
 | |
| 	params->e820_entries = (u8)nr_entries;
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| static efi_status_t alloc_e820ext(u32 nr_desc, struct setup_data **e820ext,
 | |
| 				  u32 *e820ext_size)
 | |
| {
 | |
| 	efi_status_t status;
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	size = sizeof(struct setup_data) +
 | |
| 		sizeof(struct e820_entry) * nr_desc;
 | |
| 
 | |
| 	if (*e820ext) {
 | |
| 		efi_call_early(free_pool, *e820ext);
 | |
| 		*e820ext = NULL;
 | |
| 		*e820ext_size = 0;
 | |
| 	}
 | |
| 
 | |
| 	status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
 | |
| 				size, (void **)e820ext);
 | |
| 	if (status == EFI_SUCCESS)
 | |
| 		*e820ext_size = size;
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static efi_status_t allocate_e820(struct boot_params *params,
 | |
| 				  struct setup_data **e820ext,
 | |
| 				  u32 *e820ext_size)
 | |
| {
 | |
| 	unsigned long map_size, desc_size, buff_size;
 | |
| 	struct efi_boot_memmap boot_map;
 | |
| 	efi_memory_desc_t *map;
 | |
| 	efi_status_t status;
 | |
| 	__u32 nr_desc;
 | |
| 
 | |
| 	boot_map.map		= ↦
 | |
| 	boot_map.map_size	= &map_size;
 | |
| 	boot_map.desc_size	= &desc_size;
 | |
| 	boot_map.desc_ver	= NULL;
 | |
| 	boot_map.key_ptr	= NULL;
 | |
| 	boot_map.buff_size	= &buff_size;
 | |
| 
 | |
| 	status = efi_get_memory_map(sys_table, &boot_map);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	nr_desc = buff_size / desc_size;
 | |
| 
 | |
| 	if (nr_desc > ARRAY_SIZE(params->e820_table)) {
 | |
| 		u32 nr_e820ext = nr_desc - ARRAY_SIZE(params->e820_table);
 | |
| 
 | |
| 		status = alloc_e820ext(nr_e820ext, e820ext, e820ext_size);
 | |
| 		if (status != EFI_SUCCESS)
 | |
| 			return status;
 | |
| 	}
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| struct exit_boot_struct {
 | |
| 	struct boot_params	*boot_params;
 | |
| 	struct efi_info		*efi;
 | |
| 	bool			is64;
 | |
| };
 | |
| 
 | |
| static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
 | |
| 				   struct efi_boot_memmap *map,
 | |
| 				   void *priv)
 | |
| {
 | |
| 	const char *signature;
 | |
| 	__u32 nr_desc;
 | |
| 	efi_status_t status;
 | |
| 	struct exit_boot_struct *p = priv;
 | |
| 
 | |
| 	signature = p->is64 ? EFI64_LOADER_SIGNATURE : EFI32_LOADER_SIGNATURE;
 | |
| 	memcpy(&p->efi->efi_loader_signature, signature, sizeof(__u32));
 | |
| 
 | |
| 	p->efi->efi_systab		= (unsigned long)sys_table_arg;
 | |
| 	p->efi->efi_memdesc_size	= *map->desc_size;
 | |
| 	p->efi->efi_memdesc_version	= *map->desc_ver;
 | |
| 	p->efi->efi_memmap		= (unsigned long)*map->map;
 | |
| 	p->efi->efi_memmap_size		= *map->map_size;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	p->efi->efi_systab_hi		= (unsigned long)sys_table_arg >> 32;
 | |
| 	p->efi->efi_memmap_hi		= (unsigned long)*map->map >> 32;
 | |
| #endif
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| static efi_status_t exit_boot(struct boot_params *boot_params,
 | |
| 			      void *handle, bool is64)
 | |
| {
 | |
| 	unsigned long map_sz, key, desc_size, buff_size;
 | |
| 	efi_memory_desc_t *mem_map;
 | |
| 	struct setup_data *e820ext = NULL;
 | |
| 	__u32 e820ext_size = 0;
 | |
| 	efi_status_t status;
 | |
| 	__u32 desc_version;
 | |
| 	struct efi_boot_memmap map;
 | |
| 	struct exit_boot_struct priv;
 | |
| 
 | |
| 	map.map			= &mem_map;
 | |
| 	map.map_size		= &map_sz;
 | |
| 	map.desc_size		= &desc_size;
 | |
| 	map.desc_ver		= &desc_version;
 | |
| 	map.key_ptr		= &key;
 | |
| 	map.buff_size		= &buff_size;
 | |
| 	priv.boot_params	= boot_params;
 | |
| 	priv.efi		= &boot_params->efi_info;
 | |
| 	priv.is64		= is64;
 | |
| 
 | |
| 	status = allocate_e820(boot_params, &e820ext, &e820ext_size);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	/* Might as well exit boot services now */
 | |
| 	status = efi_exit_boot_services(sys_table, handle, &map, &priv,
 | |
| 					exit_boot_func);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	/* Historic? */
 | |
| 	boot_params->alt_mem_k	= 32 * 1024;
 | |
| 
 | |
| 	status = setup_e820(boot_params, e820ext, e820ext_size);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	return EFI_SUCCESS;
 | |
| }
 | |
| 
 | |
| static bool have_unsupported_snp_features(void)
 | |
| {
 | |
| 	u64 unsupported;
 | |
| 
 | |
| 	unsupported = snp_get_unsupported_features(sev_get_status());
 | |
| 	if (unsupported) {
 | |
| 		efi_printk(sys_table,
 | |
| 			   "Unsupported SEV-SNP features detected\n");
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void efi_get_seed(void *seed, int size)
 | |
| {
 | |
| 	efi_get_random_bytes(sys_table, size, seed);
 | |
| 
 | |
| 	/*
 | |
| 	 * This only updates seed[0] when running on 32-bit, but in that case,
 | |
| 	 * seed[1] is not used anyway, as there is no virtual KASLR on 32-bit.
 | |
| 	 */
 | |
| 	*(unsigned long *)seed ^= kaslr_get_random_long("EFI");
 | |
| }
 | |
| 
 | |
| static void error(char *str)
 | |
| {
 | |
| 	efi_printk(sys_table, "Decompression failed: ");
 | |
| 	efi_printk(sys_table, str);
 | |
| 	efi_printk(sys_table, "\n");
 | |
| }
 | |
| 
 | |
| static const char *cmdline_memmap_override;
 | |
| 
 | |
| static efi_status_t parse_options(const char *cmdline)
 | |
| {
 | |
| 	static const char opts[][14] = {
 | |
| 		"mem=", "memmap=", "efi_fake_mem=", "hugepages="
 | |
| 	};
 | |
| 
 | |
| 	for (int i = 0; i < ARRAY_SIZE(opts); i++) {
 | |
| 		const char *p = strstr(cmdline, opts[i]);
 | |
| 
 | |
| 		if (p == cmdline || (p > cmdline && isspace(p[-1]))) {
 | |
| 			cmdline_memmap_override = opts[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return efi_parse_options(cmdline);
 | |
| }
 | |
| 
 | |
| static efi_status_t efi_decompress_kernel(unsigned long *kernel_entry)
 | |
| {
 | |
| 	unsigned long virt_addr = LOAD_PHYSICAL_ADDR;
 | |
| 	unsigned long addr, alloc_size, entry;
 | |
| 	efi_status_t status;
 | |
| 	u32 seed[2] = {};
 | |
| 
 | |
| 	/* determine the required size of the allocation */
 | |
| 	alloc_size = ALIGN(max_t(unsigned long, output_len, kernel_total_size),
 | |
| 			   MIN_KERNEL_ALIGN);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !nokaslr()) {
 | |
| 		u64 range = KERNEL_IMAGE_SIZE - LOAD_PHYSICAL_ADDR - kernel_total_size;
 | |
| 		static const efi_char16_t ami[] = L"American Megatrends";
 | |
| 
 | |
| 		efi_get_seed(seed, sizeof(seed));
 | |
| 
 | |
| 		virt_addr += (range * seed[1]) >> 32;
 | |
| 		virt_addr &= ~(CONFIG_PHYSICAL_ALIGN - 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * Older Dell systems with AMI UEFI firmware v2.0 may hang
 | |
| 		 * while decompressing the kernel if physical address
 | |
| 		 * randomization is enabled.
 | |
| 		 *
 | |
| 		 * https://bugzilla.kernel.org/show_bug.cgi?id=218173
 | |
| 		 */
 | |
| 		if (sys_table->hdr.revision <= EFI_2_00_SYSTEM_TABLE_REVISION &&
 | |
| 		    !memcmp(efistub_fw_vendor(), ami, sizeof(ami))) {
 | |
| 			seed[0] = 0;
 | |
| 		} else if (cmdline_memmap_override) {
 | |
| 			efi_printk(sys_table,
 | |
| 				"cmdline memmap override detected on the kernel command line - disabling physical KASLR\n");
 | |
| 			seed[0] = 0;
 | |
| 		}
 | |
| 
 | |
| 		boot_params_ptr->hdr.loadflags |= KASLR_FLAG;
 | |
| 	}
 | |
| 
 | |
| 	status = efi_random_alloc(sys_table,
 | |
| 				  alloc_size, CONFIG_PHYSICAL_ALIGN, &addr,
 | |
| 				  seed[0], EFI_LOADER_CODE,
 | |
| 				  LOAD_PHYSICAL_ADDR,
 | |
| 				  EFI_X86_KERNEL_ALLOC_LIMIT);
 | |
| 	if (status != EFI_SUCCESS)
 | |
| 		return status;
 | |
| 
 | |
| 	entry = decompress_kernel((void *)addr, virt_addr, error);
 | |
| 	if (entry == ULONG_MAX) {
 | |
| 		efi_free(sys_table, alloc_size, addr);
 | |
| 		return EFI_LOAD_ERROR;
 | |
| 	}
 | |
| 
 | |
| 	*kernel_entry = addr + entry;
 | |
| 
 | |
| 	return efi_adjust_memory_range_protection(addr, kernel_total_size);
 | |
| }
 | |
| 
 | |
| static void __noreturn enter_kernel(unsigned long kernel_addr,
 | |
| 				    struct boot_params *boot_params)
 | |
| {
 | |
| 	/* enter decompressed kernel with boot_params pointer in RSI/ESI */
 | |
| 	asm("jmp *%0"::"r"(kernel_addr), "S"(boot_params));
 | |
| 
 | |
| 	unreachable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On success, this routine will jump to the relocated image directly and never
 | |
|  * return.  On failure, it will exit to the firmware via efi_exit() instead of
 | |
|  * returning.
 | |
|  */
 | |
| void __noreturn efi_main(struct efi_config *c,
 | |
| 			 struct boot_params *boot_params)
 | |
| {
 | |
| 	efi_guid_t guid = EFI_MEMORY_ATTRIBUTE_PROTOCOL_GUID;
 | |
| 	efi_loaded_image_t *image;
 | |
| 	struct setup_header *hdr = &boot_params->hdr;
 | |
| 	unsigned long kernel_entry;
 | |
| 	efi_status_t status;
 | |
| 	void *handle;
 | |
| 	efi_system_table_t *_table;
 | |
| 	bool is64;
 | |
| 	extern char _bss[], _ebss[];
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear BSS. It might not have been cleared if we got here via
 | |
| 	 * the EFI handover protocol. No harm to clear it again if we
 | |
| 	 * got here via the EFI PE entry.
 | |
| 	 */
 | |
| 	memset(_bss, 0, _ebss - _bss);
 | |
| 
 | |
| 	efi_early = c;
 | |
| 
 | |
| 	_table = (efi_system_table_t *)(unsigned long)efi_early->table;
 | |
| 	handle = (void *)(unsigned long)efi_early->image_handle;
 | |
| 	is64 = efi_early->is64;
 | |
| 
 | |
| 	boot_params_ptr = boot_params;
 | |
| 
 | |
| 	sys_table = _table;
 | |
| 
 | |
| 	/* Check if we were booted by the EFI firmware */
 | |
| 	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 | |
| 		efi_exit(handle, EFI_INVALID_PARAMETER);
 | |
| 
 | |
| 	if (is64)
 | |
| 		setup_boot_services64(efi_early);
 | |
| 	else
 | |
| 		setup_boot_services32(efi_early);
 | |
| 
 | |
| 	if (have_unsupported_snp_features())
 | |
| 		efi_exit(handle, EFI_UNSUPPORTED);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_EFI_DXE_MEM_ATTRIBUTES)) {
 | |
| 		efi_dxe_table = get_efi_config_table(sys_table, EFI_DXE_SERVICES_TABLE_GUID);
 | |
| 		if (efi_dxe_table &&
 | |
| 		    efi_dxe_table->hdr.signature != EFI_DXE_SERVICES_TABLE_SIGNATURE) {
 | |
| 			efi_printk(sys_table, "Ignoring DXE services table: invalid signature\n");
 | |
| 			efi_dxe_table = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* grab the memory attributes protocol if it exists */
 | |
| 	efi_call_early(locate_protocol, &guid, NULL, (void **)&memattr);
 | |
| 
 | |
| 	status = efi_setup_5level_paging();
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "efi_setup_5level_paging() failed!\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * make_boot_params() may have been called before efi_main(), in which
 | |
| 	 * case this is the second time we parse the cmdline. This is ok,
 | |
| 	 * parsing the cmdline multiple times does not have side-effects.
 | |
| 	 */
 | |
| #ifdef CONFIG_CMDLINE_BOOL
 | |
| 	status = parse_options(CONFIG_CMDLINE);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "Failed to parse options\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| #endif
 | |
| 	if (!IS_ENABLED(CONFIG_CMDLINE_OVERRIDE)) {
 | |
| 		unsigned long cmdline_paddr = ((u64)hdr->cmd_line_ptr |
 | |
| 					       ((u64)boot_params->ext_cmd_line_ptr << 32));
 | |
| 		status = parse_options((char *)cmdline_paddr);
 | |
| 		if (status != EFI_SUCCESS) {
 | |
| 			efi_printk(sys_table, "Failed to parse options\n");
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	status = efi_decompress_kernel(&kernel_entry);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "Failed to decompress kernel\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the boot loader gave us a value for secure_boot then we use that,
 | |
| 	 * otherwise we ask the BIOS.
 | |
| 	 */
 | |
| 	if (boot_params->secure_boot == efi_secureboot_mode_unset)
 | |
| 		boot_params->secure_boot = efi_get_secureboot(sys_table);
 | |
| 
 | |
| 	/* Ask the firmware to clear memory on unclean shutdown */
 | |
| 	efi_enable_reset_attack_mitigation(sys_table);
 | |
| 
 | |
| 	efi_random_get_seed(sys_table);
 | |
| 
 | |
| 	efi_retrieve_tpm2_eventlog(sys_table);
 | |
| 
 | |
| 	setup_graphics(boot_params);
 | |
| 
 | |
| 	setup_efi_pci(boot_params);
 | |
| 
 | |
| 	setup_quirks(boot_params);
 | |
| 
 | |
| 	status = exit_boot(boot_params, handle, is64);
 | |
| 	if (status != EFI_SUCCESS) {
 | |
| 		efi_printk(sys_table, "exit_boot() failed!\n");
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Call the SEV init code while still running with the firmware's
 | |
| 	 * GDT/IDT, so #VC exceptions will be handled by EFI.
 | |
| 	 */
 | |
| 	sev_enable(boot_params);
 | |
| 
 | |
| 	efi_5level_switch();
 | |
| 
 | |
| 	enter_kernel(kernel_entry, boot_params);
 | |
| fail:
 | |
| 	efi_printk(sys_table, "efi_main() failed!\n");
 | |
| 
 | |
| 	efi_exit(handle, status);
 | |
| }
 |