675 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			675 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Initialize MMU support.
 | |
|  *
 | |
|  * Copyright (C) 1998-2003 Hewlett-Packard Co
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| 
 | |
| #include <linux/efi.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/kexec.h>
 | |
| 
 | |
| #include <asm/dma.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/machvec.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/patch.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/sal.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/unistd.h>
 | |
| #include <asm/mca.h>
 | |
| 
 | |
| extern void ia64_tlb_init (void);
 | |
| 
 | |
| unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
 | |
| 
 | |
| #ifdef CONFIG_VIRTUAL_MEM_MAP
 | |
| unsigned long VMALLOC_END = VMALLOC_END_INIT;
 | |
| EXPORT_SYMBOL(VMALLOC_END);
 | |
| struct page *vmem_map;
 | |
| EXPORT_SYMBOL(vmem_map);
 | |
| #endif
 | |
| 
 | |
| struct page *zero_page_memmap_ptr;	/* map entry for zero page */
 | |
| EXPORT_SYMBOL(zero_page_memmap_ptr);
 | |
| 
 | |
| void
 | |
| __ia64_sync_icache_dcache (pte_t pte)
 | |
| {
 | |
| 	unsigned long addr;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	page = pte_page(pte);
 | |
| 	addr = (unsigned long) page_address(page);
 | |
| 
 | |
| 	if (test_bit(PG_arch_1, &page->flags))
 | |
| 		return;				/* i-cache is already coherent with d-cache */
 | |
| 
 | |
| 	flush_icache_range(addr, addr + page_size(page));
 | |
| 	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Since DMA is i-cache coherent, any (complete) pages that were written via
 | |
|  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
 | |
|  * flush them when they get mapped into an executable vm-area.
 | |
|  */
 | |
| void
 | |
| dma_mark_clean(void *addr, size_t size)
 | |
| {
 | |
| 	unsigned long pg_addr, end;
 | |
| 
 | |
| 	pg_addr = PAGE_ALIGN((unsigned long) addr);
 | |
| 	end = (unsigned long) addr + size;
 | |
| 	while (pg_addr + PAGE_SIZE <= end) {
 | |
| 		struct page *page = virt_to_page(pg_addr);
 | |
| 		set_bit(PG_arch_1, &page->flags);
 | |
| 		pg_addr += PAGE_SIZE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| inline void
 | |
| ia64_set_rbs_bot (void)
 | |
| {
 | |
| 	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
 | |
| 
 | |
| 	if (stack_size > MAX_USER_STACK_SIZE)
 | |
| 		stack_size = MAX_USER_STACK_SIZE;
 | |
| 	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This performs some platform-dependent address space initialization.
 | |
|  * On IA-64, we want to setup the VM area for the register backing
 | |
|  * store (which grows upwards) and install the gateway page which is
 | |
|  * used for signal trampolines, etc.
 | |
|  */
 | |
| void
 | |
| ia64_init_addr_space (void)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	ia64_set_rbs_bot();
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
 | |
| 	 * the problem.  When the process attempts to write to the register backing store
 | |
| 	 * for the first time, it will get a SEGFAULT in this case.
 | |
| 	 */
 | |
| 	vma = vm_area_alloc(current->mm);
 | |
| 	if (vma) {
 | |
| 		vma_set_anonymous(vma);
 | |
| 		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
 | |
| 		vma->vm_end = vma->vm_start + PAGE_SIZE;
 | |
| 		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
 | |
| 		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 | |
| 		down_write(¤t->mm->mmap_sem);
 | |
| 		if (insert_vm_struct(current->mm, vma)) {
 | |
| 			up_write(¤t->mm->mmap_sem);
 | |
| 			vm_area_free(vma);
 | |
| 			return;
 | |
| 		}
 | |
| 		up_write(¤t->mm->mmap_sem);
 | |
| 	}
 | |
| 
 | |
| 	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
 | |
| 	if (!(current->personality & MMAP_PAGE_ZERO)) {
 | |
| 		vma = vm_area_alloc(current->mm);
 | |
| 		if (vma) {
 | |
| 			vma_set_anonymous(vma);
 | |
| 			vma->vm_end = PAGE_SIZE;
 | |
| 			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
 | |
| 			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
 | |
| 					VM_DONTEXPAND | VM_DONTDUMP;
 | |
| 			down_write(¤t->mm->mmap_sem);
 | |
| 			if (insert_vm_struct(current->mm, vma)) {
 | |
| 				up_write(¤t->mm->mmap_sem);
 | |
| 				vm_area_free(vma);
 | |
| 				return;
 | |
| 			}
 | |
| 			up_write(¤t->mm->mmap_sem);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| free_initmem (void)
 | |
| {
 | |
| 	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
 | |
| 			   -1, "unused kernel");
 | |
| }
 | |
| 
 | |
| void __init
 | |
| free_initrd_mem (unsigned long start, unsigned long end)
 | |
| {
 | |
| 	/*
 | |
| 	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
 | |
| 	 * Thus EFI and the kernel may have different page sizes. It is
 | |
| 	 * therefore possible to have the initrd share the same page as
 | |
| 	 * the end of the kernel (given current setup).
 | |
| 	 *
 | |
| 	 * To avoid freeing/using the wrong page (kernel sized) we:
 | |
| 	 *	- align up the beginning of initrd
 | |
| 	 *	- align down the end of initrd
 | |
| 	 *
 | |
| 	 *  |             |
 | |
| 	 *  |=============| a000
 | |
| 	 *  |             |
 | |
| 	 *  |             |
 | |
| 	 *  |             | 9000
 | |
| 	 *  |/////////////|
 | |
| 	 *  |/////////////|
 | |
| 	 *  |=============| 8000
 | |
| 	 *  |///INITRD////|
 | |
| 	 *  |/////////////|
 | |
| 	 *  |/////////////| 7000
 | |
| 	 *  |             |
 | |
| 	 *  |KKKKKKKKKKKKK|
 | |
| 	 *  |=============| 6000
 | |
| 	 *  |KKKKKKKKKKKKK|
 | |
| 	 *  |KKKKKKKKKKKKK|
 | |
| 	 *  K=kernel using 8KB pages
 | |
| 	 *
 | |
| 	 * In this example, we must free page 8000 ONLY. So we must align up
 | |
| 	 * initrd_start and keep initrd_end as is.
 | |
| 	 */
 | |
| 	start = PAGE_ALIGN(start);
 | |
| 	end = end & PAGE_MASK;
 | |
| 
 | |
| 	if (start < end)
 | |
| 		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
 | |
| 
 | |
| 	for (; start < end; start += PAGE_SIZE) {
 | |
| 		if (!virt_addr_valid(start))
 | |
| 			continue;
 | |
| 		free_reserved_page(virt_to_page(start));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This installs a clean page in the kernel's page table.
 | |
|  */
 | |
| static struct page * __init
 | |
| put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
 | |
| 
 | |
| 	{
 | |
| 		pud = pud_alloc(&init_mm, pgd, address);
 | |
| 		if (!pud)
 | |
| 			goto out;
 | |
| 		pmd = pmd_alloc(&init_mm, pud, address);
 | |
| 		if (!pmd)
 | |
| 			goto out;
 | |
| 		pte = pte_alloc_kernel(pmd, address);
 | |
| 		if (!pte)
 | |
| 			goto out;
 | |
| 		if (!pte_none(*pte))
 | |
| 			goto out;
 | |
| 		set_pte(pte, mk_pte(page, pgprot));
 | |
| 	}
 | |
|   out:
 | |
| 	/* no need for flush_tlb */
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| static void __init
 | |
| setup_gate (void)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map the gate page twice: once read-only to export the ELF
 | |
| 	 * headers etc. and once execute-only page to enable
 | |
| 	 * privilege-promotion via "epc":
 | |
| 	 */
 | |
| 	page = virt_to_page(ia64_imva(__start_gate_section));
 | |
| 	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
 | |
| #ifdef HAVE_BUGGY_SEGREL
 | |
| 	page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
 | |
| 	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
 | |
| #else
 | |
| 	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
 | |
| 	/* Fill in the holes (if any) with read-only zero pages: */
 | |
| 	{
 | |
| 		unsigned long addr;
 | |
| 
 | |
| 		for (addr = GATE_ADDR + PAGE_SIZE;
 | |
| 		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
 | |
| 		     addr += PAGE_SIZE)
 | |
| 		{
 | |
| 			put_kernel_page(ZERO_PAGE(0), addr,
 | |
| 					PAGE_READONLY);
 | |
| 			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
 | |
| 					PAGE_READONLY);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	ia64_patch_gate();
 | |
| }
 | |
| 
 | |
| static struct vm_area_struct gate_vma;
 | |
| 
 | |
| static int __init gate_vma_init(void)
 | |
| {
 | |
| 	vma_init(&gate_vma, NULL);
 | |
| 	gate_vma.vm_start = FIXADDR_USER_START;
 | |
| 	gate_vma.vm_end = FIXADDR_USER_END;
 | |
| 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
 | |
| 	gate_vma.vm_page_prot = __P101;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(gate_vma_init);
 | |
| 
 | |
| struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 | |
| {
 | |
| 	return &gate_vma;
 | |
| }
 | |
| 
 | |
| int in_gate_area_no_mm(unsigned long addr)
 | |
| {
 | |
| 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int in_gate_area(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	return in_gate_area_no_mm(addr);
 | |
| }
 | |
| 
 | |
| void ia64_mmu_init(void *my_cpu_data)
 | |
| {
 | |
| 	unsigned long pta, impl_va_bits;
 | |
| 	extern void tlb_init(void);
 | |
| 
 | |
| #ifdef CONFIG_DISABLE_VHPT
 | |
| #	define VHPT_ENABLE_BIT	0
 | |
| #else
 | |
| #	define VHPT_ENABLE_BIT	1
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
 | |
| 	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
 | |
| 	 * virtual address space are implemented but if we pick a large enough page size
 | |
| 	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
 | |
| 	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
 | |
| 	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
 | |
| 	 * problem in practice.  Alternatively, we could truncate the top of the mapped
 | |
| 	 * address space to not permit mappings that would overlap with the VMLPT.
 | |
| 	 * --davidm 00/12/06
 | |
| 	 */
 | |
| #	define pte_bits			3
 | |
| #	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
 | |
| 	/*
 | |
| 	 * The virtual page table has to cover the entire implemented address space within
 | |
| 	 * a region even though not all of this space may be mappable.  The reason for
 | |
| 	 * this is that the Access bit and Dirty bit fault handlers perform
 | |
| 	 * non-speculative accesses to the virtual page table, so the address range of the
 | |
| 	 * virtual page table itself needs to be covered by virtual page table.
 | |
| 	 */
 | |
| #	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
 | |
| #	define POW2(n)			(1ULL << (n))
 | |
| 
 | |
| 	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
 | |
| 
 | |
| 	if (impl_va_bits < 51 || impl_va_bits > 61)
 | |
| 		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
 | |
| 	/*
 | |
| 	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
 | |
| 	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
 | |
| 	 * the test makes sure that our mapped space doesn't overlap the
 | |
| 	 * unimplemented hole in the middle of the region.
 | |
| 	 */
 | |
| 	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
 | |
| 	    (mapped_space_bits > impl_va_bits - 1))
 | |
| 		panic("Cannot build a big enough virtual-linear page table"
 | |
| 		      " to cover mapped address space.\n"
 | |
| 		      " Try using a smaller page size.\n");
 | |
| 
 | |
| 
 | |
| 	/* place the VMLPT at the end of each page-table mapped region: */
 | |
| 	pta = POW2(61) - POW2(vmlpt_bits);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the (virtually mapped linear) page table address.  Bit
 | |
| 	 * 8 selects between the short and long format, bits 2-7 the
 | |
| 	 * size of the table, and bit 0 whether the VHPT walker is
 | |
| 	 * enabled.
 | |
| 	 */
 | |
| 	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
 | |
| 
 | |
| 	ia64_tlb_init();
 | |
| 
 | |
| #ifdef	CONFIG_HUGETLB_PAGE
 | |
| 	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
 | |
| 	ia64_srlz_d();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_VIRTUAL_MEM_MAP
 | |
| int vmemmap_find_next_valid_pfn(int node, int i)
 | |
| {
 | |
| 	unsigned long end_address, hole_next_pfn;
 | |
| 	unsigned long stop_address;
 | |
| 	pg_data_t *pgdat = NODE_DATA(node);
 | |
| 
 | |
| 	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
 | |
| 	end_address = PAGE_ALIGN(end_address);
 | |
| 	stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
 | |
| 
 | |
| 	do {
 | |
| 		pgd_t *pgd;
 | |
| 		pud_t *pud;
 | |
| 		pmd_t *pmd;
 | |
| 		pte_t *pte;
 | |
| 
 | |
| 		pgd = pgd_offset_k(end_address);
 | |
| 		if (pgd_none(*pgd)) {
 | |
| 			end_address += PGDIR_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pud = pud_offset(pgd, end_address);
 | |
| 		if (pud_none(*pud)) {
 | |
| 			end_address += PUD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pmd = pmd_offset(pud, end_address);
 | |
| 		if (pmd_none(*pmd)) {
 | |
| 			end_address += PMD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pte = pte_offset_kernel(pmd, end_address);
 | |
| retry_pte:
 | |
| 		if (pte_none(*pte)) {
 | |
| 			end_address += PAGE_SIZE;
 | |
| 			pte++;
 | |
| 			if ((end_address < stop_address) &&
 | |
| 			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
 | |
| 				goto retry_pte;
 | |
| 			continue;
 | |
| 		}
 | |
| 		/* Found next valid vmem_map page */
 | |
| 		break;
 | |
| 	} while (end_address < stop_address);
 | |
| 
 | |
| 	end_address = min(end_address, stop_address);
 | |
| 	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
 | |
| 	hole_next_pfn = end_address / sizeof(struct page);
 | |
| 	return hole_next_pfn - pgdat->node_start_pfn;
 | |
| }
 | |
| 
 | |
| int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
 | |
| {
 | |
| 	unsigned long address, start_page, end_page;
 | |
| 	struct page *map_start, *map_end;
 | |
| 	int node;
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 | |
| 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 | |
| 
 | |
| 	start_page = (unsigned long) map_start & PAGE_MASK;
 | |
| 	end_page = PAGE_ALIGN((unsigned long) map_end);
 | |
| 	node = paddr_to_nid(__pa(start));
 | |
| 
 | |
| 	for (address = start_page; address < end_page; address += PAGE_SIZE) {
 | |
| 		pgd = pgd_offset_k(address);
 | |
| 		if (pgd_none(*pgd))
 | |
| 			pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
 | |
| 		pud = pud_offset(pgd, address);
 | |
| 
 | |
| 		if (pud_none(*pud))
 | |
| 			pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
 | |
| 		pmd = pmd_offset(pud, address);
 | |
| 
 | |
| 		if (pmd_none(*pmd))
 | |
| 			pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
 | |
| 		pte = pte_offset_kernel(pmd, address);
 | |
| 
 | |
| 		if (pte_none(*pte))
 | |
| 			set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT,
 | |
| 					     PAGE_KERNEL));
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct memmap_init_callback_data {
 | |
| 	struct page *start;
 | |
| 	struct page *end;
 | |
| 	int nid;
 | |
| 	unsigned long zone;
 | |
| };
 | |
| 
 | |
| static int __meminit
 | |
| virtual_memmap_init(u64 start, u64 end, void *arg)
 | |
| {
 | |
| 	struct memmap_init_callback_data *args;
 | |
| 	struct page *map_start, *map_end;
 | |
| 
 | |
| 	args = (struct memmap_init_callback_data *) arg;
 | |
| 	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
 | |
| 	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
 | |
| 
 | |
| 	if (map_start < args->start)
 | |
| 		map_start = args->start;
 | |
| 	if (map_end > args->end)
 | |
| 		map_end = args->end;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have to initialize "out of bounds" struct page elements that fit completely
 | |
| 	 * on the same pages that were allocated for the "in bounds" elements because they
 | |
| 	 * may be referenced later (and found to be "reserved").
 | |
| 	 */
 | |
| 	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
 | |
| 	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
 | |
| 		    / sizeof(struct page));
 | |
| 
 | |
| 	if (map_start < map_end)
 | |
| 		memmap_init_zone((unsigned long)(map_end - map_start),
 | |
| 				 args->nid, args->zone, page_to_pfn(map_start),
 | |
| 				 MEMINIT_EARLY, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __meminit
 | |
| memmap_init (unsigned long size, int nid, unsigned long zone,
 | |
| 	     unsigned long start_pfn)
 | |
| {
 | |
| 	if (!vmem_map) {
 | |
| 		memmap_init_zone(size, nid, zone, start_pfn,
 | |
| 				 MEMINIT_EARLY, NULL);
 | |
| 	} else {
 | |
| 		struct page *start;
 | |
| 		struct memmap_init_callback_data args;
 | |
| 
 | |
| 		start = pfn_to_page(start_pfn);
 | |
| 		args.start = start;
 | |
| 		args.end = start + size;
 | |
| 		args.nid = nid;
 | |
| 		args.zone = zone;
 | |
| 
 | |
| 		efi_memmap_walk(virtual_memmap_init, &args);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| ia64_pfn_valid (unsigned long pfn)
 | |
| {
 | |
| 	char byte;
 | |
| 	struct page *pg = pfn_to_page(pfn);
 | |
| 
 | |
| 	return     (__get_user(byte, (char __user *) pg) == 0)
 | |
| 		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
 | |
| 			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
 | |
| }
 | |
| EXPORT_SYMBOL(ia64_pfn_valid);
 | |
| 
 | |
| int __init find_largest_hole(u64 start, u64 end, void *arg)
 | |
| {
 | |
| 	u64 *max_gap = arg;
 | |
| 
 | |
| 	static u64 last_end = PAGE_OFFSET;
 | |
| 
 | |
| 	/* NOTE: this algorithm assumes efi memmap table is ordered */
 | |
| 
 | |
| 	if (*max_gap < (start - last_end))
 | |
| 		*max_gap = start - last_end;
 | |
| 	last_end = end;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_VIRTUAL_MEM_MAP */
 | |
| 
 | |
| int __init register_active_ranges(u64 start, u64 len, int nid)
 | |
| {
 | |
| 	u64 end = start + len;
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| 	if (start > crashk_res.start && start < crashk_res.end)
 | |
| 		start = crashk_res.end;
 | |
| 	if (end > crashk_res.start && end < crashk_res.end)
 | |
| 		end = crashk_res.start;
 | |
| #endif
 | |
| 
 | |
| 	if (start < end)
 | |
| 		memblock_add_node(__pa(start), end - start, nid);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| find_max_min_low_pfn (u64 start, u64 end, void *arg)
 | |
| {
 | |
| 	unsigned long pfn_start, pfn_end;
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
 | |
| 	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
 | |
| #else
 | |
| 	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
 | |
| 	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
 | |
| #endif
 | |
| 	min_low_pfn = min(min_low_pfn, pfn_start);
 | |
| 	max_low_pfn = max(max_low_pfn, pfn_end);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
 | |
|  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
 | |
|  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
 | |
|  * useful for performance testing, but conceivably could also come in handy for debugging
 | |
|  * purposes.
 | |
|  */
 | |
| 
 | |
| static int nolwsys __initdata;
 | |
| 
 | |
| static int __init
 | |
| nolwsys_setup (char *s)
 | |
| {
 | |
| 	nolwsys = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("nolwsys", nolwsys_setup);
 | |
| 
 | |
| void __init
 | |
| mem_init (void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
 | |
| 	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
 | |
| 	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 	/*
 | |
| 	 * This needs to be called _after_ the command line has been parsed but _before_
 | |
| 	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
 | |
| 	 * been freed.
 | |
| 	 */
 | |
| 	platform_dma_init();
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_FLATMEM
 | |
| 	BUG_ON(!mem_map);
 | |
| #endif
 | |
| 
 | |
| 	set_max_mapnr(max_low_pfn);
 | |
| 	high_memory = __va(max_low_pfn * PAGE_SIZE);
 | |
| 	memblock_free_all();
 | |
| 	mem_init_print_info(NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
 | |
| 	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
 | |
| 	 * code can tell them apart.
 | |
| 	 */
 | |
| 	for (i = 0; i < NR_syscalls; ++i) {
 | |
| 		extern unsigned long fsyscall_table[NR_syscalls];
 | |
| 		extern unsigned long sys_call_table[NR_syscalls];
 | |
| 
 | |
| 		if (!fsyscall_table[i] || nolwsys)
 | |
| 			fsyscall_table[i] = sys_call_table[i] | 1;
 | |
| 	}
 | |
| 	setup_gate();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| int arch_add_memory(int nid, u64 start, u64 size,
 | |
| 		    struct mhp_params *params)
 | |
| {
 | |
| 	unsigned long start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long nr_pages = size >> PAGE_SHIFT;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(params->pgprot.pgprot != PAGE_KERNEL.pgprot))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = __add_pages(nid, start_pfn, nr_pages, params);
 | |
| 	if (ret)
 | |
| 		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
 | |
| 		       __func__,  ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void arch_remove_memory(int nid, u64 start, u64 size,
 | |
| 			struct vmem_altmap *altmap)
 | |
| {
 | |
| 	unsigned long start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long nr_pages = size >> PAGE_SHIFT;
 | |
| 
 | |
| 	__remove_pages(start_pfn, nr_pages, altmap);
 | |
| }
 | |
| #endif
 |