763 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			763 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
 | |
|  * Copyright (c) 2001 Intel Corp.
 | |
|  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
 | |
|  * Copyright (c) 2002 NEC Corp.
 | |
|  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
 | |
|  * Copyright (c) 2004 Silicon Graphics, Inc
 | |
|  *	Russ Anderson <rja@sgi.com>
 | |
|  *	Jesse Barnes <jbarnes@sgi.com>
 | |
|  *	Jack Steiner <steiner@sgi.com>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Platform initialization for Discontig Memory
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/nmi.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/memblock.h>
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/efi.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/slab.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/meminit.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/sections.h>
 | |
| 
 | |
| /*
 | |
|  * Track per-node information needed to setup the boot memory allocator, the
 | |
|  * per-node areas, and the real VM.
 | |
|  */
 | |
| struct early_node_data {
 | |
| 	struct ia64_node_data *node_data;
 | |
| 	unsigned long pernode_addr;
 | |
| 	unsigned long pernode_size;
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	unsigned long num_dma_physpages;
 | |
| #endif
 | |
| 	unsigned long min_pfn;
 | |
| 	unsigned long max_pfn;
 | |
| };
 | |
| 
 | |
| static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
 | |
| static nodemask_t memory_less_mask __initdata;
 | |
| 
 | |
| pg_data_t *pgdat_list[MAX_NUMNODES];
 | |
| 
 | |
| /*
 | |
|  * To prevent cache aliasing effects, align per-node structures so that they
 | |
|  * start at addresses that are strided by node number.
 | |
|  */
 | |
| #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024)
 | |
| #define NODEDATA_ALIGN(addr, node)						\
 | |
| 	((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\
 | |
| 	     (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
 | |
| 
 | |
| /**
 | |
|  * build_node_maps - callback to setup bootmem structs for each node
 | |
|  * @start: physical start of range
 | |
|  * @len: length of range
 | |
|  * @node: node where this range resides
 | |
|  *
 | |
|  * We allocate a struct bootmem_data for each piece of memory that we wish to
 | |
|  * treat as a virtually contiguous block (i.e. each node). Each such block
 | |
|  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
 | |
|  * if necessary.  Any non-existent pages will simply be part of the virtual
 | |
|  * memmap.  We also update min_low_pfn and max_low_pfn here as we receive
 | |
|  * memory ranges from the caller.
 | |
|  */
 | |
| static int __init build_node_maps(unsigned long start, unsigned long len,
 | |
| 				  int node)
 | |
| {
 | |
| 	unsigned long spfn, epfn, end = start + len;
 | |
| 	struct bootmem_data *bdp = &bootmem_node_data[node];
 | |
| 
 | |
| 	epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
 | |
| 	spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (!bdp->node_low_pfn) {
 | |
| 		bdp->node_min_pfn = spfn;
 | |
| 		bdp->node_low_pfn = epfn;
 | |
| 	} else {
 | |
| 		bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
 | |
| 		bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * early_nr_cpus_node - return number of cpus on a given node
 | |
|  * @node: node to check
 | |
|  *
 | |
|  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
 | |
|  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
 | |
|  * called yet.  Note that node 0 will also count all non-existent cpus.
 | |
|  */
 | |
| static int __meminit early_nr_cpus_node(int node)
 | |
| {
 | |
| 	int cpu, n = 0;
 | |
| 
 | |
| 	for_each_possible_early_cpu(cpu)
 | |
| 		if (node == node_cpuid[cpu].nid)
 | |
| 			n++;
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * compute_pernodesize - compute size of pernode data
 | |
|  * @node: the node id.
 | |
|  */
 | |
| static unsigned long __meminit compute_pernodesize(int node)
 | |
| {
 | |
| 	unsigned long pernodesize = 0, cpus;
 | |
| 
 | |
| 	cpus = early_nr_cpus_node(node);
 | |
| 	pernodesize += PERCPU_PAGE_SIZE * cpus;
 | |
| 	pernodesize += node * L1_CACHE_BYTES;
 | |
| 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
 | |
| 	pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
 | |
| 	pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
 | |
| 	pernodesize = PAGE_ALIGN(pernodesize);
 | |
| 	return pernodesize;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * per_cpu_node_setup - setup per-cpu areas on each node
 | |
|  * @cpu_data: per-cpu area on this node
 | |
|  * @node: node to setup
 | |
|  *
 | |
|  * Copy the static per-cpu data into the region we just set aside and then
 | |
|  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
 | |
|  * the end of the area.
 | |
|  */
 | |
| static void *per_cpu_node_setup(void *cpu_data, int node)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_early_cpu(cpu) {
 | |
| 		void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
 | |
| 
 | |
| 		if (node != node_cpuid[cpu].nid)
 | |
| 			continue;
 | |
| 
 | |
| 		memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
 | |
| 		__per_cpu_offset[cpu] = (char *)__va(cpu_data) -
 | |
| 			__per_cpu_start;
 | |
| 
 | |
| 		/*
 | |
| 		 * percpu area for cpu0 is moved from the __init area
 | |
| 		 * which is setup by head.S and used till this point.
 | |
| 		 * Update ar.k3.  This move is ensures that percpu
 | |
| 		 * area for cpu0 is on the correct node and its
 | |
| 		 * virtual address isn't insanely far from other
 | |
| 		 * percpu areas which is important for congruent
 | |
| 		 * percpu allocator.
 | |
| 		 */
 | |
| 		if (cpu == 0)
 | |
| 			ia64_set_kr(IA64_KR_PER_CPU_DATA,
 | |
| 				    (unsigned long)cpu_data -
 | |
| 				    (unsigned long)__per_cpu_start);
 | |
| 
 | |
| 		cpu_data += PERCPU_PAGE_SIZE;
 | |
| 	}
 | |
| #endif
 | |
| 	return cpu_data;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /**
 | |
|  * setup_per_cpu_areas - setup percpu areas
 | |
|  *
 | |
|  * Arch code has already allocated and initialized percpu areas.  All
 | |
|  * this function has to do is to teach the determined layout to the
 | |
|  * dynamic percpu allocator, which happens to be more complex than
 | |
|  * creating whole new ones using helpers.
 | |
|  */
 | |
| void __init setup_per_cpu_areas(void)
 | |
| {
 | |
| 	struct pcpu_alloc_info *ai;
 | |
| 	struct pcpu_group_info *uninitialized_var(gi);
 | |
| 	unsigned int *cpu_map;
 | |
| 	void *base;
 | |
| 	unsigned long base_offset;
 | |
| 	unsigned int cpu;
 | |
| 	ssize_t static_size, reserved_size, dyn_size;
 | |
| 	int node, prev_node, unit, nr_units, rc;
 | |
| 
 | |
| 	ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
 | |
| 	if (!ai)
 | |
| 		panic("failed to allocate pcpu_alloc_info");
 | |
| 	cpu_map = ai->groups[0].cpu_map;
 | |
| 
 | |
| 	/* determine base */
 | |
| 	base = (void *)ULONG_MAX;
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		base = min(base,
 | |
| 			   (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
 | |
| 	base_offset = (void *)__per_cpu_start - base;
 | |
| 
 | |
| 	/* build cpu_map, units are grouped by node */
 | |
| 	unit = 0;
 | |
| 	for_each_node(node)
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			if (node == node_cpuid[cpu].nid)
 | |
| 				cpu_map[unit++] = cpu;
 | |
| 	nr_units = unit;
 | |
| 
 | |
| 	/* set basic parameters */
 | |
| 	static_size = __per_cpu_end - __per_cpu_start;
 | |
| 	reserved_size = PERCPU_MODULE_RESERVE;
 | |
| 	dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
 | |
| 	if (dyn_size < 0)
 | |
| 		panic("percpu area overflow static=%zd reserved=%zd\n",
 | |
| 		      static_size, reserved_size);
 | |
| 
 | |
| 	ai->static_size		= static_size;
 | |
| 	ai->reserved_size	= reserved_size;
 | |
| 	ai->dyn_size		= dyn_size;
 | |
| 	ai->unit_size		= PERCPU_PAGE_SIZE;
 | |
| 	ai->atom_size		= PAGE_SIZE;
 | |
| 	ai->alloc_size		= PERCPU_PAGE_SIZE;
 | |
| 
 | |
| 	/*
 | |
| 	 * CPUs are put into groups according to node.  Walk cpu_map
 | |
| 	 * and create new groups at node boundaries.
 | |
| 	 */
 | |
| 	prev_node = -1;
 | |
| 	ai->nr_groups = 0;
 | |
| 	for (unit = 0; unit < nr_units; unit++) {
 | |
| 		cpu = cpu_map[unit];
 | |
| 		node = node_cpuid[cpu].nid;
 | |
| 
 | |
| 		if (node == prev_node) {
 | |
| 			gi->nr_units++;
 | |
| 			continue;
 | |
| 		}
 | |
| 		prev_node = node;
 | |
| 
 | |
| 		gi = &ai->groups[ai->nr_groups++];
 | |
| 		gi->nr_units		= 1;
 | |
| 		gi->base_offset		= __per_cpu_offset[cpu] + base_offset;
 | |
| 		gi->cpu_map		= &cpu_map[unit];
 | |
| 	}
 | |
| 
 | |
| 	rc = pcpu_setup_first_chunk(ai, base);
 | |
| 	if (rc)
 | |
| 		panic("failed to setup percpu area (err=%d)", rc);
 | |
| 
 | |
| 	pcpu_free_alloc_info(ai);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * fill_pernode - initialize pernode data.
 | |
|  * @node: the node id.
 | |
|  * @pernode: physical address of pernode data
 | |
|  * @pernodesize: size of the pernode data
 | |
|  */
 | |
| static void __init fill_pernode(int node, unsigned long pernode,
 | |
| 	unsigned long pernodesize)
 | |
| {
 | |
| 	void *cpu_data;
 | |
| 	int cpus = early_nr_cpus_node(node);
 | |
| 	struct bootmem_data *bdp = &bootmem_node_data[node];
 | |
| 
 | |
| 	mem_data[node].pernode_addr = pernode;
 | |
| 	mem_data[node].pernode_size = pernodesize;
 | |
| 	memset(__va(pernode), 0, pernodesize);
 | |
| 
 | |
| 	cpu_data = (void *)pernode;
 | |
| 	pernode += PERCPU_PAGE_SIZE * cpus;
 | |
| 	pernode += node * L1_CACHE_BYTES;
 | |
| 
 | |
| 	pgdat_list[node] = __va(pernode);
 | |
| 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
 | |
| 
 | |
| 	mem_data[node].node_data = __va(pernode);
 | |
| 	pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
 | |
| 
 | |
| 	pgdat_list[node]->bdata = bdp;
 | |
| 	pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
 | |
| 
 | |
| 	cpu_data = per_cpu_node_setup(cpu_data, node);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_pernode_space - allocate memory for memory map and per-node structures
 | |
|  * @start: physical start of range
 | |
|  * @len: length of range
 | |
|  * @node: node where this range resides
 | |
|  *
 | |
|  * This routine reserves space for the per-cpu data struct, the list of
 | |
|  * pg_data_ts and the per-node data struct.  Each node will have something like
 | |
|  * the following in the first chunk of addr. space large enough to hold it.
 | |
|  *
 | |
|  *    ________________________
 | |
|  *   |                        |
 | |
|  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
 | |
|  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
 | |
|  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
 | |
|  *   |------------------------|
 | |
|  *   |   local pg_data_t *    |
 | |
|  *   |------------------------|
 | |
|  *   |  local ia64_node_data  |
 | |
|  *   |------------------------|
 | |
|  *   |          ???           |
 | |
|  *   |________________________|
 | |
|  *
 | |
|  * Once this space has been set aside, the bootmem maps are initialized.  We
 | |
|  * could probably move the allocation of the per-cpu and ia64_node_data space
 | |
|  * outside of this function and use alloc_bootmem_node(), but doing it here
 | |
|  * is straightforward and we get the alignments we want so...
 | |
|  */
 | |
| static int __init find_pernode_space(unsigned long start, unsigned long len,
 | |
| 				     int node)
 | |
| {
 | |
| 	unsigned long spfn, epfn;
 | |
| 	unsigned long pernodesize = 0, pernode, pages, mapsize;
 | |
| 	struct bootmem_data *bdp = &bootmem_node_data[node];
 | |
| 
 | |
| 	spfn = start >> PAGE_SHIFT;
 | |
| 	epfn = (start + len) >> PAGE_SHIFT;
 | |
| 
 | |
| 	pages = bdp->node_low_pfn - bdp->node_min_pfn;
 | |
| 	mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure this memory falls within this node's usable memory
 | |
| 	 * since we may have thrown some away in build_maps().
 | |
| 	 */
 | |
| 	if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Don't setup this node's local space twice... */
 | |
| 	if (mem_data[node].pernode_addr)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate total size needed, incl. what's necessary
 | |
| 	 * for good alignment and alias prevention.
 | |
| 	 */
 | |
| 	pernodesize = compute_pernodesize(node);
 | |
| 	pernode = NODEDATA_ALIGN(start, node);
 | |
| 
 | |
| 	/* Is this range big enough for what we want to store here? */
 | |
| 	if (start + len > (pernode + pernodesize + mapsize))
 | |
| 		fill_pernode(node, pernode, pernodesize);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * free_node_bootmem - free bootmem allocator memory for use
 | |
|  * @start: physical start of range
 | |
|  * @len: length of range
 | |
|  * @node: node where this range resides
 | |
|  *
 | |
|  * Simply calls the bootmem allocator to free the specified ranged from
 | |
|  * the given pg_data_t's bdata struct.  After this function has been called
 | |
|  * for all the entries in the EFI memory map, the bootmem allocator will
 | |
|  * be ready to service allocation requests.
 | |
|  */
 | |
| static int __init free_node_bootmem(unsigned long start, unsigned long len,
 | |
| 				    int node)
 | |
| {
 | |
| 	free_bootmem_node(pgdat_list[node], start, len);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * reserve_pernode_space - reserve memory for per-node space
 | |
|  *
 | |
|  * Reserve the space used by the bootmem maps & per-node space in the boot
 | |
|  * allocator so that when we actually create the real mem maps we don't
 | |
|  * use their memory.
 | |
|  */
 | |
| static void __init reserve_pernode_space(void)
 | |
| {
 | |
| 	unsigned long base, size, pages;
 | |
| 	struct bootmem_data *bdp;
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		pg_data_t *pdp = pgdat_list[node];
 | |
| 
 | |
| 		if (node_isset(node, memory_less_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		bdp = pdp->bdata;
 | |
| 
 | |
| 		/* First the bootmem_map itself */
 | |
| 		pages = bdp->node_low_pfn - bdp->node_min_pfn;
 | |
| 		size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
 | |
| 		base = __pa(bdp->node_bootmem_map);
 | |
| 		reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
 | |
| 
 | |
| 		/* Now the per-node space */
 | |
| 		size = mem_data[node].pernode_size;
 | |
| 		base = __pa(mem_data[node].pernode_addr);
 | |
| 		reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __meminit scatter_node_data(void)
 | |
| {
 | |
| 	pg_data_t **dst;
 | |
| 	int node;
 | |
| 
 | |
| 	/*
 | |
| 	 * for_each_online_node() can't be used at here.
 | |
| 	 * node_online_map is not set for hot-added nodes at this time,
 | |
| 	 * because we are halfway through initialization of the new node's
 | |
| 	 * structures.  If for_each_online_node() is used, a new node's
 | |
| 	 * pg_data_ptrs will be not initialized. Instead of using it,
 | |
| 	 * pgdat_list[] is checked.
 | |
| 	 */
 | |
| 	for_each_node(node) {
 | |
| 		if (pgdat_list[node]) {
 | |
| 			dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
 | |
| 			memcpy(dst, pgdat_list, sizeof(pgdat_list));
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * initialize_pernode_data - fixup per-cpu & per-node pointers
 | |
|  *
 | |
|  * Each node's per-node area has a copy of the global pg_data_t list, so
 | |
|  * we copy that to each node here, as well as setting the per-cpu pointer
 | |
|  * to the local node data structure.  The active_cpus field of the per-node
 | |
|  * structure gets setup by the platform_cpu_init() function later.
 | |
|  */
 | |
| static void __init initialize_pernode_data(void)
 | |
| {
 | |
| 	int cpu, node;
 | |
| 
 | |
| 	scatter_node_data();
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* Set the node_data pointer for each per-cpu struct */
 | |
| 	for_each_possible_early_cpu(cpu) {
 | |
| 		node = node_cpuid[cpu].nid;
 | |
| 		per_cpu(ia64_cpu_info, cpu).node_data =
 | |
| 			mem_data[node].node_data;
 | |
| 	}
 | |
| #else
 | |
| 	{
 | |
| 		struct cpuinfo_ia64 *cpu0_cpu_info;
 | |
| 		cpu = 0;
 | |
| 		node = node_cpuid[cpu].nid;
 | |
| 		cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
 | |
| 			((char *)&ia64_cpu_info - __per_cpu_start));
 | |
| 		cpu0_cpu_info->node_data = mem_data[node].node_data;
 | |
| 	}
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
 | |
|  * 	node but fall back to any other node when __alloc_bootmem_node fails
 | |
|  *	for best.
 | |
|  * @nid: node id
 | |
|  * @pernodesize: size of this node's pernode data
 | |
|  */
 | |
| static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
 | |
| {
 | |
| 	void *ptr = NULL;
 | |
| 	u8 best = 0xff;
 | |
| 	int bestnode = -1, node, anynode = 0;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		if (node_isset(node, memory_less_mask))
 | |
| 			continue;
 | |
| 		else if (node_distance(nid, node) < best) {
 | |
| 			best = node_distance(nid, node);
 | |
| 			bestnode = node;
 | |
| 		}
 | |
| 		anynode = node;
 | |
| 	}
 | |
| 
 | |
| 	if (bestnode == -1)
 | |
| 		bestnode = anynode;
 | |
| 
 | |
| 	ptr = memblock_alloc_try_nid(pernodesize, PERCPU_PAGE_SIZE,
 | |
| 				     __pa(MAX_DMA_ADDRESS),
 | |
| 				     MEMBLOCK_ALLOC_ACCESSIBLE,
 | |
| 				     bestnode);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * memory_less_nodes - allocate and initialize CPU only nodes pernode
 | |
|  *	information.
 | |
|  */
 | |
| static void __init memory_less_nodes(void)
 | |
| {
 | |
| 	unsigned long pernodesize;
 | |
| 	void *pernode;
 | |
| 	int node;
 | |
| 
 | |
| 	for_each_node_mask(node, memory_less_mask) {
 | |
| 		pernodesize = compute_pernodesize(node);
 | |
| 		pernode = memory_less_node_alloc(node, pernodesize);
 | |
| 		fill_pernode(node, __pa(pernode), pernodesize);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_memory - walk the EFI memory map and setup the bootmem allocator
 | |
|  *
 | |
|  * Called early in boot to setup the bootmem allocator, and to
 | |
|  * allocate the per-cpu and per-node structures.
 | |
|  */
 | |
| void __init find_memory(void)
 | |
| {
 | |
| 	int node;
 | |
| 
 | |
| 	reserve_memory();
 | |
| 
 | |
| 	if (num_online_nodes() == 0) {
 | |
| 		printk(KERN_ERR "node info missing!\n");
 | |
| 		node_set_online(0);
 | |
| 	}
 | |
| 
 | |
| 	nodes_or(memory_less_mask, memory_less_mask, node_online_map);
 | |
| 	min_low_pfn = -1;
 | |
| 	max_low_pfn = 0;
 | |
| 
 | |
| 	/* These actually end up getting called by call_pernode_memory() */
 | |
| 	efi_memmap_walk(filter_rsvd_memory, build_node_maps);
 | |
| 	efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
 | |
| 	efi_memmap_walk(find_max_min_low_pfn, NULL);
 | |
| 
 | |
| 	for_each_online_node(node)
 | |
| 		if (bootmem_node_data[node].node_low_pfn) {
 | |
| 			node_clear(node, memory_less_mask);
 | |
| 			mem_data[node].min_pfn = ~0UL;
 | |
| 		}
 | |
| 
 | |
| 	efi_memmap_walk(filter_memory, register_active_ranges);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize the boot memory maps in reverse order since that's
 | |
| 	 * what the bootmem allocator expects
 | |
| 	 */
 | |
| 	for (node = MAX_NUMNODES - 1; node >= 0; node--) {
 | |
| 		unsigned long pernode, pernodesize, map;
 | |
| 		struct bootmem_data *bdp;
 | |
| 
 | |
| 		if (!node_online(node))
 | |
| 			continue;
 | |
| 		else if (node_isset(node, memory_less_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		bdp = &bootmem_node_data[node];
 | |
| 		pernode = mem_data[node].pernode_addr;
 | |
| 		pernodesize = mem_data[node].pernode_size;
 | |
| 		map = pernode + pernodesize;
 | |
| 
 | |
| 		init_bootmem_node(pgdat_list[node],
 | |
| 				  map>>PAGE_SHIFT,
 | |
| 				  bdp->node_min_pfn,
 | |
| 				  bdp->node_low_pfn);
 | |
| 	}
 | |
| 
 | |
| 	efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
 | |
| 
 | |
| 	reserve_pernode_space();
 | |
| 	memory_less_nodes();
 | |
| 	initialize_pernode_data();
 | |
| 
 | |
| 	max_pfn = max_low_pfn;
 | |
| 
 | |
| 	find_initrd();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /**
 | |
|  * per_cpu_init - setup per-cpu variables
 | |
|  *
 | |
|  * find_pernode_space() does most of this already, we just need to set
 | |
|  * local_per_cpu_offset
 | |
|  */
 | |
| void *per_cpu_init(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	static int first_time = 1;
 | |
| 
 | |
| 	if (first_time) {
 | |
| 		first_time = 0;
 | |
| 		for_each_possible_early_cpu(cpu)
 | |
| 			per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
 | |
| 	}
 | |
| 
 | |
| 	return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| /**
 | |
|  * call_pernode_memory - use SRAT to call callback functions with node info
 | |
|  * @start: physical start of range
 | |
|  * @len: length of range
 | |
|  * @arg: function to call for each range
 | |
|  *
 | |
|  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
 | |
|  * out to which node a block of memory belongs.  Ignore memory that we cannot
 | |
|  * identify, and split blocks that run across multiple nodes.
 | |
|  *
 | |
|  * Take this opportunity to round the start address up and the end address
 | |
|  * down to page boundaries.
 | |
|  */
 | |
| void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
 | |
| {
 | |
| 	unsigned long rs, re, end = start + len;
 | |
| 	void (*func)(unsigned long, unsigned long, int);
 | |
| 	int i;
 | |
| 
 | |
| 	start = PAGE_ALIGN(start);
 | |
| 	end &= PAGE_MASK;
 | |
| 	if (start >= end)
 | |
| 		return;
 | |
| 
 | |
| 	func = arg;
 | |
| 
 | |
| 	if (!num_node_memblks) {
 | |
| 		/* No SRAT table, so assume one node (node 0) */
 | |
| 		if (start < end)
 | |
| 			(*func)(start, end - start, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_node_memblks; i++) {
 | |
| 		rs = max(start, node_memblk[i].start_paddr);
 | |
| 		re = min(end, node_memblk[i].start_paddr +
 | |
| 			 node_memblk[i].size);
 | |
| 
 | |
| 		if (rs < re)
 | |
| 			(*func)(rs, re - rs, node_memblk[i].nid);
 | |
| 
 | |
| 		if (re == end)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * count_node_pages - callback to build per-node memory info structures
 | |
|  * @start: physical start of range
 | |
|  * @len: length of range
 | |
|  * @node: node where this range resides
 | |
|  *
 | |
|  * Each node has it's own number of physical pages, DMAable pages, start, and
 | |
|  * end page frame number.  This routine will be called by call_pernode_memory()
 | |
|  * for each piece of usable memory and will setup these values for each node.
 | |
|  * Very similar to build_maps().
 | |
|  */
 | |
| static __init int count_node_pages(unsigned long start, unsigned long len, int node)
 | |
| {
 | |
| 	unsigned long end = start + len;
 | |
| 
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	if (start <= __pa(MAX_DMA_ADDRESS))
 | |
| 		mem_data[node].num_dma_physpages +=
 | |
| 			(min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
 | |
| #endif
 | |
| 	start = GRANULEROUNDDOWN(start);
 | |
| 	end = GRANULEROUNDUP(end);
 | |
| 	mem_data[node].max_pfn = max(mem_data[node].max_pfn,
 | |
| 				     end >> PAGE_SHIFT);
 | |
| 	mem_data[node].min_pfn = min(mem_data[node].min_pfn,
 | |
| 				     start >> PAGE_SHIFT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * paging_init - setup page tables
 | |
|  *
 | |
|  * paging_init() sets up the page tables for each node of the system and frees
 | |
|  * the bootmem allocator memory for general use.
 | |
|  */
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	unsigned long max_dma;
 | |
| 	unsigned long pfn_offset = 0;
 | |
| 	unsigned long max_pfn = 0;
 | |
| 	int node;
 | |
| 	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 
 | |
| 	max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
 | |
| 
 | |
| 	efi_memmap_walk(filter_rsvd_memory, count_node_pages);
 | |
| 
 | |
| 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
 | |
| 	sparse_init();
 | |
| 
 | |
| #ifdef CONFIG_VIRTUAL_MEM_MAP
 | |
| 	VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
 | |
| 		sizeof(struct page));
 | |
| 	vmem_map = (struct page *) VMALLOC_END;
 | |
| 	efi_memmap_walk(create_mem_map_page_table, NULL);
 | |
| 	printk("Virtual mem_map starts at 0x%p\n", vmem_map);
 | |
| #endif
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		pfn_offset = mem_data[node].min_pfn;
 | |
| 
 | |
| #ifdef CONFIG_VIRTUAL_MEM_MAP
 | |
| 		NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
 | |
| #endif
 | |
| 		if (mem_data[node].max_pfn > max_pfn)
 | |
| 			max_pfn = mem_data[node].max_pfn;
 | |
| 	}
 | |
| 
 | |
| 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| #ifdef CONFIG_ZONE_DMA32
 | |
| 	max_zone_pfns[ZONE_DMA32] = max_dma;
 | |
| #endif
 | |
| 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
 | |
| 	free_area_init_nodes(max_zone_pfns);
 | |
| 
 | |
| 	zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
 | |
| }
 | |
| 
 | |
| pg_data_t * __init arch_alloc_nodedata(int nid)
 | |
| {
 | |
| 	unsigned long size = compute_pernodesize(nid);
 | |
| 
 | |
| 	return memblock_alloc(size, SMP_CACHE_BYTES);
 | |
| }
 | |
| 
 | |
| void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
 | |
| {
 | |
| 	pgdat_list[update_node] = update_pgdat;
 | |
| 	scatter_node_data();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| 	return vmemmap_populate_basepages(start, end, node);
 | |
| }
 | |
| 
 | |
| void vmemmap_free(unsigned long start, unsigned long end,
 | |
| 		struct vmem_altmap *altmap)
 | |
| {
 | |
| }
 | |
| #endif
 |