3632 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3632 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SPDX-License-Identifier: MIT
 | |
|  *
 | |
|  * Copyright © 2008,2010 Intel Corporation
 | |
|  */
 | |
| 
 | |
| #include <linux/dma-resv.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/sync_file.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <drm/drm_syncobj.h>
 | |
| 
 | |
| #include "display/intel_frontbuffer.h"
 | |
| 
 | |
| #include "gem/i915_gem_ioctls.h"
 | |
| #include "gt/intel_context.h"
 | |
| #include "gt/intel_gpu_commands.h"
 | |
| #include "gt/intel_gt.h"
 | |
| #include "gt/intel_gt_buffer_pool.h"
 | |
| #include "gt/intel_gt_pm.h"
 | |
| #include "gt/intel_ring.h"
 | |
| 
 | |
| #include "pxp/intel_pxp.h"
 | |
| 
 | |
| #include "i915_cmd_parser.h"
 | |
| #include "i915_drv.h"
 | |
| #include "i915_file_private.h"
 | |
| #include "i915_gem_clflush.h"
 | |
| #include "i915_gem_context.h"
 | |
| #include "i915_gem_evict.h"
 | |
| #include "i915_gem_ioctls.h"
 | |
| #include "i915_reg.h"
 | |
| #include "i915_trace.h"
 | |
| #include "i915_user_extensions.h"
 | |
| 
 | |
| struct eb_vma {
 | |
| 	struct i915_vma *vma;
 | |
| 	unsigned int flags;
 | |
| 
 | |
| 	/** This vma's place in the execbuf reservation list */
 | |
| 	struct drm_i915_gem_exec_object2 *exec;
 | |
| 	struct list_head bind_link;
 | |
| 	struct list_head reloc_link;
 | |
| 
 | |
| 	struct hlist_node node;
 | |
| 	u32 handle;
 | |
| };
 | |
| 
 | |
| enum {
 | |
| 	FORCE_CPU_RELOC = 1,
 | |
| 	FORCE_GTT_RELOC,
 | |
| 	FORCE_GPU_RELOC,
 | |
| #define DBG_FORCE_RELOC 0 /* choose one of the above! */
 | |
| };
 | |
| 
 | |
| /* __EXEC_OBJECT_ flags > BIT(29) defined in i915_vma.h */
 | |
| #define __EXEC_OBJECT_HAS_PIN		BIT(29)
 | |
| #define __EXEC_OBJECT_HAS_FENCE		BIT(28)
 | |
| #define __EXEC_OBJECT_USERPTR_INIT	BIT(27)
 | |
| #define __EXEC_OBJECT_NEEDS_MAP		BIT(26)
 | |
| #define __EXEC_OBJECT_NEEDS_BIAS	BIT(25)
 | |
| #define __EXEC_OBJECT_INTERNAL_FLAGS	(~0u << 25) /* all of the above + */
 | |
| #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
 | |
| 
 | |
| #define __EXEC_HAS_RELOC	BIT(31)
 | |
| #define __EXEC_ENGINE_PINNED	BIT(30)
 | |
| #define __EXEC_USERPTR_USED	BIT(29)
 | |
| #define __EXEC_INTERNAL_FLAGS	(~0u << 29)
 | |
| #define UPDATE			PIN_OFFSET_FIXED
 | |
| 
 | |
| #define BATCH_OFFSET_BIAS (256*1024)
 | |
| 
 | |
| #define __I915_EXEC_ILLEGAL_FLAGS \
 | |
| 	(__I915_EXEC_UNKNOWN_FLAGS | \
 | |
| 	 I915_EXEC_CONSTANTS_MASK  | \
 | |
| 	 I915_EXEC_RESOURCE_STREAMER)
 | |
| 
 | |
| /* Catch emission of unexpected errors for CI! */
 | |
| #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
 | |
| #undef EINVAL
 | |
| #define EINVAL ({ \
 | |
| 	DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
 | |
| 	22; \
 | |
| })
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * DOC: User command execution
 | |
|  *
 | |
|  * Userspace submits commands to be executed on the GPU as an instruction
 | |
|  * stream within a GEM object we call a batchbuffer. This instructions may
 | |
|  * refer to other GEM objects containing auxiliary state such as kernels,
 | |
|  * samplers, render targets and even secondary batchbuffers. Userspace does
 | |
|  * not know where in the GPU memory these objects reside and so before the
 | |
|  * batchbuffer is passed to the GPU for execution, those addresses in the
 | |
|  * batchbuffer and auxiliary objects are updated. This is known as relocation,
 | |
|  * or patching. To try and avoid having to relocate each object on the next
 | |
|  * execution, userspace is told the location of those objects in this pass,
 | |
|  * but this remains just a hint as the kernel may choose a new location for
 | |
|  * any object in the future.
 | |
|  *
 | |
|  * At the level of talking to the hardware, submitting a batchbuffer for the
 | |
|  * GPU to execute is to add content to a buffer from which the HW
 | |
|  * command streamer is reading.
 | |
|  *
 | |
|  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
 | |
|  *    Execlists, this command is not placed on the same buffer as the
 | |
|  *    remaining items.
 | |
|  *
 | |
|  * 2. Add a command to invalidate caches to the buffer.
 | |
|  *
 | |
|  * 3. Add a batchbuffer start command to the buffer; the start command is
 | |
|  *    essentially a token together with the GPU address of the batchbuffer
 | |
|  *    to be executed.
 | |
|  *
 | |
|  * 4. Add a pipeline flush to the buffer.
 | |
|  *
 | |
|  * 5. Add a memory write command to the buffer to record when the GPU
 | |
|  *    is done executing the batchbuffer. The memory write writes the
 | |
|  *    global sequence number of the request, ``i915_request::global_seqno``;
 | |
|  *    the i915 driver uses the current value in the register to determine
 | |
|  *    if the GPU has completed the batchbuffer.
 | |
|  *
 | |
|  * 6. Add a user interrupt command to the buffer. This command instructs
 | |
|  *    the GPU to issue an interrupt when the command, pipeline flush and
 | |
|  *    memory write are completed.
 | |
|  *
 | |
|  * 7. Inform the hardware of the additional commands added to the buffer
 | |
|  *    (by updating the tail pointer).
 | |
|  *
 | |
|  * Processing an execbuf ioctl is conceptually split up into a few phases.
 | |
|  *
 | |
|  * 1. Validation - Ensure all the pointers, handles and flags are valid.
 | |
|  * 2. Reservation - Assign GPU address space for every object
 | |
|  * 3. Relocation - Update any addresses to point to the final locations
 | |
|  * 4. Serialisation - Order the request with respect to its dependencies
 | |
|  * 5. Construction - Construct a request to execute the batchbuffer
 | |
|  * 6. Submission (at some point in the future execution)
 | |
|  *
 | |
|  * Reserving resources for the execbuf is the most complicated phase. We
 | |
|  * neither want to have to migrate the object in the address space, nor do
 | |
|  * we want to have to update any relocations pointing to this object. Ideally,
 | |
|  * we want to leave the object where it is and for all the existing relocations
 | |
|  * to match. If the object is given a new address, or if userspace thinks the
 | |
|  * object is elsewhere, we have to parse all the relocation entries and update
 | |
|  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
 | |
|  * all the target addresses in all of its objects match the value in the
 | |
|  * relocation entries and that they all match the presumed offsets given by the
 | |
|  * list of execbuffer objects. Using this knowledge, we know that if we haven't
 | |
|  * moved any buffers, all the relocation entries are valid and we can skip
 | |
|  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
 | |
|  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
 | |
|  *
 | |
|  *      The addresses written in the objects must match the corresponding
 | |
|  *      reloc.presumed_offset which in turn must match the corresponding
 | |
|  *      execobject.offset.
 | |
|  *
 | |
|  *      Any render targets written to in the batch must be flagged with
 | |
|  *      EXEC_OBJECT_WRITE.
 | |
|  *
 | |
|  *      To avoid stalling, execobject.offset should match the current
 | |
|  *      address of that object within the active context.
 | |
|  *
 | |
|  * The reservation is done is multiple phases. First we try and keep any
 | |
|  * object already bound in its current location - so as long as meets the
 | |
|  * constraints imposed by the new execbuffer. Any object left unbound after the
 | |
|  * first pass is then fitted into any available idle space. If an object does
 | |
|  * not fit, all objects are removed from the reservation and the process rerun
 | |
|  * after sorting the objects into a priority order (more difficult to fit
 | |
|  * objects are tried first). Failing that, the entire VM is cleared and we try
 | |
|  * to fit the execbuf once last time before concluding that it simply will not
 | |
|  * fit.
 | |
|  *
 | |
|  * A small complication to all of this is that we allow userspace not only to
 | |
|  * specify an alignment and a size for the object in the address space, but
 | |
|  * we also allow userspace to specify the exact offset. This objects are
 | |
|  * simpler to place (the location is known a priori) all we have to do is make
 | |
|  * sure the space is available.
 | |
|  *
 | |
|  * Once all the objects are in place, patching up the buried pointers to point
 | |
|  * to the final locations is a fairly simple job of walking over the relocation
 | |
|  * entry arrays, looking up the right address and rewriting the value into
 | |
|  * the object. Simple! ... The relocation entries are stored in user memory
 | |
|  * and so to access them we have to copy them into a local buffer. That copy
 | |
|  * has to avoid taking any pagefaults as they may lead back to a GEM object
 | |
|  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
 | |
|  * the relocation into multiple passes. First we try to do everything within an
 | |
|  * atomic context (avoid the pagefaults) which requires that we never wait. If
 | |
|  * we detect that we may wait, or if we need to fault, then we have to fallback
 | |
|  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
 | |
|  * bells yet?) Dropping the mutex means that we lose all the state we have
 | |
|  * built up so far for the execbuf and we must reset any global data. However,
 | |
|  * we do leave the objects pinned in their final locations - which is a
 | |
|  * potential issue for concurrent execbufs. Once we have left the mutex, we can
 | |
|  * allocate and copy all the relocation entries into a large array at our
 | |
|  * leisure, reacquire the mutex, reclaim all the objects and other state and
 | |
|  * then proceed to update any incorrect addresses with the objects.
 | |
|  *
 | |
|  * As we process the relocation entries, we maintain a record of whether the
 | |
|  * object is being written to. Using NORELOC, we expect userspace to provide
 | |
|  * this information instead. We also check whether we can skip the relocation
 | |
|  * by comparing the expected value inside the relocation entry with the target's
 | |
|  * final address. If they differ, we have to map the current object and rewrite
 | |
|  * the 4 or 8 byte pointer within.
 | |
|  *
 | |
|  * Serialising an execbuf is quite simple according to the rules of the GEM
 | |
|  * ABI. Execution within each context is ordered by the order of submission.
 | |
|  * Writes to any GEM object are in order of submission and are exclusive. Reads
 | |
|  * from a GEM object are unordered with respect to other reads, but ordered by
 | |
|  * writes. A write submitted after a read cannot occur before the read, and
 | |
|  * similarly any read submitted after a write cannot occur before the write.
 | |
|  * Writes are ordered between engines such that only one write occurs at any
 | |
|  * time (completing any reads beforehand) - using semaphores where available
 | |
|  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
 | |
|  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
 | |
|  * reads before starting, and any read (either using set-domain or pread) must
 | |
|  * flush all GPU writes before starting. (Note we only employ a barrier before,
 | |
|  * we currently rely on userspace not concurrently starting a new execution
 | |
|  * whilst reading or writing to an object. This may be an advantage or not
 | |
|  * depending on how much you trust userspace not to shoot themselves in the
 | |
|  * foot.) Serialisation may just result in the request being inserted into
 | |
|  * a DAG awaiting its turn, but most simple is to wait on the CPU until
 | |
|  * all dependencies are resolved.
 | |
|  *
 | |
|  * After all of that, is just a matter of closing the request and handing it to
 | |
|  * the hardware (well, leaving it in a queue to be executed). However, we also
 | |
|  * offer the ability for batchbuffers to be run with elevated privileges so
 | |
|  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
 | |
|  * Before any batch is given extra privileges we first must check that it
 | |
|  * contains no nefarious instructions, we check that each instruction is from
 | |
|  * our whitelist and all registers are also from an allowed list. We first
 | |
|  * copy the user's batchbuffer to a shadow (so that the user doesn't have
 | |
|  * access to it, either by the CPU or GPU as we scan it) and then parse each
 | |
|  * instruction. If everything is ok, we set a flag telling the hardware to run
 | |
|  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
 | |
|  */
 | |
| 
 | |
| struct eb_fence {
 | |
| 	struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
 | |
| 	struct dma_fence *dma_fence;
 | |
| 	u64 value;
 | |
| 	struct dma_fence_chain *chain_fence;
 | |
| };
 | |
| 
 | |
| struct i915_execbuffer {
 | |
| 	struct drm_i915_private *i915; /** i915 backpointer */
 | |
| 	struct drm_file *file; /** per-file lookup tables and limits */
 | |
| 	struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
 | |
| 	struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
 | |
| 	struct eb_vma *vma;
 | |
| 
 | |
| 	struct intel_gt *gt; /* gt for the execbuf */
 | |
| 	struct intel_context *context; /* logical state for the request */
 | |
| 	struct i915_gem_context *gem_context; /** caller's context */
 | |
| 
 | |
| 	/** our requests to build */
 | |
| 	struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
 | |
| 	/** identity of the batch obj/vma */
 | |
| 	struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
 | |
| 	struct i915_vma *trampoline; /** trampoline used for chaining */
 | |
| 
 | |
| 	/** used for excl fence in dma_resv objects when > 1 BB submitted */
 | |
| 	struct dma_fence *composite_fence;
 | |
| 
 | |
| 	/** actual size of execobj[] as we may extend it for the cmdparser */
 | |
| 	unsigned int buffer_count;
 | |
| 
 | |
| 	/* number of batches in execbuf IOCTL */
 | |
| 	unsigned int num_batches;
 | |
| 
 | |
| 	/** list of vma not yet bound during reservation phase */
 | |
| 	struct list_head unbound;
 | |
| 
 | |
| 	/** list of vma that have execobj.relocation_count */
 | |
| 	struct list_head relocs;
 | |
| 
 | |
| 	struct i915_gem_ww_ctx ww;
 | |
| 
 | |
| 	/**
 | |
| 	 * Track the most recently used object for relocations, as we
 | |
| 	 * frequently have to perform multiple relocations within the same
 | |
| 	 * obj/page
 | |
| 	 */
 | |
| 	struct reloc_cache {
 | |
| 		struct drm_mm_node node; /** temporary GTT binding */
 | |
| 		unsigned long vaddr; /** Current kmap address */
 | |
| 		unsigned long page; /** Currently mapped page index */
 | |
| 		unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
 | |
| 		bool use_64bit_reloc : 1;
 | |
| 		bool has_llc : 1;
 | |
| 		bool has_fence : 1;
 | |
| 		bool needs_unfenced : 1;
 | |
| 	} reloc_cache;
 | |
| 
 | |
| 	u64 invalid_flags; /** Set of execobj.flags that are invalid */
 | |
| 
 | |
| 	/** Length of batch within object */
 | |
| 	u64 batch_len[MAX_ENGINE_INSTANCE + 1];
 | |
| 	u32 batch_start_offset; /** Location within object of batch */
 | |
| 	u32 batch_flags; /** Flags composed for emit_bb_start() */
 | |
| 	struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
 | |
| 
 | |
| 	/**
 | |
| 	 * Indicate either the size of the hastable used to resolve
 | |
| 	 * relocation handles, or if negative that we are using a direct
 | |
| 	 * index into the execobj[].
 | |
| 	 */
 | |
| 	int lut_size;
 | |
| 	struct hlist_head *buckets; /** ht for relocation handles */
 | |
| 
 | |
| 	struct eb_fence *fences;
 | |
| 	unsigned long num_fences;
 | |
| #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
 | |
| 	struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
 | |
| #endif
 | |
| };
 | |
| 
 | |
| static int eb_parse(struct i915_execbuffer *eb);
 | |
| static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
 | |
| static void eb_unpin_engine(struct i915_execbuffer *eb);
 | |
| static void eb_capture_release(struct i915_execbuffer *eb);
 | |
| 
 | |
| static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
 | |
| {
 | |
| 	return intel_engine_requires_cmd_parser(eb->context->engine) ||
 | |
| 		(intel_engine_using_cmd_parser(eb->context->engine) &&
 | |
| 		 eb->args->batch_len);
 | |
| }
 | |
| 
 | |
| static int eb_create(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
 | |
| 		unsigned int size = 1 + ilog2(eb->buffer_count);
 | |
| 
 | |
| 		/*
 | |
| 		 * Without a 1:1 association between relocation handles and
 | |
| 		 * the execobject[] index, we instead create a hashtable.
 | |
| 		 * We size it dynamically based on available memory, starting
 | |
| 		 * first with 1:1 assocative hash and scaling back until
 | |
| 		 * the allocation succeeds.
 | |
| 		 *
 | |
| 		 * Later on we use a positive lut_size to indicate we are
 | |
| 		 * using this hashtable, and a negative value to indicate a
 | |
| 		 * direct lookup.
 | |
| 		 */
 | |
| 		do {
 | |
| 			gfp_t flags;
 | |
| 
 | |
| 			/* While we can still reduce the allocation size, don't
 | |
| 			 * raise a warning and allow the allocation to fail.
 | |
| 			 * On the last pass though, we want to try as hard
 | |
| 			 * as possible to perform the allocation and warn
 | |
| 			 * if it fails.
 | |
| 			 */
 | |
| 			flags = GFP_KERNEL;
 | |
| 			if (size > 1)
 | |
| 				flags |= __GFP_NORETRY | __GFP_NOWARN;
 | |
| 
 | |
| 			eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
 | |
| 					      flags);
 | |
| 			if (eb->buckets)
 | |
| 				break;
 | |
| 		} while (--size);
 | |
| 
 | |
| 		if (unlikely(!size))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		eb->lut_size = size;
 | |
| 	} else {
 | |
| 		eb->lut_size = -eb->buffer_count;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool
 | |
| eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
 | |
| 		 const struct i915_vma *vma,
 | |
| 		 unsigned int flags)
 | |
| {
 | |
| 	const u64 start = i915_vma_offset(vma);
 | |
| 	const u64 size = i915_vma_size(vma);
 | |
| 
 | |
| 	if (size < entry->pad_to_size)
 | |
| 		return true;
 | |
| 
 | |
| 	if (entry->alignment && !IS_ALIGNED(start, entry->alignment))
 | |
| 		return true;
 | |
| 
 | |
| 	if (flags & EXEC_OBJECT_PINNED &&
 | |
| 	    start != entry->offset)
 | |
| 		return true;
 | |
| 
 | |
| 	if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
 | |
| 	    start < BATCH_OFFSET_BIAS)
 | |
| 		return true;
 | |
| 
 | |
| 	if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
 | |
| 	    (start + size + 4095) >> 32)
 | |
| 		return true;
 | |
| 
 | |
| 	if (flags & __EXEC_OBJECT_NEEDS_MAP &&
 | |
| 	    !i915_vma_is_map_and_fenceable(vma))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
 | |
| 			unsigned int exec_flags)
 | |
| {
 | |
| 	u64 pin_flags = 0;
 | |
| 
 | |
| 	if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
 | |
| 		pin_flags |= PIN_GLOBAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
 | |
| 	 * limit address to the first 4GBs for unflagged objects.
 | |
| 	 */
 | |
| 	if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
 | |
| 		pin_flags |= PIN_ZONE_4G;
 | |
| 
 | |
| 	if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
 | |
| 		pin_flags |= PIN_MAPPABLE;
 | |
| 
 | |
| 	if (exec_flags & EXEC_OBJECT_PINNED)
 | |
| 		pin_flags |= entry->offset | PIN_OFFSET_FIXED;
 | |
| 	else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
 | |
| 		pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
 | |
| 
 | |
| 	return pin_flags;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| eb_pin_vma(struct i915_execbuffer *eb,
 | |
| 	   const struct drm_i915_gem_exec_object2 *entry,
 | |
| 	   struct eb_vma *ev)
 | |
| {
 | |
| 	struct i915_vma *vma = ev->vma;
 | |
| 	u64 pin_flags;
 | |
| 	int err;
 | |
| 
 | |
| 	if (vma->node.size)
 | |
| 		pin_flags =  __i915_vma_offset(vma);
 | |
| 	else
 | |
| 		pin_flags = entry->offset & PIN_OFFSET_MASK;
 | |
| 
 | |
| 	pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
 | |
| 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
 | |
| 		pin_flags |= PIN_GLOBAL;
 | |
| 
 | |
| 	/* Attempt to reuse the current location if available */
 | |
| 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
 | |
| 	if (err == -EDEADLK)
 | |
| 		return err;
 | |
| 
 | |
| 	if (unlikely(err)) {
 | |
| 		if (entry->flags & EXEC_OBJECT_PINNED)
 | |
| 			return err;
 | |
| 
 | |
| 		/* Failing that pick any _free_ space if suitable */
 | |
| 		err = i915_vma_pin_ww(vma, &eb->ww,
 | |
| 					     entry->pad_to_size,
 | |
| 					     entry->alignment,
 | |
| 					     eb_pin_flags(entry, ev->flags) |
 | |
| 					     PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
 | |
| 		if (unlikely(err))
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
 | |
| 		err = i915_vma_pin_fence(vma);
 | |
| 		if (unlikely(err))
 | |
| 			return err;
 | |
| 
 | |
| 		if (vma->fence)
 | |
| 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
 | |
| 	}
 | |
| 
 | |
| 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
 | |
| 	if (eb_vma_misplaced(entry, vma, ev->flags))
 | |
| 		return -EBADSLT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| eb_unreserve_vma(struct eb_vma *ev)
 | |
| {
 | |
| 	if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
 | |
| 		__i915_vma_unpin_fence(ev->vma);
 | |
| 
 | |
| 	ev->flags &= ~__EXEC_OBJECT_RESERVED;
 | |
| }
 | |
| 
 | |
| static int
 | |
| eb_validate_vma(struct i915_execbuffer *eb,
 | |
| 		struct drm_i915_gem_exec_object2 *entry,
 | |
| 		struct i915_vma *vma)
 | |
| {
 | |
| 	/* Relocations are disallowed for all platforms after TGL-LP.  This
 | |
| 	 * also covers all platforms with local memory.
 | |
| 	 */
 | |
| 	if (entry->relocation_count &&
 | |
| 	    GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(entry->flags & eb->invalid_flags))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (unlikely(entry->alignment &&
 | |
| 		     !is_power_of_2_u64(entry->alignment)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
 | |
| 	 * any non-page-aligned or non-canonical addresses.
 | |
| 	 */
 | |
| 	if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
 | |
| 		     entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* pad_to_size was once a reserved field, so sanitize it */
 | |
| 	if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
 | |
| 		if (unlikely(offset_in_page(entry->pad_to_size)))
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		entry->pad_to_size = 0;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * From drm_mm perspective address space is continuous,
 | |
| 	 * so from this point we're always using non-canonical
 | |
| 	 * form internally.
 | |
| 	 */
 | |
| 	entry->offset = gen8_noncanonical_addr(entry->offset);
 | |
| 
 | |
| 	if (!eb->reloc_cache.has_fence) {
 | |
| 		entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
 | |
| 	} else {
 | |
| 		if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
 | |
| 		     eb->reloc_cache.needs_unfenced) &&
 | |
| 		    i915_gem_object_is_tiled(vma->obj))
 | |
| 			entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline bool
 | |
| is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
 | |
| {
 | |
| 	return eb->args->flags & I915_EXEC_BATCH_FIRST ?
 | |
| 		buffer_idx < eb->num_batches :
 | |
| 		buffer_idx >= eb->args->buffer_count - eb->num_batches;
 | |
| }
 | |
| 
 | |
| static int
 | |
| eb_add_vma(struct i915_execbuffer *eb,
 | |
| 	   unsigned int *current_batch,
 | |
| 	   unsigned int i,
 | |
| 	   struct i915_vma *vma)
 | |
| {
 | |
| 	struct drm_i915_private *i915 = eb->i915;
 | |
| 	struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
 | |
| 	struct eb_vma *ev = &eb->vma[i];
 | |
| 
 | |
| 	ev->vma = vma;
 | |
| 	ev->exec = entry;
 | |
| 	ev->flags = entry->flags;
 | |
| 
 | |
| 	if (eb->lut_size > 0) {
 | |
| 		ev->handle = entry->handle;
 | |
| 		hlist_add_head(&ev->node,
 | |
| 			       &eb->buckets[hash_32(entry->handle,
 | |
| 						    eb->lut_size)]);
 | |
| 	}
 | |
| 
 | |
| 	if (entry->relocation_count)
 | |
| 		list_add_tail(&ev->reloc_link, &eb->relocs);
 | |
| 
 | |
| 	/*
 | |
| 	 * SNA is doing fancy tricks with compressing batch buffers, which leads
 | |
| 	 * to negative relocation deltas. Usually that works out ok since the
 | |
| 	 * relocate address is still positive, except when the batch is placed
 | |
| 	 * very low in the GTT. Ensure this doesn't happen.
 | |
| 	 *
 | |
| 	 * Note that actual hangs have only been observed on gen7, but for
 | |
| 	 * paranoia do it everywhere.
 | |
| 	 */
 | |
| 	if (is_batch_buffer(eb, i)) {
 | |
| 		if (entry->relocation_count &&
 | |
| 		    !(ev->flags & EXEC_OBJECT_PINNED))
 | |
| 			ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
 | |
| 		if (eb->reloc_cache.has_fence)
 | |
| 			ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
 | |
| 
 | |
| 		eb->batches[*current_batch] = ev;
 | |
| 
 | |
| 		if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
 | |
| 			drm_dbg(&i915->drm,
 | |
| 				"Attempting to use self-modifying batch buffer\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (range_overflows_t(u64,
 | |
| 				      eb->batch_start_offset,
 | |
| 				      eb->args->batch_len,
 | |
| 				      ev->vma->size)) {
 | |
| 			drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (eb->args->batch_len == 0)
 | |
| 			eb->batch_len[*current_batch] = ev->vma->size -
 | |
| 				eb->batch_start_offset;
 | |
| 		else
 | |
| 			eb->batch_len[*current_batch] = eb->args->batch_len;
 | |
| 		if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
 | |
| 			drm_dbg(&i915->drm, "Invalid batch length\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		++*current_batch;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int use_cpu_reloc(const struct reloc_cache *cache,
 | |
| 				const struct drm_i915_gem_object *obj)
 | |
| {
 | |
| 	if (!i915_gem_object_has_struct_page(obj))
 | |
| 		return false;
 | |
| 
 | |
| 	if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
 | |
| 		return true;
 | |
| 
 | |
| 	if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
 | |
| 		return false;
 | |
| 
 | |
| 	return (cache->has_llc ||
 | |
| 		obj->cache_dirty ||
 | |
| 		obj->cache_level != I915_CACHE_NONE);
 | |
| }
 | |
| 
 | |
| static int eb_reserve_vma(struct i915_execbuffer *eb,
 | |
| 			  struct eb_vma *ev,
 | |
| 			  u64 pin_flags)
 | |
| {
 | |
| 	struct drm_i915_gem_exec_object2 *entry = ev->exec;
 | |
| 	struct i915_vma *vma = ev->vma;
 | |
| 	int err;
 | |
| 
 | |
| 	if (drm_mm_node_allocated(&vma->node) &&
 | |
| 	    eb_vma_misplaced(entry, vma, ev->flags)) {
 | |
| 		err = i915_vma_unbind(vma);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = i915_vma_pin_ww(vma, &eb->ww,
 | |
| 			   entry->pad_to_size, entry->alignment,
 | |
| 			   eb_pin_flags(entry, ev->flags) | pin_flags);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (entry->offset != i915_vma_offset(vma)) {
 | |
| 		entry->offset = i915_vma_offset(vma) | UPDATE;
 | |
| 		eb->args->flags |= __EXEC_HAS_RELOC;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
 | |
| 		err = i915_vma_pin_fence(vma);
 | |
| 		if (unlikely(err))
 | |
| 			return err;
 | |
| 
 | |
| 		if (vma->fence)
 | |
| 			ev->flags |= __EXEC_OBJECT_HAS_FENCE;
 | |
| 	}
 | |
| 
 | |
| 	ev->flags |= __EXEC_OBJECT_HAS_PIN;
 | |
| 	GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool eb_unbind(struct i915_execbuffer *eb, bool force)
 | |
| {
 | |
| 	const unsigned int count = eb->buffer_count;
 | |
| 	unsigned int i;
 | |
| 	struct list_head last;
 | |
| 	bool unpinned = false;
 | |
| 
 | |
| 	/* Resort *all* the objects into priority order */
 | |
| 	INIT_LIST_HEAD(&eb->unbound);
 | |
| 	INIT_LIST_HEAD(&last);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		struct eb_vma *ev = &eb->vma[i];
 | |
| 		unsigned int flags = ev->flags;
 | |
| 
 | |
| 		if (!force && flags & EXEC_OBJECT_PINNED &&
 | |
| 		    flags & __EXEC_OBJECT_HAS_PIN)
 | |
| 			continue;
 | |
| 
 | |
| 		unpinned = true;
 | |
| 		eb_unreserve_vma(ev);
 | |
| 
 | |
| 		if (flags & EXEC_OBJECT_PINNED)
 | |
| 			/* Pinned must have their slot */
 | |
| 			list_add(&ev->bind_link, &eb->unbound);
 | |
| 		else if (flags & __EXEC_OBJECT_NEEDS_MAP)
 | |
| 			/* Map require the lowest 256MiB (aperture) */
 | |
| 			list_add_tail(&ev->bind_link, &eb->unbound);
 | |
| 		else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
 | |
| 			/* Prioritise 4GiB region for restricted bo */
 | |
| 			list_add(&ev->bind_link, &last);
 | |
| 		else
 | |
| 			list_add_tail(&ev->bind_link, &last);
 | |
| 	}
 | |
| 
 | |
| 	list_splice_tail(&last, &eb->unbound);
 | |
| 	return unpinned;
 | |
| }
 | |
| 
 | |
| static int eb_reserve(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct eb_vma *ev;
 | |
| 	unsigned int pass;
 | |
| 	int err = 0;
 | |
| 	bool unpinned;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have one more buffers that we couldn't bind, which could be due to
 | |
| 	 * various reasons. To resolve this we have 4 passes, with every next
 | |
| 	 * level turning the screws tighter:
 | |
| 	 *
 | |
| 	 * 0. Unbind all objects that do not match the GTT constraints for the
 | |
| 	 * execbuffer (fenceable, mappable, alignment etc). Bind all new
 | |
| 	 * objects.  This avoids unnecessary unbinding of later objects in order
 | |
| 	 * to make room for the earlier objects *unless* we need to defragment.
 | |
| 	 *
 | |
| 	 * 1. Reorder the buffers, where objects with the most restrictive
 | |
| 	 * placement requirements go first (ignoring fixed location buffers for
 | |
| 	 * now).  For example, objects needing the mappable aperture (the first
 | |
| 	 * 256M of GTT), should go first vs objects that can be placed just
 | |
| 	 * about anywhere. Repeat the previous pass.
 | |
| 	 *
 | |
| 	 * 2. Consider buffers that are pinned at a fixed location. Also try to
 | |
| 	 * evict the entire VM this time, leaving only objects that we were
 | |
| 	 * unable to lock. Try again to bind the buffers. (still using the new
 | |
| 	 * buffer order).
 | |
| 	 *
 | |
| 	 * 3. We likely have object lock contention for one or more stubborn
 | |
| 	 * objects in the VM, for which we need to evict to make forward
 | |
| 	 * progress (perhaps we are fighting the shrinker?). When evicting the
 | |
| 	 * VM this time around, anything that we can't lock we now track using
 | |
| 	 * the busy_bo, using the full lock (after dropping the vm->mutex to
 | |
| 	 * prevent deadlocks), instead of trylock. We then continue to evict the
 | |
| 	 * VM, this time with the stubborn object locked, which we can now
 | |
| 	 * hopefully unbind (if still bound in the VM). Repeat until the VM is
 | |
| 	 * evicted. Finally we should be able bind everything.
 | |
| 	 */
 | |
| 	for (pass = 0; pass <= 3; pass++) {
 | |
| 		int pin_flags = PIN_USER | PIN_VALIDATE;
 | |
| 
 | |
| 		if (pass == 0)
 | |
| 			pin_flags |= PIN_NONBLOCK;
 | |
| 
 | |
| 		if (pass >= 1)
 | |
| 			unpinned = eb_unbind(eb, pass >= 2);
 | |
| 
 | |
| 		if (pass == 2) {
 | |
| 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
 | |
| 			if (!err) {
 | |
| 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, NULL);
 | |
| 				mutex_unlock(&eb->context->vm->mutex);
 | |
| 			}
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		if (pass == 3) {
 | |
| retry:
 | |
| 			err = mutex_lock_interruptible(&eb->context->vm->mutex);
 | |
| 			if (!err) {
 | |
| 				struct drm_i915_gem_object *busy_bo = NULL;
 | |
| 
 | |
| 				err = i915_gem_evict_vm(eb->context->vm, &eb->ww, &busy_bo);
 | |
| 				mutex_unlock(&eb->context->vm->mutex);
 | |
| 				if (err && busy_bo) {
 | |
| 					err = i915_gem_object_lock(busy_bo, &eb->ww);
 | |
| 					i915_gem_object_put(busy_bo);
 | |
| 					if (!err)
 | |
| 						goto retry;
 | |
| 				}
 | |
| 			}
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 
 | |
| 		list_for_each_entry(ev, &eb->unbound, bind_link) {
 | |
| 			err = eb_reserve_vma(eb, ev, pin_flags);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (err != -ENOSPC)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int eb_select_context(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct i915_gem_context *ctx;
 | |
| 
 | |
| 	ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
 | |
| 	if (unlikely(IS_ERR(ctx)))
 | |
| 		return PTR_ERR(ctx);
 | |
| 
 | |
| 	eb->gem_context = ctx;
 | |
| 	if (i915_gem_context_has_full_ppgtt(ctx))
 | |
| 		eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __eb_add_lut(struct i915_execbuffer *eb,
 | |
| 			u32 handle, struct i915_vma *vma)
 | |
| {
 | |
| 	struct i915_gem_context *ctx = eb->gem_context;
 | |
| 	struct i915_lut_handle *lut;
 | |
| 	int err;
 | |
| 
 | |
| 	lut = i915_lut_handle_alloc();
 | |
| 	if (unlikely(!lut))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	i915_vma_get(vma);
 | |
| 	if (!atomic_fetch_inc(&vma->open_count))
 | |
| 		i915_vma_reopen(vma);
 | |
| 	lut->handle = handle;
 | |
| 	lut->ctx = ctx;
 | |
| 
 | |
| 	/* Check that the context hasn't been closed in the meantime */
 | |
| 	err = -EINTR;
 | |
| 	if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
 | |
| 		if (likely(!i915_gem_context_is_closed(ctx)))
 | |
| 			err = radix_tree_insert(&ctx->handles_vma, handle, vma);
 | |
| 		else
 | |
| 			err = -ENOENT;
 | |
| 		if (err == 0) { /* And nor has this handle */
 | |
| 			struct drm_i915_gem_object *obj = vma->obj;
 | |
| 
 | |
| 			spin_lock(&obj->lut_lock);
 | |
| 			if (idr_find(&eb->file->object_idr, handle) == obj) {
 | |
| 				list_add(&lut->obj_link, &obj->lut_list);
 | |
| 			} else {
 | |
| 				radix_tree_delete(&ctx->handles_vma, handle);
 | |
| 				err = -ENOENT;
 | |
| 			}
 | |
| 			spin_unlock(&obj->lut_lock);
 | |
| 		}
 | |
| 		mutex_unlock(&ctx->lut_mutex);
 | |
| 	}
 | |
| 	if (unlikely(err))
 | |
| 		goto err;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	i915_vma_close(vma);
 | |
| 	i915_vma_put(vma);
 | |
| 	i915_lut_handle_free(lut);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
 | |
| {
 | |
| 	struct i915_address_space *vm = eb->context->vm;
 | |
| 
 | |
| 	do {
 | |
| 		struct drm_i915_gem_object *obj;
 | |
| 		struct i915_vma *vma;
 | |
| 		int err;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
 | |
| 		if (likely(vma && vma->vm == vm))
 | |
| 			vma = i915_vma_tryget(vma);
 | |
| 		rcu_read_unlock();
 | |
| 		if (likely(vma))
 | |
| 			return vma;
 | |
| 
 | |
| 		obj = i915_gem_object_lookup(eb->file, handle);
 | |
| 		if (unlikely(!obj))
 | |
| 			return ERR_PTR(-ENOENT);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the user has opted-in for protected-object tracking, make
 | |
| 		 * sure the object encryption can be used.
 | |
| 		 * We only need to do this when the object is first used with
 | |
| 		 * this context, because the context itself will be banned when
 | |
| 		 * the protected objects become invalid.
 | |
| 		 */
 | |
| 		if (i915_gem_context_uses_protected_content(eb->gem_context) &&
 | |
| 		    i915_gem_object_is_protected(obj)) {
 | |
| 			err = intel_pxp_key_check(eb->i915->pxp, obj, true);
 | |
| 			if (err) {
 | |
| 				i915_gem_object_put(obj);
 | |
| 				return ERR_PTR(err);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		vma = i915_vma_instance(obj, vm, NULL);
 | |
| 		if (IS_ERR(vma)) {
 | |
| 			i915_gem_object_put(obj);
 | |
| 			return vma;
 | |
| 		}
 | |
| 
 | |
| 		err = __eb_add_lut(eb, handle, vma);
 | |
| 		if (likely(!err))
 | |
| 			return vma;
 | |
| 
 | |
| 		i915_gem_object_put(obj);
 | |
| 		if (err != -EEXIST)
 | |
| 			return ERR_PTR(err);
 | |
| 	} while (1);
 | |
| }
 | |
| 
 | |
| static int eb_lookup_vmas(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	unsigned int i, current_batch = 0;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&eb->relocs);
 | |
| 
 | |
| 	for (i = 0; i < eb->buffer_count; i++) {
 | |
| 		struct i915_vma *vma;
 | |
| 
 | |
| 		vma = eb_lookup_vma(eb, eb->exec[i].handle);
 | |
| 		if (IS_ERR(vma)) {
 | |
| 			err = PTR_ERR(vma);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		err = eb_validate_vma(eb, &eb->exec[i], vma);
 | |
| 		if (unlikely(err)) {
 | |
| 			i915_vma_put(vma);
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		err = eb_add_vma(eb, ¤t_batch, i, vma);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		if (i915_gem_object_is_userptr(vma->obj)) {
 | |
| 			err = i915_gem_object_userptr_submit_init(vma->obj);
 | |
| 			if (err) {
 | |
| 				if (i + 1 < eb->buffer_count) {
 | |
| 					/*
 | |
| 					 * Execbuffer code expects last vma entry to be NULL,
 | |
| 					 * since we already initialized this entry,
 | |
| 					 * set the next value to NULL or we mess up
 | |
| 					 * cleanup handling.
 | |
| 					 */
 | |
| 					eb->vma[i + 1].vma = NULL;
 | |
| 				}
 | |
| 
 | |
| 				return err;
 | |
| 			}
 | |
| 
 | |
| 			eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
 | |
| 			eb->args->flags |= __EXEC_USERPTR_USED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	eb->vma[i].vma = NULL;
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int eb_lock_vmas(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	for (i = 0; i < eb->buffer_count; i++) {
 | |
| 		struct eb_vma *ev = &eb->vma[i];
 | |
| 		struct i915_vma *vma = ev->vma;
 | |
| 
 | |
| 		err = i915_gem_object_lock(vma->obj, &eb->ww);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int eb_validate_vmas(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&eb->unbound);
 | |
| 
 | |
| 	err = eb_lock_vmas(eb);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	for (i = 0; i < eb->buffer_count; i++) {
 | |
| 		struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
 | |
| 		struct eb_vma *ev = &eb->vma[i];
 | |
| 		struct i915_vma *vma = ev->vma;
 | |
| 
 | |
| 		err = eb_pin_vma(eb, entry, ev);
 | |
| 		if (err == -EDEADLK)
 | |
| 			return err;
 | |
| 
 | |
| 		if (!err) {
 | |
| 			if (entry->offset != i915_vma_offset(vma)) {
 | |
| 				entry->offset = i915_vma_offset(vma) | UPDATE;
 | |
| 				eb->args->flags |= __EXEC_HAS_RELOC;
 | |
| 			}
 | |
| 		} else {
 | |
| 			eb_unreserve_vma(ev);
 | |
| 
 | |
| 			list_add_tail(&ev->bind_link, &eb->unbound);
 | |
| 			if (drm_mm_node_allocated(&vma->node)) {
 | |
| 				err = i915_vma_unbind(vma);
 | |
| 				if (err)
 | |
| 					return err;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Reserve enough slots to accommodate composite fences */
 | |
| 		err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 
 | |
| 		GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
 | |
| 			   eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
 | |
| 	}
 | |
| 
 | |
| 	if (!list_empty(&eb->unbound))
 | |
| 		return eb_reserve(eb);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct eb_vma *
 | |
| eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
 | |
| {
 | |
| 	if (eb->lut_size < 0) {
 | |
| 		if (handle >= -eb->lut_size)
 | |
| 			return NULL;
 | |
| 		return &eb->vma[handle];
 | |
| 	} else {
 | |
| 		struct hlist_head *head;
 | |
| 		struct eb_vma *ev;
 | |
| 
 | |
| 		head = &eb->buckets[hash_32(handle, eb->lut_size)];
 | |
| 		hlist_for_each_entry(ev, head, node) {
 | |
| 			if (ev->handle == handle)
 | |
| 				return ev;
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
 | |
| {
 | |
| 	const unsigned int count = eb->buffer_count;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		struct eb_vma *ev = &eb->vma[i];
 | |
| 		struct i915_vma *vma = ev->vma;
 | |
| 
 | |
| 		if (!vma)
 | |
| 			break;
 | |
| 
 | |
| 		eb_unreserve_vma(ev);
 | |
| 
 | |
| 		if (final)
 | |
| 			i915_vma_put(vma);
 | |
| 	}
 | |
| 
 | |
| 	eb_capture_release(eb);
 | |
| 	eb_unpin_engine(eb);
 | |
| }
 | |
| 
 | |
| static void eb_destroy(const struct i915_execbuffer *eb)
 | |
| {
 | |
| 	if (eb->lut_size > 0)
 | |
| 		kfree(eb->buckets);
 | |
| }
 | |
| 
 | |
| static inline u64
 | |
| relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
 | |
| 		  const struct i915_vma *target)
 | |
| {
 | |
| 	return gen8_canonical_addr((int)reloc->delta + i915_vma_offset(target));
 | |
| }
 | |
| 
 | |
| static void reloc_cache_init(struct reloc_cache *cache,
 | |
| 			     struct drm_i915_private *i915)
 | |
| {
 | |
| 	cache->page = -1;
 | |
| 	cache->vaddr = 0;
 | |
| 	/* Must be a variable in the struct to allow GCC to unroll. */
 | |
| 	cache->graphics_ver = GRAPHICS_VER(i915);
 | |
| 	cache->has_llc = HAS_LLC(i915);
 | |
| 	cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
 | |
| 	cache->has_fence = cache->graphics_ver < 4;
 | |
| 	cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
 | |
| 	cache->node.flags = 0;
 | |
| }
 | |
| 
 | |
| static inline void *unmask_page(unsigned long p)
 | |
| {
 | |
| 	return (void *)(uintptr_t)(p & PAGE_MASK);
 | |
| }
 | |
| 
 | |
| static inline unsigned int unmask_flags(unsigned long p)
 | |
| {
 | |
| 	return p & ~PAGE_MASK;
 | |
| }
 | |
| 
 | |
| #define KMAP 0x4 /* after CLFLUSH_FLAGS */
 | |
| 
 | |
| static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
 | |
| {
 | |
| 	struct drm_i915_private *i915 =
 | |
| 		container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
 | |
| 	return to_gt(i915)->ggtt;
 | |
| }
 | |
| 
 | |
| static void reloc_cache_unmap(struct reloc_cache *cache)
 | |
| {
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	if (!cache->vaddr)
 | |
| 		return;
 | |
| 
 | |
| 	vaddr = unmask_page(cache->vaddr);
 | |
| 	if (cache->vaddr & KMAP)
 | |
| 		kunmap_atomic(vaddr);
 | |
| 	else
 | |
| 		io_mapping_unmap_atomic((void __iomem *)vaddr);
 | |
| }
 | |
| 
 | |
| static void reloc_cache_remap(struct reloc_cache *cache,
 | |
| 			      struct drm_i915_gem_object *obj)
 | |
| {
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	if (!cache->vaddr)
 | |
| 		return;
 | |
| 
 | |
| 	if (cache->vaddr & KMAP) {
 | |
| 		struct page *page = i915_gem_object_get_page(obj, cache->page);
 | |
| 
 | |
| 		vaddr = kmap_atomic(page);
 | |
| 		cache->vaddr = unmask_flags(cache->vaddr) |
 | |
| 			(unsigned long)vaddr;
 | |
| 	} else {
 | |
| 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
 | |
| 		unsigned long offset;
 | |
| 
 | |
| 		offset = cache->node.start;
 | |
| 		if (!drm_mm_node_allocated(&cache->node))
 | |
| 			offset += cache->page << PAGE_SHIFT;
 | |
| 
 | |
| 		cache->vaddr = (unsigned long)
 | |
| 			io_mapping_map_atomic_wc(&ggtt->iomap, offset);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
 | |
| {
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	if (!cache->vaddr)
 | |
| 		return;
 | |
| 
 | |
| 	vaddr = unmask_page(cache->vaddr);
 | |
| 	if (cache->vaddr & KMAP) {
 | |
| 		struct drm_i915_gem_object *obj =
 | |
| 			(struct drm_i915_gem_object *)cache->node.mm;
 | |
| 		if (cache->vaddr & CLFLUSH_AFTER)
 | |
| 			mb();
 | |
| 
 | |
| 		kunmap_atomic(vaddr);
 | |
| 		i915_gem_object_finish_access(obj);
 | |
| 	} else {
 | |
| 		struct i915_ggtt *ggtt = cache_to_ggtt(cache);
 | |
| 
 | |
| 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 | |
| 		io_mapping_unmap_atomic((void __iomem *)vaddr);
 | |
| 
 | |
| 		if (drm_mm_node_allocated(&cache->node)) {
 | |
| 			ggtt->vm.clear_range(&ggtt->vm,
 | |
| 					     cache->node.start,
 | |
| 					     cache->node.size);
 | |
| 			mutex_lock(&ggtt->vm.mutex);
 | |
| 			drm_mm_remove_node(&cache->node);
 | |
| 			mutex_unlock(&ggtt->vm.mutex);
 | |
| 		} else {
 | |
| 			i915_vma_unpin((struct i915_vma *)cache->node.mm);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	cache->vaddr = 0;
 | |
| 	cache->page = -1;
 | |
| }
 | |
| 
 | |
| static void *reloc_kmap(struct drm_i915_gem_object *obj,
 | |
| 			struct reloc_cache *cache,
 | |
| 			unsigned long pageno)
 | |
| {
 | |
| 	void *vaddr;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (cache->vaddr) {
 | |
| 		kunmap_atomic(unmask_page(cache->vaddr));
 | |
| 	} else {
 | |
| 		unsigned int flushes;
 | |
| 		int err;
 | |
| 
 | |
| 		err = i915_gem_object_prepare_write(obj, &flushes);
 | |
| 		if (err)
 | |
| 			return ERR_PTR(err);
 | |
| 
 | |
| 		BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
 | |
| 		BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
 | |
| 
 | |
| 		cache->vaddr = flushes | KMAP;
 | |
| 		cache->node.mm = (void *)obj;
 | |
| 		if (flushes)
 | |
| 			mb();
 | |
| 	}
 | |
| 
 | |
| 	page = i915_gem_object_get_page(obj, pageno);
 | |
| 	if (!obj->mm.dirty)
 | |
| 		set_page_dirty(page);
 | |
| 
 | |
| 	vaddr = kmap_atomic(page);
 | |
| 	cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
 | |
| 	cache->page = pageno;
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static void *reloc_iomap(struct i915_vma *batch,
 | |
| 			 struct i915_execbuffer *eb,
 | |
| 			 unsigned long page)
 | |
| {
 | |
| 	struct drm_i915_gem_object *obj = batch->obj;
 | |
| 	struct reloc_cache *cache = &eb->reloc_cache;
 | |
| 	struct i915_ggtt *ggtt = cache_to_ggtt(cache);
 | |
| 	unsigned long offset;
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	if (cache->vaddr) {
 | |
| 		intel_gt_flush_ggtt_writes(ggtt->vm.gt);
 | |
| 		io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
 | |
| 	} else {
 | |
| 		struct i915_vma *vma = ERR_PTR(-ENODEV);
 | |
| 		int err;
 | |
| 
 | |
| 		if (i915_gem_object_is_tiled(obj))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 		if (use_cpu_reloc(cache, obj))
 | |
| 			return NULL;
 | |
| 
 | |
| 		err = i915_gem_object_set_to_gtt_domain(obj, true);
 | |
| 		if (err)
 | |
| 			return ERR_PTR(err);
 | |
| 
 | |
| 		/*
 | |
| 		 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
 | |
| 		 * VMA from the object list because we no longer pin.
 | |
| 		 *
 | |
| 		 * Only attempt to pin the batch buffer to ggtt if the current batch
 | |
| 		 * is not inside ggtt, or the batch buffer is not misplaced.
 | |
| 		 */
 | |
| 		if (!i915_is_ggtt(batch->vm) ||
 | |
| 		    !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
 | |
| 			vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
 | |
| 							  PIN_MAPPABLE |
 | |
| 							  PIN_NONBLOCK /* NOWARN */ |
 | |
| 							  PIN_NOEVICT);
 | |
| 		}
 | |
| 
 | |
| 		if (vma == ERR_PTR(-EDEADLK))
 | |
| 			return vma;
 | |
| 
 | |
| 		if (IS_ERR(vma)) {
 | |
| 			memset(&cache->node, 0, sizeof(cache->node));
 | |
| 			mutex_lock(&ggtt->vm.mutex);
 | |
| 			err = drm_mm_insert_node_in_range
 | |
| 				(&ggtt->vm.mm, &cache->node,
 | |
| 				 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
 | |
| 				 0, ggtt->mappable_end,
 | |
| 				 DRM_MM_INSERT_LOW);
 | |
| 			mutex_unlock(&ggtt->vm.mutex);
 | |
| 			if (err) /* no inactive aperture space, use cpu reloc */
 | |
| 				return NULL;
 | |
| 		} else {
 | |
| 			cache->node.start = i915_ggtt_offset(vma);
 | |
| 			cache->node.mm = (void *)vma;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	offset = cache->node.start;
 | |
| 	if (drm_mm_node_allocated(&cache->node)) {
 | |
| 		ggtt->vm.insert_page(&ggtt->vm,
 | |
| 				     i915_gem_object_get_dma_address(obj, page),
 | |
| 				     offset, I915_CACHE_NONE, 0);
 | |
| 	} else {
 | |
| 		offset += page << PAGE_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
 | |
| 							 offset);
 | |
| 	cache->page = page;
 | |
| 	cache->vaddr = (unsigned long)vaddr;
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static void *reloc_vaddr(struct i915_vma *vma,
 | |
| 			 struct i915_execbuffer *eb,
 | |
| 			 unsigned long page)
 | |
| {
 | |
| 	struct reloc_cache *cache = &eb->reloc_cache;
 | |
| 	void *vaddr;
 | |
| 
 | |
| 	if (cache->page == page) {
 | |
| 		vaddr = unmask_page(cache->vaddr);
 | |
| 	} else {
 | |
| 		vaddr = NULL;
 | |
| 		if ((cache->vaddr & KMAP) == 0)
 | |
| 			vaddr = reloc_iomap(vma, eb, page);
 | |
| 		if (!vaddr)
 | |
| 			vaddr = reloc_kmap(vma->obj, cache, page);
 | |
| 	}
 | |
| 
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
 | |
| {
 | |
| 	if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
 | |
| 		if (flushes & CLFLUSH_BEFORE)
 | |
| 			drm_clflush_virt_range(addr, sizeof(*addr));
 | |
| 
 | |
| 		*addr = value;
 | |
| 
 | |
| 		/*
 | |
| 		 * Writes to the same cacheline are serialised by the CPU
 | |
| 		 * (including clflush). On the write path, we only require
 | |
| 		 * that it hits memory in an orderly fashion and place
 | |
| 		 * mb barriers at the start and end of the relocation phase
 | |
| 		 * to ensure ordering of clflush wrt to the system.
 | |
| 		 */
 | |
| 		if (flushes & CLFLUSH_AFTER)
 | |
| 			drm_clflush_virt_range(addr, sizeof(*addr));
 | |
| 	} else
 | |
| 		*addr = value;
 | |
| }
 | |
| 
 | |
| static u64
 | |
| relocate_entry(struct i915_vma *vma,
 | |
| 	       const struct drm_i915_gem_relocation_entry *reloc,
 | |
| 	       struct i915_execbuffer *eb,
 | |
| 	       const struct i915_vma *target)
 | |
| {
 | |
| 	u64 target_addr = relocation_target(reloc, target);
 | |
| 	u64 offset = reloc->offset;
 | |
| 	bool wide = eb->reloc_cache.use_64bit_reloc;
 | |
| 	void *vaddr;
 | |
| 
 | |
| repeat:
 | |
| 	vaddr = reloc_vaddr(vma, eb,
 | |
| 			    offset >> PAGE_SHIFT);
 | |
| 	if (IS_ERR(vaddr))
 | |
| 		return PTR_ERR(vaddr);
 | |
| 
 | |
| 	GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
 | |
| 	clflush_write32(vaddr + offset_in_page(offset),
 | |
| 			lower_32_bits(target_addr),
 | |
| 			eb->reloc_cache.vaddr);
 | |
| 
 | |
| 	if (wide) {
 | |
| 		offset += sizeof(u32);
 | |
| 		target_addr >>= 32;
 | |
| 		wide = false;
 | |
| 		goto repeat;
 | |
| 	}
 | |
| 
 | |
| 	return target->node.start | UPDATE;
 | |
| }
 | |
| 
 | |
| static u64
 | |
| eb_relocate_entry(struct i915_execbuffer *eb,
 | |
| 		  struct eb_vma *ev,
 | |
| 		  const struct drm_i915_gem_relocation_entry *reloc)
 | |
| {
 | |
| 	struct drm_i915_private *i915 = eb->i915;
 | |
| 	struct eb_vma *target;
 | |
| 	int err;
 | |
| 
 | |
| 	/* we've already hold a reference to all valid objects */
 | |
| 	target = eb_get_vma(eb, reloc->target_handle);
 | |
| 	if (unlikely(!target))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* Validate that the target is in a valid r/w GPU domain */
 | |
| 	if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
 | |
| 		drm_dbg(&i915->drm, "reloc with multiple write domains: "
 | |
| 			  "target %d offset %d "
 | |
| 			  "read %08x write %08x",
 | |
| 			  reloc->target_handle,
 | |
| 			  (int) reloc->offset,
 | |
| 			  reloc->read_domains,
 | |
| 			  reloc->write_domain);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (unlikely((reloc->write_domain | reloc->read_domains)
 | |
| 		     & ~I915_GEM_GPU_DOMAINS)) {
 | |
| 		drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
 | |
| 			  "target %d offset %d "
 | |
| 			  "read %08x write %08x",
 | |
| 			  reloc->target_handle,
 | |
| 			  (int) reloc->offset,
 | |
| 			  reloc->read_domains,
 | |
| 			  reloc->write_domain);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (reloc->write_domain) {
 | |
| 		target->flags |= EXEC_OBJECT_WRITE;
 | |
| 
 | |
| 		/*
 | |
| 		 * Sandybridge PPGTT errata: We need a global gtt mapping
 | |
| 		 * for MI and pipe_control writes because the gpu doesn't
 | |
| 		 * properly redirect them through the ppgtt for non_secure
 | |
| 		 * batchbuffers.
 | |
| 		 */
 | |
| 		if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
 | |
| 		    GRAPHICS_VER(eb->i915) == 6 &&
 | |
| 		    !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
 | |
| 			struct i915_vma *vma = target->vma;
 | |
| 
 | |
| 			reloc_cache_unmap(&eb->reloc_cache);
 | |
| 			mutex_lock(&vma->vm->mutex);
 | |
| 			err = i915_vma_bind(target->vma,
 | |
| 					    target->vma->obj->cache_level,
 | |
| 					    PIN_GLOBAL, NULL, NULL);
 | |
| 			mutex_unlock(&vma->vm->mutex);
 | |
| 			reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
 | |
| 			if (err)
 | |
| 				return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the relocation already has the right value in it, no
 | |
| 	 * more work needs to be done.
 | |
| 	 */
 | |
| 	if (!DBG_FORCE_RELOC &&
 | |
| 	    gen8_canonical_addr(i915_vma_offset(target->vma)) == reloc->presumed_offset)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check that the relocation address is valid... */
 | |
| 	if (unlikely(reloc->offset >
 | |
| 		     ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
 | |
| 		drm_dbg(&i915->drm, "Relocation beyond object bounds: "
 | |
| 			  "target %d offset %d size %d.\n",
 | |
| 			  reloc->target_handle,
 | |
| 			  (int)reloc->offset,
 | |
| 			  (int)ev->vma->size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (unlikely(reloc->offset & 3)) {
 | |
| 		drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
 | |
| 			  "target %d offset %d.\n",
 | |
| 			  reloc->target_handle,
 | |
| 			  (int)reloc->offset);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we write into the object, we need to force the synchronisation
 | |
| 	 * barrier, either with an asynchronous clflush or if we executed the
 | |
| 	 * patching using the GPU (though that should be serialised by the
 | |
| 	 * timeline). To be completely sure, and since we are required to
 | |
| 	 * do relocations we are already stalling, disable the user's opt
 | |
| 	 * out of our synchronisation.
 | |
| 	 */
 | |
| 	ev->flags &= ~EXEC_OBJECT_ASYNC;
 | |
| 
 | |
| 	/* and update the user's relocation entry */
 | |
| 	return relocate_entry(ev->vma, reloc, eb, target->vma);
 | |
| }
 | |
| 
 | |
| static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
 | |
| {
 | |
| #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
 | |
| 	struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
 | |
| 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
 | |
| 	struct drm_i915_gem_relocation_entry __user *urelocs =
 | |
| 		u64_to_user_ptr(entry->relocs_ptr);
 | |
| 	unsigned long remain = entry->relocation_count;
 | |
| 
 | |
| 	if (unlikely(remain > N_RELOC(ULONG_MAX)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must check that the entire relocation array is safe
 | |
| 	 * to read. However, if the array is not writable the user loses
 | |
| 	 * the updated relocation values.
 | |
| 	 */
 | |
| 	if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	do {
 | |
| 		struct drm_i915_gem_relocation_entry *r = stack;
 | |
| 		unsigned int count =
 | |
| 			min_t(unsigned long, remain, ARRAY_SIZE(stack));
 | |
| 		unsigned int copied;
 | |
| 
 | |
| 		/*
 | |
| 		 * This is the fast path and we cannot handle a pagefault
 | |
| 		 * whilst holding the struct mutex lest the user pass in the
 | |
| 		 * relocations contained within a mmaped bo. For in such a case
 | |
| 		 * we, the page fault handler would call i915_gem_fault() and
 | |
| 		 * we would try to acquire the struct mutex again. Obviously
 | |
| 		 * this is bad and so lockdep complains vehemently.
 | |
| 		 */
 | |
| 		pagefault_disable();
 | |
| 		copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
 | |
| 		pagefault_enable();
 | |
| 		if (unlikely(copied)) {
 | |
| 			remain = -EFAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		remain -= count;
 | |
| 		do {
 | |
| 			u64 offset = eb_relocate_entry(eb, ev, r);
 | |
| 
 | |
| 			if (likely(offset == 0)) {
 | |
| 			} else if ((s64)offset < 0) {
 | |
| 				remain = (int)offset;
 | |
| 				goto out;
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * Note that reporting an error now
 | |
| 				 * leaves everything in an inconsistent
 | |
| 				 * state as we have *already* changed
 | |
| 				 * the relocation value inside the
 | |
| 				 * object. As we have not changed the
 | |
| 				 * reloc.presumed_offset or will not
 | |
| 				 * change the execobject.offset, on the
 | |
| 				 * call we may not rewrite the value
 | |
| 				 * inside the object, leaving it
 | |
| 				 * dangling and causing a GPU hang. Unless
 | |
| 				 * userspace dynamically rebuilds the
 | |
| 				 * relocations on each execbuf rather than
 | |
| 				 * presume a static tree.
 | |
| 				 *
 | |
| 				 * We did previously check if the relocations
 | |
| 				 * were writable (access_ok), an error now
 | |
| 				 * would be a strange race with mprotect,
 | |
| 				 * having already demonstrated that we
 | |
| 				 * can read from this userspace address.
 | |
| 				 */
 | |
| 				offset = gen8_canonical_addr(offset & ~UPDATE);
 | |
| 				__put_user(offset,
 | |
| 					   &urelocs[r - stack].presumed_offset);
 | |
| 			}
 | |
| 		} while (r++, --count);
 | |
| 		urelocs += ARRAY_SIZE(stack);
 | |
| 	} while (remain);
 | |
| out:
 | |
| 	reloc_cache_reset(&eb->reloc_cache, eb);
 | |
| 	return remain;
 | |
| }
 | |
| 
 | |
| static int
 | |
| eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
 | |
| {
 | |
| 	const struct drm_i915_gem_exec_object2 *entry = ev->exec;
 | |
| 	struct drm_i915_gem_relocation_entry *relocs =
 | |
| 		u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	for (i = 0; i < entry->relocation_count; i++) {
 | |
| 		u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
 | |
| 
 | |
| 		if ((s64)offset < 0) {
 | |
| 			err = (int)offset;
 | |
| 			goto err;
 | |
| 		}
 | |
| 	}
 | |
| 	err = 0;
 | |
| err:
 | |
| 	reloc_cache_reset(&eb->reloc_cache, eb);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
 | |
| {
 | |
| 	const char __user *addr, *end;
 | |
| 	unsigned long size;
 | |
| 	char __maybe_unused c;
 | |
| 
 | |
| 	size = entry->relocation_count;
 | |
| 	if (size == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (size > N_RELOC(ULONG_MAX))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	addr = u64_to_user_ptr(entry->relocs_ptr);
 | |
| 	size *= sizeof(struct drm_i915_gem_relocation_entry);
 | |
| 	if (!access_ok(addr, size))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	end = addr + size;
 | |
| 	for (; addr < end; addr += PAGE_SIZE) {
 | |
| 		int err = __get_user(c, addr);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 	return __get_user(c, end - 1);
 | |
| }
 | |
| 
 | |
| static int eb_copy_relocations(const struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct drm_i915_gem_relocation_entry *relocs;
 | |
| 	const unsigned int count = eb->buffer_count;
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		const unsigned int nreloc = eb->exec[i].relocation_count;
 | |
| 		struct drm_i915_gem_relocation_entry __user *urelocs;
 | |
| 		unsigned long size;
 | |
| 		unsigned long copied;
 | |
| 
 | |
| 		if (nreloc == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		err = check_relocations(&eb->exec[i]);
 | |
| 		if (err)
 | |
| 			goto err;
 | |
| 
 | |
| 		urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
 | |
| 		size = nreloc * sizeof(*relocs);
 | |
| 
 | |
| 		relocs = kvmalloc_array(size, 1, GFP_KERNEL);
 | |
| 		if (!relocs) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto err;
 | |
| 		}
 | |
| 
 | |
| 		/* copy_from_user is limited to < 4GiB */
 | |
| 		copied = 0;
 | |
| 		do {
 | |
| 			unsigned int len =
 | |
| 				min_t(u64, BIT_ULL(31), size - copied);
 | |
| 
 | |
| 			if (__copy_from_user((char *)relocs + copied,
 | |
| 					     (char __user *)urelocs + copied,
 | |
| 					     len))
 | |
| 				goto end;
 | |
| 
 | |
| 			copied += len;
 | |
| 		} while (copied < size);
 | |
| 
 | |
| 		/*
 | |
| 		 * As we do not update the known relocation offsets after
 | |
| 		 * relocating (due to the complexities in lock handling),
 | |
| 		 * we need to mark them as invalid now so that we force the
 | |
| 		 * relocation processing next time. Just in case the target
 | |
| 		 * object is evicted and then rebound into its old
 | |
| 		 * presumed_offset before the next execbuffer - if that
 | |
| 		 * happened we would make the mistake of assuming that the
 | |
| 		 * relocations were valid.
 | |
| 		 */
 | |
| 		if (!user_access_begin(urelocs, size))
 | |
| 			goto end;
 | |
| 
 | |
| 		for (copied = 0; copied < nreloc; copied++)
 | |
| 			unsafe_put_user(-1,
 | |
| 					&urelocs[copied].presumed_offset,
 | |
| 					end_user);
 | |
| 		user_access_end();
 | |
| 
 | |
| 		eb->exec[i].relocs_ptr = (uintptr_t)relocs;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| end_user:
 | |
| 	user_access_end();
 | |
| end:
 | |
| 	kvfree(relocs);
 | |
| 	err = -EFAULT;
 | |
| err:
 | |
| 	while (i--) {
 | |
| 		relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
 | |
| 		if (eb->exec[i].relocation_count)
 | |
| 			kvfree(relocs);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int eb_prefault_relocations(const struct i915_execbuffer *eb)
 | |
| {
 | |
| 	const unsigned int count = eb->buffer_count;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		int err;
 | |
| 
 | |
| 		err = check_relocations(&eb->exec[i]);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int eb_reinit_userptr(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	const unsigned int count = eb->buffer_count;
 | |
| 	unsigned int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		struct eb_vma *ev = &eb->vma[i];
 | |
| 
 | |
| 		if (!i915_gem_object_is_userptr(ev->vma->obj))
 | |
| 			continue;
 | |
| 
 | |
| 		ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	bool have_copy = false;
 | |
| 	struct eb_vma *ev;
 | |
| 	int err = 0;
 | |
| 
 | |
| repeat:
 | |
| 	if (signal_pending(current)) {
 | |
| 		err = -ERESTARTSYS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* We may process another execbuffer during the unlock... */
 | |
| 	eb_release_vmas(eb, false);
 | |
| 	i915_gem_ww_ctx_fini(&eb->ww);
 | |
| 
 | |
| 	/*
 | |
| 	 * We take 3 passes through the slowpatch.
 | |
| 	 *
 | |
| 	 * 1 - we try to just prefault all the user relocation entries and
 | |
| 	 * then attempt to reuse the atomic pagefault disabled fast path again.
 | |
| 	 *
 | |
| 	 * 2 - we copy the user entries to a local buffer here outside of the
 | |
| 	 * local and allow ourselves to wait upon any rendering before
 | |
| 	 * relocations
 | |
| 	 *
 | |
| 	 * 3 - we already have a local copy of the relocation entries, but
 | |
| 	 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
 | |
| 	 */
 | |
| 	if (!err) {
 | |
| 		err = eb_prefault_relocations(eb);
 | |
| 	} else if (!have_copy) {
 | |
| 		err = eb_copy_relocations(eb);
 | |
| 		have_copy = err == 0;
 | |
| 	} else {
 | |
| 		cond_resched();
 | |
| 		err = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!err)
 | |
| 		err = eb_reinit_userptr(eb);
 | |
| 
 | |
| 	i915_gem_ww_ctx_init(&eb->ww, true);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* reacquire the objects */
 | |
| repeat_validate:
 | |
| 	err = eb_pin_engine(eb, false);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	err = eb_validate_vmas(eb);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	GEM_BUG_ON(!eb->batches[0]);
 | |
| 
 | |
| 	list_for_each_entry(ev, &eb->relocs, reloc_link) {
 | |
| 		if (!have_copy) {
 | |
| 			err = eb_relocate_vma(eb, ev);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 		} else {
 | |
| 			err = eb_relocate_vma_slow(eb, ev);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (err == -EDEADLK)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (err && !have_copy)
 | |
| 		goto repeat;
 | |
| 
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* as last step, parse the command buffer */
 | |
| 	err = eb_parse(eb);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * Leave the user relocations as are, this is the painfully slow path,
 | |
| 	 * and we want to avoid the complication of dropping the lock whilst
 | |
| 	 * having buffers reserved in the aperture and so causing spurious
 | |
| 	 * ENOSPC for random operations.
 | |
| 	 */
 | |
| 
 | |
| err:
 | |
| 	if (err == -EDEADLK) {
 | |
| 		eb_release_vmas(eb, false);
 | |
| 		err = i915_gem_ww_ctx_backoff(&eb->ww);
 | |
| 		if (!err)
 | |
| 			goto repeat_validate;
 | |
| 	}
 | |
| 
 | |
| 	if (err == -EAGAIN)
 | |
| 		goto repeat;
 | |
| 
 | |
| out:
 | |
| 	if (have_copy) {
 | |
| 		const unsigned int count = eb->buffer_count;
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		for (i = 0; i < count; i++) {
 | |
| 			const struct drm_i915_gem_exec_object2 *entry =
 | |
| 				&eb->exec[i];
 | |
| 			struct drm_i915_gem_relocation_entry *relocs;
 | |
| 
 | |
| 			if (!entry->relocation_count)
 | |
| 				continue;
 | |
| 
 | |
| 			relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
 | |
| 			kvfree(relocs);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int eb_relocate_parse(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	int err;
 | |
| 	bool throttle = true;
 | |
| 
 | |
| retry:
 | |
| 	err = eb_pin_engine(eb, throttle);
 | |
| 	if (err) {
 | |
| 		if (err != -EDEADLK)
 | |
| 			return err;
 | |
| 
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* only throttle once, even if we didn't need to throttle */
 | |
| 	throttle = false;
 | |
| 
 | |
| 	err = eb_validate_vmas(eb);
 | |
| 	if (err == -EAGAIN)
 | |
| 		goto slow;
 | |
| 	else if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	/* The objects are in their final locations, apply the relocations. */
 | |
| 	if (eb->args->flags & __EXEC_HAS_RELOC) {
 | |
| 		struct eb_vma *ev;
 | |
| 
 | |
| 		list_for_each_entry(ev, &eb->relocs, reloc_link) {
 | |
| 			err = eb_relocate_vma(eb, ev);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		if (err == -EDEADLK)
 | |
| 			goto err;
 | |
| 		else if (err)
 | |
| 			goto slow;
 | |
| 	}
 | |
| 
 | |
| 	if (!err)
 | |
| 		err = eb_parse(eb);
 | |
| 
 | |
| err:
 | |
| 	if (err == -EDEADLK) {
 | |
| 		eb_release_vmas(eb, false);
 | |
| 		err = i915_gem_ww_ctx_backoff(&eb->ww);
 | |
| 		if (!err)
 | |
| 			goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| 
 | |
| slow:
 | |
| 	err = eb_relocate_parse_slow(eb);
 | |
| 	if (err)
 | |
| 		/*
 | |
| 		 * If the user expects the execobject.offset and
 | |
| 		 * reloc.presumed_offset to be an exact match,
 | |
| 		 * as for using NO_RELOC, then we cannot update
 | |
| 		 * the execobject.offset until we have completed
 | |
| 		 * relocation.
 | |
| 		 */
 | |
| 		eb->args->flags &= ~__EXEC_HAS_RELOC;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Using two helper loops for the order of which requests / batches are created
 | |
|  * and added the to backend. Requests are created in order from the parent to
 | |
|  * the last child. Requests are added in the reverse order, from the last child
 | |
|  * to parent. This is done for locking reasons as the timeline lock is acquired
 | |
|  * during request creation and released when the request is added to the
 | |
|  * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
 | |
|  * the ordering.
 | |
|  */
 | |
| #define for_each_batch_create_order(_eb, _i) \
 | |
| 	for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
 | |
| #define for_each_batch_add_order(_eb, _i) \
 | |
| 	BUILD_BUG_ON(!typecheck(int, _i)); \
 | |
| 	for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
 | |
| 
 | |
| static struct i915_request *
 | |
| eb_find_first_request_added(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_batch_add_order(eb, i)
 | |
| 		if (eb->requests[i])
 | |
| 			return eb->requests[i];
 | |
| 
 | |
| 	GEM_BUG_ON("Request not found");
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
 | |
| 
 | |
| /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
 | |
| static int eb_capture_stage(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	const unsigned int count = eb->buffer_count;
 | |
| 	unsigned int i = count, j;
 | |
| 
 | |
| 	while (i--) {
 | |
| 		struct eb_vma *ev = &eb->vma[i];
 | |
| 		struct i915_vma *vma = ev->vma;
 | |
| 		unsigned int flags = ev->flags;
 | |
| 
 | |
| 		if (!(flags & EXEC_OBJECT_CAPTURE))
 | |
| 			continue;
 | |
| 
 | |
| 		if (i915_gem_context_is_recoverable(eb->gem_context) &&
 | |
| 		    (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		for_each_batch_create_order(eb, j) {
 | |
| 			struct i915_capture_list *capture;
 | |
| 
 | |
| 			capture = kmalloc(sizeof(*capture), GFP_KERNEL);
 | |
| 			if (!capture)
 | |
| 				continue;
 | |
| 
 | |
| 			capture->next = eb->capture_lists[j];
 | |
| 			capture->vma_res = i915_vma_resource_get(vma->resource);
 | |
| 			eb->capture_lists[j] = capture;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Commit once we're in the critical path */
 | |
| static void eb_capture_commit(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	for_each_batch_create_order(eb, j) {
 | |
| 		struct i915_request *rq = eb->requests[j];
 | |
| 
 | |
| 		if (!rq)
 | |
| 			break;
 | |
| 
 | |
| 		rq->capture_list = eb->capture_lists[j];
 | |
| 		eb->capture_lists[j] = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release anything that didn't get committed due to errors.
 | |
|  * The capture_list will otherwise be freed at request retire.
 | |
|  */
 | |
| static void eb_capture_release(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	for_each_batch_create_order(eb, j) {
 | |
| 		if (eb->capture_lists[j]) {
 | |
| 			i915_request_free_capture_list(eb->capture_lists[j]);
 | |
| 			eb->capture_lists[j] = NULL;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void eb_capture_list_clear(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static int eb_capture_stage(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void eb_capture_commit(struct i915_execbuffer *eb)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void eb_capture_release(struct i915_execbuffer *eb)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void eb_capture_list_clear(struct i915_execbuffer *eb)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static int eb_move_to_gpu(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	const unsigned int count = eb->buffer_count;
 | |
| 	unsigned int i = count;
 | |
| 	int err = 0, j;
 | |
| 
 | |
| 	while (i--) {
 | |
| 		struct eb_vma *ev = &eb->vma[i];
 | |
| 		struct i915_vma *vma = ev->vma;
 | |
| 		unsigned int flags = ev->flags;
 | |
| 		struct drm_i915_gem_object *obj = vma->obj;
 | |
| 
 | |
| 		assert_vma_held(vma);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the GPU is not _reading_ through the CPU cache, we need
 | |
| 		 * to make sure that any writes (both previous GPU writes from
 | |
| 		 * before a change in snooping levels and normal CPU writes)
 | |
| 		 * caught in that cache are flushed to main memory.
 | |
| 		 *
 | |
| 		 * We want to say
 | |
| 		 *   obj->cache_dirty &&
 | |
| 		 *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
 | |
| 		 * but gcc's optimiser doesn't handle that as well and emits
 | |
| 		 * two jumps instead of one. Maybe one day...
 | |
| 		 *
 | |
| 		 * FIXME: There is also sync flushing in set_pages(), which
 | |
| 		 * serves a different purpose(some of the time at least).
 | |
| 		 *
 | |
| 		 * We should consider:
 | |
| 		 *
 | |
| 		 *   1. Rip out the async flush code.
 | |
| 		 *
 | |
| 		 *   2. Or make the sync flushing use the async clflush path
 | |
| 		 *   using mandatory fences underneath. Currently the below
 | |
| 		 *   async flush happens after we bind the object.
 | |
| 		 */
 | |
| 		if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
 | |
| 			if (i915_gem_clflush_object(obj, 0))
 | |
| 				flags &= ~EXEC_OBJECT_ASYNC;
 | |
| 		}
 | |
| 
 | |
| 		/* We only need to await on the first request */
 | |
| 		if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
 | |
| 			err = i915_request_await_object
 | |
| 				(eb_find_first_request_added(eb), obj,
 | |
| 				 flags & EXEC_OBJECT_WRITE);
 | |
| 		}
 | |
| 
 | |
| 		for_each_batch_add_order(eb, j) {
 | |
| 			if (err)
 | |
| 				break;
 | |
| 			if (!eb->requests[j])
 | |
| 				continue;
 | |
| 
 | |
| 			err = _i915_vma_move_to_active(vma, eb->requests[j],
 | |
| 						       j ? NULL :
 | |
| 						       eb->composite_fence ?
 | |
| 						       eb->composite_fence :
 | |
| 						       &eb->requests[j]->fence,
 | |
| 						       flags | __EXEC_OBJECT_NO_RESERVE |
 | |
| 						       __EXEC_OBJECT_NO_REQUEST_AWAIT);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_MMU_NOTIFIER
 | |
| 	if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
 | |
| 		read_lock(&eb->i915->mm.notifier_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * count is always at least 1, otherwise __EXEC_USERPTR_USED
 | |
| 		 * could not have been set
 | |
| 		 */
 | |
| 		for (i = 0; i < count; i++) {
 | |
| 			struct eb_vma *ev = &eb->vma[i];
 | |
| 			struct drm_i915_gem_object *obj = ev->vma->obj;
 | |
| 
 | |
| 			if (!i915_gem_object_is_userptr(obj))
 | |
| 				continue;
 | |
| 
 | |
| 			err = i915_gem_object_userptr_submit_done(obj);
 | |
| 			if (err)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		read_unlock(&eb->i915->mm.notifier_lock);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	if (unlikely(err))
 | |
| 		goto err_skip;
 | |
| 
 | |
| 	/* Unconditionally flush any chipset caches (for streaming writes). */
 | |
| 	intel_gt_chipset_flush(eb->gt);
 | |
| 	eb_capture_commit(eb);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_skip:
 | |
| 	for_each_batch_create_order(eb, j) {
 | |
| 		if (!eb->requests[j])
 | |
| 			break;
 | |
| 
 | |
| 		i915_request_set_error_once(eb->requests[j], err);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int i915_gem_check_execbuffer(struct drm_i915_private *i915,
 | |
| 				     struct drm_i915_gem_execbuffer2 *exec)
 | |
| {
 | |
| 	if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Kernel clipping was a DRI1 misfeature */
 | |
| 	if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
 | |
| 			     I915_EXEC_USE_EXTENSIONS))) {
 | |
| 		if (exec->num_cliprects || exec->cliprects_ptr)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (exec->DR4 == 0xffffffff) {
 | |
| 		drm_dbg(&i915->drm, "UXA submitting garbage DR4, fixing up\n");
 | |
| 		exec->DR4 = 0;
 | |
| 	}
 | |
| 	if (exec->DR1 || exec->DR4)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((exec->batch_start_offset | exec->batch_len) & 0x7)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
 | |
| {
 | |
| 	u32 *cs;
 | |
| 	int i;
 | |
| 
 | |
| 	if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
 | |
| 		drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	cs = intel_ring_begin(rq, 4 * 2 + 2);
 | |
| 	if (IS_ERR(cs))
 | |
| 		return PTR_ERR(cs);
 | |
| 
 | |
| 	*cs++ = MI_LOAD_REGISTER_IMM(4);
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		*cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
 | |
| 		*cs++ = 0;
 | |
| 	}
 | |
| 	*cs++ = MI_NOOP;
 | |
| 	intel_ring_advance(rq, cs);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct i915_vma *
 | |
| shadow_batch_pin(struct i915_execbuffer *eb,
 | |
| 		 struct drm_i915_gem_object *obj,
 | |
| 		 struct i915_address_space *vm,
 | |
| 		 unsigned int flags)
 | |
| {
 | |
| 	struct i915_vma *vma;
 | |
| 	int err;
 | |
| 
 | |
| 	vma = i915_vma_instance(obj, vm, NULL);
 | |
| 	if (IS_ERR(vma))
 | |
| 		return vma;
 | |
| 
 | |
| 	err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 
 | |
| 	return vma;
 | |
| }
 | |
| 
 | |
| static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
 | |
| {
 | |
| 	/*
 | |
| 	 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
 | |
| 	 * batch" bit. Hence we need to pin secure batches into the global gtt.
 | |
| 	 * hsw should have this fixed, but bdw mucks it up again. */
 | |
| 	if (eb->batch_flags & I915_DISPATCH_SECURE)
 | |
| 		return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int eb_parse(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct drm_i915_private *i915 = eb->i915;
 | |
| 	struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
 | |
| 	struct i915_vma *shadow, *trampoline, *batch;
 | |
| 	unsigned long len;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!eb_use_cmdparser(eb)) {
 | |
| 		batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
 | |
| 		if (IS_ERR(batch))
 | |
| 			return PTR_ERR(batch);
 | |
| 
 | |
| 		goto secure_batch;
 | |
| 	}
 | |
| 
 | |
| 	if (intel_context_is_parallel(eb->context))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	len = eb->batch_len[0];
 | |
| 	if (!CMDPARSER_USES_GGTT(eb->i915)) {
 | |
| 		/*
 | |
| 		 * ppGTT backed shadow buffers must be mapped RO, to prevent
 | |
| 		 * post-scan tampering
 | |
| 		 */
 | |
| 		if (!eb->context->vm->has_read_only) {
 | |
| 			drm_dbg(&i915->drm,
 | |
| 				"Cannot prevent post-scan tampering without RO capable vm\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
 | |
| 	}
 | |
| 	if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!pool) {
 | |
| 		pool = intel_gt_get_buffer_pool(eb->gt, len,
 | |
| 						I915_MAP_WB);
 | |
| 		if (IS_ERR(pool))
 | |
| 			return PTR_ERR(pool);
 | |
| 		eb->batch_pool = pool;
 | |
| 	}
 | |
| 
 | |
| 	err = i915_gem_object_lock(pool->obj, &eb->ww);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
 | |
| 	if (IS_ERR(shadow))
 | |
| 		return PTR_ERR(shadow);
 | |
| 
 | |
| 	intel_gt_buffer_pool_mark_used(pool);
 | |
| 	i915_gem_object_set_readonly(shadow->obj);
 | |
| 	shadow->private = pool;
 | |
| 
 | |
| 	trampoline = NULL;
 | |
| 	if (CMDPARSER_USES_GGTT(eb->i915)) {
 | |
| 		trampoline = shadow;
 | |
| 
 | |
| 		shadow = shadow_batch_pin(eb, pool->obj,
 | |
| 					  &eb->gt->ggtt->vm,
 | |
| 					  PIN_GLOBAL);
 | |
| 		if (IS_ERR(shadow))
 | |
| 			return PTR_ERR(shadow);
 | |
| 
 | |
| 		shadow->private = pool;
 | |
| 
 | |
| 		eb->batch_flags |= I915_DISPATCH_SECURE;
 | |
| 	}
 | |
| 
 | |
| 	batch = eb_dispatch_secure(eb, shadow);
 | |
| 	if (IS_ERR(batch))
 | |
| 		return PTR_ERR(batch);
 | |
| 
 | |
| 	err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	err = intel_engine_cmd_parser(eb->context->engine,
 | |
| 				      eb->batches[0]->vma,
 | |
| 				      eb->batch_start_offset,
 | |
| 				      eb->batch_len[0],
 | |
| 				      shadow, trampoline);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	eb->batches[0] = &eb->vma[eb->buffer_count++];
 | |
| 	eb->batches[0]->vma = i915_vma_get(shadow);
 | |
| 	eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
 | |
| 
 | |
| 	eb->trampoline = trampoline;
 | |
| 	eb->batch_start_offset = 0;
 | |
| 
 | |
| secure_batch:
 | |
| 	if (batch) {
 | |
| 		if (intel_context_is_parallel(eb->context))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		eb->batches[0] = &eb->vma[eb->buffer_count++];
 | |
| 		eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
 | |
| 		eb->batches[0]->vma = i915_vma_get(batch);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int eb_request_submit(struct i915_execbuffer *eb,
 | |
| 			     struct i915_request *rq,
 | |
| 			     struct i915_vma *batch,
 | |
| 			     u64 batch_len)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (intel_context_nopreempt(rq->context))
 | |
| 		__set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
 | |
| 
 | |
| 	if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
 | |
| 		err = i915_reset_gen7_sol_offsets(rq);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After we completed waiting for other engines (using HW semaphores)
 | |
| 	 * then we can signal that this request/batch is ready to run. This
 | |
| 	 * allows us to determine if the batch is still waiting on the GPU
 | |
| 	 * or actually running by checking the breadcrumb.
 | |
| 	 */
 | |
| 	if (rq->context->engine->emit_init_breadcrumb) {
 | |
| 		err = rq->context->engine->emit_init_breadcrumb(rq);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = rq->context->engine->emit_bb_start(rq,
 | |
| 						 i915_vma_offset(batch) +
 | |
| 						 eb->batch_start_offset,
 | |
| 						 batch_len,
 | |
| 						 eb->batch_flags);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	if (eb->trampoline) {
 | |
| 		GEM_BUG_ON(intel_context_is_parallel(rq->context));
 | |
| 		GEM_BUG_ON(eb->batch_start_offset);
 | |
| 		err = rq->context->engine->emit_bb_start(rq,
 | |
| 							 i915_vma_offset(eb->trampoline) +
 | |
| 							 batch_len, 0, 0);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int eb_submit(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	int err;
 | |
| 
 | |
| 	err = eb_move_to_gpu(eb);
 | |
| 
 | |
| 	for_each_batch_create_order(eb, i) {
 | |
| 		if (!eb->requests[i])
 | |
| 			break;
 | |
| 
 | |
| 		trace_i915_request_queue(eb->requests[i], eb->batch_flags);
 | |
| 		if (!err)
 | |
| 			err = eb_request_submit(eb, eb->requests[i],
 | |
| 						eb->batches[i]->vma,
 | |
| 						eb->batch_len[i]);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int num_vcs_engines(struct drm_i915_private *i915)
 | |
| {
 | |
| 	return hweight_long(VDBOX_MASK(to_gt(i915)));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find one BSD ring to dispatch the corresponding BSD command.
 | |
|  * The engine index is returned.
 | |
|  */
 | |
| static unsigned int
 | |
| gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
 | |
| 			 struct drm_file *file)
 | |
| {
 | |
| 	struct drm_i915_file_private *file_priv = file->driver_priv;
 | |
| 
 | |
| 	/* Check whether the file_priv has already selected one ring. */
 | |
| 	if ((int)file_priv->bsd_engine < 0)
 | |
| 		file_priv->bsd_engine =
 | |
| 			prandom_u32_max(num_vcs_engines(dev_priv));
 | |
| 
 | |
| 	return file_priv->bsd_engine;
 | |
| }
 | |
| 
 | |
| static const enum intel_engine_id user_ring_map[] = {
 | |
| 	[I915_EXEC_DEFAULT]	= RCS0,
 | |
| 	[I915_EXEC_RENDER]	= RCS0,
 | |
| 	[I915_EXEC_BLT]		= BCS0,
 | |
| 	[I915_EXEC_BSD]		= VCS0,
 | |
| 	[I915_EXEC_VEBOX]	= VECS0
 | |
| };
 | |
| 
 | |
| static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
 | |
| {
 | |
| 	struct intel_ring *ring = ce->ring;
 | |
| 	struct intel_timeline *tl = ce->timeline;
 | |
| 	struct i915_request *rq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Completely unscientific finger-in-the-air estimates for suitable
 | |
| 	 * maximum user request size (to avoid blocking) and then backoff.
 | |
| 	 */
 | |
| 	if (intel_ring_update_space(ring) >= PAGE_SIZE)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Find a request that after waiting upon, there will be at least half
 | |
| 	 * the ring available. The hysteresis allows us to compete for the
 | |
| 	 * shared ring and should mean that we sleep less often prior to
 | |
| 	 * claiming our resources, but not so long that the ring completely
 | |
| 	 * drains before we can submit our next request.
 | |
| 	 */
 | |
| 	list_for_each_entry(rq, &tl->requests, link) {
 | |
| 		if (rq->ring != ring)
 | |
| 			continue;
 | |
| 
 | |
| 		if (__intel_ring_space(rq->postfix,
 | |
| 				       ring->emit, ring->size) > ring->size / 2)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (&rq->link == &tl->requests)
 | |
| 		return NULL; /* weird, we will check again later for real */
 | |
| 
 | |
| 	return i915_request_get(rq);
 | |
| }
 | |
| 
 | |
| static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
 | |
| 			   bool throttle)
 | |
| {
 | |
| 	struct intel_timeline *tl;
 | |
| 	struct i915_request *rq = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Take a local wakeref for preparing to dispatch the execbuf as
 | |
| 	 * we expect to access the hardware fairly frequently in the
 | |
| 	 * process, and require the engine to be kept awake between accesses.
 | |
| 	 * Upon dispatch, we acquire another prolonged wakeref that we hold
 | |
| 	 * until the timeline is idle, which in turn releases the wakeref
 | |
| 	 * taken on the engine, and the parent device.
 | |
| 	 */
 | |
| 	tl = intel_context_timeline_lock(ce);
 | |
| 	if (IS_ERR(tl))
 | |
| 		return PTR_ERR(tl);
 | |
| 
 | |
| 	intel_context_enter(ce);
 | |
| 	if (throttle)
 | |
| 		rq = eb_throttle(eb, ce);
 | |
| 	intel_context_timeline_unlock(tl);
 | |
| 
 | |
| 	if (rq) {
 | |
| 		bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
 | |
| 		long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
 | |
| 
 | |
| 		if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
 | |
| 				      timeout) < 0) {
 | |
| 			i915_request_put(rq);
 | |
| 
 | |
| 			/*
 | |
| 			 * Error path, cannot use intel_context_timeline_lock as
 | |
| 			 * that is user interruptable and this clean up step
 | |
| 			 * must be done.
 | |
| 			 */
 | |
| 			mutex_lock(&ce->timeline->mutex);
 | |
| 			intel_context_exit(ce);
 | |
| 			mutex_unlock(&ce->timeline->mutex);
 | |
| 
 | |
| 			if (nonblock)
 | |
| 				return -EWOULDBLOCK;
 | |
| 			else
 | |
| 				return -EINTR;
 | |
| 		}
 | |
| 		i915_request_put(rq);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
 | |
| {
 | |
| 	struct intel_context *ce = eb->context, *child;
 | |
| 	int err;
 | |
| 	int i = 0, j = 0;
 | |
| 
 | |
| 	GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
 | |
| 
 | |
| 	if (unlikely(intel_context_is_banned(ce)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pinning the contexts may generate requests in order to acquire
 | |
| 	 * GGTT space, so do this first before we reserve a seqno for
 | |
| 	 * ourselves.
 | |
| 	 */
 | |
| 	err = intel_context_pin_ww(ce, &eb->ww);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	for_each_child(ce, child) {
 | |
| 		err = intel_context_pin_ww(child, &eb->ww);
 | |
| 		GEM_BUG_ON(err);	/* perma-pinned should incr a counter */
 | |
| 	}
 | |
| 
 | |
| 	for_each_child(ce, child) {
 | |
| 		err = eb_pin_timeline(eb, child, throttle);
 | |
| 		if (err)
 | |
| 			goto unwind;
 | |
| 		++i;
 | |
| 	}
 | |
| 	err = eb_pin_timeline(eb, ce, throttle);
 | |
| 	if (err)
 | |
| 		goto unwind;
 | |
| 
 | |
| 	eb->args->flags |= __EXEC_ENGINE_PINNED;
 | |
| 	return 0;
 | |
| 
 | |
| unwind:
 | |
| 	for_each_child(ce, child) {
 | |
| 		if (j++ < i) {
 | |
| 			mutex_lock(&child->timeline->mutex);
 | |
| 			intel_context_exit(child);
 | |
| 			mutex_unlock(&child->timeline->mutex);
 | |
| 		}
 | |
| 	}
 | |
| 	for_each_child(ce, child)
 | |
| 		intel_context_unpin(child);
 | |
| 	intel_context_unpin(ce);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void eb_unpin_engine(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct intel_context *ce = eb->context, *child;
 | |
| 
 | |
| 	if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
 | |
| 		return;
 | |
| 
 | |
| 	eb->args->flags &= ~__EXEC_ENGINE_PINNED;
 | |
| 
 | |
| 	for_each_child(ce, child) {
 | |
| 		mutex_lock(&child->timeline->mutex);
 | |
| 		intel_context_exit(child);
 | |
| 		mutex_unlock(&child->timeline->mutex);
 | |
| 
 | |
| 		intel_context_unpin(child);
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&ce->timeline->mutex);
 | |
| 	intel_context_exit(ce);
 | |
| 	mutex_unlock(&ce->timeline->mutex);
 | |
| 
 | |
| 	intel_context_unpin(ce);
 | |
| }
 | |
| 
 | |
| static unsigned int
 | |
| eb_select_legacy_ring(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct drm_i915_private *i915 = eb->i915;
 | |
| 	struct drm_i915_gem_execbuffer2 *args = eb->args;
 | |
| 	unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
 | |
| 
 | |
| 	if (user_ring_id != I915_EXEC_BSD &&
 | |
| 	    (args->flags & I915_EXEC_BSD_MASK)) {
 | |
| 		drm_dbg(&i915->drm,
 | |
| 			"execbuf with non bsd ring but with invalid "
 | |
| 			"bsd dispatch flags: %d\n", (int)(args->flags));
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
 | |
| 		unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
 | |
| 
 | |
| 		if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
 | |
| 			bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
 | |
| 		} else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
 | |
| 			   bsd_idx <= I915_EXEC_BSD_RING2) {
 | |
| 			bsd_idx >>= I915_EXEC_BSD_SHIFT;
 | |
| 			bsd_idx--;
 | |
| 		} else {
 | |
| 			drm_dbg(&i915->drm,
 | |
| 				"execbuf with unknown bsd ring: %u\n",
 | |
| 				bsd_idx);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		return _VCS(bsd_idx);
 | |
| 	}
 | |
| 
 | |
| 	if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
 | |
| 		drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
 | |
| 			user_ring_id);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	return user_ring_map[user_ring_id];
 | |
| }
 | |
| 
 | |
| static int
 | |
| eb_select_engine(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct intel_context *ce, *child;
 | |
| 	unsigned int idx;
 | |
| 	int err;
 | |
| 
 | |
| 	if (i915_gem_context_user_engines(eb->gem_context))
 | |
| 		idx = eb->args->flags & I915_EXEC_RING_MASK;
 | |
| 	else
 | |
| 		idx = eb_select_legacy_ring(eb);
 | |
| 
 | |
| 	ce = i915_gem_context_get_engine(eb->gem_context, idx);
 | |
| 	if (IS_ERR(ce))
 | |
| 		return PTR_ERR(ce);
 | |
| 
 | |
| 	if (intel_context_is_parallel(ce)) {
 | |
| 		if (eb->buffer_count < ce->parallel.number_children + 1) {
 | |
| 			intel_context_put(ce);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (eb->batch_start_offset || eb->args->batch_len) {
 | |
| 			intel_context_put(ce);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	eb->num_batches = ce->parallel.number_children + 1;
 | |
| 
 | |
| 	for_each_child(ce, child)
 | |
| 		intel_context_get(child);
 | |
| 	intel_gt_pm_get(ce->engine->gt);
 | |
| 
 | |
| 	if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
 | |
| 		err = intel_context_alloc_state(ce);
 | |
| 		if (err)
 | |
| 			goto err;
 | |
| 	}
 | |
| 	for_each_child(ce, child) {
 | |
| 		if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
 | |
| 			err = intel_context_alloc_state(child);
 | |
| 			if (err)
 | |
| 				goto err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
 | |
| 	 * EIO if the GPU is already wedged.
 | |
| 	 */
 | |
| 	err = intel_gt_terminally_wedged(ce->engine->gt);
 | |
| 	if (err)
 | |
| 		goto err;
 | |
| 
 | |
| 	if (!i915_vm_tryget(ce->vm)) {
 | |
| 		err = -ENOENT;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	eb->context = ce;
 | |
| 	eb->gt = ce->engine->gt;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure engine pool stays alive even if we call intel_context_put
 | |
| 	 * during ww handling. The pool is destroyed when last pm reference
 | |
| 	 * is dropped, which breaks our -EDEADLK handling.
 | |
| 	 */
 | |
| 	return err;
 | |
| 
 | |
| err:
 | |
| 	intel_gt_pm_put(ce->engine->gt);
 | |
| 	for_each_child(ce, child)
 | |
| 		intel_context_put(child);
 | |
| 	intel_context_put(ce);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void
 | |
| eb_put_engine(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct intel_context *child;
 | |
| 
 | |
| 	i915_vm_put(eb->context->vm);
 | |
| 	intel_gt_pm_put(eb->gt);
 | |
| 	for_each_child(eb->context, child)
 | |
| 		intel_context_put(child);
 | |
| 	intel_context_put(eb->context);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __free_fence_array(struct eb_fence *fences, unsigned int n)
 | |
| {
 | |
| 	while (n--) {
 | |
| 		drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
 | |
| 		dma_fence_put(fences[n].dma_fence);
 | |
| 		dma_fence_chain_free(fences[n].chain_fence);
 | |
| 	}
 | |
| 	kvfree(fences);
 | |
| }
 | |
| 
 | |
| static int
 | |
| add_timeline_fence_array(struct i915_execbuffer *eb,
 | |
| 			 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
 | |
| {
 | |
| 	struct drm_i915_gem_exec_fence __user *user_fences;
 | |
| 	u64 __user *user_values;
 | |
| 	struct eb_fence *f;
 | |
| 	u64 nfences;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	nfences = timeline_fences->fence_count;
 | |
| 	if (!nfences)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
 | |
| 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
 | |
| 	if (nfences > min_t(unsigned long,
 | |
| 			    ULONG_MAX / sizeof(*user_fences),
 | |
| 			    SIZE_MAX / sizeof(*f)) - eb->num_fences)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
 | |
| 	if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	user_values = u64_to_user_ptr(timeline_fences->values_ptr);
 | |
| 	if (!access_ok(user_values, nfences * sizeof(*user_values)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	f = krealloc(eb->fences,
 | |
| 		     (eb->num_fences + nfences) * sizeof(*f),
 | |
| 		     __GFP_NOWARN | GFP_KERNEL);
 | |
| 	if (!f)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	eb->fences = f;
 | |
| 	f += eb->num_fences;
 | |
| 
 | |
| 	BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
 | |
| 		     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
 | |
| 
 | |
| 	while (nfences--) {
 | |
| 		struct drm_i915_gem_exec_fence user_fence;
 | |
| 		struct drm_syncobj *syncobj;
 | |
| 		struct dma_fence *fence = NULL;
 | |
| 		u64 point;
 | |
| 
 | |
| 		if (__copy_from_user(&user_fence,
 | |
| 				     user_fences++,
 | |
| 				     sizeof(user_fence)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (__get_user(point, user_values++))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
 | |
| 		if (!syncobj) {
 | |
| 			drm_dbg(&eb->i915->drm,
 | |
| 				"Invalid syncobj handle provided\n");
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 
 | |
| 		fence = drm_syncobj_fence_get(syncobj);
 | |
| 
 | |
| 		if (!fence && user_fence.flags &&
 | |
| 		    !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
 | |
| 			drm_dbg(&eb->i915->drm,
 | |
| 				"Syncobj handle has no fence\n");
 | |
| 			drm_syncobj_put(syncobj);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		if (fence)
 | |
| 			err = dma_fence_chain_find_seqno(&fence, point);
 | |
| 
 | |
| 		if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
 | |
| 			drm_dbg(&eb->i915->drm,
 | |
| 				"Syncobj handle missing requested point %llu\n",
 | |
| 				point);
 | |
| 			dma_fence_put(fence);
 | |
| 			drm_syncobj_put(syncobj);
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * A point might have been signaled already and
 | |
| 		 * garbage collected from the timeline. In this case
 | |
| 		 * just ignore the point and carry on.
 | |
| 		 */
 | |
| 		if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
 | |
| 			drm_syncobj_put(syncobj);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * For timeline syncobjs we need to preallocate chains for
 | |
| 		 * later signaling.
 | |
| 		 */
 | |
| 		if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
 | |
| 			/*
 | |
| 			 * Waiting and signaling the same point (when point !=
 | |
| 			 * 0) would break the timeline.
 | |
| 			 */
 | |
| 			if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
 | |
| 				drm_dbg(&eb->i915->drm,
 | |
| 					"Trying to wait & signal the same timeline point.\n");
 | |
| 				dma_fence_put(fence);
 | |
| 				drm_syncobj_put(syncobj);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			f->chain_fence = dma_fence_chain_alloc();
 | |
| 			if (!f->chain_fence) {
 | |
| 				drm_syncobj_put(syncobj);
 | |
| 				dma_fence_put(fence);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 		} else {
 | |
| 			f->chain_fence = NULL;
 | |
| 		}
 | |
| 
 | |
| 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
 | |
| 		f->dma_fence = fence;
 | |
| 		f->value = point;
 | |
| 		f++;
 | |
| 		eb->num_fences++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int add_fence_array(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	struct drm_i915_gem_execbuffer2 *args = eb->args;
 | |
| 	struct drm_i915_gem_exec_fence __user *user;
 | |
| 	unsigned long num_fences = args->num_cliprects;
 | |
| 	struct eb_fence *f;
 | |
| 
 | |
| 	if (!(args->flags & I915_EXEC_FENCE_ARRAY))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!num_fences)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check multiplication overflow for access_ok() and kvmalloc_array() */
 | |
| 	BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
 | |
| 	if (num_fences > min_t(unsigned long,
 | |
| 			       ULONG_MAX / sizeof(*user),
 | |
| 			       SIZE_MAX / sizeof(*f) - eb->num_fences))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	user = u64_to_user_ptr(args->cliprects_ptr);
 | |
| 	if (!access_ok(user, num_fences * sizeof(*user)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	f = krealloc(eb->fences,
 | |
| 		     (eb->num_fences + num_fences) * sizeof(*f),
 | |
| 		     __GFP_NOWARN | GFP_KERNEL);
 | |
| 	if (!f)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	eb->fences = f;
 | |
| 	f += eb->num_fences;
 | |
| 	while (num_fences--) {
 | |
| 		struct drm_i915_gem_exec_fence user_fence;
 | |
| 		struct drm_syncobj *syncobj;
 | |
| 		struct dma_fence *fence = NULL;
 | |
| 
 | |
| 		if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		syncobj = drm_syncobj_find(eb->file, user_fence.handle);
 | |
| 		if (!syncobj) {
 | |
| 			drm_dbg(&eb->i915->drm,
 | |
| 				"Invalid syncobj handle provided\n");
 | |
| 			return -ENOENT;
 | |
| 		}
 | |
| 
 | |
| 		if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
 | |
| 			fence = drm_syncobj_fence_get(syncobj);
 | |
| 			if (!fence) {
 | |
| 				drm_dbg(&eb->i915->drm,
 | |
| 					"Syncobj handle has no fence\n");
 | |
| 				drm_syncobj_put(syncobj);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
 | |
| 			     ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
 | |
| 
 | |
| 		f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
 | |
| 		f->dma_fence = fence;
 | |
| 		f->value = 0;
 | |
| 		f->chain_fence = NULL;
 | |
| 		f++;
 | |
| 		eb->num_fences++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void put_fence_array(struct eb_fence *fences, int num_fences)
 | |
| {
 | |
| 	if (fences)
 | |
| 		__free_fence_array(fences, num_fences);
 | |
| }
 | |
| 
 | |
| static int
 | |
| await_fence_array(struct i915_execbuffer *eb,
 | |
| 		  struct i915_request *rq)
 | |
| {
 | |
| 	unsigned int n;
 | |
| 	int err;
 | |
| 
 | |
| 	for (n = 0; n < eb->num_fences; n++) {
 | |
| 		if (!eb->fences[n].dma_fence)
 | |
| 			continue;
 | |
| 
 | |
| 		err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
 | |
| 		if (err < 0)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void signal_fence_array(const struct i915_execbuffer *eb,
 | |
| 			       struct dma_fence * const fence)
 | |
| {
 | |
| 	unsigned int n;
 | |
| 
 | |
| 	for (n = 0; n < eb->num_fences; n++) {
 | |
| 		struct drm_syncobj *syncobj;
 | |
| 		unsigned int flags;
 | |
| 
 | |
| 		syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
 | |
| 		if (!(flags & I915_EXEC_FENCE_SIGNAL))
 | |
| 			continue;
 | |
| 
 | |
| 		if (eb->fences[n].chain_fence) {
 | |
| 			drm_syncobj_add_point(syncobj,
 | |
| 					      eb->fences[n].chain_fence,
 | |
| 					      fence,
 | |
| 					      eb->fences[n].value);
 | |
| 			/*
 | |
| 			 * The chain's ownership is transferred to the
 | |
| 			 * timeline.
 | |
| 			 */
 | |
| 			eb->fences[n].chain_fence = NULL;
 | |
| 		} else {
 | |
| 			drm_syncobj_replace_fence(syncobj, fence);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
 | |
| {
 | |
| 	struct i915_execbuffer *eb = data;
 | |
| 	struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
 | |
| 
 | |
| 	if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return add_timeline_fence_array(eb, &timeline_fences);
 | |
| }
 | |
| 
 | |
| static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
 | |
| {
 | |
| 	struct i915_request *rq, *rn;
 | |
| 
 | |
| 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
 | |
| 		if (rq == end || !i915_request_retire(rq))
 | |
| 			break;
 | |
| }
 | |
| 
 | |
| static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
 | |
| 			  int err, bool last_parallel)
 | |
| {
 | |
| 	struct intel_timeline * const tl = i915_request_timeline(rq);
 | |
| 	struct i915_sched_attr attr = {};
 | |
| 	struct i915_request *prev;
 | |
| 
 | |
| 	lockdep_assert_held(&tl->mutex);
 | |
| 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
 | |
| 
 | |
| 	trace_i915_request_add(rq);
 | |
| 
 | |
| 	prev = __i915_request_commit(rq);
 | |
| 
 | |
| 	/* Check that the context wasn't destroyed before submission */
 | |
| 	if (likely(!intel_context_is_closed(eb->context))) {
 | |
| 		attr = eb->gem_context->sched;
 | |
| 	} else {
 | |
| 		/* Serialise with context_close via the add_to_timeline */
 | |
| 		i915_request_set_error_once(rq, -ENOENT);
 | |
| 		__i915_request_skip(rq);
 | |
| 		err = -ENOENT; /* override any transient errors */
 | |
| 	}
 | |
| 
 | |
| 	if (intel_context_is_parallel(eb->context)) {
 | |
| 		if (err) {
 | |
| 			__i915_request_skip(rq);
 | |
| 			set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
 | |
| 				&rq->fence.flags);
 | |
| 		}
 | |
| 		if (last_parallel)
 | |
| 			set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
 | |
| 				&rq->fence.flags);
 | |
| 	}
 | |
| 
 | |
| 	__i915_request_queue(rq, &attr);
 | |
| 
 | |
| 	/* Try to clean up the client's timeline after submitting the request */
 | |
| 	if (prev)
 | |
| 		retire_requests(tl, prev);
 | |
| 
 | |
| 	mutex_unlock(&tl->mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int eb_requests_add(struct i915_execbuffer *eb, int err)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We iterate in reverse order of creation to release timeline mutexes in
 | |
| 	 * same order.
 | |
| 	 */
 | |
| 	for_each_batch_add_order(eb, i) {
 | |
| 		struct i915_request *rq = eb->requests[i];
 | |
| 
 | |
| 		if (!rq)
 | |
| 			continue;
 | |
| 		err |= eb_request_add(eb, rq, err, i == 0);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static const i915_user_extension_fn execbuf_extensions[] = {
 | |
| 	[DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
 | |
| };
 | |
| 
 | |
| static int
 | |
| parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
 | |
| 			  struct i915_execbuffer *eb)
 | |
| {
 | |
| 	if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
 | |
| 	 * have another flag also using it at the same time.
 | |
| 	 */
 | |
| 	if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (args->num_cliprects != 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
 | |
| 				    execbuf_extensions,
 | |
| 				    ARRAY_SIZE(execbuf_extensions),
 | |
| 				    eb);
 | |
| }
 | |
| 
 | |
| static void eb_requests_get(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_batch_create_order(eb, i) {
 | |
| 		if (!eb->requests[i])
 | |
| 			break;
 | |
| 
 | |
| 		i915_request_get(eb->requests[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void eb_requests_put(struct i915_execbuffer *eb)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_batch_create_order(eb, i) {
 | |
| 		if (!eb->requests[i])
 | |
| 			break;
 | |
| 
 | |
| 		i915_request_put(eb->requests[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct sync_file *
 | |
| eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
 | |
| {
 | |
| 	struct sync_file *out_fence = NULL;
 | |
| 	struct dma_fence_array *fence_array;
 | |
| 	struct dma_fence **fences;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	GEM_BUG_ON(!intel_context_is_parent(eb->context));
 | |
| 
 | |
| 	fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
 | |
| 	if (!fences)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	for_each_batch_create_order(eb, i) {
 | |
| 		fences[i] = &eb->requests[i]->fence;
 | |
| 		__set_bit(I915_FENCE_FLAG_COMPOSITE,
 | |
| 			  &eb->requests[i]->fence.flags);
 | |
| 	}
 | |
| 
 | |
| 	fence_array = dma_fence_array_create(eb->num_batches,
 | |
| 					     fences,
 | |
| 					     eb->context->parallel.fence_context,
 | |
| 					     eb->context->parallel.seqno++,
 | |
| 					     false);
 | |
| 	if (!fence_array) {
 | |
| 		kfree(fences);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	/* Move ownership to the dma_fence_array created above */
 | |
| 	for_each_batch_create_order(eb, i)
 | |
| 		dma_fence_get(fences[i]);
 | |
| 
 | |
| 	if (out_fence_fd != -1) {
 | |
| 		out_fence = sync_file_create(&fence_array->base);
 | |
| 		/* sync_file now owns fence_arry, drop creation ref */
 | |
| 		dma_fence_put(&fence_array->base);
 | |
| 		if (!out_fence)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	eb->composite_fence = &fence_array->base;
 | |
| 
 | |
| 	return out_fence;
 | |
| }
 | |
| 
 | |
| static struct sync_file *
 | |
| eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
 | |
| 	      struct dma_fence *in_fence, int out_fence_fd)
 | |
| {
 | |
| 	struct sync_file *out_fence = NULL;
 | |
| 	int err;
 | |
| 
 | |
| 	if (unlikely(eb->gem_context->syncobj)) {
 | |
| 		struct dma_fence *fence;
 | |
| 
 | |
| 		fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
 | |
| 		err = i915_request_await_dma_fence(rq, fence);
 | |
| 		dma_fence_put(fence);
 | |
| 		if (err)
 | |
| 			return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	if (in_fence) {
 | |
| 		if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
 | |
| 			err = i915_request_await_execution(rq, in_fence);
 | |
| 		else
 | |
| 			err = i915_request_await_dma_fence(rq, in_fence);
 | |
| 		if (err < 0)
 | |
| 			return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	if (eb->fences) {
 | |
| 		err = await_fence_array(eb, rq);
 | |
| 		if (err)
 | |
| 			return ERR_PTR(err);
 | |
| 	}
 | |
| 
 | |
| 	if (intel_context_is_parallel(eb->context)) {
 | |
| 		out_fence = eb_composite_fence_create(eb, out_fence_fd);
 | |
| 		if (IS_ERR(out_fence))
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 	} else if (out_fence_fd != -1) {
 | |
| 		out_fence = sync_file_create(&rq->fence);
 | |
| 		if (!out_fence)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	return out_fence;
 | |
| }
 | |
| 
 | |
| static struct intel_context *
 | |
| eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
 | |
| {
 | |
| 	struct intel_context *child;
 | |
| 
 | |
| 	if (likely(context_number == 0))
 | |
| 		return eb->context;
 | |
| 
 | |
| 	for_each_child(eb->context, child)
 | |
| 		if (!--context_number)
 | |
| 			return child;
 | |
| 
 | |
| 	GEM_BUG_ON("Context not found");
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct sync_file *
 | |
| eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
 | |
| 		   int out_fence_fd)
 | |
| {
 | |
| 	struct sync_file *out_fence = NULL;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for_each_batch_create_order(eb, i) {
 | |
| 		/* Allocate a request for this batch buffer nice and early. */
 | |
| 		eb->requests[i] = i915_request_create(eb_find_context(eb, i));
 | |
| 		if (IS_ERR(eb->requests[i])) {
 | |
| 			out_fence = ERR_CAST(eb->requests[i]);
 | |
| 			eb->requests[i] = NULL;
 | |
| 			return out_fence;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Only the first request added (committed to backend) has to
 | |
| 		 * take the in fences into account as all subsequent requests
 | |
| 		 * will have fences inserted inbetween them.
 | |
| 		 */
 | |
| 		if (i + 1 == eb->num_batches) {
 | |
| 			out_fence = eb_fences_add(eb, eb->requests[i],
 | |
| 						  in_fence, out_fence_fd);
 | |
| 			if (IS_ERR(out_fence))
 | |
| 				return out_fence;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Not really on stack, but we don't want to call
 | |
| 		 * kfree on the batch_snapshot when we put it, so use the
 | |
| 		 * _onstack interface.
 | |
| 		 */
 | |
| 		if (eb->batches[i]->vma)
 | |
| 			eb->requests[i]->batch_res =
 | |
| 				i915_vma_resource_get(eb->batches[i]->vma->resource);
 | |
| 		if (eb->batch_pool) {
 | |
| 			GEM_BUG_ON(intel_context_is_parallel(eb->context));
 | |
| 			intel_gt_buffer_pool_mark_active(eb->batch_pool,
 | |
| 							 eb->requests[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return out_fence;
 | |
| }
 | |
| 
 | |
| static int
 | |
| i915_gem_do_execbuffer(struct drm_device *dev,
 | |
| 		       struct drm_file *file,
 | |
| 		       struct drm_i915_gem_execbuffer2 *args,
 | |
| 		       struct drm_i915_gem_exec_object2 *exec)
 | |
| {
 | |
| 	struct drm_i915_private *i915 = to_i915(dev);
 | |
| 	struct i915_execbuffer eb;
 | |
| 	struct dma_fence *in_fence = NULL;
 | |
| 	struct sync_file *out_fence = NULL;
 | |
| 	int out_fence_fd = -1;
 | |
| 	int err;
 | |
| 
 | |
| 	BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
 | |
| 	BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
 | |
| 		     ~__EXEC_OBJECT_UNKNOWN_FLAGS);
 | |
| 
 | |
| 	eb.i915 = i915;
 | |
| 	eb.file = file;
 | |
| 	eb.args = args;
 | |
| 	if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
 | |
| 		args->flags |= __EXEC_HAS_RELOC;
 | |
| 
 | |
| 	eb.exec = exec;
 | |
| 	eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
 | |
| 	eb.vma[0].vma = NULL;
 | |
| 	eb.batch_pool = NULL;
 | |
| 
 | |
| 	eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
 | |
| 	reloc_cache_init(&eb.reloc_cache, eb.i915);
 | |
| 
 | |
| 	eb.buffer_count = args->buffer_count;
 | |
| 	eb.batch_start_offset = args->batch_start_offset;
 | |
| 	eb.trampoline = NULL;
 | |
| 
 | |
| 	eb.fences = NULL;
 | |
| 	eb.num_fences = 0;
 | |
| 
 | |
| 	eb_capture_list_clear(&eb);
 | |
| 
 | |
| 	memset(eb.requests, 0, sizeof(struct i915_request *) *
 | |
| 	       ARRAY_SIZE(eb.requests));
 | |
| 	eb.composite_fence = NULL;
 | |
| 
 | |
| 	eb.batch_flags = 0;
 | |
| 	if (args->flags & I915_EXEC_SECURE) {
 | |
| 		if (GRAPHICS_VER(i915) >= 11)
 | |
| 			return -ENODEV;
 | |
| 
 | |
| 		/* Return -EPERM to trigger fallback code on old binaries. */
 | |
| 		if (!HAS_SECURE_BATCHES(i915))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		eb.batch_flags |= I915_DISPATCH_SECURE;
 | |
| 	}
 | |
| 	if (args->flags & I915_EXEC_IS_PINNED)
 | |
| 		eb.batch_flags |= I915_DISPATCH_PINNED;
 | |
| 
 | |
| 	err = parse_execbuf2_extensions(args, &eb);
 | |
| 	if (err)
 | |
| 		goto err_ext;
 | |
| 
 | |
| 	err = add_fence_array(&eb);
 | |
| 	if (err)
 | |
| 		goto err_ext;
 | |
| 
 | |
| #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
 | |
| 	if (args->flags & IN_FENCES) {
 | |
| 		if ((args->flags & IN_FENCES) == IN_FENCES)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
 | |
| 		if (!in_fence) {
 | |
| 			err = -EINVAL;
 | |
| 			goto err_ext;
 | |
| 		}
 | |
| 	}
 | |
| #undef IN_FENCES
 | |
| 
 | |
| 	if (args->flags & I915_EXEC_FENCE_OUT) {
 | |
| 		out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
 | |
| 		if (out_fence_fd < 0) {
 | |
| 			err = out_fence_fd;
 | |
| 			goto err_in_fence;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = eb_create(&eb);
 | |
| 	if (err)
 | |
| 		goto err_out_fence;
 | |
| 
 | |
| 	GEM_BUG_ON(!eb.lut_size);
 | |
| 
 | |
| 	err = eb_select_context(&eb);
 | |
| 	if (unlikely(err))
 | |
| 		goto err_destroy;
 | |
| 
 | |
| 	err = eb_select_engine(&eb);
 | |
| 	if (unlikely(err))
 | |
| 		goto err_context;
 | |
| 
 | |
| 	err = eb_lookup_vmas(&eb);
 | |
| 	if (err) {
 | |
| 		eb_release_vmas(&eb, true);
 | |
| 		goto err_engine;
 | |
| 	}
 | |
| 
 | |
| 	i915_gem_ww_ctx_init(&eb.ww, true);
 | |
| 
 | |
| 	err = eb_relocate_parse(&eb);
 | |
| 	if (err) {
 | |
| 		/*
 | |
| 		 * If the user expects the execobject.offset and
 | |
| 		 * reloc.presumed_offset to be an exact match,
 | |
| 		 * as for using NO_RELOC, then we cannot update
 | |
| 		 * the execobject.offset until we have completed
 | |
| 		 * relocation.
 | |
| 		 */
 | |
| 		args->flags &= ~__EXEC_HAS_RELOC;
 | |
| 		goto err_vma;
 | |
| 	}
 | |
| 
 | |
| 	ww_acquire_done(&eb.ww.ctx);
 | |
| 	err = eb_capture_stage(&eb);
 | |
| 	if (err)
 | |
| 		goto err_vma;
 | |
| 
 | |
| 	out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
 | |
| 	if (IS_ERR(out_fence)) {
 | |
| 		err = PTR_ERR(out_fence);
 | |
| 		out_fence = NULL;
 | |
| 		if (eb.requests[0])
 | |
| 			goto err_request;
 | |
| 		else
 | |
| 			goto err_vma;
 | |
| 	}
 | |
| 
 | |
| 	err = eb_submit(&eb);
 | |
| 
 | |
| err_request:
 | |
| 	eb_requests_get(&eb);
 | |
| 	err = eb_requests_add(&eb, err);
 | |
| 
 | |
| 	if (eb.fences)
 | |
| 		signal_fence_array(&eb, eb.composite_fence ?
 | |
| 				   eb.composite_fence :
 | |
| 				   &eb.requests[0]->fence);
 | |
| 
 | |
| 	if (unlikely(eb.gem_context->syncobj)) {
 | |
| 		drm_syncobj_replace_fence(eb.gem_context->syncobj,
 | |
| 					  eb.composite_fence ?
 | |
| 					  eb.composite_fence :
 | |
| 					  &eb.requests[0]->fence);
 | |
| 	}
 | |
| 
 | |
| 	if (out_fence) {
 | |
| 		if (err == 0) {
 | |
| 			fd_install(out_fence_fd, out_fence->file);
 | |
| 			args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
 | |
| 			args->rsvd2 |= (u64)out_fence_fd << 32;
 | |
| 			out_fence_fd = -1;
 | |
| 		} else {
 | |
| 			fput(out_fence->file);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!out_fence && eb.composite_fence)
 | |
| 		dma_fence_put(eb.composite_fence);
 | |
| 
 | |
| 	eb_requests_put(&eb);
 | |
| 
 | |
| err_vma:
 | |
| 	eb_release_vmas(&eb, true);
 | |
| 	WARN_ON(err == -EDEADLK);
 | |
| 	i915_gem_ww_ctx_fini(&eb.ww);
 | |
| 
 | |
| 	if (eb.batch_pool)
 | |
| 		intel_gt_buffer_pool_put(eb.batch_pool);
 | |
| err_engine:
 | |
| 	eb_put_engine(&eb);
 | |
| err_context:
 | |
| 	i915_gem_context_put(eb.gem_context);
 | |
| err_destroy:
 | |
| 	eb_destroy(&eb);
 | |
| err_out_fence:
 | |
| 	if (out_fence_fd != -1)
 | |
| 		put_unused_fd(out_fence_fd);
 | |
| err_in_fence:
 | |
| 	dma_fence_put(in_fence);
 | |
| err_ext:
 | |
| 	put_fence_array(eb.fences, eb.num_fences);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static size_t eb_element_size(void)
 | |
| {
 | |
| 	return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
 | |
| }
 | |
| 
 | |
| static bool check_buffer_count(size_t count)
 | |
| {
 | |
| 	const size_t sz = eb_element_size();
 | |
| 
 | |
| 	/*
 | |
| 	 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
 | |
| 	 * array size (see eb_create()). Otherwise, we can accept an array as
 | |
| 	 * large as can be addressed (though use large arrays at your peril)!
 | |
| 	 */
 | |
| 
 | |
| 	return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
 | |
| }
 | |
| 
 | |
| int
 | |
| i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
 | |
| 			   struct drm_file *file)
 | |
| {
 | |
| 	struct drm_i915_private *i915 = to_i915(dev);
 | |
| 	struct drm_i915_gem_execbuffer2 *args = data;
 | |
| 	struct drm_i915_gem_exec_object2 *exec2_list;
 | |
| 	const size_t count = args->buffer_count;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!check_buffer_count(count)) {
 | |
| 		drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	err = i915_gem_check_execbuffer(i915, args);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Allocate extra slots for use by the command parser */
 | |
| 	exec2_list = kvmalloc_array(count + 2, eb_element_size(),
 | |
| 				    __GFP_NOWARN | GFP_KERNEL);
 | |
| 	if (exec2_list == NULL) {
 | |
| 		drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
 | |
| 			count);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	if (copy_from_user(exec2_list,
 | |
| 			   u64_to_user_ptr(args->buffers_ptr),
 | |
| 			   sizeof(*exec2_list) * count)) {
 | |
| 		drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
 | |
| 		kvfree(exec2_list);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we have begun execution of the batchbuffer, we ignore
 | |
| 	 * any new error after this point. Also given that we have already
 | |
| 	 * updated the associated relocations, we try to write out the current
 | |
| 	 * object locations irrespective of any error.
 | |
| 	 */
 | |
| 	if (args->flags & __EXEC_HAS_RELOC) {
 | |
| 		struct drm_i915_gem_exec_object2 __user *user_exec_list =
 | |
| 			u64_to_user_ptr(args->buffers_ptr);
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		/* Copy the new buffer offsets back to the user's exec list. */
 | |
| 		/*
 | |
| 		 * Note: count * sizeof(*user_exec_list) does not overflow,
 | |
| 		 * because we checked 'count' in check_buffer_count().
 | |
| 		 *
 | |
| 		 * And this range already got effectively checked earlier
 | |
| 		 * when we did the "copy_from_user()" above.
 | |
| 		 */
 | |
| 		if (!user_write_access_begin(user_exec_list,
 | |
| 					     count * sizeof(*user_exec_list)))
 | |
| 			goto end;
 | |
| 
 | |
| 		for (i = 0; i < args->buffer_count; i++) {
 | |
| 			if (!(exec2_list[i].offset & UPDATE))
 | |
| 				continue;
 | |
| 
 | |
| 			exec2_list[i].offset =
 | |
| 				gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
 | |
| 			unsafe_put_user(exec2_list[i].offset,
 | |
| 					&user_exec_list[i].offset,
 | |
| 					end_user);
 | |
| 		}
 | |
| end_user:
 | |
| 		user_write_access_end();
 | |
| end:;
 | |
| 	}
 | |
| 
 | |
| 	args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
 | |
| 	kvfree(exec2_list);
 | |
| 	return err;
 | |
| }
 |