644 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			644 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * This file contains KASAN runtime code that manages shadow memory for
 | |
|  * generic and software tag-based KASAN modes.
 | |
|  *
 | |
|  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 | |
|  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
 | |
|  *
 | |
|  * Some code borrowed from https://github.com/xairy/kasan-prototype by
 | |
|  *        Andrey Konovalov <andreyknvl@gmail.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/kasan.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kfence.h>
 | |
| #include <linux/kmemleak.h>
 | |
| #include <linux/memory.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| 
 | |
| #include "kasan.h"
 | |
| 
 | |
| bool __kasan_check_read(const volatile void *p, unsigned int size)
 | |
| {
 | |
| 	return kasan_check_range((void *)p, size, false, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__kasan_check_read);
 | |
| 
 | |
| bool __kasan_check_write(const volatile void *p, unsigned int size)
 | |
| {
 | |
| 	return kasan_check_range((void *)p, size, true, _RET_IP_);
 | |
| }
 | |
| EXPORT_SYMBOL(__kasan_check_write);
 | |
| 
 | |
| #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
 | |
| /*
 | |
|  * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
 | |
|  * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
 | |
|  * for the sites they want to instrument.
 | |
|  *
 | |
|  * If we have a compiler that can instrument meminstrinsics, never override
 | |
|  * these, so that non-instrumented files can safely consider them as builtins.
 | |
|  */
 | |
| #undef memset
 | |
| void *memset(void *addr, int c, size_t len)
 | |
| {
 | |
| 	if (!kasan_check_range(addr, len, true, _RET_IP_))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __memset(addr, c, len);
 | |
| }
 | |
| 
 | |
| #ifdef __HAVE_ARCH_MEMMOVE
 | |
| #undef memmove
 | |
| void *memmove(void *dest, const void *src, size_t len)
 | |
| {
 | |
| 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
 | |
| 	    !kasan_check_range(dest, len, true, _RET_IP_))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __memmove(dest, src, len);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #undef memcpy
 | |
| void *memcpy(void *dest, const void *src, size_t len)
 | |
| {
 | |
| 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
 | |
| 	    !kasan_check_range(dest, len, true, _RET_IP_))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __memcpy(dest, src, len);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void *__asan_memset(void *addr, int c, ssize_t len)
 | |
| {
 | |
| 	if (!kasan_check_range(addr, len, true, _RET_IP_))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __memset(addr, c, len);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_memset);
 | |
| 
 | |
| #ifdef __HAVE_ARCH_MEMMOVE
 | |
| void *__asan_memmove(void *dest, const void *src, ssize_t len)
 | |
| {
 | |
| 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
 | |
| 	    !kasan_check_range(dest, len, true, _RET_IP_))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __memmove(dest, src, len);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_memmove);
 | |
| #endif
 | |
| 
 | |
| void *__asan_memcpy(void *dest, const void *src, ssize_t len)
 | |
| {
 | |
| 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
 | |
| 	    !kasan_check_range(dest, len, true, _RET_IP_))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return __memcpy(dest, src, len);
 | |
| }
 | |
| EXPORT_SYMBOL(__asan_memcpy);
 | |
| 
 | |
| #ifdef CONFIG_KASAN_SW_TAGS
 | |
| void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
 | |
| EXPORT_SYMBOL(__hwasan_memset);
 | |
| #ifdef __HAVE_ARCH_MEMMOVE
 | |
| void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
 | |
| EXPORT_SYMBOL(__hwasan_memmove);
 | |
| #endif
 | |
| void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
 | |
| EXPORT_SYMBOL(__hwasan_memcpy);
 | |
| #endif
 | |
| 
 | |
| void kasan_poison(const void *addr, size_t size, u8 value, bool init)
 | |
| {
 | |
| 	void *shadow_start, *shadow_end;
 | |
| 
 | |
| 	if (!kasan_arch_is_ready())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform shadow offset calculation based on untagged address, as
 | |
| 	 * some of the callers (e.g. kasan_poison_new_object) pass tagged
 | |
| 	 * addresses to this function.
 | |
| 	 */
 | |
| 	addr = kasan_reset_tag(addr);
 | |
| 
 | |
| 	/* Skip KFENCE memory if called explicitly outside of sl*b. */
 | |
| 	if (is_kfence_address(addr))
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
 | |
| 		return;
 | |
| 	if (WARN_ON(size & KASAN_GRANULE_MASK))
 | |
| 		return;
 | |
| 
 | |
| 	shadow_start = kasan_mem_to_shadow(addr);
 | |
| 	shadow_end = kasan_mem_to_shadow(addr + size);
 | |
| 
 | |
| 	__memset(shadow_start, value, shadow_end - shadow_start);
 | |
| }
 | |
| EXPORT_SYMBOL(kasan_poison);
 | |
| 
 | |
| #ifdef CONFIG_KASAN_GENERIC
 | |
| void kasan_poison_last_granule(const void *addr, size_t size)
 | |
| {
 | |
| 	if (!kasan_arch_is_ready())
 | |
| 		return;
 | |
| 
 | |
| 	if (size & KASAN_GRANULE_MASK) {
 | |
| 		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
 | |
| 		*shadow = size & KASAN_GRANULE_MASK;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void kasan_unpoison(const void *addr, size_t size, bool init)
 | |
| {
 | |
| 	u8 tag = get_tag(addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform shadow offset calculation based on untagged address, as
 | |
| 	 * some of the callers (e.g. kasan_unpoison_new_object) pass tagged
 | |
| 	 * addresses to this function.
 | |
| 	 */
 | |
| 	addr = kasan_reset_tag(addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
 | |
| 	 * that calls to ksize(), where size is not a multiple of machine-word
 | |
| 	 * size, would otherwise poison the invalid portion of the word.
 | |
| 	 */
 | |
| 	if (is_kfence_address(addr))
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
 | |
| 		return;
 | |
| 
 | |
| 	/* Unpoison all granules that cover the object. */
 | |
| 	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
 | |
| 
 | |
| 	/* Partially poison the last granule for the generic mode. */
 | |
| 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
 | |
| 		kasan_poison_last_granule(addr, size);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| static bool shadow_mapped(unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pgd = pgd_offset_k(addr);
 | |
| 	p4d_t *p4d;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return false;
 | |
| 	p4d = p4d_offset(pgd, addr);
 | |
| 	if (p4d_none(*p4d))
 | |
| 		return false;
 | |
| 	pud = pud_offset(p4d, addr);
 | |
| 	if (pud_none(*pud))
 | |
| 		return false;
 | |
| 	if (pud_leaf(*pud))
 | |
| 		return true;
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return false;
 | |
| 	if (pmd_leaf(*pmd))
 | |
| 		return true;
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	return !pte_none(ptep_get(pte));
 | |
| }
 | |
| 
 | |
| static int __meminit kasan_mem_notifier(struct notifier_block *nb,
 | |
| 			unsigned long action, void *data)
 | |
| {
 | |
| 	struct memory_notify *mem_data = data;
 | |
| 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
 | |
| 	unsigned long shadow_end, shadow_size;
 | |
| 
 | |
| 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
 | |
| 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
 | |
| 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
 | |
| 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
 | |
| 	shadow_end = shadow_start + shadow_size;
 | |
| 
 | |
| 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
 | |
| 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
 | |
| 		return NOTIFY_BAD;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case MEM_GOING_ONLINE: {
 | |
| 		void *ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * If shadow is mapped already than it must have been mapped
 | |
| 		 * during the boot. This could happen if we onlining previously
 | |
| 		 * offlined memory.
 | |
| 		 */
 | |
| 		if (shadow_mapped(shadow_start))
 | |
| 			return NOTIFY_OK;
 | |
| 
 | |
| 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
 | |
| 					shadow_end, GFP_KERNEL,
 | |
| 					PAGE_KERNEL, VM_NO_GUARD,
 | |
| 					pfn_to_nid(mem_data->start_pfn),
 | |
| 					__builtin_return_address(0));
 | |
| 		if (!ret)
 | |
| 			return NOTIFY_BAD;
 | |
| 
 | |
| 		kmemleak_ignore(ret);
 | |
| 		return NOTIFY_OK;
 | |
| 	}
 | |
| 	case MEM_CANCEL_ONLINE:
 | |
| 	case MEM_OFFLINE: {
 | |
| 		struct vm_struct *vm;
 | |
| 
 | |
| 		/*
 | |
| 		 * shadow_start was either mapped during boot by kasan_init()
 | |
| 		 * or during memory online by __vmalloc_node_range().
 | |
| 		 * In the latter case we can use vfree() to free shadow.
 | |
| 		 * Non-NULL result of the find_vm_area() will tell us if
 | |
| 		 * that was the second case.
 | |
| 		 *
 | |
| 		 * Currently it's not possible to free shadow mapped
 | |
| 		 * during boot by kasan_init(). It's because the code
 | |
| 		 * to do that hasn't been written yet. So we'll just
 | |
| 		 * leak the memory.
 | |
| 		 */
 | |
| 		vm = find_vm_area((void *)shadow_start);
 | |
| 		if (vm)
 | |
| 			vfree((void *)shadow_start);
 | |
| 	}
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static int __init kasan_memhotplug_init(void)
 | |
| {
 | |
| 	hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| core_initcall(kasan_memhotplug_init);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KASAN_VMALLOC
 | |
| 
 | |
| void __init __weak kasan_populate_early_vm_area_shadow(void *start,
 | |
| 						       unsigned long size)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
 | |
| 				      void *unused)
 | |
| {
 | |
| 	unsigned long page;
 | |
| 	pte_t pte;
 | |
| 
 | |
| 	if (likely(!pte_none(ptep_get(ptep))))
 | |
| 		return 0;
 | |
| 
 | |
| 	page = __get_free_page(GFP_KERNEL);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	__memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
 | |
| 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
 | |
| 
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 	if (likely(pte_none(ptep_get(ptep)))) {
 | |
| 		set_pte_at(&init_mm, addr, ptep, pte);
 | |
| 		page = 0;
 | |
| 	}
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| 	if (page)
 | |
| 		free_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
 | |
| {
 | |
| 	unsigned long shadow_start, shadow_end;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!kasan_arch_is_ready())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!is_vmalloc_or_module_addr((void *)addr))
 | |
| 		return 0;
 | |
| 
 | |
| 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
 | |
| 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
 | |
| 
 | |
| 	/*
 | |
| 	 * User Mode Linux maps enough shadow memory for all of virtual memory
 | |
| 	 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
 | |
| 	 *
 | |
| 	 * The remaining CONFIG_UML checks in this file exist for the same
 | |
| 	 * reason.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_UML)) {
 | |
| 		__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	shadow_start = PAGE_ALIGN_DOWN(shadow_start);
 | |
| 	shadow_end = PAGE_ALIGN(shadow_end);
 | |
| 
 | |
| 	ret = apply_to_page_range(&init_mm, shadow_start,
 | |
| 				  shadow_end - shadow_start,
 | |
| 				  kasan_populate_vmalloc_pte, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	flush_cache_vmap(shadow_start, shadow_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to be careful about inter-cpu effects here. Consider:
 | |
| 	 *
 | |
| 	 *   CPU#0				  CPU#1
 | |
| 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
 | |
| 	 *					p[99] = 1;
 | |
| 	 *
 | |
| 	 * With compiler instrumentation, that ends up looking like this:
 | |
| 	 *
 | |
| 	 *   CPU#0				  CPU#1
 | |
| 	 * // vmalloc() allocates memory
 | |
| 	 * // let a = area->addr
 | |
| 	 * // we reach kasan_populate_vmalloc
 | |
| 	 * // and call kasan_unpoison:
 | |
| 	 * STORE shadow(a), unpoison_val
 | |
| 	 * ...
 | |
| 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
 | |
| 	 * // rest of vmalloc process		<data dependency>
 | |
| 	 * STORE p, a				LOAD shadow(x+99)
 | |
| 	 *
 | |
| 	 * If there is no barrier between the end of unpoisoning the shadow
 | |
| 	 * and the store of the result to p, the stores could be committed
 | |
| 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
 | |
| 	 * poison in the shadow.
 | |
| 	 *
 | |
| 	 * We need some sort of barrier between the stores.
 | |
| 	 *
 | |
| 	 * In the vmalloc() case, this is provided by a smp_wmb() in
 | |
| 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
 | |
| 	 * get_vm_area() and friends, the caller gets shadow allocated but
 | |
| 	 * doesn't have any pages mapped into the virtual address space that
 | |
| 	 * has been reserved. Mapping those pages in will involve taking and
 | |
| 	 * releasing a page-table lock, which will provide the barrier.
 | |
| 	 */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
 | |
| 					void *unused)
 | |
| {
 | |
| 	unsigned long page;
 | |
| 
 | |
| 	page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
 | |
| 
 | |
| 	spin_lock(&init_mm.page_table_lock);
 | |
| 
 | |
| 	if (likely(!pte_none(ptep_get(ptep)))) {
 | |
| 		pte_clear(&init_mm, addr, ptep);
 | |
| 		free_page(page);
 | |
| 	}
 | |
| 	spin_unlock(&init_mm.page_table_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Release the backing for the vmalloc region [start, end), which
 | |
|  * lies within the free region [free_region_start, free_region_end).
 | |
|  *
 | |
|  * This can be run lazily, long after the region was freed. It runs
 | |
|  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
 | |
|  * infrastructure.
 | |
|  *
 | |
|  * How does this work?
 | |
|  * -------------------
 | |
|  *
 | |
|  * We have a region that is page aligned, labeled as A.
 | |
|  * That might not map onto the shadow in a way that is page-aligned:
 | |
|  *
 | |
|  *                    start                     end
 | |
|  *                    v                         v
 | |
|  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
 | |
|  *  -------- -------- --------          -------- --------
 | |
|  *      |        |       |                 |        |
 | |
|  *      |        |       |         /-------/        |
 | |
|  *      \-------\|/------/         |/---------------/
 | |
|  *              |||                ||
 | |
|  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
 | |
|  *                 (1)      (2)      (3)
 | |
|  *
 | |
|  * First we align the start upwards and the end downwards, so that the
 | |
|  * shadow of the region aligns with shadow page boundaries. In the
 | |
|  * example, this gives us the shadow page (2). This is the shadow entirely
 | |
|  * covered by this allocation.
 | |
|  *
 | |
|  * Then we have the tricky bits. We want to know if we can free the
 | |
|  * partially covered shadow pages - (1) and (3) in the example. For this,
 | |
|  * we are given the start and end of the free region that contains this
 | |
|  * allocation. Extending our previous example, we could have:
 | |
|  *
 | |
|  *  free_region_start                                    free_region_end
 | |
|  *  |                 start                     end      |
 | |
|  *  v                 v                         v        v
 | |
|  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
 | |
|  *  -------- -------- --------          -------- --------
 | |
|  *      |        |       |                 |        |
 | |
|  *      |        |       |         /-------/        |
 | |
|  *      \-------\|/------/         |/---------------/
 | |
|  *              |||                ||
 | |
|  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
 | |
|  *                 (1)      (2)      (3)
 | |
|  *
 | |
|  * Once again, we align the start of the free region up, and the end of
 | |
|  * the free region down so that the shadow is page aligned. So we can free
 | |
|  * page (1) - we know no allocation currently uses anything in that page,
 | |
|  * because all of it is in the vmalloc free region. But we cannot free
 | |
|  * page (3), because we can't be sure that the rest of it is unused.
 | |
|  *
 | |
|  * We only consider pages that contain part of the original region for
 | |
|  * freeing: we don't try to free other pages from the free region or we'd
 | |
|  * end up trying to free huge chunks of virtual address space.
 | |
|  *
 | |
|  * Concurrency
 | |
|  * -----------
 | |
|  *
 | |
|  * How do we know that we're not freeing a page that is simultaneously
 | |
|  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
 | |
|  *
 | |
|  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
 | |
|  * at the same time. While we run under free_vmap_area_lock, the population
 | |
|  * code does not.
 | |
|  *
 | |
|  * free_vmap_area_lock instead operates to ensure that the larger range
 | |
|  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
 | |
|  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
 | |
|  * no space identified as free will become used while we are running. This
 | |
|  * means that so long as we are careful with alignment and only free shadow
 | |
|  * pages entirely covered by the free region, we will not run in to any
 | |
|  * trouble - any simultaneous allocations will be for disjoint regions.
 | |
|  */
 | |
| void kasan_release_vmalloc(unsigned long start, unsigned long end,
 | |
| 			   unsigned long free_region_start,
 | |
| 			   unsigned long free_region_end)
 | |
| {
 | |
| 	void *shadow_start, *shadow_end;
 | |
| 	unsigned long region_start, region_end;
 | |
| 	unsigned long size;
 | |
| 
 | |
| 	if (!kasan_arch_is_ready())
 | |
| 		return;
 | |
| 
 | |
| 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
 | |
| 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
 | |
| 
 | |
| 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
 | |
| 
 | |
| 	if (start != region_start &&
 | |
| 	    free_region_start < region_start)
 | |
| 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
 | |
| 
 | |
| 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
 | |
| 
 | |
| 	if (end != region_end &&
 | |
| 	    free_region_end > region_end)
 | |
| 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
 | |
| 
 | |
| 	shadow_start = kasan_mem_to_shadow((void *)region_start);
 | |
| 	shadow_end = kasan_mem_to_shadow((void *)region_end);
 | |
| 
 | |
| 	if (shadow_end > shadow_start) {
 | |
| 		size = shadow_end - shadow_start;
 | |
| 		if (IS_ENABLED(CONFIG_UML)) {
 | |
| 			__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
 | |
| 			return;
 | |
| 		}
 | |
| 		apply_to_existing_page_range(&init_mm,
 | |
| 					     (unsigned long)shadow_start,
 | |
| 					     size, kasan_depopulate_vmalloc_pte,
 | |
| 					     NULL);
 | |
| 		flush_tlb_kernel_range((unsigned long)shadow_start,
 | |
| 				       (unsigned long)shadow_end);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
 | |
| 			       kasan_vmalloc_flags_t flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
 | |
| 	 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
 | |
| 	 * Software KASAN modes can't optimize zeroing memory by combining it
 | |
| 	 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
 | |
| 	 */
 | |
| 
 | |
| 	if (!kasan_arch_is_ready())
 | |
| 		return (void *)start;
 | |
| 
 | |
| 	if (!is_vmalloc_or_module_addr(start))
 | |
| 		return (void *)start;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't tag executable memory with the tag-based mode.
 | |
| 	 * The kernel doesn't tolerate having the PC register tagged.
 | |
| 	 */
 | |
| 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
 | |
| 	    !(flags & KASAN_VMALLOC_PROT_NORMAL))
 | |
| 		return (void *)start;
 | |
| 
 | |
| 	start = set_tag(start, kasan_random_tag());
 | |
| 	kasan_unpoison(start, size, false);
 | |
| 	return (void *)start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Poison the shadow for a vmalloc region. Called as part of the
 | |
|  * freeing process at the time the region is freed.
 | |
|  */
 | |
| void __kasan_poison_vmalloc(const void *start, unsigned long size)
 | |
| {
 | |
| 	if (!kasan_arch_is_ready())
 | |
| 		return;
 | |
| 
 | |
| 	if (!is_vmalloc_or_module_addr(start))
 | |
| 		return;
 | |
| 
 | |
| 	size = round_up(size, KASAN_GRANULE_SIZE);
 | |
| 	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_KASAN_VMALLOC */
 | |
| 
 | |
| int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
 | |
| {
 | |
| 	void *ret;
 | |
| 	size_t scaled_size;
 | |
| 	size_t shadow_size;
 | |
| 	unsigned long shadow_start;
 | |
| 
 | |
| 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
 | |
| 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
 | |
| 				KASAN_SHADOW_SCALE_SHIFT;
 | |
| 	shadow_size = round_up(scaled_size, PAGE_SIZE);
 | |
| 
 | |
| 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_UML)) {
 | |
| 		__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
 | |
| 			shadow_start + shadow_size,
 | |
| 			GFP_KERNEL,
 | |
| 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
 | |
| 			__builtin_return_address(0));
 | |
| 
 | |
| 	if (ret) {
 | |
| 		struct vm_struct *vm = find_vm_area(addr);
 | |
| 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
 | |
| 		vm->flags |= VM_KASAN;
 | |
| 		kmemleak_ignore(ret);
 | |
| 
 | |
| 		if (vm->flags & VM_DEFER_KMEMLEAK)
 | |
| 			kmemleak_vmalloc(vm, size, gfp_mask);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void kasan_free_module_shadow(const struct vm_struct *vm)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_UML))
 | |
| 		return;
 | |
| 
 | |
| 	if (vm->flags & VM_KASAN)
 | |
| 		vfree(kasan_mem_to_shadow(vm->addr));
 | |
| }
 | |
| 
 | |
| #endif
 |