4335 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4335 lines
		
	
	
		
			111 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * Copyright (c) 2008 Rodolfo Giometti <giometti@linux.it>
 | |
|  * Copyright (c) 2008 Eurotech S.p.A. <info@eurtech.it>
 | |
|  *
 | |
|  * This code is *strongly* based on EHCI-HCD code by David Brownell since
 | |
|  * the chip is a quasi-EHCI compatible.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/dmapool.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/usb.h>
 | |
| #include <linux/usb/hcd.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/iopoll.h>
 | |
| 
 | |
| #include <asm/irq.h>
 | |
| #include <asm/unaligned.h>
 | |
| 
 | |
| #include <linux/irq.h>
 | |
| #include <linux/platform_device.h>
 | |
| 
 | |
| #define DRIVER_VERSION "0.0.50"
 | |
| 
 | |
| #define OXU_DEVICEID			0x00
 | |
| 	#define OXU_REV_MASK		0xffff0000
 | |
| 	#define OXU_REV_SHIFT		16
 | |
| 	#define OXU_REV_2100		0x2100
 | |
| 	#define OXU_BO_SHIFT		8
 | |
| 	#define OXU_BO_MASK		(0x3 << OXU_BO_SHIFT)
 | |
| 	#define OXU_MAJ_REV_SHIFT	4
 | |
| 	#define OXU_MAJ_REV_MASK	(0xf << OXU_MAJ_REV_SHIFT)
 | |
| 	#define OXU_MIN_REV_SHIFT	0
 | |
| 	#define OXU_MIN_REV_MASK	(0xf << OXU_MIN_REV_SHIFT)
 | |
| #define OXU_HOSTIFCONFIG		0x04
 | |
| #define OXU_SOFTRESET			0x08
 | |
| 	#define OXU_SRESET		(1 << 0)
 | |
| 
 | |
| #define OXU_PIOBURSTREADCTRL		0x0C
 | |
| 
 | |
| #define OXU_CHIPIRQSTATUS		0x10
 | |
| #define OXU_CHIPIRQEN_SET		0x14
 | |
| #define OXU_CHIPIRQEN_CLR		0x18
 | |
| 	#define OXU_USBSPHLPWUI		0x00000080
 | |
| 	#define OXU_USBOTGLPWUI		0x00000040
 | |
| 	#define OXU_USBSPHI		0x00000002
 | |
| 	#define OXU_USBOTGI		0x00000001
 | |
| 
 | |
| #define OXU_CLKCTRL_SET			0x1C
 | |
| 	#define OXU_SYSCLKEN		0x00000008
 | |
| 	#define OXU_USBSPHCLKEN		0x00000002
 | |
| 	#define OXU_USBOTGCLKEN		0x00000001
 | |
| 
 | |
| #define OXU_ASO				0x68
 | |
| 	#define OXU_SPHPOEN		0x00000100
 | |
| 	#define OXU_OVRCCURPUPDEN	0x00000800
 | |
| 	#define OXU_ASO_OP		(1 << 10)
 | |
| 	#define OXU_COMPARATOR		0x000004000
 | |
| 
 | |
| #define OXU_USBMODE			0x1A8
 | |
| 	#define OXU_VBPS		0x00000020
 | |
| 	#define OXU_ES_LITTLE		0x00000000
 | |
| 	#define OXU_CM_HOST_ONLY	0x00000003
 | |
| 
 | |
| /*
 | |
|  * Proper EHCI structs & defines
 | |
|  */
 | |
| 
 | |
| /* Magic numbers that can affect system performance */
 | |
| #define EHCI_TUNE_CERR		3	/* 0-3 qtd retries; 0 == don't stop */
 | |
| #define EHCI_TUNE_RL_HS		4	/* nak throttle; see 4.9 */
 | |
| #define EHCI_TUNE_RL_TT		0
 | |
| #define EHCI_TUNE_MULT_HS	1	/* 1-3 transactions/uframe; 4.10.3 */
 | |
| #define EHCI_TUNE_MULT_TT	1
 | |
| #define EHCI_TUNE_FLS		2	/* (small) 256 frame schedule */
 | |
| 
 | |
| struct oxu_hcd;
 | |
| 
 | |
| /* EHCI register interface, corresponds to EHCI Revision 0.95 specification */
 | |
| 
 | |
| /* Section 2.2 Host Controller Capability Registers */
 | |
| struct ehci_caps {
 | |
| 	/* these fields are specified as 8 and 16 bit registers,
 | |
| 	 * but some hosts can't perform 8 or 16 bit PCI accesses.
 | |
| 	 */
 | |
| 	u32		hc_capbase;
 | |
| #define HC_LENGTH(p)		(((p)>>00)&0x00ff)	/* bits 7:0 */
 | |
| #define HC_VERSION(p)		(((p)>>16)&0xffff)	/* bits 31:16 */
 | |
| 	u32		hcs_params;     /* HCSPARAMS - offset 0x4 */
 | |
| #define HCS_DEBUG_PORT(p)	(((p)>>20)&0xf)	/* bits 23:20, debug port? */
 | |
| #define HCS_INDICATOR(p)	((p)&(1 << 16))	/* true: has port indicators */
 | |
| #define HCS_N_CC(p)		(((p)>>12)&0xf)	/* bits 15:12, #companion HCs */
 | |
| #define HCS_N_PCC(p)		(((p)>>8)&0xf)	/* bits 11:8, ports per CC */
 | |
| #define HCS_PORTROUTED(p)	((p)&(1 << 7))	/* true: port routing */
 | |
| #define HCS_PPC(p)		((p)&(1 << 4))	/* true: port power control */
 | |
| #define HCS_N_PORTS(p)		(((p)>>0)&0xf)	/* bits 3:0, ports on HC */
 | |
| 
 | |
| 	u32		hcc_params;      /* HCCPARAMS - offset 0x8 */
 | |
| #define HCC_EXT_CAPS(p)		(((p)>>8)&0xff)	/* for pci extended caps */
 | |
| #define HCC_ISOC_CACHE(p)       ((p)&(1 << 7))  /* true: can cache isoc frame */
 | |
| #define HCC_ISOC_THRES(p)       (((p)>>4)&0x7)  /* bits 6:4, uframes cached */
 | |
| #define HCC_CANPARK(p)		((p)&(1 << 2))  /* true: can park on async qh */
 | |
| #define HCC_PGM_FRAMELISTLEN(p) ((p)&(1 << 1))  /* true: periodic_size changes*/
 | |
| #define HCC_64BIT_ADDR(p)       ((p)&(1))       /* true: can use 64-bit addr */
 | |
| 	u8		portroute[8];	 /* nibbles for routing - offset 0xC */
 | |
| } __packed;
 | |
| 
 | |
| 
 | |
| /* Section 2.3 Host Controller Operational Registers */
 | |
| struct ehci_regs {
 | |
| 	/* USBCMD: offset 0x00 */
 | |
| 	u32		command;
 | |
| /* 23:16 is r/w intr rate, in microframes; default "8" == 1/msec */
 | |
| #define CMD_PARK	(1<<11)		/* enable "park" on async qh */
 | |
| #define CMD_PARK_CNT(c)	(((c)>>8)&3)	/* how many transfers to park for */
 | |
| #define CMD_LRESET	(1<<7)		/* partial reset (no ports, etc) */
 | |
| #define CMD_IAAD	(1<<6)		/* "doorbell" interrupt async advance */
 | |
| #define CMD_ASE		(1<<5)		/* async schedule enable */
 | |
| #define CMD_PSE		(1<<4)		/* periodic schedule enable */
 | |
| /* 3:2 is periodic frame list size */
 | |
| #define CMD_RESET	(1<<1)		/* reset HC not bus */
 | |
| #define CMD_RUN		(1<<0)		/* start/stop HC */
 | |
| 
 | |
| 	/* USBSTS: offset 0x04 */
 | |
| 	u32		status;
 | |
| #define STS_ASS		(1<<15)		/* Async Schedule Status */
 | |
| #define STS_PSS		(1<<14)		/* Periodic Schedule Status */
 | |
| #define STS_RECL	(1<<13)		/* Reclamation */
 | |
| #define STS_HALT	(1<<12)		/* Not running (any reason) */
 | |
| /* some bits reserved */
 | |
| 	/* these STS_* flags are also intr_enable bits (USBINTR) */
 | |
| #define STS_IAA		(1<<5)		/* Interrupted on async advance */
 | |
| #define STS_FATAL	(1<<4)		/* such as some PCI access errors */
 | |
| #define STS_FLR		(1<<3)		/* frame list rolled over */
 | |
| #define STS_PCD		(1<<2)		/* port change detect */
 | |
| #define STS_ERR		(1<<1)		/* "error" completion (overflow, ...) */
 | |
| #define STS_INT		(1<<0)		/* "normal" completion (short, ...) */
 | |
| 
 | |
| #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
 | |
| 
 | |
| 	/* USBINTR: offset 0x08 */
 | |
| 	u32		intr_enable;
 | |
| 
 | |
| 	/* FRINDEX: offset 0x0C */
 | |
| 	u32		frame_index;	/* current microframe number */
 | |
| 	/* CTRLDSSEGMENT: offset 0x10 */
 | |
| 	u32		segment;	/* address bits 63:32 if needed */
 | |
| 	/* PERIODICLISTBASE: offset 0x14 */
 | |
| 	u32		frame_list;	/* points to periodic list */
 | |
| 	/* ASYNCLISTADDR: offset 0x18 */
 | |
| 	u32		async_next;	/* address of next async queue head */
 | |
| 
 | |
| 	u32		reserved[9];
 | |
| 
 | |
| 	/* CONFIGFLAG: offset 0x40 */
 | |
| 	u32		configured_flag;
 | |
| #define FLAG_CF		(1<<0)		/* true: we'll support "high speed" */
 | |
| 
 | |
| 	/* PORTSC: offset 0x44 */
 | |
| 	u32		port_status[0];	/* up to N_PORTS */
 | |
| /* 31:23 reserved */
 | |
| #define PORT_WKOC_E	(1<<22)		/* wake on overcurrent (enable) */
 | |
| #define PORT_WKDISC_E	(1<<21)		/* wake on disconnect (enable) */
 | |
| #define PORT_WKCONN_E	(1<<20)		/* wake on connect (enable) */
 | |
| /* 19:16 for port testing */
 | |
| #define PORT_LED_OFF	(0<<14)
 | |
| #define PORT_LED_AMBER	(1<<14)
 | |
| #define PORT_LED_GREEN	(2<<14)
 | |
| #define PORT_LED_MASK	(3<<14)
 | |
| #define PORT_OWNER	(1<<13)		/* true: companion hc owns this port */
 | |
| #define PORT_POWER	(1<<12)		/* true: has power (see PPC) */
 | |
| #define PORT_USB11(x) (((x)&(3<<10)) == (1<<10))	/* USB 1.1 device */
 | |
| /* 11:10 for detecting lowspeed devices (reset vs release ownership) */
 | |
| /* 9 reserved */
 | |
| #define PORT_RESET	(1<<8)		/* reset port */
 | |
| #define PORT_SUSPEND	(1<<7)		/* suspend port */
 | |
| #define PORT_RESUME	(1<<6)		/* resume it */
 | |
| #define PORT_OCC	(1<<5)		/* over current change */
 | |
| #define PORT_OC		(1<<4)		/* over current active */
 | |
| #define PORT_PEC	(1<<3)		/* port enable change */
 | |
| #define PORT_PE		(1<<2)		/* port enable */
 | |
| #define PORT_CSC	(1<<1)		/* connect status change */
 | |
| #define PORT_CONNECT	(1<<0)		/* device connected */
 | |
| #define PORT_RWC_BITS   (PORT_CSC | PORT_PEC | PORT_OCC)
 | |
| } __packed;
 | |
| 
 | |
| /* Appendix C, Debug port ... intended for use with special "debug devices"
 | |
|  * that can help if there's no serial console.  (nonstandard enumeration.)
 | |
|  */
 | |
| struct ehci_dbg_port {
 | |
| 	u32	control;
 | |
| #define DBGP_OWNER	(1<<30)
 | |
| #define DBGP_ENABLED	(1<<28)
 | |
| #define DBGP_DONE	(1<<16)
 | |
| #define DBGP_INUSE	(1<<10)
 | |
| #define DBGP_ERRCODE(x)	(((x)>>7)&0x07)
 | |
| #	define DBGP_ERR_BAD	1
 | |
| #	define DBGP_ERR_SIGNAL	2
 | |
| #define DBGP_ERROR	(1<<6)
 | |
| #define DBGP_GO		(1<<5)
 | |
| #define DBGP_OUT	(1<<4)
 | |
| #define DBGP_LEN(x)	(((x)>>0)&0x0f)
 | |
| 	u32	pids;
 | |
| #define DBGP_PID_GET(x)		(((x)>>16)&0xff)
 | |
| #define DBGP_PID_SET(data, tok)	(((data)<<8)|(tok))
 | |
| 	u32	data03;
 | |
| 	u32	data47;
 | |
| 	u32	address;
 | |
| #define DBGP_EPADDR(dev, ep)	(((dev)<<8)|(ep))
 | |
| } __packed;
 | |
| 
 | |
| #define	QTD_NEXT(dma)	cpu_to_le32((u32)dma)
 | |
| 
 | |
| /*
 | |
|  * EHCI Specification 0.95 Section 3.5
 | |
|  * QTD: describe data transfer components (buffer, direction, ...)
 | |
|  * See Fig 3-6 "Queue Element Transfer Descriptor Block Diagram".
 | |
|  *
 | |
|  * These are associated only with "QH" (Queue Head) structures,
 | |
|  * used with control, bulk, and interrupt transfers.
 | |
|  */
 | |
| struct ehci_qtd {
 | |
| 	/* first part defined by EHCI spec */
 | |
| 	__le32			hw_next;		/* see EHCI 3.5.1 */
 | |
| 	__le32			hw_alt_next;		/* see EHCI 3.5.2 */
 | |
| 	__le32			hw_token;		/* see EHCI 3.5.3 */
 | |
| #define	QTD_TOGGLE	(1 << 31)	/* data toggle */
 | |
| #define	QTD_LENGTH(tok)	(((tok)>>16) & 0x7fff)
 | |
| #define	QTD_IOC		(1 << 15)	/* interrupt on complete */
 | |
| #define	QTD_CERR(tok)	(((tok)>>10) & 0x3)
 | |
| #define	QTD_PID(tok)	(((tok)>>8) & 0x3)
 | |
| #define	QTD_STS_ACTIVE	(1 << 7)	/* HC may execute this */
 | |
| #define	QTD_STS_HALT	(1 << 6)	/* halted on error */
 | |
| #define	QTD_STS_DBE	(1 << 5)	/* data buffer error (in HC) */
 | |
| #define	QTD_STS_BABBLE	(1 << 4)	/* device was babbling (qtd halted) */
 | |
| #define	QTD_STS_XACT	(1 << 3)	/* device gave illegal response */
 | |
| #define	QTD_STS_MMF	(1 << 2)	/* incomplete split transaction */
 | |
| #define	QTD_STS_STS	(1 << 1)	/* split transaction state */
 | |
| #define	QTD_STS_PING	(1 << 0)	/* issue PING? */
 | |
| 	__le32			hw_buf[5];		/* see EHCI 3.5.4 */
 | |
| 	__le32			hw_buf_hi[5];		/* Appendix B */
 | |
| 
 | |
| 	/* the rest is HCD-private */
 | |
| 	dma_addr_t		qtd_dma;		/* qtd address */
 | |
| 	struct list_head	qtd_list;		/* sw qtd list */
 | |
| 	struct urb		*urb;			/* qtd's urb */
 | |
| 	size_t			length;			/* length of buffer */
 | |
| 
 | |
| 	u32			qtd_buffer_len;
 | |
| 	void			*buffer;
 | |
| 	dma_addr_t		buffer_dma;
 | |
| 	void			*transfer_buffer;
 | |
| 	void			*transfer_dma;
 | |
| } __aligned(32);
 | |
| 
 | |
| /* mask NakCnt+T in qh->hw_alt_next */
 | |
| #define QTD_MASK cpu_to_le32 (~0x1f)
 | |
| 
 | |
| #define IS_SHORT_READ(token) (QTD_LENGTH(token) != 0 && QTD_PID(token) == 1)
 | |
| 
 | |
| /* Type tag from {qh, itd, sitd, fstn}->hw_next */
 | |
| #define Q_NEXT_TYPE(dma) ((dma) & cpu_to_le32 (3 << 1))
 | |
| 
 | |
| /* values for that type tag */
 | |
| #define Q_TYPE_QH	cpu_to_le32 (1 << 1)
 | |
| 
 | |
| /* next async queue entry, or pointer to interrupt/periodic QH */
 | |
| #define	QH_NEXT(dma)	(cpu_to_le32(((u32)dma)&~0x01f)|Q_TYPE_QH)
 | |
| 
 | |
| /* for periodic/async schedules and qtd lists, mark end of list */
 | |
| #define	EHCI_LIST_END	cpu_to_le32(1) /* "null pointer" to hw */
 | |
| 
 | |
| /*
 | |
|  * Entries in periodic shadow table are pointers to one of four kinds
 | |
|  * of data structure.  That's dictated by the hardware; a type tag is
 | |
|  * encoded in the low bits of the hardware's periodic schedule.  Use
 | |
|  * Q_NEXT_TYPE to get the tag.
 | |
|  *
 | |
|  * For entries in the async schedule, the type tag always says "qh".
 | |
|  */
 | |
| union ehci_shadow {
 | |
| 	struct ehci_qh		*qh;		/* Q_TYPE_QH */
 | |
| 	__le32			*hw_next;	/* (all types) */
 | |
| 	void			*ptr;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * EHCI Specification 0.95 Section 3.6
 | |
|  * QH: describes control/bulk/interrupt endpoints
 | |
|  * See Fig 3-7 "Queue Head Structure Layout".
 | |
|  *
 | |
|  * These appear in both the async and (for interrupt) periodic schedules.
 | |
|  */
 | |
| 
 | |
| struct ehci_qh {
 | |
| 	/* first part defined by EHCI spec */
 | |
| 	__le32			hw_next;	 /* see EHCI 3.6.1 */
 | |
| 	__le32			hw_info1;	/* see EHCI 3.6.2 */
 | |
| #define	QH_HEAD		0x00008000
 | |
| 	__le32			hw_info2;	/* see EHCI 3.6.2 */
 | |
| #define	QH_SMASK	0x000000ff
 | |
| #define	QH_CMASK	0x0000ff00
 | |
| #define	QH_HUBADDR	0x007f0000
 | |
| #define	QH_HUBPORT	0x3f800000
 | |
| #define	QH_MULT		0xc0000000
 | |
| 	__le32			hw_current;	 /* qtd list - see EHCI 3.6.4 */
 | |
| 
 | |
| 	/* qtd overlay (hardware parts of a struct ehci_qtd) */
 | |
| 	__le32			hw_qtd_next;
 | |
| 	__le32			hw_alt_next;
 | |
| 	__le32			hw_token;
 | |
| 	__le32			hw_buf[5];
 | |
| 	__le32			hw_buf_hi[5];
 | |
| 
 | |
| 	/* the rest is HCD-private */
 | |
| 	dma_addr_t		qh_dma;		/* address of qh */
 | |
| 	union ehci_shadow	qh_next;	/* ptr to qh; or periodic */
 | |
| 	struct list_head	qtd_list;	/* sw qtd list */
 | |
| 	struct ehci_qtd		*dummy;
 | |
| 	struct ehci_qh		*reclaim;	/* next to reclaim */
 | |
| 
 | |
| 	struct oxu_hcd		*oxu;
 | |
| 	struct kref		kref;
 | |
| 	unsigned int		stamp;
 | |
| 
 | |
| 	u8			qh_state;
 | |
| #define	QH_STATE_LINKED		1		/* HC sees this */
 | |
| #define	QH_STATE_UNLINK		2		/* HC may still see this */
 | |
| #define	QH_STATE_IDLE		3		/* HC doesn't see this */
 | |
| #define	QH_STATE_UNLINK_WAIT	4		/* LINKED and on reclaim q */
 | |
| #define	QH_STATE_COMPLETING	5		/* don't touch token.HALT */
 | |
| 
 | |
| 	/* periodic schedule info */
 | |
| 	u8			usecs;		/* intr bandwidth */
 | |
| 	u8			gap_uf;		/* uframes split/csplit gap */
 | |
| 	u8			c_usecs;	/* ... split completion bw */
 | |
| 	u16			tt_usecs;	/* tt downstream bandwidth */
 | |
| 	unsigned short		period;		/* polling interval */
 | |
| 	unsigned short		start;		/* where polling starts */
 | |
| #define NO_FRAME ((unsigned short)~0)			/* pick new start */
 | |
| 	struct usb_device	*dev;		/* access to TT */
 | |
| } __aligned(32);
 | |
| 
 | |
| /*
 | |
|  * Proper OXU210HP structs
 | |
|  */
 | |
| 
 | |
| #define OXU_OTG_CORE_OFFSET	0x00400
 | |
| #define OXU_OTG_CAP_OFFSET	(OXU_OTG_CORE_OFFSET + 0x100)
 | |
| #define OXU_SPH_CORE_OFFSET	0x00800
 | |
| #define OXU_SPH_CAP_OFFSET	(OXU_SPH_CORE_OFFSET + 0x100)
 | |
| 
 | |
| #define OXU_OTG_MEM		0xE000
 | |
| #define OXU_SPH_MEM		0x16000
 | |
| 
 | |
| /* Only how many elements & element structure are specifies here. */
 | |
| /* 2 host controllers are enabled - total size <= 28 kbytes */
 | |
| #define	DEFAULT_I_TDPS		1024
 | |
| #define QHEAD_NUM		16
 | |
| #define QTD_NUM			32
 | |
| #define SITD_NUM		8
 | |
| #define MURB_NUM		8
 | |
| 
 | |
| #define BUFFER_NUM		8
 | |
| #define BUFFER_SIZE		512
 | |
| 
 | |
| struct oxu_info {
 | |
| 	struct usb_hcd *hcd[2];
 | |
| };
 | |
| 
 | |
| struct oxu_buf {
 | |
| 	u8			buffer[BUFFER_SIZE];
 | |
| } __aligned(BUFFER_SIZE);
 | |
| 
 | |
| struct oxu_onchip_mem {
 | |
| 	struct oxu_buf		db_pool[BUFFER_NUM];
 | |
| 
 | |
| 	u32			frame_list[DEFAULT_I_TDPS];
 | |
| 	struct ehci_qh		qh_pool[QHEAD_NUM];
 | |
| 	struct ehci_qtd		qtd_pool[QTD_NUM];
 | |
| } __aligned(4 << 10);
 | |
| 
 | |
| #define	EHCI_MAX_ROOT_PORTS	15		/* see HCS_N_PORTS */
 | |
| 
 | |
| struct oxu_murb {
 | |
| 	struct urb		urb;
 | |
| 	struct urb		*main;
 | |
| 	u8			last;
 | |
| };
 | |
| 
 | |
| struct oxu_hcd {				/* one per controller */
 | |
| 	unsigned int		is_otg:1;
 | |
| 
 | |
| 	u8			qh_used[QHEAD_NUM];
 | |
| 	u8			qtd_used[QTD_NUM];
 | |
| 	u8			db_used[BUFFER_NUM];
 | |
| 	u8			murb_used[MURB_NUM];
 | |
| 
 | |
| 	struct oxu_onchip_mem	__iomem *mem;
 | |
| 	spinlock_t		mem_lock;
 | |
| 
 | |
| 	struct timer_list	urb_timer;
 | |
| 
 | |
| 	struct ehci_caps __iomem *caps;
 | |
| 	struct ehci_regs __iomem *regs;
 | |
| 
 | |
| 	u32			hcs_params;	/* cached register copy */
 | |
| 	spinlock_t		lock;
 | |
| 
 | |
| 	/* async schedule support */
 | |
| 	struct ehci_qh		*async;
 | |
| 	struct ehci_qh		*reclaim;
 | |
| 	unsigned int		reclaim_ready:1;
 | |
| 	unsigned int		scanning:1;
 | |
| 
 | |
| 	/* periodic schedule support */
 | |
| 	unsigned int		periodic_size;
 | |
| 	__le32			*periodic;	/* hw periodic table */
 | |
| 	dma_addr_t		periodic_dma;
 | |
| 	unsigned int		i_thresh;	/* uframes HC might cache */
 | |
| 
 | |
| 	union ehci_shadow	*pshadow;	/* mirror hw periodic table */
 | |
| 	int			next_uframe;	/* scan periodic, start here */
 | |
| 	unsigned int		periodic_sched;	/* periodic activity count */
 | |
| 
 | |
| 	/* per root hub port */
 | |
| 	unsigned long		reset_done[EHCI_MAX_ROOT_PORTS];
 | |
| 	/* bit vectors (one bit per port) */
 | |
| 	unsigned long		bus_suspended;	/* which ports were
 | |
| 						 * already suspended at the
 | |
| 						 * start of a bus suspend
 | |
| 						 */
 | |
| 	unsigned long		companion_ports;/* which ports are dedicated
 | |
| 						 * to the companion controller
 | |
| 						 */
 | |
| 
 | |
| 	struct timer_list	watchdog;
 | |
| 	unsigned long		actions;
 | |
| 	unsigned int		stamp;
 | |
| 	unsigned long		next_statechange;
 | |
| 	u32			command;
 | |
| 
 | |
| 	/* SILICON QUIRKS */
 | |
| 	struct list_head	urb_list;	/* this is the head to urb
 | |
| 						 * queue that didn't get enough
 | |
| 						 * resources
 | |
| 						 */
 | |
| 	struct oxu_murb		*murb_pool;	/* murb per split big urb */
 | |
| 	unsigned int		urb_len;
 | |
| 
 | |
| 	u8			sbrn;		/* packed release number */
 | |
| };
 | |
| 
 | |
| #define EHCI_IAA_JIFFIES	(HZ/100)	/* arbitrary; ~10 msec */
 | |
| #define EHCI_IO_JIFFIES		(HZ/10)		/* io watchdog > irq_thresh */
 | |
| #define EHCI_ASYNC_JIFFIES      (HZ/20)		/* async idle timeout */
 | |
| #define EHCI_SHRINK_JIFFIES     (HZ/200)	/* async qh unlink delay */
 | |
| 
 | |
| enum ehci_timer_action {
 | |
| 	TIMER_IO_WATCHDOG,
 | |
| 	TIMER_IAA_WATCHDOG,
 | |
| 	TIMER_ASYNC_SHRINK,
 | |
| 	TIMER_ASYNC_OFF,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Main defines
 | |
|  */
 | |
| 
 | |
| #define oxu_dbg(oxu, fmt, args...) \
 | |
| 		dev_dbg(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 | |
| #define oxu_err(oxu, fmt, args...) \
 | |
| 		dev_err(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 | |
| #define oxu_info(oxu, fmt, args...) \
 | |
| 		dev_info(oxu_to_hcd(oxu)->self.controller , fmt , ## args)
 | |
| 
 | |
| #ifdef CONFIG_DYNAMIC_DEBUG
 | |
| #define DEBUG
 | |
| #endif
 | |
| 
 | |
| static inline struct usb_hcd *oxu_to_hcd(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	return container_of((void *) oxu, struct usb_hcd, hcd_priv);
 | |
| }
 | |
| 
 | |
| static inline struct oxu_hcd *hcd_to_oxu(struct usb_hcd *hcd)
 | |
| {
 | |
| 	return (struct oxu_hcd *) (hcd->hcd_priv);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Debug stuff
 | |
|  */
 | |
| 
 | |
| #undef OXU_URB_TRACE
 | |
| #undef OXU_VERBOSE_DEBUG
 | |
| 
 | |
| #ifdef OXU_VERBOSE_DEBUG
 | |
| #define oxu_vdbg			oxu_dbg
 | |
| #else
 | |
| #define oxu_vdbg(oxu, fmt, args...)	/* Nop */
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 
 | |
| static int __attribute__((__unused__))
 | |
| dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 | |
| {
 | |
| 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 | |
| 		label, label[0] ? " " : "", status,
 | |
| 		(status & STS_ASS) ? " Async" : "",
 | |
| 		(status & STS_PSS) ? " Periodic" : "",
 | |
| 		(status & STS_RECL) ? " Recl" : "",
 | |
| 		(status & STS_HALT) ? " Halt" : "",
 | |
| 		(status & STS_IAA) ? " IAA" : "",
 | |
| 		(status & STS_FATAL) ? " FATAL" : "",
 | |
| 		(status & STS_FLR) ? " FLR" : "",
 | |
| 		(status & STS_PCD) ? " PCD" : "",
 | |
| 		(status & STS_ERR) ? " ERR" : "",
 | |
| 		(status & STS_INT) ? " INT" : ""
 | |
| 		);
 | |
| }
 | |
| 
 | |
| static int __attribute__((__unused__))
 | |
| dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 | |
| {
 | |
| 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 | |
| 		label, label[0] ? " " : "", enable,
 | |
| 		(enable & STS_IAA) ? " IAA" : "",
 | |
| 		(enable & STS_FATAL) ? " FATAL" : "",
 | |
| 		(enable & STS_FLR) ? " FLR" : "",
 | |
| 		(enable & STS_PCD) ? " PCD" : "",
 | |
| 		(enable & STS_ERR) ? " ERR" : "",
 | |
| 		(enable & STS_INT) ? " INT" : ""
 | |
| 		);
 | |
| }
 | |
| 
 | |
| static const char *const fls_strings[] =
 | |
|     { "1024", "512", "256", "??" };
 | |
| 
 | |
| static int dbg_command_buf(char *buf, unsigned len,
 | |
| 				const char *label, u32 command)
 | |
| {
 | |
| 	return scnprintf(buf, len,
 | |
| 		"%s%scommand %06x %s=%d ithresh=%d%s%s%s%s period=%s%s %s",
 | |
| 		label, label[0] ? " " : "", command,
 | |
| 		(command & CMD_PARK) ? "park" : "(park)",
 | |
| 		CMD_PARK_CNT(command),
 | |
| 		(command >> 16) & 0x3f,
 | |
| 		(command & CMD_LRESET) ? " LReset" : "",
 | |
| 		(command & CMD_IAAD) ? " IAAD" : "",
 | |
| 		(command & CMD_ASE) ? " Async" : "",
 | |
| 		(command & CMD_PSE) ? " Periodic" : "",
 | |
| 		fls_strings[(command >> 2) & 0x3],
 | |
| 		(command & CMD_RESET) ? " Reset" : "",
 | |
| 		(command & CMD_RUN) ? "RUN" : "HALT"
 | |
| 		);
 | |
| }
 | |
| 
 | |
| static int dbg_port_buf(char *buf, unsigned len, const char *label,
 | |
| 				int port, u32 status)
 | |
| {
 | |
| 	char	*sig;
 | |
| 
 | |
| 	/* signaling state */
 | |
| 	switch (status & (3 << 10)) {
 | |
| 	case 0 << 10:
 | |
| 		sig = "se0";
 | |
| 		break;
 | |
| 	case 1 << 10:
 | |
| 		sig = "k";	/* low speed */
 | |
| 		break;
 | |
| 	case 2 << 10:
 | |
| 		sig = "j";
 | |
| 		break;
 | |
| 	default:
 | |
| 		sig = "?";
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return scnprintf(buf, len,
 | |
| 		"%s%sport %d status %06x%s%s sig=%s%s%s%s%s%s%s%s%s%s",
 | |
| 		label, label[0] ? " " : "", port, status,
 | |
| 		(status & PORT_POWER) ? " POWER" : "",
 | |
| 		(status & PORT_OWNER) ? " OWNER" : "",
 | |
| 		sig,
 | |
| 		(status & PORT_RESET) ? " RESET" : "",
 | |
| 		(status & PORT_SUSPEND) ? " SUSPEND" : "",
 | |
| 		(status & PORT_RESUME) ? " RESUME" : "",
 | |
| 		(status & PORT_OCC) ? " OCC" : "",
 | |
| 		(status & PORT_OC) ? " OC" : "",
 | |
| 		(status & PORT_PEC) ? " PEC" : "",
 | |
| 		(status & PORT_PE) ? " PE" : "",
 | |
| 		(status & PORT_CSC) ? " CSC" : "",
 | |
| 		(status & PORT_CONNECT) ? " CONNECT" : ""
 | |
| 	    );
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static inline int __attribute__((__unused__))
 | |
| dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 | |
| { return 0; }
 | |
| 
 | |
| static inline int __attribute__((__unused__))
 | |
| dbg_command_buf(char *buf, unsigned len, const char *label, u32 command)
 | |
| { return 0; }
 | |
| 
 | |
| static inline int __attribute__((__unused__))
 | |
| dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 | |
| { return 0; }
 | |
| 
 | |
| static inline int __attribute__((__unused__))
 | |
| dbg_port_buf(char *buf, unsigned len, const char *label, int port, u32 status)
 | |
| { return 0; }
 | |
| 
 | |
| #endif /* DEBUG */
 | |
| 
 | |
| /* functions have the "wrong" filename when they're output... */
 | |
| #define dbg_status(oxu, label, status) { \
 | |
| 	char _buf[80]; \
 | |
| 	dbg_status_buf(_buf, sizeof _buf, label, status); \
 | |
| 	oxu_dbg(oxu, "%s\n", _buf); \
 | |
| }
 | |
| 
 | |
| #define dbg_cmd(oxu, label, command) { \
 | |
| 	char _buf[80]; \
 | |
| 	dbg_command_buf(_buf, sizeof _buf, label, command); \
 | |
| 	oxu_dbg(oxu, "%s\n", _buf); \
 | |
| }
 | |
| 
 | |
| #define dbg_port(oxu, label, port, status) { \
 | |
| 	char _buf[80]; \
 | |
| 	dbg_port_buf(_buf, sizeof _buf, label, port, status); \
 | |
| 	oxu_dbg(oxu, "%s\n", _buf); \
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Module parameters
 | |
|  */
 | |
| 
 | |
| /* Initial IRQ latency: faster than hw default */
 | |
| static int log2_irq_thresh;			/* 0 to 6 */
 | |
| module_param(log2_irq_thresh, int, S_IRUGO);
 | |
| MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
 | |
| 
 | |
| /* Initial park setting: slower than hw default */
 | |
| static unsigned park;
 | |
| module_param(park, uint, S_IRUGO);
 | |
| MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
 | |
| 
 | |
| /* For flakey hardware, ignore overcurrent indicators */
 | |
| static bool ignore_oc;
 | |
| module_param(ignore_oc, bool, S_IRUGO);
 | |
| MODULE_PARM_DESC(ignore_oc, "ignore bogus hardware overcurrent indications");
 | |
| 
 | |
| 
 | |
| static void ehci_work(struct oxu_hcd *oxu);
 | |
| static int oxu_hub_control(struct usb_hcd *hcd,
 | |
| 				u16 typeReq, u16 wValue, u16 wIndex,
 | |
| 				char *buf, u16 wLength);
 | |
| 
 | |
| /*
 | |
|  * Local functions
 | |
|  */
 | |
| 
 | |
| /* Low level read/write registers functions */
 | |
| static inline u32 oxu_readl(void __iomem *base, u32 reg)
 | |
| {
 | |
| 	return readl(base + reg);
 | |
| }
 | |
| 
 | |
| static inline void oxu_writel(void __iomem *base, u32 reg, u32 val)
 | |
| {
 | |
| 	writel(val, base + reg);
 | |
| }
 | |
| 
 | |
| static inline void timer_action_done(struct oxu_hcd *oxu,
 | |
| 					enum ehci_timer_action action)
 | |
| {
 | |
| 	clear_bit(action, &oxu->actions);
 | |
| }
 | |
| 
 | |
| static inline void timer_action(struct oxu_hcd *oxu,
 | |
| 					enum ehci_timer_action action)
 | |
| {
 | |
| 	if (!test_and_set_bit(action, &oxu->actions)) {
 | |
| 		unsigned long t;
 | |
| 
 | |
| 		switch (action) {
 | |
| 		case TIMER_IAA_WATCHDOG:
 | |
| 			t = EHCI_IAA_JIFFIES;
 | |
| 			break;
 | |
| 		case TIMER_IO_WATCHDOG:
 | |
| 			t = EHCI_IO_JIFFIES;
 | |
| 			break;
 | |
| 		case TIMER_ASYNC_OFF:
 | |
| 			t = EHCI_ASYNC_JIFFIES;
 | |
| 			break;
 | |
| 		case TIMER_ASYNC_SHRINK:
 | |
| 		default:
 | |
| 			t = EHCI_SHRINK_JIFFIES;
 | |
| 			break;
 | |
| 		}
 | |
| 		t += jiffies;
 | |
| 		/* all timings except IAA watchdog can be overridden.
 | |
| 		 * async queue SHRINK often precedes IAA.  while it's ready
 | |
| 		 * to go OFF neither can matter, and afterwards the IO
 | |
| 		 * watchdog stops unless there's still periodic traffic.
 | |
| 		 */
 | |
| 		if (action != TIMER_IAA_WATCHDOG
 | |
| 				&& t > oxu->watchdog.expires
 | |
| 				&& timer_pending(&oxu->watchdog))
 | |
| 			return;
 | |
| 		mod_timer(&oxu->watchdog, t);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * handshake - spin reading hc until handshake completes or fails
 | |
|  * @ptr: address of hc register to be read
 | |
|  * @mask: bits to look at in result of read
 | |
|  * @done: value of those bits when handshake succeeds
 | |
|  * @usec: timeout in microseconds
 | |
|  *
 | |
|  * Returns negative errno, or zero on success
 | |
|  *
 | |
|  * Success happens when the "mask" bits have the specified value (hardware
 | |
|  * handshake done).  There are two failure modes:  "usec" have passed (major
 | |
|  * hardware flakeout), or the register reads as all-ones (hardware removed).
 | |
|  *
 | |
|  * That last failure should_only happen in cases like physical cardbus eject
 | |
|  * before driver shutdown. But it also seems to be caused by bugs in cardbus
 | |
|  * bridge shutdown:  shutting down the bridge before the devices using it.
 | |
|  */
 | |
| static int handshake(struct oxu_hcd *oxu, void __iomem *ptr,
 | |
| 					u32 mask, u32 done, int usec)
 | |
| {
 | |
| 	u32 result;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = readl_poll_timeout_atomic(ptr, result,
 | |
| 					((result & mask) == done ||
 | |
| 					 result == U32_MAX),
 | |
| 					1, usec);
 | |
| 	if (result == U32_MAX)		/* card removed */
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Force HC to halt state from unknown (EHCI spec section 2.3) */
 | |
| static int ehci_halt(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	u32	temp = readl(&oxu->regs->status);
 | |
| 
 | |
| 	/* disable any irqs left enabled by previous code */
 | |
| 	writel(0, &oxu->regs->intr_enable);
 | |
| 
 | |
| 	if ((temp & STS_HALT) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	temp = readl(&oxu->regs->command);
 | |
| 	temp &= ~CMD_RUN;
 | |
| 	writel(temp, &oxu->regs->command);
 | |
| 	return handshake(oxu, &oxu->regs->status,
 | |
| 			  STS_HALT, STS_HALT, 16 * 125);
 | |
| }
 | |
| 
 | |
| /* Put TDI/ARC silicon into EHCI mode */
 | |
| static void tdi_reset(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	u32 __iomem *reg_ptr;
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	reg_ptr = (u32 __iomem *)(((u8 __iomem *)oxu->regs) + 0x68);
 | |
| 	tmp = readl(reg_ptr);
 | |
| 	tmp |= 0x3;
 | |
| 	writel(tmp, reg_ptr);
 | |
| }
 | |
| 
 | |
| /* Reset a non-running (STS_HALT == 1) controller */
 | |
| static int ehci_reset(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	int	retval;
 | |
| 	u32	command = readl(&oxu->regs->command);
 | |
| 
 | |
| 	command |= CMD_RESET;
 | |
| 	dbg_cmd(oxu, "reset", command);
 | |
| 	writel(command, &oxu->regs->command);
 | |
| 	oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 | |
| 	oxu->next_statechange = jiffies;
 | |
| 	retval = handshake(oxu, &oxu->regs->command,
 | |
| 			    CMD_RESET, 0, 250 * 1000);
 | |
| 
 | |
| 	if (retval)
 | |
| 		return retval;
 | |
| 
 | |
| 	tdi_reset(oxu);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* Idle the controller (from running) */
 | |
| static void ehci_quiesce(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	u32	temp;
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	BUG_ON(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state));
 | |
| #endif
 | |
| 
 | |
| 	/* wait for any schedule enables/disables to take effect */
 | |
| 	temp = readl(&oxu->regs->command) << 10;
 | |
| 	temp &= STS_ASS | STS_PSS;
 | |
| 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
 | |
| 				temp, 16 * 125) != 0) {
 | |
| 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* then disable anything that's still active */
 | |
| 	temp = readl(&oxu->regs->command);
 | |
| 	temp &= ~(CMD_ASE | CMD_IAAD | CMD_PSE);
 | |
| 	writel(temp, &oxu->regs->command);
 | |
| 
 | |
| 	/* hardware can take 16 microframes to turn off ... */
 | |
| 	if (handshake(oxu, &oxu->regs->status, STS_ASS | STS_PSS,
 | |
| 				0, 16 * 125) != 0) {
 | |
| 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int check_reset_complete(struct oxu_hcd *oxu, int index,
 | |
| 				u32 __iomem *status_reg, int port_status)
 | |
| {
 | |
| 	if (!(port_status & PORT_CONNECT)) {
 | |
| 		oxu->reset_done[index] = 0;
 | |
| 		return port_status;
 | |
| 	}
 | |
| 
 | |
| 	/* if reset finished and it's still not enabled -- handoff */
 | |
| 	if (!(port_status & PORT_PE)) {
 | |
| 		oxu_dbg(oxu, "Failed to enable port %d on root hub TT\n",
 | |
| 				index+1);
 | |
| 		return port_status;
 | |
| 	} else
 | |
| 		oxu_dbg(oxu, "port %d high speed\n", index + 1);
 | |
| 
 | |
| 	return port_status;
 | |
| }
 | |
| 
 | |
| static void ehci_hub_descriptor(struct oxu_hcd *oxu,
 | |
| 				struct usb_hub_descriptor *desc)
 | |
| {
 | |
| 	int ports = HCS_N_PORTS(oxu->hcs_params);
 | |
| 	u16 temp;
 | |
| 
 | |
| 	desc->bDescriptorType = USB_DT_HUB;
 | |
| 	desc->bPwrOn2PwrGood = 10;	/* oxu 1.0, 2.3.9 says 20ms max */
 | |
| 	desc->bHubContrCurrent = 0;
 | |
| 
 | |
| 	desc->bNbrPorts = ports;
 | |
| 	temp = 1 + (ports / 8);
 | |
| 	desc->bDescLength = 7 + 2 * temp;
 | |
| 
 | |
| 	/* ports removable, and usb 1.0 legacy PortPwrCtrlMask */
 | |
| 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
 | |
| 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
 | |
| 
 | |
| 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
 | |
| 	if (HCS_PPC(oxu->hcs_params))
 | |
| 		temp |= HUB_CHAR_INDV_PORT_LPSM; /* per-port power control */
 | |
| 	else
 | |
| 		temp |= HUB_CHAR_NO_LPSM; /* no power switching */
 | |
| 	desc->wHubCharacteristics = (__force __u16)cpu_to_le16(temp);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Allocate an OXU210HP on-chip memory data buffer
 | |
|  *
 | |
|  * An on-chip memory data buffer is required for each OXU210HP USB transfer.
 | |
|  * Each transfer descriptor has one or more on-chip memory data buffers.
 | |
|  *
 | |
|  * Data buffers are allocated from a fix sized pool of data blocks.
 | |
|  * To minimise fragmentation and give reasonable memory utlisation,
 | |
|  * data buffers are allocated with sizes the power of 2 multiples of
 | |
|  * the block size, starting on an address a multiple of the allocated size.
 | |
|  *
 | |
|  * FIXME: callers of this function require a buffer to be allocated for
 | |
|  * len=0. This is a waste of on-chip memory and should be fix. Then this
 | |
|  * function should be changed to not allocate a buffer for len=0.
 | |
|  */
 | |
| static int oxu_buf_alloc(struct oxu_hcd *oxu, struct ehci_qtd *qtd, int len)
 | |
| {
 | |
| 	int n_blocks;	/* minium blocks needed to hold len */
 | |
| 	int a_blocks;	/* blocks allocated */
 | |
| 	int i, j;
 | |
| 
 | |
| 	/* Don't allocte bigger than supported */
 | |
| 	if (len > BUFFER_SIZE * BUFFER_NUM) {
 | |
| 		oxu_err(oxu, "buffer too big (%d)\n", len);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&oxu->mem_lock);
 | |
| 
 | |
| 	/* Number of blocks needed to hold len */
 | |
| 	n_blocks = (len + BUFFER_SIZE - 1) / BUFFER_SIZE;
 | |
| 
 | |
| 	/* Round the number of blocks up to the power of 2 */
 | |
| 	for (a_blocks = 1; a_blocks < n_blocks; a_blocks <<= 1)
 | |
| 		;
 | |
| 
 | |
| 	/* Find a suitable available data buffer */
 | |
| 	for (i = 0; i < BUFFER_NUM;
 | |
| 			i += max(a_blocks, (int)oxu->db_used[i])) {
 | |
| 
 | |
| 		/* Check all the required blocks are available */
 | |
| 		for (j = 0; j < a_blocks; j++)
 | |
| 			if (oxu->db_used[i + j])
 | |
| 				break;
 | |
| 
 | |
| 		if (j != a_blocks)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Allocate blocks found! */
 | |
| 		qtd->buffer = (void *) &oxu->mem->db_pool[i];
 | |
| 		qtd->buffer_dma = virt_to_phys(qtd->buffer);
 | |
| 
 | |
| 		qtd->qtd_buffer_len = BUFFER_SIZE * a_blocks;
 | |
| 		oxu->db_used[i] = a_blocks;
 | |
| 
 | |
| 		spin_unlock(&oxu->mem_lock);
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Failed */
 | |
| 
 | |
| 	spin_unlock(&oxu->mem_lock);
 | |
| 
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static void oxu_buf_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	spin_lock(&oxu->mem_lock);
 | |
| 
 | |
| 	index = (qtd->buffer - (void *) &oxu->mem->db_pool[0])
 | |
| 							 / BUFFER_SIZE;
 | |
| 	oxu->db_used[index] = 0;
 | |
| 	qtd->qtd_buffer_len = 0;
 | |
| 	qtd->buffer_dma = 0;
 | |
| 	qtd->buffer = NULL;
 | |
| 
 | |
| 	spin_unlock(&oxu->mem_lock);
 | |
| }
 | |
| 
 | |
| static inline void ehci_qtd_init(struct ehci_qtd *qtd, dma_addr_t dma)
 | |
| {
 | |
| 	memset(qtd, 0, sizeof *qtd);
 | |
| 	qtd->qtd_dma = dma;
 | |
| 	qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
 | |
| 	qtd->hw_next = EHCI_LIST_END;
 | |
| 	qtd->hw_alt_next = EHCI_LIST_END;
 | |
| 	INIT_LIST_HEAD(&qtd->qtd_list);
 | |
| }
 | |
| 
 | |
| static inline void oxu_qtd_free(struct oxu_hcd *oxu, struct ehci_qtd *qtd)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	if (qtd->buffer)
 | |
| 		oxu_buf_free(oxu, qtd);
 | |
| 
 | |
| 	spin_lock(&oxu->mem_lock);
 | |
| 
 | |
| 	index = qtd - &oxu->mem->qtd_pool[0];
 | |
| 	oxu->qtd_used[index] = 0;
 | |
| 
 | |
| 	spin_unlock(&oxu->mem_lock);
 | |
| }
 | |
| 
 | |
| static struct ehci_qtd *ehci_qtd_alloc(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct ehci_qtd *qtd = NULL;
 | |
| 
 | |
| 	spin_lock(&oxu->mem_lock);
 | |
| 
 | |
| 	for (i = 0; i < QTD_NUM; i++)
 | |
| 		if (!oxu->qtd_used[i])
 | |
| 			break;
 | |
| 
 | |
| 	if (i < QTD_NUM) {
 | |
| 		qtd = (struct ehci_qtd *) &oxu->mem->qtd_pool[i];
 | |
| 		memset(qtd, 0, sizeof *qtd);
 | |
| 
 | |
| 		qtd->hw_token = cpu_to_le32(QTD_STS_HALT);
 | |
| 		qtd->hw_next = EHCI_LIST_END;
 | |
| 		qtd->hw_alt_next = EHCI_LIST_END;
 | |
| 		INIT_LIST_HEAD(&qtd->qtd_list);
 | |
| 
 | |
| 		qtd->qtd_dma = virt_to_phys(qtd);
 | |
| 
 | |
| 		oxu->qtd_used[i] = 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&oxu->mem_lock);
 | |
| 
 | |
| 	return qtd;
 | |
| }
 | |
| 
 | |
| static void oxu_qh_free(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	spin_lock(&oxu->mem_lock);
 | |
| 
 | |
| 	index = qh - &oxu->mem->qh_pool[0];
 | |
| 	oxu->qh_used[index] = 0;
 | |
| 
 | |
| 	spin_unlock(&oxu->mem_lock);
 | |
| }
 | |
| 
 | |
| static void qh_destroy(struct kref *kref)
 | |
| {
 | |
| 	struct ehci_qh *qh = container_of(kref, struct ehci_qh, kref);
 | |
| 	struct oxu_hcd *oxu = qh->oxu;
 | |
| 
 | |
| 	/* clean qtds first, and know this is not linked */
 | |
| 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
 | |
| 		oxu_dbg(oxu, "unused qh not empty!\n");
 | |
| 		BUG();
 | |
| 	}
 | |
| 	if (qh->dummy)
 | |
| 		oxu_qtd_free(oxu, qh->dummy);
 | |
| 	oxu_qh_free(oxu, qh);
 | |
| }
 | |
| 
 | |
| static struct ehci_qh *oxu_qh_alloc(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct ehci_qh *qh = NULL;
 | |
| 
 | |
| 	spin_lock(&oxu->mem_lock);
 | |
| 
 | |
| 	for (i = 0; i < QHEAD_NUM; i++)
 | |
| 		if (!oxu->qh_used[i])
 | |
| 			break;
 | |
| 
 | |
| 	if (i < QHEAD_NUM) {
 | |
| 		qh = (struct ehci_qh *) &oxu->mem->qh_pool[i];
 | |
| 		memset(qh, 0, sizeof *qh);
 | |
| 
 | |
| 		kref_init(&qh->kref);
 | |
| 		qh->oxu = oxu;
 | |
| 		qh->qh_dma = virt_to_phys(qh);
 | |
| 		INIT_LIST_HEAD(&qh->qtd_list);
 | |
| 
 | |
| 		/* dummy td enables safe urb queuing */
 | |
| 		qh->dummy = ehci_qtd_alloc(oxu);
 | |
| 		if (qh->dummy == NULL) {
 | |
| 			oxu_dbg(oxu, "no dummy td\n");
 | |
| 			oxu->qh_used[i] = 0;
 | |
| 			qh = NULL;
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		oxu->qh_used[i] = 1;
 | |
| 	}
 | |
| unlock:
 | |
| 	spin_unlock(&oxu->mem_lock);
 | |
| 
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| /* to share a qh (cpu threads, or hc) */
 | |
| static inline struct ehci_qh *qh_get(struct ehci_qh *qh)
 | |
| {
 | |
| 	kref_get(&qh->kref);
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| static inline void qh_put(struct ehci_qh *qh)
 | |
| {
 | |
| 	kref_put(&qh->kref, qh_destroy);
 | |
| }
 | |
| 
 | |
| static void oxu_murb_free(struct oxu_hcd *oxu, struct oxu_murb *murb)
 | |
| {
 | |
| 	int index;
 | |
| 
 | |
| 	spin_lock(&oxu->mem_lock);
 | |
| 
 | |
| 	index = murb - &oxu->murb_pool[0];
 | |
| 	oxu->murb_used[index] = 0;
 | |
| 
 | |
| 	spin_unlock(&oxu->mem_lock);
 | |
| }
 | |
| 
 | |
| static struct oxu_murb *oxu_murb_alloc(struct oxu_hcd *oxu)
 | |
| 
 | |
| {
 | |
| 	int i;
 | |
| 	struct oxu_murb *murb = NULL;
 | |
| 
 | |
| 	spin_lock(&oxu->mem_lock);
 | |
| 
 | |
| 	for (i = 0; i < MURB_NUM; i++)
 | |
| 		if (!oxu->murb_used[i])
 | |
| 			break;
 | |
| 
 | |
| 	if (i < MURB_NUM) {
 | |
| 		murb = &(oxu->murb_pool)[i];
 | |
| 
 | |
| 		oxu->murb_used[i] = 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&oxu->mem_lock);
 | |
| 
 | |
| 	return murb;
 | |
| }
 | |
| 
 | |
| /* The queue heads and transfer descriptors are managed from pools tied
 | |
|  * to each of the "per device" structures.
 | |
|  * This is the initialisation and cleanup code.
 | |
|  */
 | |
| static void ehci_mem_cleanup(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	kfree(oxu->murb_pool);
 | |
| 	oxu->murb_pool = NULL;
 | |
| 
 | |
| 	if (oxu->async)
 | |
| 		qh_put(oxu->async);
 | |
| 	oxu->async = NULL;
 | |
| 
 | |
| 	del_timer(&oxu->urb_timer);
 | |
| 
 | |
| 	oxu->periodic = NULL;
 | |
| 
 | |
| 	/* shadow periodic table */
 | |
| 	kfree(oxu->pshadow);
 | |
| 	oxu->pshadow = NULL;
 | |
| }
 | |
| 
 | |
| /* Remember to add cleanup code (above) if you add anything here.
 | |
|  */
 | |
| static int ehci_mem_init(struct oxu_hcd *oxu, gfp_t flags)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < oxu->periodic_size; i++)
 | |
| 		oxu->mem->frame_list[i] = EHCI_LIST_END;
 | |
| 	for (i = 0; i < QHEAD_NUM; i++)
 | |
| 		oxu->qh_used[i] = 0;
 | |
| 	for (i = 0; i < QTD_NUM; i++)
 | |
| 		oxu->qtd_used[i] = 0;
 | |
| 
 | |
| 	oxu->murb_pool = kcalloc(MURB_NUM, sizeof(struct oxu_murb), flags);
 | |
| 	if (!oxu->murb_pool)
 | |
| 		goto fail;
 | |
| 
 | |
| 	for (i = 0; i < MURB_NUM; i++)
 | |
| 		oxu->murb_used[i] = 0;
 | |
| 
 | |
| 	oxu->async = oxu_qh_alloc(oxu);
 | |
| 	if (!oxu->async)
 | |
| 		goto fail;
 | |
| 
 | |
| 	oxu->periodic = (__le32 *) &oxu->mem->frame_list;
 | |
| 	oxu->periodic_dma = virt_to_phys(oxu->periodic);
 | |
| 
 | |
| 	for (i = 0; i < oxu->periodic_size; i++)
 | |
| 		oxu->periodic[i] = EHCI_LIST_END;
 | |
| 
 | |
| 	/* software shadow of hardware table */
 | |
| 	oxu->pshadow = kcalloc(oxu->periodic_size, sizeof(void *), flags);
 | |
| 	if (oxu->pshadow != NULL)
 | |
| 		return 0;
 | |
| 
 | |
| fail:
 | |
| 	oxu_dbg(oxu, "couldn't init memory\n");
 | |
| 	ehci_mem_cleanup(oxu);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Fill a qtd, returning how much of the buffer we were able to queue up.
 | |
|  */
 | |
| static int qtd_fill(struct ehci_qtd *qtd, dma_addr_t buf, size_t len,
 | |
| 				int token, int maxpacket)
 | |
| {
 | |
| 	int i, count;
 | |
| 	u64 addr = buf;
 | |
| 
 | |
| 	/* one buffer entry per 4K ... first might be short or unaligned */
 | |
| 	qtd->hw_buf[0] = cpu_to_le32((u32)addr);
 | |
| 	qtd->hw_buf_hi[0] = cpu_to_le32((u32)(addr >> 32));
 | |
| 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
 | |
| 	if (likely(len < count))		/* ... iff needed */
 | |
| 		count = len;
 | |
| 	else {
 | |
| 		buf +=  0x1000;
 | |
| 		buf &= ~0x0fff;
 | |
| 
 | |
| 		/* per-qtd limit: from 16K to 20K (best alignment) */
 | |
| 		for (i = 1; count < len && i < 5; i++) {
 | |
| 			addr = buf;
 | |
| 			qtd->hw_buf[i] = cpu_to_le32((u32)addr);
 | |
| 			qtd->hw_buf_hi[i] = cpu_to_le32((u32)(addr >> 32));
 | |
| 			buf += 0x1000;
 | |
| 			if ((count + 0x1000) < len)
 | |
| 				count += 0x1000;
 | |
| 			else
 | |
| 				count = len;
 | |
| 		}
 | |
| 
 | |
| 		/* short packets may only terminate transfers */
 | |
| 		if (count != len)
 | |
| 			count -= (count % maxpacket);
 | |
| 	}
 | |
| 	qtd->hw_token = cpu_to_le32((count << 16) | token);
 | |
| 	qtd->length = count;
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static inline void qh_update(struct oxu_hcd *oxu,
 | |
| 				struct ehci_qh *qh, struct ehci_qtd *qtd)
 | |
| {
 | |
| 	/* writes to an active overlay are unsafe */
 | |
| 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
 | |
| 
 | |
| 	qh->hw_qtd_next = QTD_NEXT(qtd->qtd_dma);
 | |
| 	qh->hw_alt_next = EHCI_LIST_END;
 | |
| 
 | |
| 	/* Except for control endpoints, we make hardware maintain data
 | |
| 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
 | |
| 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
 | |
| 	 * ever clear it.
 | |
| 	 */
 | |
| 	if (!(qh->hw_info1 & cpu_to_le32(1 << 14))) {
 | |
| 		unsigned	is_out, epnum;
 | |
| 
 | |
| 		is_out = !(qtd->hw_token & cpu_to_le32(1 << 8));
 | |
| 		epnum = (le32_to_cpup(&qh->hw_info1) >> 8) & 0x0f;
 | |
| 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
 | |
| 			qh->hw_token &= ~cpu_to_le32(QTD_TOGGLE);
 | |
| 			usb_settoggle(qh->dev, epnum, is_out, 1);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* HC must see latest qtd and qh data before we clear ACTIVE+HALT */
 | |
| 	wmb();
 | |
| 	qh->hw_token &= cpu_to_le32(QTD_TOGGLE | QTD_STS_PING);
 | |
| }
 | |
| 
 | |
| /* If it weren't for a common silicon quirk (writing the dummy into the qh
 | |
|  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
 | |
|  * recovery (including urb dequeue) would need software changes to a QH...
 | |
|  */
 | |
| static void qh_refresh(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	struct ehci_qtd *qtd;
 | |
| 
 | |
| 	if (list_empty(&qh->qtd_list))
 | |
| 		qtd = qh->dummy;
 | |
| 	else {
 | |
| 		qtd = list_entry(qh->qtd_list.next,
 | |
| 				struct ehci_qtd, qtd_list);
 | |
| 		/* first qtd may already be partially processed */
 | |
| 		if (cpu_to_le32(qtd->qtd_dma) == qh->hw_current)
 | |
| 			qtd = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (qtd)
 | |
| 		qh_update(oxu, qh, qtd);
 | |
| }
 | |
| 
 | |
| static void qtd_copy_status(struct oxu_hcd *oxu, struct urb *urb,
 | |
| 				size_t length, u32 token)
 | |
| {
 | |
| 	/* count IN/OUT bytes, not SETUP (even short packets) */
 | |
| 	if (likely(QTD_PID(token) != 2))
 | |
| 		urb->actual_length += length - QTD_LENGTH(token);
 | |
| 
 | |
| 	/* don't modify error codes */
 | |
| 	if (unlikely(urb->status != -EINPROGRESS))
 | |
| 		return;
 | |
| 
 | |
| 	/* force cleanup after short read; not always an error */
 | |
| 	if (unlikely(IS_SHORT_READ(token)))
 | |
| 		urb->status = -EREMOTEIO;
 | |
| 
 | |
| 	/* serious "can't proceed" faults reported by the hardware */
 | |
| 	if (token & QTD_STS_HALT) {
 | |
| 		if (token & QTD_STS_BABBLE) {
 | |
| 			/* FIXME "must" disable babbling device's port too */
 | |
| 			urb->status = -EOVERFLOW;
 | |
| 		} else if (token & QTD_STS_MMF) {
 | |
| 			/* fs/ls interrupt xfer missed the complete-split */
 | |
| 			urb->status = -EPROTO;
 | |
| 		} else if (token & QTD_STS_DBE) {
 | |
| 			urb->status = (QTD_PID(token) == 1) /* IN ? */
 | |
| 				? -ENOSR  /* hc couldn't read data */
 | |
| 				: -ECOMM; /* hc couldn't write data */
 | |
| 		} else if (token & QTD_STS_XACT) {
 | |
| 			/* timeout, bad crc, wrong PID, etc; retried */
 | |
| 			if (QTD_CERR(token))
 | |
| 				urb->status = -EPIPE;
 | |
| 			else {
 | |
| 				oxu_dbg(oxu, "devpath %s ep%d%s 3strikes\n",
 | |
| 					urb->dev->devpath,
 | |
| 					usb_pipeendpoint(urb->pipe),
 | |
| 					usb_pipein(urb->pipe) ? "in" : "out");
 | |
| 				urb->status = -EPROTO;
 | |
| 			}
 | |
| 		/* CERR nonzero + no errors + halt --> stall */
 | |
| 		} else if (QTD_CERR(token))
 | |
| 			urb->status = -EPIPE;
 | |
| 		else	/* unknown */
 | |
| 			urb->status = -EPROTO;
 | |
| 
 | |
| 		oxu_vdbg(oxu, "dev%d ep%d%s qtd token %08x --> status %d\n",
 | |
| 			usb_pipedevice(urb->pipe),
 | |
| 			usb_pipeendpoint(urb->pipe),
 | |
| 			usb_pipein(urb->pipe) ? "in" : "out",
 | |
| 			token, urb->status);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ehci_urb_done(struct oxu_hcd *oxu, struct urb *urb)
 | |
| __releases(oxu->lock)
 | |
| __acquires(oxu->lock)
 | |
| {
 | |
| 	if (likely(urb->hcpriv != NULL)) {
 | |
| 		struct ehci_qh	*qh = (struct ehci_qh *) urb->hcpriv;
 | |
| 
 | |
| 		/* S-mask in a QH means it's an interrupt urb */
 | |
| 		if ((qh->hw_info2 & cpu_to_le32(QH_SMASK)) != 0) {
 | |
| 
 | |
| 			/* ... update hc-wide periodic stats (for usbfs) */
 | |
| 			oxu_to_hcd(oxu)->self.bandwidth_int_reqs--;
 | |
| 		}
 | |
| 		qh_put(qh);
 | |
| 	}
 | |
| 
 | |
| 	urb->hcpriv = NULL;
 | |
| 	switch (urb->status) {
 | |
| 	case -EINPROGRESS:		/* success */
 | |
| 		urb->status = 0;
 | |
| 		break;
 | |
| 	default:			/* fault */
 | |
| 		break;
 | |
| 	case -EREMOTEIO:		/* fault or normal */
 | |
| 		if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
 | |
| 			urb->status = 0;
 | |
| 		break;
 | |
| 	case -ECONNRESET:		/* canceled */
 | |
| 	case -ENOENT:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| #ifdef OXU_URB_TRACE
 | |
| 	oxu_dbg(oxu, "%s %s urb %p ep%d%s status %d len %d/%d\n",
 | |
| 		__func__, urb->dev->devpath, urb,
 | |
| 		usb_pipeendpoint(urb->pipe),
 | |
| 		usb_pipein(urb->pipe) ? "in" : "out",
 | |
| 		urb->status,
 | |
| 		urb->actual_length, urb->transfer_buffer_length);
 | |
| #endif
 | |
| 
 | |
| 	/* complete() can reenter this HCD */
 | |
| 	spin_unlock(&oxu->lock);
 | |
| 	usb_hcd_giveback_urb(oxu_to_hcd(oxu), urb, urb->status);
 | |
| 	spin_lock(&oxu->lock);
 | |
| }
 | |
| 
 | |
| static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
 | |
| static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh);
 | |
| 
 | |
| static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
 | |
| static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh);
 | |
| 
 | |
| #define HALT_BIT cpu_to_le32(QTD_STS_HALT)
 | |
| 
 | |
| /* Process and free completed qtds for a qh, returning URBs to drivers.
 | |
|  * Chases up to qh->hw_current.  Returns number of completions called,
 | |
|  * indicating how much "real" work we did.
 | |
|  */
 | |
| static unsigned qh_completions(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	struct ehci_qtd *last = NULL, *end = qh->dummy;
 | |
| 	struct ehci_qtd	*qtd, *tmp;
 | |
| 	int stopped;
 | |
| 	unsigned count = 0;
 | |
| 	int do_status = 0;
 | |
| 	u8 state;
 | |
| 	struct oxu_murb *murb = NULL;
 | |
| 
 | |
| 	if (unlikely(list_empty(&qh->qtd_list)))
 | |
| 		return count;
 | |
| 
 | |
| 	/* completions (or tasks on other cpus) must never clobber HALT
 | |
| 	 * till we've gone through and cleaned everything up, even when
 | |
| 	 * they add urbs to this qh's queue or mark them for unlinking.
 | |
| 	 *
 | |
| 	 * NOTE:  unlinking expects to be done in queue order.
 | |
| 	 */
 | |
| 	state = qh->qh_state;
 | |
| 	qh->qh_state = QH_STATE_COMPLETING;
 | |
| 	stopped = (state == QH_STATE_IDLE);
 | |
| 
 | |
| 	/* remove de-activated QTDs from front of queue.
 | |
| 	 * after faults (including short reads), cleanup this urb
 | |
| 	 * then let the queue advance.
 | |
| 	 * if queue is stopped, handles unlinks.
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
 | |
| 		struct urb *urb;
 | |
| 		u32 token = 0;
 | |
| 
 | |
| 		urb = qtd->urb;
 | |
| 
 | |
| 		/* Clean up any state from previous QTD ...*/
 | |
| 		if (last) {
 | |
| 			if (likely(last->urb != urb)) {
 | |
| 				if (last->urb->complete == NULL) {
 | |
| 					murb = (struct oxu_murb *) last->urb;
 | |
| 					last->urb = murb->main;
 | |
| 					if (murb->last) {
 | |
| 						ehci_urb_done(oxu, last->urb);
 | |
| 						count++;
 | |
| 					}
 | |
| 					oxu_murb_free(oxu, murb);
 | |
| 				} else {
 | |
| 					ehci_urb_done(oxu, last->urb);
 | |
| 					count++;
 | |
| 				}
 | |
| 			}
 | |
| 			oxu_qtd_free(oxu, last);
 | |
| 			last = NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* ignore urbs submitted during completions we reported */
 | |
| 		if (qtd == end)
 | |
| 			break;
 | |
| 
 | |
| 		/* hardware copies qtd out of qh overlay */
 | |
| 		rmb();
 | |
| 		token = le32_to_cpu(qtd->hw_token);
 | |
| 
 | |
| 		/* always clean up qtds the hc de-activated */
 | |
| 		if ((token & QTD_STS_ACTIVE) == 0) {
 | |
| 
 | |
| 			if ((token & QTD_STS_HALT) != 0) {
 | |
| 				stopped = 1;
 | |
| 
 | |
| 			/* magic dummy for some short reads; qh won't advance.
 | |
| 			 * that silicon quirk can kick in with this dummy too.
 | |
| 			 */
 | |
| 			} else if (IS_SHORT_READ(token) &&
 | |
| 					!(qtd->hw_alt_next & EHCI_LIST_END)) {
 | |
| 				stopped = 1;
 | |
| 				goto halt;
 | |
| 			}
 | |
| 
 | |
| 		/* stop scanning when we reach qtds the hc is using */
 | |
| 		} else if (likely(!stopped &&
 | |
| 				HC_IS_RUNNING(oxu_to_hcd(oxu)->state))) {
 | |
| 			break;
 | |
| 
 | |
| 		} else {
 | |
| 			stopped = 1;
 | |
| 
 | |
| 			if (unlikely(!HC_IS_RUNNING(oxu_to_hcd(oxu)->state)))
 | |
| 				urb->status = -ESHUTDOWN;
 | |
| 
 | |
| 			/* ignore active urbs unless some previous qtd
 | |
| 			 * for the urb faulted (including short read) or
 | |
| 			 * its urb was canceled.  we may patch qh or qtds.
 | |
| 			 */
 | |
| 			if (likely(urb->status == -EINPROGRESS))
 | |
| 				continue;
 | |
| 
 | |
| 			/* issue status after short control reads */
 | |
| 			if (unlikely(do_status != 0)
 | |
| 					&& QTD_PID(token) == 0 /* OUT */) {
 | |
| 				do_status = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* token in overlay may be most current */
 | |
| 			if (state == QH_STATE_IDLE
 | |
| 					&& cpu_to_le32(qtd->qtd_dma)
 | |
| 						== qh->hw_current)
 | |
| 				token = le32_to_cpu(qh->hw_token);
 | |
| 
 | |
| 			/* force halt for unlinked or blocked qh, so we'll
 | |
| 			 * patch the qh later and so that completions can't
 | |
| 			 * activate it while we "know" it's stopped.
 | |
| 			 */
 | |
| 			if ((HALT_BIT & qh->hw_token) == 0) {
 | |
| halt:
 | |
| 				qh->hw_token |= HALT_BIT;
 | |
| 				wmb();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Remove it from the queue */
 | |
| 		qtd_copy_status(oxu, urb->complete ?
 | |
| 					urb : ((struct oxu_murb *) urb)->main,
 | |
| 				qtd->length, token);
 | |
| 		if ((usb_pipein(qtd->urb->pipe)) &&
 | |
| 				(NULL != qtd->transfer_buffer))
 | |
| 			memcpy(qtd->transfer_buffer, qtd->buffer, qtd->length);
 | |
| 		do_status = (urb->status == -EREMOTEIO)
 | |
| 				&& usb_pipecontrol(urb->pipe);
 | |
| 
 | |
| 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
 | |
| 			last = list_entry(qtd->qtd_list.prev,
 | |
| 					struct ehci_qtd, qtd_list);
 | |
| 			last->hw_next = qtd->hw_next;
 | |
| 		}
 | |
| 		list_del(&qtd->qtd_list);
 | |
| 		last = qtd;
 | |
| 	}
 | |
| 
 | |
| 	/* last urb's completion might still need calling */
 | |
| 	if (likely(last != NULL)) {
 | |
| 		if (last->urb->complete == NULL) {
 | |
| 			murb = (struct oxu_murb *) last->urb;
 | |
| 			last->urb = murb->main;
 | |
| 			if (murb->last) {
 | |
| 				ehci_urb_done(oxu, last->urb);
 | |
| 				count++;
 | |
| 			}
 | |
| 			oxu_murb_free(oxu, murb);
 | |
| 		} else {
 | |
| 			ehci_urb_done(oxu, last->urb);
 | |
| 			count++;
 | |
| 		}
 | |
| 		oxu_qtd_free(oxu, last);
 | |
| 	}
 | |
| 
 | |
| 	/* restore original state; caller must unlink or relink */
 | |
| 	qh->qh_state = state;
 | |
| 
 | |
| 	/* be sure the hardware's done with the qh before refreshing
 | |
| 	 * it after fault cleanup, or recovering from silicon wrongly
 | |
| 	 * overlaying the dummy qtd (which reduces DMA chatter).
 | |
| 	 */
 | |
| 	if (stopped != 0 || qh->hw_qtd_next == EHCI_LIST_END) {
 | |
| 		switch (state) {
 | |
| 		case QH_STATE_IDLE:
 | |
| 			qh_refresh(oxu, qh);
 | |
| 			break;
 | |
| 		case QH_STATE_LINKED:
 | |
| 			/* should be rare for periodic transfers,
 | |
| 			 * except maybe high bandwidth ...
 | |
| 			 */
 | |
| 			if ((cpu_to_le32(QH_SMASK)
 | |
| 					& qh->hw_info2) != 0) {
 | |
| 				intr_deschedule(oxu, qh);
 | |
| 				(void) qh_schedule(oxu, qh);
 | |
| 			} else
 | |
| 				unlink_async(oxu, qh);
 | |
| 			break;
 | |
| 		/* otherwise, unlink already started */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /* High bandwidth multiplier, as encoded in highspeed endpoint descriptors */
 | |
| #define hb_mult(wMaxPacketSize)		(1 + (((wMaxPacketSize) >> 11) & 0x03))
 | |
| /* ... and packet size, for any kind of endpoint descriptor */
 | |
| #define max_packet(wMaxPacketSize)	((wMaxPacketSize) & 0x07ff)
 | |
| 
 | |
| /* Reverse of qh_urb_transaction: free a list of TDs.
 | |
|  * used for cleanup after errors, before HC sees an URB's TDs.
 | |
|  */
 | |
| static void qtd_list_free(struct oxu_hcd *oxu,
 | |
| 				struct urb *urb, struct list_head *head)
 | |
| {
 | |
| 	struct ehci_qtd	*qtd, *temp;
 | |
| 
 | |
| 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
 | |
| 		list_del(&qtd->qtd_list);
 | |
| 		oxu_qtd_free(oxu, qtd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Create a list of filled qtds for this URB; won't link into qh.
 | |
|  */
 | |
| static struct list_head *qh_urb_transaction(struct oxu_hcd *oxu,
 | |
| 						struct urb *urb,
 | |
| 						struct list_head *head,
 | |
| 						gfp_t flags)
 | |
| {
 | |
| 	struct ehci_qtd	*qtd, *qtd_prev;
 | |
| 	dma_addr_t buf;
 | |
| 	int len, maxpacket;
 | |
| 	int is_input;
 | |
| 	u32 token;
 | |
| 	void *transfer_buf = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * URBs map to sequences of QTDs: one logical transaction
 | |
| 	 */
 | |
| 	qtd = ehci_qtd_alloc(oxu);
 | |
| 	if (unlikely(!qtd))
 | |
| 		return NULL;
 | |
| 	list_add_tail(&qtd->qtd_list, head);
 | |
| 	qtd->urb = urb;
 | |
| 
 | |
| 	token = QTD_STS_ACTIVE;
 | |
| 	token |= (EHCI_TUNE_CERR << 10);
 | |
| 	/* for split transactions, SplitXState initialized to zero */
 | |
| 
 | |
| 	len = urb->transfer_buffer_length;
 | |
| 	is_input = usb_pipein(urb->pipe);
 | |
| 	if (!urb->transfer_buffer && urb->transfer_buffer_length && is_input)
 | |
| 		urb->transfer_buffer = phys_to_virt(urb->transfer_dma);
 | |
| 
 | |
| 	if (usb_pipecontrol(urb->pipe)) {
 | |
| 		/* SETUP pid */
 | |
| 		ret = oxu_buf_alloc(oxu, qtd, sizeof(struct usb_ctrlrequest));
 | |
| 		if (ret)
 | |
| 			goto cleanup;
 | |
| 
 | |
| 		qtd_fill(qtd, qtd->buffer_dma, sizeof(struct usb_ctrlrequest),
 | |
| 				token | (2 /* "setup" */ << 8), 8);
 | |
| 		memcpy(qtd->buffer, qtd->urb->setup_packet,
 | |
| 				sizeof(struct usb_ctrlrequest));
 | |
| 
 | |
| 		/* ... and always at least one more pid */
 | |
| 		token ^= QTD_TOGGLE;
 | |
| 		qtd_prev = qtd;
 | |
| 		qtd = ehci_qtd_alloc(oxu);
 | |
| 		if (unlikely(!qtd))
 | |
| 			goto cleanup;
 | |
| 		qtd->urb = urb;
 | |
| 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
 | |
| 		list_add_tail(&qtd->qtd_list, head);
 | |
| 
 | |
| 		/* for zero length DATA stages, STATUS is always IN */
 | |
| 		if (len == 0)
 | |
| 			token |= (1 /* "in" */ << 8);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Data transfer stage: buffer setup
 | |
| 	 */
 | |
| 
 | |
| 	ret = oxu_buf_alloc(oxu, qtd, len);
 | |
| 	if (ret)
 | |
| 		goto cleanup;
 | |
| 
 | |
| 	buf = qtd->buffer_dma;
 | |
| 	transfer_buf = urb->transfer_buffer;
 | |
| 
 | |
| 	if (!is_input)
 | |
| 		memcpy(qtd->buffer, qtd->urb->transfer_buffer, len);
 | |
| 
 | |
| 	if (is_input)
 | |
| 		token |= (1 /* "in" */ << 8);
 | |
| 	/* else it's already initted to "out" pid (0 << 8) */
 | |
| 
 | |
| 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
 | |
| 
 | |
| 	/*
 | |
| 	 * buffer gets wrapped in one or more qtds;
 | |
| 	 * last one may be "short" (including zero len)
 | |
| 	 * and may serve as a control status ack
 | |
| 	 */
 | |
| 	for (;;) {
 | |
| 		int this_qtd_len;
 | |
| 
 | |
| 		this_qtd_len = qtd_fill(qtd, buf, len, token, maxpacket);
 | |
| 		qtd->transfer_buffer = transfer_buf;
 | |
| 		len -= this_qtd_len;
 | |
| 		buf += this_qtd_len;
 | |
| 		transfer_buf += this_qtd_len;
 | |
| 		if (is_input)
 | |
| 			qtd->hw_alt_next = oxu->async->hw_alt_next;
 | |
| 
 | |
| 		/* qh makes control packets use qtd toggle; maybe switch it */
 | |
| 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
 | |
| 			token ^= QTD_TOGGLE;
 | |
| 
 | |
| 		if (likely(len <= 0))
 | |
| 			break;
 | |
| 
 | |
| 		qtd_prev = qtd;
 | |
| 		qtd = ehci_qtd_alloc(oxu);
 | |
| 		if (unlikely(!qtd))
 | |
| 			goto cleanup;
 | |
| 		if (likely(len > 0)) {
 | |
| 			ret = oxu_buf_alloc(oxu, qtd, len);
 | |
| 			if (ret)
 | |
| 				goto cleanup;
 | |
| 		}
 | |
| 		qtd->urb = urb;
 | |
| 		qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
 | |
| 		list_add_tail(&qtd->qtd_list, head);
 | |
| 	}
 | |
| 
 | |
| 	/* unless the bulk/interrupt caller wants a chance to clean
 | |
| 	 * up after short reads, hc should advance qh past this urb
 | |
| 	 */
 | |
| 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
 | |
| 				|| usb_pipecontrol(urb->pipe)))
 | |
| 		qtd->hw_alt_next = EHCI_LIST_END;
 | |
| 
 | |
| 	/*
 | |
| 	 * control requests may need a terminating data "status" ack;
 | |
| 	 * bulk ones may need a terminating short packet (zero length).
 | |
| 	 */
 | |
| 	if (likely(urb->transfer_buffer_length != 0)) {
 | |
| 		int	one_more = 0;
 | |
| 
 | |
| 		if (usb_pipecontrol(urb->pipe)) {
 | |
| 			one_more = 1;
 | |
| 			token ^= 0x0100;	/* "in" <--> "out"  */
 | |
| 			token |= QTD_TOGGLE;	/* force DATA1 */
 | |
| 		} else if (usb_pipebulk(urb->pipe)
 | |
| 				&& (urb->transfer_flags & URB_ZERO_PACKET)
 | |
| 				&& !(urb->transfer_buffer_length % maxpacket)) {
 | |
| 			one_more = 1;
 | |
| 		}
 | |
| 		if (one_more) {
 | |
| 			qtd_prev = qtd;
 | |
| 			qtd = ehci_qtd_alloc(oxu);
 | |
| 			if (unlikely(!qtd))
 | |
| 				goto cleanup;
 | |
| 			qtd->urb = urb;
 | |
| 			qtd_prev->hw_next = QTD_NEXT(qtd->qtd_dma);
 | |
| 			list_add_tail(&qtd->qtd_list, head);
 | |
| 
 | |
| 			/* never any data in such packets */
 | |
| 			qtd_fill(qtd, 0, 0, token, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* by default, enable interrupt on urb completion */
 | |
| 	qtd->hw_token |= cpu_to_le32(QTD_IOC);
 | |
| 	return head;
 | |
| 
 | |
| cleanup:
 | |
| 	qtd_list_free(oxu, urb, head);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Each QH holds a qtd list; a QH is used for everything except iso.
 | |
|  *
 | |
|  * For interrupt urbs, the scheduler must set the microframe scheduling
 | |
|  * mask(s) each time the QH gets scheduled.  For highspeed, that's
 | |
|  * just one microframe in the s-mask.  For split interrupt transactions
 | |
|  * there are additional complications: c-mask, maybe FSTNs.
 | |
|  */
 | |
| static struct ehci_qh *qh_make(struct oxu_hcd *oxu,
 | |
| 				struct urb *urb, gfp_t flags)
 | |
| {
 | |
| 	struct ehci_qh *qh = oxu_qh_alloc(oxu);
 | |
| 	u32 info1 = 0, info2 = 0;
 | |
| 	int is_input, type;
 | |
| 	int maxp = 0;
 | |
| 
 | |
| 	if (!qh)
 | |
| 		return qh;
 | |
| 
 | |
| 	/*
 | |
| 	 * init endpoint/device data for this QH
 | |
| 	 */
 | |
| 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
 | |
| 	info1 |= usb_pipedevice(urb->pipe) << 0;
 | |
| 
 | |
| 	is_input = usb_pipein(urb->pipe);
 | |
| 	type = usb_pipetype(urb->pipe);
 | |
| 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
 | |
| 
 | |
| 	/* Compute interrupt scheduling parameters just once, and save.
 | |
| 	 * - allowing for high bandwidth, how many nsec/uframe are used?
 | |
| 	 * - split transactions need a second CSPLIT uframe; same question
 | |
| 	 * - splits also need a schedule gap (for full/low speed I/O)
 | |
| 	 * - qh has a polling interval
 | |
| 	 *
 | |
| 	 * For control/bulk requests, the HC or TT handles these.
 | |
| 	 */
 | |
| 	if (type == PIPE_INTERRUPT) {
 | |
| 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
 | |
| 								is_input, 0,
 | |
| 				hb_mult(maxp) * max_packet(maxp)));
 | |
| 		qh->start = NO_FRAME;
 | |
| 
 | |
| 		if (urb->dev->speed == USB_SPEED_HIGH) {
 | |
| 			qh->c_usecs = 0;
 | |
| 			qh->gap_uf = 0;
 | |
| 
 | |
| 			qh->period = urb->interval >> 3;
 | |
| 			if (qh->period == 0 && urb->interval != 1) {
 | |
| 				/* NOTE interval 2 or 4 uframes could work.
 | |
| 				 * But interval 1 scheduling is simpler, and
 | |
| 				 * includes high bandwidth.
 | |
| 				 */
 | |
| 				oxu_dbg(oxu, "intr period %d uframes, NYET!\n",
 | |
| 					urb->interval);
 | |
| 				goto done;
 | |
| 			}
 | |
| 		} else {
 | |
| 			struct usb_tt	*tt = urb->dev->tt;
 | |
| 			int		think_time;
 | |
| 
 | |
| 			/* gap is f(FS/LS transfer times) */
 | |
| 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
 | |
| 					is_input, 0, maxp) / (125 * 1000);
 | |
| 
 | |
| 			/* FIXME this just approximates SPLIT/CSPLIT times */
 | |
| 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
 | |
| 				qh->c_usecs = qh->usecs + HS_USECS(0);
 | |
| 				qh->usecs = HS_USECS(1);
 | |
| 			} else {		/* SPLIT+DATA, gap, CSPLIT */
 | |
| 				qh->usecs += HS_USECS(1);
 | |
| 				qh->c_usecs = HS_USECS(0);
 | |
| 			}
 | |
| 
 | |
| 			think_time = tt ? tt->think_time : 0;
 | |
| 			qh->tt_usecs = NS_TO_US(think_time +
 | |
| 					usb_calc_bus_time(urb->dev->speed,
 | |
| 					is_input, 0, max_packet(maxp)));
 | |
| 			qh->period = urb->interval;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* support for tt scheduling, and access to toggles */
 | |
| 	qh->dev = urb->dev;
 | |
| 
 | |
| 	/* using TT? */
 | |
| 	switch (urb->dev->speed) {
 | |
| 	case USB_SPEED_LOW:
 | |
| 		info1 |= (1 << 12);	/* EPS "low" */
 | |
| 		fallthrough;
 | |
| 
 | |
| 	case USB_SPEED_FULL:
 | |
| 		/* EPS 0 means "full" */
 | |
| 		if (type != PIPE_INTERRUPT)
 | |
| 			info1 |= (EHCI_TUNE_RL_TT << 28);
 | |
| 		if (type == PIPE_CONTROL) {
 | |
| 			info1 |= (1 << 27);	/* for TT */
 | |
| 			info1 |= 1 << 14;	/* toggle from qtd */
 | |
| 		}
 | |
| 		info1 |= maxp << 16;
 | |
| 
 | |
| 		info2 |= (EHCI_TUNE_MULT_TT << 30);
 | |
| 		info2 |= urb->dev->ttport << 23;
 | |
| 
 | |
| 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case USB_SPEED_HIGH:		/* no TT involved */
 | |
| 		info1 |= (2 << 12);	/* EPS "high" */
 | |
| 		if (type == PIPE_CONTROL) {
 | |
| 			info1 |= (EHCI_TUNE_RL_HS << 28);
 | |
| 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
 | |
| 			info1 |= 1 << 14;	/* toggle from qtd */
 | |
| 			info2 |= (EHCI_TUNE_MULT_HS << 30);
 | |
| 		} else if (type == PIPE_BULK) {
 | |
| 			info1 |= (EHCI_TUNE_RL_HS << 28);
 | |
| 			info1 |= 512 << 16;	/* usb2 fixed maxpacket */
 | |
| 			info2 |= (EHCI_TUNE_MULT_HS << 30);
 | |
| 		} else {		/* PIPE_INTERRUPT */
 | |
| 			info1 |= max_packet(maxp) << 16;
 | |
| 			info2 |= hb_mult(maxp) << 30;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		oxu_dbg(oxu, "bogus dev %p speed %d\n", urb->dev, urb->dev->speed);
 | |
| done:
 | |
| 		qh_put(qh);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
 | |
| 
 | |
| 	/* init as live, toggle clear, advance to dummy */
 | |
| 	qh->qh_state = QH_STATE_IDLE;
 | |
| 	qh->hw_info1 = cpu_to_le32(info1);
 | |
| 	qh->hw_info2 = cpu_to_le32(info2);
 | |
| 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
 | |
| 	qh_refresh(oxu, qh);
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| /* Move qh (and its qtds) onto async queue; maybe enable queue.
 | |
|  */
 | |
| static void qh_link_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	__le32 dma = QH_NEXT(qh->qh_dma);
 | |
| 	struct ehci_qh *head;
 | |
| 
 | |
| 	/* (re)start the async schedule? */
 | |
| 	head = oxu->async;
 | |
| 	timer_action_done(oxu, TIMER_ASYNC_OFF);
 | |
| 	if (!head->qh_next.qh) {
 | |
| 		u32	cmd = readl(&oxu->regs->command);
 | |
| 
 | |
| 		if (!(cmd & CMD_ASE)) {
 | |
| 			/* in case a clear of CMD_ASE didn't take yet */
 | |
| 			(void)handshake(oxu, &oxu->regs->status,
 | |
| 					STS_ASS, 0, 150);
 | |
| 			cmd |= CMD_ASE | CMD_RUN;
 | |
| 			writel(cmd, &oxu->regs->command);
 | |
| 			oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
 | |
| 			/* posted write need not be known to HC yet ... */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
 | |
| 	if (qh->qh_state == QH_STATE_IDLE)
 | |
| 		qh_refresh(oxu, qh);
 | |
| 
 | |
| 	/* splice right after start */
 | |
| 	qh->qh_next = head->qh_next;
 | |
| 	qh->hw_next = head->hw_next;
 | |
| 	wmb();
 | |
| 
 | |
| 	head->qh_next.qh = qh;
 | |
| 	head->hw_next = dma;
 | |
| 
 | |
| 	qh->qh_state = QH_STATE_LINKED;
 | |
| 	/* qtd completions reported later by interrupt */
 | |
| }
 | |
| 
 | |
| #define	QH_ADDR_MASK	cpu_to_le32(0x7f)
 | |
| 
 | |
| /*
 | |
|  * For control/bulk/interrupt, return QH with these TDs appended.
 | |
|  * Allocates and initializes the QH if necessary.
 | |
|  * Returns null if it can't allocate a QH it needs to.
 | |
|  * If the QH has TDs (urbs) already, that's great.
 | |
|  */
 | |
| static struct ehci_qh *qh_append_tds(struct oxu_hcd *oxu,
 | |
| 				struct urb *urb, struct list_head *qtd_list,
 | |
| 				int epnum, void	**ptr)
 | |
| {
 | |
| 	struct ehci_qh *qh = NULL;
 | |
| 
 | |
| 	qh = (struct ehci_qh *) *ptr;
 | |
| 	if (unlikely(qh == NULL)) {
 | |
| 		/* can't sleep here, we have oxu->lock... */
 | |
| 		qh = qh_make(oxu, urb, GFP_ATOMIC);
 | |
| 		*ptr = qh;
 | |
| 	}
 | |
| 	if (likely(qh != NULL)) {
 | |
| 		struct ehci_qtd	*qtd;
 | |
| 
 | |
| 		if (unlikely(list_empty(qtd_list)))
 | |
| 			qtd = NULL;
 | |
| 		else
 | |
| 			qtd = list_entry(qtd_list->next, struct ehci_qtd,
 | |
| 					qtd_list);
 | |
| 
 | |
| 		/* control qh may need patching ... */
 | |
| 		if (unlikely(epnum == 0)) {
 | |
| 
 | |
| 			/* usb_reset_device() briefly reverts to address 0 */
 | |
| 			if (usb_pipedevice(urb->pipe) == 0)
 | |
| 				qh->hw_info1 &= ~QH_ADDR_MASK;
 | |
| 		}
 | |
| 
 | |
| 		/* just one way to queue requests: swap with the dummy qtd.
 | |
| 		 * only hc or qh_refresh() ever modify the overlay.
 | |
| 		 */
 | |
| 		if (likely(qtd != NULL)) {
 | |
| 			struct ehci_qtd	*dummy;
 | |
| 			dma_addr_t dma;
 | |
| 			__le32 token;
 | |
| 
 | |
| 			/* to avoid racing the HC, use the dummy td instead of
 | |
| 			 * the first td of our list (becomes new dummy).  both
 | |
| 			 * tds stay deactivated until we're done, when the
 | |
| 			 * HC is allowed to fetch the old dummy (4.10.2).
 | |
| 			 */
 | |
| 			token = qtd->hw_token;
 | |
| 			qtd->hw_token = HALT_BIT;
 | |
| 			wmb();
 | |
| 			dummy = qh->dummy;
 | |
| 
 | |
| 			dma = dummy->qtd_dma;
 | |
| 			*dummy = *qtd;
 | |
| 			dummy->qtd_dma = dma;
 | |
| 
 | |
| 			list_del(&qtd->qtd_list);
 | |
| 			list_add(&dummy->qtd_list, qtd_list);
 | |
| 			list_splice(qtd_list, qh->qtd_list.prev);
 | |
| 
 | |
| 			ehci_qtd_init(qtd, qtd->qtd_dma);
 | |
| 			qh->dummy = qtd;
 | |
| 
 | |
| 			/* hc must see the new dummy at list end */
 | |
| 			dma = qtd->qtd_dma;
 | |
| 			qtd = list_entry(qh->qtd_list.prev,
 | |
| 					struct ehci_qtd, qtd_list);
 | |
| 			qtd->hw_next = QTD_NEXT(dma);
 | |
| 
 | |
| 			/* let the hc process these next qtds */
 | |
| 			dummy->hw_token = (token & ~(0x80));
 | |
| 			wmb();
 | |
| 			dummy->hw_token = token;
 | |
| 
 | |
| 			urb->hcpriv = qh_get(qh);
 | |
| 		}
 | |
| 	}
 | |
| 	return qh;
 | |
| }
 | |
| 
 | |
| static int submit_async(struct oxu_hcd	*oxu, struct urb *urb,
 | |
| 			struct list_head *qtd_list, gfp_t mem_flags)
 | |
| {
 | |
| 	int epnum = urb->ep->desc.bEndpointAddress;
 | |
| 	unsigned long flags;
 | |
| 	struct ehci_qh *qh = NULL;
 | |
| 	int rc = 0;
 | |
| #ifdef OXU_URB_TRACE
 | |
| 	struct ehci_qtd	*qtd;
 | |
| 
 | |
| 	qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
 | |
| 
 | |
| 	oxu_dbg(oxu, "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
 | |
| 		__func__, urb->dev->devpath, urb,
 | |
| 		epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
 | |
| 		urb->transfer_buffer_length,
 | |
| 		qtd, urb->ep->hcpriv);
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_irqsave(&oxu->lock, flags);
 | |
| 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
 | |
| 		rc = -ESHUTDOWN;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
 | |
| 	if (unlikely(qh == NULL)) {
 | |
| 		rc = -ENOMEM;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* Control/bulk operations through TTs don't need scheduling,
 | |
| 	 * the HC and TT handle it when the TT has a buffer ready.
 | |
| 	 */
 | |
| 	if (likely(qh->qh_state == QH_STATE_IDLE))
 | |
| 		qh_link_async(oxu, qh_get(qh));
 | |
| done:
 | |
| 	spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| 	if (unlikely(qh == NULL))
 | |
| 		qtd_list_free(oxu, urb, qtd_list);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* The async qh for the qtds being reclaimed are now unlinked from the HC */
 | |
| 
 | |
| static void end_unlink_async(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	struct ehci_qh *qh = oxu->reclaim;
 | |
| 	struct ehci_qh *next;
 | |
| 
 | |
| 	timer_action_done(oxu, TIMER_IAA_WATCHDOG);
 | |
| 
 | |
| 	qh->qh_state = QH_STATE_IDLE;
 | |
| 	qh->qh_next.qh = NULL;
 | |
| 	qh_put(qh);			/* refcount from reclaim */
 | |
| 
 | |
| 	/* other unlink(s) may be pending (in QH_STATE_UNLINK_WAIT) */
 | |
| 	next = qh->reclaim;
 | |
| 	oxu->reclaim = next;
 | |
| 	oxu->reclaim_ready = 0;
 | |
| 	qh->reclaim = NULL;
 | |
| 
 | |
| 	qh_completions(oxu, qh);
 | |
| 
 | |
| 	if (!list_empty(&qh->qtd_list)
 | |
| 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
 | |
| 		qh_link_async(oxu, qh);
 | |
| 	else {
 | |
| 		qh_put(qh);		/* refcount from async list */
 | |
| 
 | |
| 		/* it's not free to turn the async schedule on/off; leave it
 | |
| 		 * active but idle for a while once it empties.
 | |
| 		 */
 | |
| 		if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state)
 | |
| 				&& oxu->async->qh_next.qh == NULL)
 | |
| 			timer_action(oxu, TIMER_ASYNC_OFF);
 | |
| 	}
 | |
| 
 | |
| 	if (next) {
 | |
| 		oxu->reclaim = NULL;
 | |
| 		start_unlink_async(oxu, next);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* makes sure the async qh will become idle */
 | |
| /* caller must own oxu->lock */
 | |
| 
 | |
| static void start_unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	int cmd = readl(&oxu->regs->command);
 | |
| 	struct ehci_qh *prev;
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	assert_spin_locked(&oxu->lock);
 | |
| 	BUG_ON(oxu->reclaim || (qh->qh_state != QH_STATE_LINKED
 | |
| 				&& qh->qh_state != QH_STATE_UNLINK_WAIT));
 | |
| #endif
 | |
| 
 | |
| 	/* stop async schedule right now? */
 | |
| 	if (unlikely(qh == oxu->async)) {
 | |
| 		/* can't get here without STS_ASS set */
 | |
| 		if (oxu_to_hcd(oxu)->state != HC_STATE_HALT
 | |
| 				&& !oxu->reclaim) {
 | |
| 			/* ... and CMD_IAAD clear */
 | |
| 			writel(cmd & ~CMD_ASE, &oxu->regs->command);
 | |
| 			wmb();
 | |
| 			/* handshake later, if we need to */
 | |
| 			timer_action_done(oxu, TIMER_ASYNC_OFF);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	qh->qh_state = QH_STATE_UNLINK;
 | |
| 	oxu->reclaim = qh = qh_get(qh);
 | |
| 
 | |
| 	prev = oxu->async;
 | |
| 	while (prev->qh_next.qh != qh)
 | |
| 		prev = prev->qh_next.qh;
 | |
| 
 | |
| 	prev->hw_next = qh->hw_next;
 | |
| 	prev->qh_next = qh->qh_next;
 | |
| 	wmb();
 | |
| 
 | |
| 	if (unlikely(oxu_to_hcd(oxu)->state == HC_STATE_HALT)) {
 | |
| 		/* if (unlikely(qh->reclaim != 0))
 | |
| 		 *	this will recurse, probably not much
 | |
| 		 */
 | |
| 		end_unlink_async(oxu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	oxu->reclaim_ready = 0;
 | |
| 	cmd |= CMD_IAAD;
 | |
| 	writel(cmd, &oxu->regs->command);
 | |
| 	(void) readl(&oxu->regs->command);
 | |
| 	timer_action(oxu, TIMER_IAA_WATCHDOG);
 | |
| }
 | |
| 
 | |
| static void scan_async(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	struct ehci_qh *qh;
 | |
| 	enum ehci_timer_action action = TIMER_IO_WATCHDOG;
 | |
| 
 | |
| 	if (!++(oxu->stamp))
 | |
| 		oxu->stamp++;
 | |
| 	timer_action_done(oxu, TIMER_ASYNC_SHRINK);
 | |
| rescan:
 | |
| 	qh = oxu->async->qh_next.qh;
 | |
| 	if (likely(qh != NULL)) {
 | |
| 		do {
 | |
| 			/* clean any finished work for this qh */
 | |
| 			if (!list_empty(&qh->qtd_list)
 | |
| 					&& qh->stamp != oxu->stamp) {
 | |
| 				int temp;
 | |
| 
 | |
| 				/* unlinks could happen here; completion
 | |
| 				 * reporting drops the lock.  rescan using
 | |
| 				 * the latest schedule, but don't rescan
 | |
| 				 * qhs we already finished (no looping).
 | |
| 				 */
 | |
| 				qh = qh_get(qh);
 | |
| 				qh->stamp = oxu->stamp;
 | |
| 				temp = qh_completions(oxu, qh);
 | |
| 				qh_put(qh);
 | |
| 				if (temp != 0)
 | |
| 					goto rescan;
 | |
| 			}
 | |
| 
 | |
| 			/* unlink idle entries, reducing HC PCI usage as well
 | |
| 			 * as HCD schedule-scanning costs.  delay for any qh
 | |
| 			 * we just scanned, there's a not-unusual case that it
 | |
| 			 * doesn't stay idle for long.
 | |
| 			 * (plus, avoids some kind of re-activation race.)
 | |
| 			 */
 | |
| 			if (list_empty(&qh->qtd_list)) {
 | |
| 				if (qh->stamp == oxu->stamp)
 | |
| 					action = TIMER_ASYNC_SHRINK;
 | |
| 				else if (!oxu->reclaim
 | |
| 					    && qh->qh_state == QH_STATE_LINKED)
 | |
| 					start_unlink_async(oxu, qh);
 | |
| 			}
 | |
| 
 | |
| 			qh = qh->qh_next.qh;
 | |
| 		} while (qh);
 | |
| 	}
 | |
| 	if (action == TIMER_ASYNC_SHRINK)
 | |
| 		timer_action(oxu, TIMER_ASYNC_SHRINK);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * periodic_next_shadow - return "next" pointer on shadow list
 | |
|  * @periodic: host pointer to qh/itd/sitd
 | |
|  * @tag: hardware tag for type of this record
 | |
|  */
 | |
| static union ehci_shadow *periodic_next_shadow(union ehci_shadow *periodic,
 | |
| 						__le32 tag)
 | |
| {
 | |
| 	switch (tag) {
 | |
| 	default:
 | |
| 	case Q_TYPE_QH:
 | |
| 		return &periodic->qh->qh_next;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* caller must hold oxu->lock */
 | |
| static void periodic_unlink(struct oxu_hcd *oxu, unsigned frame, void *ptr)
 | |
| {
 | |
| 	union ehci_shadow *prev_p = &oxu->pshadow[frame];
 | |
| 	__le32 *hw_p = &oxu->periodic[frame];
 | |
| 	union ehci_shadow here = *prev_p;
 | |
| 
 | |
| 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
 | |
| 	while (here.ptr && here.ptr != ptr) {
 | |
| 		prev_p = periodic_next_shadow(prev_p, Q_NEXT_TYPE(*hw_p));
 | |
| 		hw_p = here.hw_next;
 | |
| 		here = *prev_p;
 | |
| 	}
 | |
| 	/* an interrupt entry (at list end) could have been shared */
 | |
| 	if (!here.ptr)
 | |
| 		return;
 | |
| 
 | |
| 	/* update shadow and hardware lists ... the old "next" pointers
 | |
| 	 * from ptr may still be in use, the caller updates them.
 | |
| 	 */
 | |
| 	*prev_p = *periodic_next_shadow(&here, Q_NEXT_TYPE(*hw_p));
 | |
| 	*hw_p = *here.hw_next;
 | |
| }
 | |
| 
 | |
| /* how many of the uframe's 125 usecs are allocated? */
 | |
| static unsigned short periodic_usecs(struct oxu_hcd *oxu,
 | |
| 					unsigned frame, unsigned uframe)
 | |
| {
 | |
| 	__le32 *hw_p = &oxu->periodic[frame];
 | |
| 	union ehci_shadow *q = &oxu->pshadow[frame];
 | |
| 	unsigned usecs = 0;
 | |
| 
 | |
| 	while (q->ptr) {
 | |
| 		switch (Q_NEXT_TYPE(*hw_p)) {
 | |
| 		case Q_TYPE_QH:
 | |
| 		default:
 | |
| 			/* is it in the S-mask? */
 | |
| 			if (q->qh->hw_info2 & cpu_to_le32(1 << uframe))
 | |
| 				usecs += q->qh->usecs;
 | |
| 			/* ... or C-mask? */
 | |
| 			if (q->qh->hw_info2 & cpu_to_le32(1 << (8 + uframe)))
 | |
| 				usecs += q->qh->c_usecs;
 | |
| 			hw_p = &q->qh->hw_next;
 | |
| 			q = &q->qh->qh_next;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| #ifdef DEBUG
 | |
| 	if (usecs > 100)
 | |
| 		oxu_err(oxu, "uframe %d sched overrun: %d usecs\n",
 | |
| 						frame * 8 + uframe, usecs);
 | |
| #endif
 | |
| 	return usecs;
 | |
| }
 | |
| 
 | |
| static int enable_periodic(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 	int status;
 | |
| 
 | |
| 	/* did clearing PSE did take effect yet?
 | |
| 	 * takes effect only at frame boundaries...
 | |
| 	 */
 | |
| 	status = handshake(oxu, &oxu->regs->status, STS_PSS, 0, 9 * 125);
 | |
| 	if (status != 0) {
 | |
| 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 | |
| 		usb_hc_died(oxu_to_hcd(oxu));
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	cmd = readl(&oxu->regs->command) | CMD_PSE;
 | |
| 	writel(cmd, &oxu->regs->command);
 | |
| 	/* posted write ... PSS happens later */
 | |
| 	oxu_to_hcd(oxu)->state = HC_STATE_RUNNING;
 | |
| 
 | |
| 	/* make sure ehci_work scans these */
 | |
| 	oxu->next_uframe = readl(&oxu->regs->frame_index)
 | |
| 		% (oxu->periodic_size << 3);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int disable_periodic(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	u32 cmd;
 | |
| 	int status;
 | |
| 
 | |
| 	/* did setting PSE not take effect yet?
 | |
| 	 * takes effect only at frame boundaries...
 | |
| 	 */
 | |
| 	status = handshake(oxu, &oxu->regs->status, STS_PSS, STS_PSS, 9 * 125);
 | |
| 	if (status != 0) {
 | |
| 		oxu_to_hcd(oxu)->state = HC_STATE_HALT;
 | |
| 		usb_hc_died(oxu_to_hcd(oxu));
 | |
| 		return status;
 | |
| 	}
 | |
| 
 | |
| 	cmd = readl(&oxu->regs->command) & ~CMD_PSE;
 | |
| 	writel(cmd, &oxu->regs->command);
 | |
| 	/* posted write ... */
 | |
| 
 | |
| 	oxu->next_uframe = -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* periodic schedule slots have iso tds (normal or split) first, then a
 | |
|  * sparse tree for active interrupt transfers.
 | |
|  *
 | |
|  * this just links in a qh; caller guarantees uframe masks are set right.
 | |
|  * no FSTN support (yet; oxu 0.96+)
 | |
|  */
 | |
| static int qh_link_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	unsigned period = qh->period;
 | |
| 
 | |
| 	dev_dbg(&qh->dev->dev,
 | |
| 		"link qh%d-%04x/%p start %d [%d/%d us]\n",
 | |
| 		period, le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
 | |
| 		qh, qh->start, qh->usecs, qh->c_usecs);
 | |
| 
 | |
| 	/* high bandwidth, or otherwise every microframe */
 | |
| 	if (period == 0)
 | |
| 		period = 1;
 | |
| 
 | |
| 	for (i = qh->start; i < oxu->periodic_size; i += period) {
 | |
| 		union ehci_shadow	*prev = &oxu->pshadow[i];
 | |
| 		__le32			*hw_p = &oxu->periodic[i];
 | |
| 		union ehci_shadow	here = *prev;
 | |
| 		__le32			type = 0;
 | |
| 
 | |
| 		/* skip the iso nodes at list head */
 | |
| 		while (here.ptr) {
 | |
| 			type = Q_NEXT_TYPE(*hw_p);
 | |
| 			if (type == Q_TYPE_QH)
 | |
| 				break;
 | |
| 			prev = periodic_next_shadow(prev, type);
 | |
| 			hw_p = &here.qh->hw_next;
 | |
| 			here = *prev;
 | |
| 		}
 | |
| 
 | |
| 		/* sorting each branch by period (slow-->fast)
 | |
| 		 * enables sharing interior tree nodes
 | |
| 		 */
 | |
| 		while (here.ptr && qh != here.qh) {
 | |
| 			if (qh->period > here.qh->period)
 | |
| 				break;
 | |
| 			prev = &here.qh->qh_next;
 | |
| 			hw_p = &here.qh->hw_next;
 | |
| 			here = *prev;
 | |
| 		}
 | |
| 		/* link in this qh, unless some earlier pass did that */
 | |
| 		if (qh != here.qh) {
 | |
| 			qh->qh_next = here;
 | |
| 			if (here.qh)
 | |
| 				qh->hw_next = *hw_p;
 | |
| 			wmb();
 | |
| 			prev->qh = qh;
 | |
| 			*hw_p = QH_NEXT(qh->qh_dma);
 | |
| 		}
 | |
| 	}
 | |
| 	qh->qh_state = QH_STATE_LINKED;
 | |
| 	qh_get(qh);
 | |
| 
 | |
| 	/* update per-qh bandwidth for usbfs */
 | |
| 	oxu_to_hcd(oxu)->self.bandwidth_allocated += qh->period
 | |
| 		? ((qh->usecs + qh->c_usecs) / qh->period)
 | |
| 		: (qh->usecs * 8);
 | |
| 
 | |
| 	/* maybe enable periodic schedule processing */
 | |
| 	if (!oxu->periodic_sched++)
 | |
| 		return enable_periodic(oxu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void qh_unlink_periodic(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	unsigned period;
 | |
| 
 | |
| 	/* FIXME:
 | |
| 	 *   IF this isn't high speed
 | |
| 	 *   and this qh is active in the current uframe
 | |
| 	 *   (and overlay token SplitXstate is false?)
 | |
| 	 * THEN
 | |
| 	 *   qh->hw_info1 |= cpu_to_le32(1 << 7 "ignore");
 | |
| 	 */
 | |
| 
 | |
| 	/* high bandwidth, or otherwise part of every microframe */
 | |
| 	period = qh->period;
 | |
| 	if (period == 0)
 | |
| 		period = 1;
 | |
| 
 | |
| 	for (i = qh->start; i < oxu->periodic_size; i += period)
 | |
| 		periodic_unlink(oxu, i, qh);
 | |
| 
 | |
| 	/* update per-qh bandwidth for usbfs */
 | |
| 	oxu_to_hcd(oxu)->self.bandwidth_allocated -= qh->period
 | |
| 		? ((qh->usecs + qh->c_usecs) / qh->period)
 | |
| 		: (qh->usecs * 8);
 | |
| 
 | |
| 	dev_dbg(&qh->dev->dev,
 | |
| 		"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
 | |
| 		qh->period,
 | |
| 		le32_to_cpup(&qh->hw_info2) & (QH_CMASK | QH_SMASK),
 | |
| 		qh, qh->start, qh->usecs, qh->c_usecs);
 | |
| 
 | |
| 	/* qh->qh_next still "live" to HC */
 | |
| 	qh->qh_state = QH_STATE_UNLINK;
 | |
| 	qh->qh_next.ptr = NULL;
 | |
| 	qh_put(qh);
 | |
| 
 | |
| 	/* maybe turn off periodic schedule */
 | |
| 	oxu->periodic_sched--;
 | |
| 	if (!oxu->periodic_sched)
 | |
| 		(void) disable_periodic(oxu);
 | |
| }
 | |
| 
 | |
| static void intr_deschedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	unsigned wait;
 | |
| 
 | |
| 	qh_unlink_periodic(oxu, qh);
 | |
| 
 | |
| 	/* simple/paranoid:  always delay, expecting the HC needs to read
 | |
| 	 * qh->hw_next or finish a writeback after SPLIT/CSPLIT ... and
 | |
| 	 * expect hub_wq to clean up after any CSPLITs we won't issue.
 | |
| 	 * active high speed queues may need bigger delays...
 | |
| 	 */
 | |
| 	if (list_empty(&qh->qtd_list)
 | |
| 		|| (cpu_to_le32(QH_CMASK) & qh->hw_info2) != 0)
 | |
| 		wait = 2;
 | |
| 	else
 | |
| 		wait = 55;	/* worst case: 3 * 1024 */
 | |
| 
 | |
| 	udelay(wait);
 | |
| 	qh->qh_state = QH_STATE_IDLE;
 | |
| 	qh->hw_next = EHCI_LIST_END;
 | |
| 	wmb();
 | |
| }
 | |
| 
 | |
| static int check_period(struct oxu_hcd *oxu,
 | |
| 			unsigned frame, unsigned uframe,
 | |
| 			unsigned period, unsigned usecs)
 | |
| {
 | |
| 	int claimed;
 | |
| 
 | |
| 	/* complete split running into next frame?
 | |
| 	 * given FSTN support, we could sometimes check...
 | |
| 	 */
 | |
| 	if (uframe >= 8)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * 80% periodic == 100 usec/uframe available
 | |
| 	 * convert "usecs we need" to "max already claimed"
 | |
| 	 */
 | |
| 	usecs = 100 - usecs;
 | |
| 
 | |
| 	/* we "know" 2 and 4 uframe intervals were rejected; so
 | |
| 	 * for period 0, check _every_ microframe in the schedule.
 | |
| 	 */
 | |
| 	if (unlikely(period == 0)) {
 | |
| 		do {
 | |
| 			for (uframe = 0; uframe < 7; uframe++) {
 | |
| 				claimed = periodic_usecs(oxu, frame, uframe);
 | |
| 				if (claimed > usecs)
 | |
| 					return 0;
 | |
| 			}
 | |
| 		} while ((frame += 1) < oxu->periodic_size);
 | |
| 
 | |
| 	/* just check the specified uframe, at that period */
 | |
| 	} else {
 | |
| 		do {
 | |
| 			claimed = periodic_usecs(oxu, frame, uframe);
 | |
| 			if (claimed > usecs)
 | |
| 				return 0;
 | |
| 		} while ((frame += period) < oxu->periodic_size);
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int check_intr_schedule(struct oxu_hcd	*oxu,
 | |
| 				unsigned frame, unsigned uframe,
 | |
| 				const struct ehci_qh *qh, __le32 *c_maskp)
 | |
| {
 | |
| 	int retval = -ENOSPC;
 | |
| 
 | |
| 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
 | |
| 		goto done;
 | |
| 
 | |
| 	if (!check_period(oxu, frame, uframe, qh->period, qh->usecs))
 | |
| 		goto done;
 | |
| 	if (!qh->c_usecs) {
 | |
| 		retval = 0;
 | |
| 		*c_maskp = 0;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* "first fit" scheduling policy used the first time through,
 | |
|  * or when the previous schedule slot can't be re-used.
 | |
|  */
 | |
| static int qh_schedule(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	int		status;
 | |
| 	unsigned	uframe;
 | |
| 	__le32		c_mask;
 | |
| 	unsigned	frame;		/* 0..(qh->period - 1), or NO_FRAME */
 | |
| 
 | |
| 	qh_refresh(oxu, qh);
 | |
| 	qh->hw_next = EHCI_LIST_END;
 | |
| 	frame = qh->start;
 | |
| 
 | |
| 	/* reuse the previous schedule slots, if we can */
 | |
| 	if (frame < qh->period) {
 | |
| 		uframe = ffs(le32_to_cpup(&qh->hw_info2) & QH_SMASK);
 | |
| 		status = check_intr_schedule(oxu, frame, --uframe,
 | |
| 				qh, &c_mask);
 | |
| 	} else {
 | |
| 		uframe = 0;
 | |
| 		c_mask = 0;
 | |
| 		status = -ENOSPC;
 | |
| 	}
 | |
| 
 | |
| 	/* else scan the schedule to find a group of slots such that all
 | |
| 	 * uframes have enough periodic bandwidth available.
 | |
| 	 */
 | |
| 	if (status) {
 | |
| 		/* "normal" case, uframing flexible except with splits */
 | |
| 		if (qh->period) {
 | |
| 			frame = qh->period - 1;
 | |
| 			do {
 | |
| 				for (uframe = 0; uframe < 8; uframe++) {
 | |
| 					status = check_intr_schedule(oxu,
 | |
| 							frame, uframe, qh,
 | |
| 							&c_mask);
 | |
| 					if (status == 0)
 | |
| 						break;
 | |
| 				}
 | |
| 			} while (status && frame--);
 | |
| 
 | |
| 		/* qh->period == 0 means every uframe */
 | |
| 		} else {
 | |
| 			frame = 0;
 | |
| 			status = check_intr_schedule(oxu, 0, 0, qh, &c_mask);
 | |
| 		}
 | |
| 		if (status)
 | |
| 			goto done;
 | |
| 		qh->start = frame;
 | |
| 
 | |
| 		/* reset S-frame and (maybe) C-frame masks */
 | |
| 		qh->hw_info2 &= cpu_to_le32(~(QH_CMASK | QH_SMASK));
 | |
| 		qh->hw_info2 |= qh->period
 | |
| 			? cpu_to_le32(1 << uframe)
 | |
| 			: cpu_to_le32(QH_SMASK);
 | |
| 		qh->hw_info2 |= c_mask;
 | |
| 	} else
 | |
| 		oxu_dbg(oxu, "reused qh %p schedule\n", qh);
 | |
| 
 | |
| 	/* stuff into the periodic schedule */
 | |
| 	status = qh_link_periodic(oxu, qh);
 | |
| done:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static int intr_submit(struct oxu_hcd *oxu, struct urb *urb,
 | |
| 			struct list_head *qtd_list, gfp_t mem_flags)
 | |
| {
 | |
| 	unsigned epnum;
 | |
| 	unsigned long flags;
 | |
| 	struct ehci_qh *qh;
 | |
| 	int status = 0;
 | |
| 	struct list_head	empty;
 | |
| 
 | |
| 	/* get endpoint and transfer/schedule data */
 | |
| 	epnum = urb->ep->desc.bEndpointAddress;
 | |
| 
 | |
| 	spin_lock_irqsave(&oxu->lock, flags);
 | |
| 
 | |
| 	if (unlikely(!HCD_HW_ACCESSIBLE(oxu_to_hcd(oxu)))) {
 | |
| 		status = -ESHUTDOWN;
 | |
| 		goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* get qh and force any scheduling errors */
 | |
| 	INIT_LIST_HEAD(&empty);
 | |
| 	qh = qh_append_tds(oxu, urb, &empty, epnum, &urb->ep->hcpriv);
 | |
| 	if (qh == NULL) {
 | |
| 		status = -ENOMEM;
 | |
| 		goto done;
 | |
| 	}
 | |
| 	if (qh->qh_state == QH_STATE_IDLE) {
 | |
| 		status = qh_schedule(oxu, qh);
 | |
| 		if (status != 0)
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	/* then queue the urb's tds to the qh */
 | |
| 	qh = qh_append_tds(oxu, urb, qtd_list, epnum, &urb->ep->hcpriv);
 | |
| 	BUG_ON(qh == NULL);
 | |
| 
 | |
| 	/* ... update usbfs periodic stats */
 | |
| 	oxu_to_hcd(oxu)->self.bandwidth_int_reqs++;
 | |
| 
 | |
| done:
 | |
| 	spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| 	if (status)
 | |
| 		qtd_list_free(oxu, urb, qtd_list);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| static inline int itd_submit(struct oxu_hcd *oxu, struct urb *urb,
 | |
| 						gfp_t mem_flags)
 | |
| {
 | |
| 	oxu_dbg(oxu, "iso support is missing!\n");
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static inline int sitd_submit(struct oxu_hcd *oxu, struct urb *urb,
 | |
| 						gfp_t mem_flags)
 | |
| {
 | |
| 	oxu_dbg(oxu, "split iso support is missing!\n");
 | |
| 	return -ENOSYS;
 | |
| }
 | |
| 
 | |
| static void scan_periodic(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	unsigned frame, clock, now_uframe, mod;
 | |
| 	unsigned modified;
 | |
| 
 | |
| 	mod = oxu->periodic_size << 3;
 | |
| 
 | |
| 	/*
 | |
| 	 * When running, scan from last scan point up to "now"
 | |
| 	 * else clean up by scanning everything that's left.
 | |
| 	 * Touches as few pages as possible:  cache-friendly.
 | |
| 	 */
 | |
| 	now_uframe = oxu->next_uframe;
 | |
| 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
 | |
| 		clock = readl(&oxu->regs->frame_index);
 | |
| 	else
 | |
| 		clock = now_uframe + mod - 1;
 | |
| 	clock %= mod;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		union ehci_shadow	q, *q_p;
 | |
| 		__le32			type, *hw_p;
 | |
| 
 | |
| 		/* don't scan past the live uframe */
 | |
| 		frame = now_uframe >> 3;
 | |
| 		if (frame != (clock >> 3)) {
 | |
| 			/* safe to scan the whole frame at once */
 | |
| 			now_uframe |= 0x07;
 | |
| 		}
 | |
| 
 | |
| restart:
 | |
| 		/* scan each element in frame's queue for completions */
 | |
| 		q_p = &oxu->pshadow[frame];
 | |
| 		hw_p = &oxu->periodic[frame];
 | |
| 		q.ptr = q_p->ptr;
 | |
| 		type = Q_NEXT_TYPE(*hw_p);
 | |
| 		modified = 0;
 | |
| 
 | |
| 		while (q.ptr != NULL) {
 | |
| 			union ehci_shadow temp;
 | |
| 
 | |
| 			switch (type) {
 | |
| 			case Q_TYPE_QH:
 | |
| 				/* handle any completions */
 | |
| 				temp.qh = qh_get(q.qh);
 | |
| 				type = Q_NEXT_TYPE(q.qh->hw_next);
 | |
| 				q = q.qh->qh_next;
 | |
| 				modified = qh_completions(oxu, temp.qh);
 | |
| 				if (unlikely(list_empty(&temp.qh->qtd_list)))
 | |
| 					intr_deschedule(oxu, temp.qh);
 | |
| 				qh_put(temp.qh);
 | |
| 				break;
 | |
| 			default:
 | |
| 				oxu_dbg(oxu, "corrupt type %d frame %d shadow %p\n",
 | |
| 					type, frame, q.ptr);
 | |
| 				q.ptr = NULL;
 | |
| 			}
 | |
| 
 | |
| 			/* assume completion callbacks modify the queue */
 | |
| 			if (unlikely(modified))
 | |
| 				goto restart;
 | |
| 		}
 | |
| 
 | |
| 		/* Stop when we catch up to the HC */
 | |
| 
 | |
| 		/* FIXME:  this assumes we won't get lapped when
 | |
| 		 * latencies climb; that should be rare, but...
 | |
| 		 * detect it, and just go all the way around.
 | |
| 		 * FLR might help detect this case, so long as latencies
 | |
| 		 * don't exceed periodic_size msec (default 1.024 sec).
 | |
| 		 */
 | |
| 
 | |
| 		/* FIXME: likewise assumes HC doesn't halt mid-scan */
 | |
| 
 | |
| 		if (now_uframe == clock) {
 | |
| 			unsigned	now;
 | |
| 
 | |
| 			if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state))
 | |
| 				break;
 | |
| 			oxu->next_uframe = now_uframe;
 | |
| 			now = readl(&oxu->regs->frame_index) % mod;
 | |
| 			if (now_uframe == now)
 | |
| 				break;
 | |
| 
 | |
| 			/* rescan the rest of this frame, then ... */
 | |
| 			clock = now;
 | |
| 		} else {
 | |
| 			now_uframe++;
 | |
| 			now_uframe %= mod;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* On some systems, leaving remote wakeup enabled prevents system shutdown.
 | |
|  * The firmware seems to think that powering off is a wakeup event!
 | |
|  * This routine turns off remote wakeup and everything else, on all ports.
 | |
|  */
 | |
| static void ehci_turn_off_all_ports(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	int port = HCS_N_PORTS(oxu->hcs_params);
 | |
| 
 | |
| 	while (port--)
 | |
| 		writel(PORT_RWC_BITS, &oxu->regs->port_status[port]);
 | |
| }
 | |
| 
 | |
| static void ehci_port_power(struct oxu_hcd *oxu, int is_on)
 | |
| {
 | |
| 	unsigned port;
 | |
| 
 | |
| 	if (!HCS_PPC(oxu->hcs_params))
 | |
| 		return;
 | |
| 
 | |
| 	oxu_dbg(oxu, "...power%s ports...\n", is_on ? "up" : "down");
 | |
| 	for (port = HCS_N_PORTS(oxu->hcs_params); port > 0; ) {
 | |
| 		if (is_on)
 | |
| 			oxu_hub_control(oxu_to_hcd(oxu), SetPortFeature,
 | |
| 				USB_PORT_FEAT_POWER, port--, NULL, 0);
 | |
| 		else
 | |
| 			oxu_hub_control(oxu_to_hcd(oxu), ClearPortFeature,
 | |
| 				USB_PORT_FEAT_POWER, port--, NULL, 0);
 | |
| 	}
 | |
| 
 | |
| 	msleep(20);
 | |
| }
 | |
| 
 | |
| /* Called from some interrupts, timers, and so on.
 | |
|  * It calls driver completion functions, after dropping oxu->lock.
 | |
|  */
 | |
| static void ehci_work(struct oxu_hcd *oxu)
 | |
| {
 | |
| 	timer_action_done(oxu, TIMER_IO_WATCHDOG);
 | |
| 	if (oxu->reclaim_ready)
 | |
| 		end_unlink_async(oxu);
 | |
| 
 | |
| 	/* another CPU may drop oxu->lock during a schedule scan while
 | |
| 	 * it reports urb completions.  this flag guards against bogus
 | |
| 	 * attempts at re-entrant schedule scanning.
 | |
| 	 */
 | |
| 	if (oxu->scanning)
 | |
| 		return;
 | |
| 	oxu->scanning = 1;
 | |
| 	scan_async(oxu);
 | |
| 	if (oxu->next_uframe != -1)
 | |
| 		scan_periodic(oxu);
 | |
| 	oxu->scanning = 0;
 | |
| 
 | |
| 	/* the IO watchdog guards against hardware or driver bugs that
 | |
| 	 * misplace IRQs, and should let us run completely without IRQs.
 | |
| 	 * such lossage has been observed on both VT6202 and VT8235.
 | |
| 	 */
 | |
| 	if (HC_IS_RUNNING(oxu_to_hcd(oxu)->state) &&
 | |
| 			(oxu->async->qh_next.ptr != NULL ||
 | |
| 			 oxu->periodic_sched != 0))
 | |
| 		timer_action(oxu, TIMER_IO_WATCHDOG);
 | |
| }
 | |
| 
 | |
| static void unlink_async(struct oxu_hcd *oxu, struct ehci_qh *qh)
 | |
| {
 | |
| 	/* if we need to use IAA and it's busy, defer */
 | |
| 	if (qh->qh_state == QH_STATE_LINKED
 | |
| 			&& oxu->reclaim
 | |
| 			&& HC_IS_RUNNING(oxu_to_hcd(oxu)->state)) {
 | |
| 		struct ehci_qh		*last;
 | |
| 
 | |
| 		for (last = oxu->reclaim;
 | |
| 				last->reclaim;
 | |
| 				last = last->reclaim)
 | |
| 			continue;
 | |
| 		qh->qh_state = QH_STATE_UNLINK_WAIT;
 | |
| 		last->reclaim = qh;
 | |
| 
 | |
| 	/* bypass IAA if the hc can't care */
 | |
| 	} else if (!HC_IS_RUNNING(oxu_to_hcd(oxu)->state) && oxu->reclaim)
 | |
| 		end_unlink_async(oxu);
 | |
| 
 | |
| 	/* something else might have unlinked the qh by now */
 | |
| 	if (qh->qh_state == QH_STATE_LINKED)
 | |
| 		start_unlink_async(oxu, qh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * USB host controller methods
 | |
|  */
 | |
| 
 | |
| static irqreturn_t oxu210_hcd_irq(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	u32 status, pcd_status = 0;
 | |
| 	int bh;
 | |
| 
 | |
| 	spin_lock(&oxu->lock);
 | |
| 
 | |
| 	status = readl(&oxu->regs->status);
 | |
| 
 | |
| 	/* e.g. cardbus physical eject */
 | |
| 	if (status == ~(u32) 0) {
 | |
| 		oxu_dbg(oxu, "device removed\n");
 | |
| 		goto dead;
 | |
| 	}
 | |
| 
 | |
| 	/* Shared IRQ? */
 | |
| 	status &= INTR_MASK;
 | |
| 	if (!status || unlikely(hcd->state == HC_STATE_HALT)) {
 | |
| 		spin_unlock(&oxu->lock);
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* clear (just) interrupts */
 | |
| 	writel(status, &oxu->regs->status);
 | |
| 	readl(&oxu->regs->command);	/* unblock posted write */
 | |
| 	bh = 0;
 | |
| 
 | |
| #ifdef OXU_VERBOSE_DEBUG
 | |
| 	/* unrequested/ignored: Frame List Rollover */
 | |
| 	dbg_status(oxu, "irq", status);
 | |
| #endif
 | |
| 
 | |
| 	/* INT, ERR, and IAA interrupt rates can be throttled */
 | |
| 
 | |
| 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
 | |
| 	if (likely((status & (STS_INT|STS_ERR)) != 0))
 | |
| 		bh = 1;
 | |
| 
 | |
| 	/* complete the unlinking of some qh [4.15.2.3] */
 | |
| 	if (status & STS_IAA) {
 | |
| 		oxu->reclaim_ready = 1;
 | |
| 		bh = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* remote wakeup [4.3.1] */
 | |
| 	if (status & STS_PCD) {
 | |
| 		unsigned i = HCS_N_PORTS(oxu->hcs_params);
 | |
| 		pcd_status = status;
 | |
| 
 | |
| 		/* resume root hub? */
 | |
| 		if (!(readl(&oxu->regs->command) & CMD_RUN))
 | |
| 			usb_hcd_resume_root_hub(hcd);
 | |
| 
 | |
| 		while (i--) {
 | |
| 			int pstatus = readl(&oxu->regs->port_status[i]);
 | |
| 
 | |
| 			if (pstatus & PORT_OWNER)
 | |
| 				continue;
 | |
| 			if (!(pstatus & PORT_RESUME)
 | |
| 					|| oxu->reset_done[i] != 0)
 | |
| 				continue;
 | |
| 
 | |
| 			/* start USB_RESUME_TIMEOUT resume signaling from this
 | |
| 			 * port, and make hub_wq collect PORT_STAT_C_SUSPEND to
 | |
| 			 * stop that signaling.
 | |
| 			 */
 | |
| 			oxu->reset_done[i] = jiffies +
 | |
| 				msecs_to_jiffies(USB_RESUME_TIMEOUT);
 | |
| 			oxu_dbg(oxu, "port %d remote wakeup\n", i + 1);
 | |
| 			mod_timer(&hcd->rh_timer, oxu->reset_done[i]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* PCI errors [4.15.2.4] */
 | |
| 	if (unlikely((status & STS_FATAL) != 0)) {
 | |
| 		/* bogus "fatal" IRQs appear on some chips... why?  */
 | |
| 		status = readl(&oxu->regs->status);
 | |
| 		dbg_cmd(oxu, "fatal", readl(&oxu->regs->command));
 | |
| 		dbg_status(oxu, "fatal", status);
 | |
| 		if (status & STS_HALT) {
 | |
| 			oxu_err(oxu, "fatal error\n");
 | |
| dead:
 | |
| 			ehci_reset(oxu);
 | |
| 			writel(0, &oxu->regs->configured_flag);
 | |
| 			usb_hc_died(hcd);
 | |
| 			/* generic layer kills/unlinks all urbs, then
 | |
| 			 * uses oxu_stop to clean up the rest
 | |
| 			 */
 | |
| 			bh = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bh)
 | |
| 		ehci_work(oxu);
 | |
| 	spin_unlock(&oxu->lock);
 | |
| 	if (pcd_status & STS_PCD)
 | |
| 		usb_hcd_poll_rh_status(hcd);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t oxu_irq(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	int ret = IRQ_HANDLED;
 | |
| 
 | |
| 	u32 status = oxu_readl(hcd->regs, OXU_CHIPIRQSTATUS);
 | |
| 	u32 enable = oxu_readl(hcd->regs, OXU_CHIPIRQEN_SET);
 | |
| 
 | |
| 	/* Disable all interrupt */
 | |
| 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_CLR, enable);
 | |
| 
 | |
| 	if ((oxu->is_otg && (status & OXU_USBOTGI)) ||
 | |
| 		(!oxu->is_otg && (status & OXU_USBSPHI)))
 | |
| 		oxu210_hcd_irq(hcd);
 | |
| 	else
 | |
| 		ret = IRQ_NONE;
 | |
| 
 | |
| 	/* Enable all interrupt back */
 | |
| 	oxu_writel(hcd->regs, OXU_CHIPIRQEN_SET, enable);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void oxu_watchdog(struct timer_list *t)
 | |
| {
 | |
| 	struct oxu_hcd	*oxu = from_timer(oxu, t, watchdog);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&oxu->lock, flags);
 | |
| 
 | |
| 	/* lost IAA irqs wedge things badly; seen with a vt8235 */
 | |
| 	if (oxu->reclaim) {
 | |
| 		u32 status = readl(&oxu->regs->status);
 | |
| 		if (status & STS_IAA) {
 | |
| 			oxu_vdbg(oxu, "lost IAA\n");
 | |
| 			writel(STS_IAA, &oxu->regs->status);
 | |
| 			oxu->reclaim_ready = 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* stop async processing after it's idled a bit */
 | |
| 	if (test_bit(TIMER_ASYNC_OFF, &oxu->actions))
 | |
| 		start_unlink_async(oxu, oxu->async);
 | |
| 
 | |
| 	/* oxu could run by timer, without IRQs ... */
 | |
| 	ehci_work(oxu);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| }
 | |
| 
 | |
| /* One-time init, only for memory state.
 | |
|  */
 | |
| static int oxu_hcd_init(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	u32 temp;
 | |
| 	int retval;
 | |
| 	u32 hcc_params;
 | |
| 
 | |
| 	spin_lock_init(&oxu->lock);
 | |
| 
 | |
| 	timer_setup(&oxu->watchdog, oxu_watchdog, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * hw default: 1K periodic list heads, one per frame.
 | |
| 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
 | |
| 	 */
 | |
| 	oxu->periodic_size = DEFAULT_I_TDPS;
 | |
| 	retval = ehci_mem_init(oxu, GFP_KERNEL);
 | |
| 	if (retval < 0)
 | |
| 		return retval;
 | |
| 
 | |
| 	/* controllers may cache some of the periodic schedule ... */
 | |
| 	hcc_params = readl(&oxu->caps->hcc_params);
 | |
| 	if (HCC_ISOC_CACHE(hcc_params))		/* full frame cache */
 | |
| 		oxu->i_thresh = 8;
 | |
| 	else					/* N microframes cached */
 | |
| 		oxu->i_thresh = 2 + HCC_ISOC_THRES(hcc_params);
 | |
| 
 | |
| 	oxu->reclaim = NULL;
 | |
| 	oxu->reclaim_ready = 0;
 | |
| 	oxu->next_uframe = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * dedicate a qh for the async ring head, since we couldn't unlink
 | |
| 	 * a 'real' qh without stopping the async schedule [4.8].  use it
 | |
| 	 * as the 'reclamation list head' too.
 | |
| 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
 | |
| 	 * from automatically advancing to the next td after short reads.
 | |
| 	 */
 | |
| 	oxu->async->qh_next.qh = NULL;
 | |
| 	oxu->async->hw_next = QH_NEXT(oxu->async->qh_dma);
 | |
| 	oxu->async->hw_info1 = cpu_to_le32(QH_HEAD);
 | |
| 	oxu->async->hw_token = cpu_to_le32(QTD_STS_HALT);
 | |
| 	oxu->async->hw_qtd_next = EHCI_LIST_END;
 | |
| 	oxu->async->qh_state = QH_STATE_LINKED;
 | |
| 	oxu->async->hw_alt_next = QTD_NEXT(oxu->async->dummy->qtd_dma);
 | |
| 
 | |
| 	/* clear interrupt enables, set irq latency */
 | |
| 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
 | |
| 		log2_irq_thresh = 0;
 | |
| 	temp = 1 << (16 + log2_irq_thresh);
 | |
| 	if (HCC_CANPARK(hcc_params)) {
 | |
| 		/* HW default park == 3, on hardware that supports it (like
 | |
| 		 * NVidia and ALI silicon), maximizes throughput on the async
 | |
| 		 * schedule by avoiding QH fetches between transfers.
 | |
| 		 *
 | |
| 		 * With fast usb storage devices and NForce2, "park" seems to
 | |
| 		 * make problems:  throughput reduction (!), data errors...
 | |
| 		 */
 | |
| 		if (park) {
 | |
| 			park = min(park, (unsigned) 3);
 | |
| 			temp |= CMD_PARK;
 | |
| 			temp |= park << 8;
 | |
| 		}
 | |
| 		oxu_dbg(oxu, "park %d\n", park);
 | |
| 	}
 | |
| 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
 | |
| 		/* periodic schedule size can be smaller than default */
 | |
| 		temp &= ~(3 << 2);
 | |
| 		temp |= (EHCI_TUNE_FLS << 2);
 | |
| 	}
 | |
| 	oxu->command = temp;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Called during probe() after chip reset completes.
 | |
|  */
 | |
| static int oxu_reset(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 
 | |
| 	spin_lock_init(&oxu->mem_lock);
 | |
| 	INIT_LIST_HEAD(&oxu->urb_list);
 | |
| 	oxu->urb_len = 0;
 | |
| 
 | |
| 	if (oxu->is_otg) {
 | |
| 		oxu->caps = hcd->regs + OXU_OTG_CAP_OFFSET;
 | |
| 		oxu->regs = hcd->regs + OXU_OTG_CAP_OFFSET + \
 | |
| 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
 | |
| 
 | |
| 		oxu->mem = hcd->regs + OXU_SPH_MEM;
 | |
| 	} else {
 | |
| 		oxu->caps = hcd->regs + OXU_SPH_CAP_OFFSET;
 | |
| 		oxu->regs = hcd->regs + OXU_SPH_CAP_OFFSET + \
 | |
| 			HC_LENGTH(readl(&oxu->caps->hc_capbase));
 | |
| 
 | |
| 		oxu->mem = hcd->regs + OXU_OTG_MEM;
 | |
| 	}
 | |
| 
 | |
| 	oxu->hcs_params = readl(&oxu->caps->hcs_params);
 | |
| 	oxu->sbrn = 0x20;
 | |
| 
 | |
| 	return oxu_hcd_init(hcd);
 | |
| }
 | |
| 
 | |
| static int oxu_run(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	int retval;
 | |
| 	u32 temp, hcc_params;
 | |
| 
 | |
| 	hcd->uses_new_polling = 1;
 | |
| 
 | |
| 	/* EHCI spec section 4.1 */
 | |
| 	retval = ehci_reset(oxu);
 | |
| 	if (retval != 0) {
 | |
| 		ehci_mem_cleanup(oxu);
 | |
| 		return retval;
 | |
| 	}
 | |
| 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
 | |
| 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
 | |
| 
 | |
| 	/* hcc_params controls whether oxu->regs->segment must (!!!)
 | |
| 	 * be used; it constrains QH/ITD/SITD and QTD locations.
 | |
| 	 * dma_pool consistent memory always uses segment zero.
 | |
| 	 * streaming mappings for I/O buffers, like dma_map_single(),
 | |
| 	 * can return segments above 4GB, if the device allows.
 | |
| 	 *
 | |
| 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
 | |
| 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
 | |
| 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
 | |
| 	 * host side drivers though.
 | |
| 	 */
 | |
| 	hcc_params = readl(&oxu->caps->hcc_params);
 | |
| 	if (HCC_64BIT_ADDR(hcc_params))
 | |
| 		writel(0, &oxu->regs->segment);
 | |
| 
 | |
| 	oxu->command &= ~(CMD_LRESET | CMD_IAAD | CMD_PSE |
 | |
| 				CMD_ASE | CMD_RESET);
 | |
| 	oxu->command |= CMD_RUN;
 | |
| 	writel(oxu->command, &oxu->regs->command);
 | |
| 	dbg_cmd(oxu, "init", oxu->command);
 | |
| 
 | |
| 	/*
 | |
| 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
 | |
| 	 * are explicitly handed to companion controller(s), so no TT is
 | |
| 	 * involved with the root hub.  (Except where one is integrated,
 | |
| 	 * and there's no companion controller unless maybe for USB OTG.)
 | |
| 	 */
 | |
| 	hcd->state = HC_STATE_RUNNING;
 | |
| 	writel(FLAG_CF, &oxu->regs->configured_flag);
 | |
| 	readl(&oxu->regs->command);	/* unblock posted writes */
 | |
| 
 | |
| 	temp = HC_VERSION(readl(&oxu->caps->hc_capbase));
 | |
| 	oxu_info(oxu, "USB %x.%x started, quasi-EHCI %x.%02x, driver %s%s\n",
 | |
| 		((oxu->sbrn & 0xf0)>>4), (oxu->sbrn & 0x0f),
 | |
| 		temp >> 8, temp & 0xff, DRIVER_VERSION,
 | |
| 		ignore_oc ? ", overcurrent ignored" : "");
 | |
| 
 | |
| 	writel(INTR_MASK, &oxu->regs->intr_enable); /* Turn On Interrupts */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void oxu_stop(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 
 | |
| 	/* Turn off port power on all root hub ports. */
 | |
| 	ehci_port_power(oxu, 0);
 | |
| 
 | |
| 	/* no more interrupts ... */
 | |
| 	del_timer_sync(&oxu->watchdog);
 | |
| 
 | |
| 	spin_lock_irq(&oxu->lock);
 | |
| 	if (HC_IS_RUNNING(hcd->state))
 | |
| 		ehci_quiesce(oxu);
 | |
| 
 | |
| 	ehci_reset(oxu);
 | |
| 	writel(0, &oxu->regs->intr_enable);
 | |
| 	spin_unlock_irq(&oxu->lock);
 | |
| 
 | |
| 	/* let companion controllers work when we aren't */
 | |
| 	writel(0, &oxu->regs->configured_flag);
 | |
| 
 | |
| 	/* root hub is shut down separately (first, when possible) */
 | |
| 	spin_lock_irq(&oxu->lock);
 | |
| 	if (oxu->async)
 | |
| 		ehci_work(oxu);
 | |
| 	spin_unlock_irq(&oxu->lock);
 | |
| 	ehci_mem_cleanup(oxu);
 | |
| 
 | |
| 	dbg_status(oxu, "oxu_stop completed", readl(&oxu->regs->status));
 | |
| }
 | |
| 
 | |
| /* Kick in for silicon on any bus (not just pci, etc).
 | |
|  * This forcibly disables dma and IRQs, helping kexec and other cases
 | |
|  * where the next system software may expect clean state.
 | |
|  */
 | |
| static void oxu_shutdown(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 
 | |
| 	(void) ehci_halt(oxu);
 | |
| 	ehci_turn_off_all_ports(oxu);
 | |
| 
 | |
| 	/* make BIOS/etc use companion controller during reboot */
 | |
| 	writel(0, &oxu->regs->configured_flag);
 | |
| 
 | |
| 	/* unblock posted writes */
 | |
| 	readl(&oxu->regs->configured_flag);
 | |
| }
 | |
| 
 | |
| /* Non-error returns are a promise to giveback() the urb later
 | |
|  * we drop ownership so next owner (or urb unlink) can get it
 | |
|  *
 | |
|  * urb + dev is in hcd.self.controller.urb_list
 | |
|  * we're queueing TDs onto software and hardware lists
 | |
|  *
 | |
|  * hcd-specific init for hcpriv hasn't been done yet
 | |
|  *
 | |
|  * NOTE:  control, bulk, and interrupt share the same code to append TDs
 | |
|  * to a (possibly active) QH, and the same QH scanning code.
 | |
|  */
 | |
| static int __oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
 | |
| 				gfp_t mem_flags)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	struct list_head qtd_list;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&qtd_list);
 | |
| 
 | |
| 	switch (usb_pipetype(urb->pipe)) {
 | |
| 	case PIPE_CONTROL:
 | |
| 	case PIPE_BULK:
 | |
| 	default:
 | |
| 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
 | |
| 			return -ENOMEM;
 | |
| 		return submit_async(oxu, urb, &qtd_list, mem_flags);
 | |
| 
 | |
| 	case PIPE_INTERRUPT:
 | |
| 		if (!qh_urb_transaction(oxu, urb, &qtd_list, mem_flags))
 | |
| 			return -ENOMEM;
 | |
| 		return intr_submit(oxu, urb, &qtd_list, mem_flags);
 | |
| 
 | |
| 	case PIPE_ISOCHRONOUS:
 | |
| 		if (urb->dev->speed == USB_SPEED_HIGH)
 | |
| 			return itd_submit(oxu, urb, mem_flags);
 | |
| 		else
 | |
| 			return sitd_submit(oxu, urb, mem_flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This function is responsible for breaking URBs with big data size
 | |
|  * into smaller size and processing small urbs in sequence.
 | |
|  */
 | |
| static int oxu_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
 | |
| 				gfp_t mem_flags)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	int num, rem;
 | |
| 	void *transfer_buffer;
 | |
| 	struct urb *murb;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* If not bulk pipe just enqueue the URB */
 | |
| 	if (!usb_pipebulk(urb->pipe))
 | |
| 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
 | |
| 
 | |
| 	/* Otherwise we should verify the USB transfer buffer size! */
 | |
| 	transfer_buffer = urb->transfer_buffer;
 | |
| 
 | |
| 	num = urb->transfer_buffer_length / 4096;
 | |
| 	rem = urb->transfer_buffer_length % 4096;
 | |
| 	if (rem != 0)
 | |
| 		num++;
 | |
| 
 | |
| 	/* If URB is smaller than 4096 bytes just enqueue it! */
 | |
| 	if (num == 1)
 | |
| 		return __oxu_urb_enqueue(hcd, urb, mem_flags);
 | |
| 
 | |
| 	/* Ok, we have more job to do! :) */
 | |
| 
 | |
| 	for (i = 0; i < num - 1; i++) {
 | |
| 		/* Get free micro URB poll till a free urb is received */
 | |
| 
 | |
| 		do {
 | |
| 			murb = (struct urb *) oxu_murb_alloc(oxu);
 | |
| 			if (!murb)
 | |
| 				schedule();
 | |
| 		} while (!murb);
 | |
| 
 | |
| 		/* Coping the urb */
 | |
| 		memcpy(murb, urb, sizeof(struct urb));
 | |
| 
 | |
| 		murb->transfer_buffer_length = 4096;
 | |
| 		murb->transfer_buffer = transfer_buffer + i * 4096;
 | |
| 
 | |
| 		/* Null pointer for the encodes that this is a micro urb */
 | |
| 		murb->complete = NULL;
 | |
| 
 | |
| 		((struct oxu_murb *) murb)->main = urb;
 | |
| 		((struct oxu_murb *) murb)->last = 0;
 | |
| 
 | |
| 		/* This loop is to guarantee urb to be processed when there's
 | |
| 		 * not enough resources at a particular time by retrying.
 | |
| 		 */
 | |
| 		do {
 | |
| 			ret  = __oxu_urb_enqueue(hcd, murb, mem_flags);
 | |
| 			if (ret)
 | |
| 				schedule();
 | |
| 		} while (ret);
 | |
| 	}
 | |
| 
 | |
| 	/* Last urb requires special handling  */
 | |
| 
 | |
| 	/* Get free micro URB poll till a free urb is received */
 | |
| 	do {
 | |
| 		murb = (struct urb *) oxu_murb_alloc(oxu);
 | |
| 		if (!murb)
 | |
| 			schedule();
 | |
| 	} while (!murb);
 | |
| 
 | |
| 	/* Coping the urb */
 | |
| 	memcpy(murb, urb, sizeof(struct urb));
 | |
| 
 | |
| 	murb->transfer_buffer_length = rem > 0 ? rem : 4096;
 | |
| 	murb->transfer_buffer = transfer_buffer + (num - 1) * 4096;
 | |
| 
 | |
| 	/* Null pointer for the encodes that this is a micro urb */
 | |
| 	murb->complete = NULL;
 | |
| 
 | |
| 	((struct oxu_murb *) murb)->main = urb;
 | |
| 	((struct oxu_murb *) murb)->last = 1;
 | |
| 
 | |
| 	do {
 | |
| 		ret = __oxu_urb_enqueue(hcd, murb, mem_flags);
 | |
| 		if (ret)
 | |
| 			schedule();
 | |
| 	} while (ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Remove from hardware lists.
 | |
|  * Completions normally happen asynchronously
 | |
|  */
 | |
| static int oxu_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	struct ehci_qh *qh;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&oxu->lock, flags);
 | |
| 	switch (usb_pipetype(urb->pipe)) {
 | |
| 	case PIPE_CONTROL:
 | |
| 	case PIPE_BULK:
 | |
| 	default:
 | |
| 		qh = (struct ehci_qh *) urb->hcpriv;
 | |
| 		if (!qh)
 | |
| 			break;
 | |
| 		unlink_async(oxu, qh);
 | |
| 		break;
 | |
| 
 | |
| 	case PIPE_INTERRUPT:
 | |
| 		qh = (struct ehci_qh *) urb->hcpriv;
 | |
| 		if (!qh)
 | |
| 			break;
 | |
| 		switch (qh->qh_state) {
 | |
| 		case QH_STATE_LINKED:
 | |
| 			intr_deschedule(oxu, qh);
 | |
| 			fallthrough;
 | |
| 		case QH_STATE_IDLE:
 | |
| 			qh_completions(oxu, qh);
 | |
| 			break;
 | |
| 		default:
 | |
| 			oxu_dbg(oxu, "bogus qh %p state %d\n",
 | |
| 					qh, qh->qh_state);
 | |
| 			goto done;
 | |
| 		}
 | |
| 
 | |
| 		/* reschedule QH iff another request is queued */
 | |
| 		if (!list_empty(&qh->qtd_list)
 | |
| 				&& HC_IS_RUNNING(hcd->state)) {
 | |
| 			int status;
 | |
| 
 | |
| 			status = qh_schedule(oxu, qh);
 | |
| 			spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| 
 | |
| 			if (status != 0) {
 | |
| 				/* shouldn't happen often, but ...
 | |
| 				 * FIXME kill those tds' urbs
 | |
| 				 */
 | |
| 				dev_err(hcd->self.controller,
 | |
| 					"can't reschedule qh %p, err %d\n", qh,
 | |
| 					status);
 | |
| 			}
 | |
| 			return status;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| done:
 | |
| 	spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Bulk qh holds the data toggle */
 | |
| static void oxu_endpoint_disable(struct usb_hcd *hcd,
 | |
| 					struct usb_host_endpoint *ep)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	unsigned long		flags;
 | |
| 	struct ehci_qh		*qh, *tmp;
 | |
| 
 | |
| 	/* ASSERT:  any requests/urbs are being unlinked */
 | |
| 	/* ASSERT:  nobody can be submitting urbs for this any more */
 | |
| 
 | |
| rescan:
 | |
| 	spin_lock_irqsave(&oxu->lock, flags);
 | |
| 	qh = ep->hcpriv;
 | |
| 	if (!qh)
 | |
| 		goto done;
 | |
| 
 | |
| 	/* endpoints can be iso streams.  for now, we don't
 | |
| 	 * accelerate iso completions ... so spin a while.
 | |
| 	 */
 | |
| 	if (qh->hw_info1 == 0) {
 | |
| 		oxu_vdbg(oxu, "iso delay\n");
 | |
| 		goto idle_timeout;
 | |
| 	}
 | |
| 
 | |
| 	if (!HC_IS_RUNNING(hcd->state))
 | |
| 		qh->qh_state = QH_STATE_IDLE;
 | |
| 	switch (qh->qh_state) {
 | |
| 	case QH_STATE_LINKED:
 | |
| 		for (tmp = oxu->async->qh_next.qh;
 | |
| 				tmp && tmp != qh;
 | |
| 				tmp = tmp->qh_next.qh)
 | |
| 			continue;
 | |
| 		/* periodic qh self-unlinks on empty */
 | |
| 		if (!tmp)
 | |
| 			goto nogood;
 | |
| 		unlink_async(oxu, qh);
 | |
| 		fallthrough;
 | |
| 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
 | |
| idle_timeout:
 | |
| 		spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 		goto rescan;
 | |
| 	case QH_STATE_IDLE:		/* fully unlinked */
 | |
| 		if (list_empty(&qh->qtd_list)) {
 | |
| 			qh_put(qh);
 | |
| 			break;
 | |
| 		}
 | |
| 		fallthrough;
 | |
| 	default:
 | |
| nogood:
 | |
| 		/* caller was supposed to have unlinked any requests;
 | |
| 		 * that's not our job.  just leak this memory.
 | |
| 		 */
 | |
| 		oxu_err(oxu, "qh %p (#%02x) state %d%s\n",
 | |
| 			qh, ep->desc.bEndpointAddress, qh->qh_state,
 | |
| 			list_empty(&qh->qtd_list) ? "" : "(has tds)");
 | |
| 		break;
 | |
| 	}
 | |
| 	ep->hcpriv = NULL;
 | |
| done:
 | |
| 	spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| }
 | |
| 
 | |
| static int oxu_get_frame(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 
 | |
| 	return (readl(&oxu->regs->frame_index) >> 3) %
 | |
| 		oxu->periodic_size;
 | |
| }
 | |
| 
 | |
| /* Build "status change" packet (one or two bytes) from HC registers */
 | |
| static int oxu_hub_status_data(struct usb_hcd *hcd, char *buf)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	u32 temp, mask, status = 0;
 | |
| 	int ports, i, retval = 1;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* if !PM, root hub timers won't get shut down ... */
 | |
| 	if (!HC_IS_RUNNING(hcd->state))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* init status to no-changes */
 | |
| 	buf[0] = 0;
 | |
| 	ports = HCS_N_PORTS(oxu->hcs_params);
 | |
| 	if (ports > 7) {
 | |
| 		buf[1] = 0;
 | |
| 		retval++;
 | |
| 	}
 | |
| 
 | |
| 	/* Some boards (mostly VIA?) report bogus overcurrent indications,
 | |
| 	 * causing massive log spam unless we completely ignore them.  It
 | |
| 	 * may be relevant that VIA VT8235 controllers, where PORT_POWER is
 | |
| 	 * always set, seem to clear PORT_OCC and PORT_CSC when writing to
 | |
| 	 * PORT_POWER; that's surprising, but maybe within-spec.
 | |
| 	 */
 | |
| 	if (!ignore_oc)
 | |
| 		mask = PORT_CSC | PORT_PEC | PORT_OCC;
 | |
| 	else
 | |
| 		mask = PORT_CSC | PORT_PEC;
 | |
| 
 | |
| 	/* no hub change reports (bit 0) for now (power, ...) */
 | |
| 
 | |
| 	/* port N changes (bit N)? */
 | |
| 	spin_lock_irqsave(&oxu->lock, flags);
 | |
| 	for (i = 0; i < ports; i++) {
 | |
| 		temp = readl(&oxu->regs->port_status[i]);
 | |
| 
 | |
| 		/*
 | |
| 		 * Return status information even for ports with OWNER set.
 | |
| 		 * Otherwise hub_wq wouldn't see the disconnect event when a
 | |
| 		 * high-speed device is switched over to the companion
 | |
| 		 * controller by the user.
 | |
| 		 */
 | |
| 
 | |
| 		if (!(temp & PORT_CONNECT))
 | |
| 			oxu->reset_done[i] = 0;
 | |
| 		if ((temp & mask) != 0 || ((temp & PORT_RESUME) != 0 &&
 | |
| 				time_after_eq(jiffies, oxu->reset_done[i]))) {
 | |
| 			if (i < 7)
 | |
| 				buf[0] |= 1 << (i + 1);
 | |
| 			else
 | |
| 				buf[1] |= 1 << (i - 7);
 | |
| 			status = STS_PCD;
 | |
| 		}
 | |
| 	}
 | |
| 	/* FIXME autosuspend idle root hubs */
 | |
| 	spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| 	return status ? retval : 0;
 | |
| }
 | |
| 
 | |
| /* Returns the speed of a device attached to a port on the root hub. */
 | |
| static inline unsigned int oxu_port_speed(struct oxu_hcd *oxu,
 | |
| 						unsigned int portsc)
 | |
| {
 | |
| 	switch ((portsc >> 26) & 3) {
 | |
| 	case 0:
 | |
| 		return 0;
 | |
| 	case 1:
 | |
| 		return USB_PORT_STAT_LOW_SPEED;
 | |
| 	case 2:
 | |
| 	default:
 | |
| 		return USB_PORT_STAT_HIGH_SPEED;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define	PORT_WAKE_BITS	(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E)
 | |
| static int oxu_hub_control(struct usb_hcd *hcd, u16 typeReq,
 | |
| 				u16 wValue, u16 wIndex, char *buf, u16 wLength)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	int ports = HCS_N_PORTS(oxu->hcs_params);
 | |
| 	u32 __iomem *status_reg = &oxu->regs->port_status[wIndex - 1];
 | |
| 	u32 temp, status;
 | |
| 	unsigned long	flags;
 | |
| 	int retval = 0;
 | |
| 	unsigned selector;
 | |
| 
 | |
| 	/*
 | |
| 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
 | |
| 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
 | |
| 	 * (track current state ourselves) ... blink for diagnostics,
 | |
| 	 * power, "this is the one", etc.  EHCI spec supports this.
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock_irqsave(&oxu->lock, flags);
 | |
| 	switch (typeReq) {
 | |
| 	case ClearHubFeature:
 | |
| 		switch (wValue) {
 | |
| 		case C_HUB_LOCAL_POWER:
 | |
| 		case C_HUB_OVER_CURRENT:
 | |
| 			/* no hub-wide feature/status flags */
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto error;
 | |
| 		}
 | |
| 		break;
 | |
| 	case ClearPortFeature:
 | |
| 		if (!wIndex || wIndex > ports)
 | |
| 			goto error;
 | |
| 		wIndex--;
 | |
| 		temp = readl(status_reg);
 | |
| 
 | |
| 		/*
 | |
| 		 * Even if OWNER is set, so the port is owned by the
 | |
| 		 * companion controller, hub_wq needs to be able to clear
 | |
| 		 * the port-change status bits (especially
 | |
| 		 * USB_PORT_STAT_C_CONNECTION).
 | |
| 		 */
 | |
| 
 | |
| 		switch (wValue) {
 | |
| 		case USB_PORT_FEAT_ENABLE:
 | |
| 			writel(temp & ~PORT_PE, status_reg);
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_C_ENABLE:
 | |
| 			writel((temp & ~PORT_RWC_BITS) | PORT_PEC, status_reg);
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_SUSPEND:
 | |
| 			if (temp & PORT_RESET)
 | |
| 				goto error;
 | |
| 			if (temp & PORT_SUSPEND) {
 | |
| 				if ((temp & PORT_PE) == 0)
 | |
| 					goto error;
 | |
| 				/* resume signaling for 20 msec */
 | |
| 				temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
 | |
| 				writel(temp | PORT_RESUME, status_reg);
 | |
| 				oxu->reset_done[wIndex] = jiffies
 | |
| 						+ msecs_to_jiffies(20);
 | |
| 			}
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_C_SUSPEND:
 | |
| 			/* we auto-clear this feature */
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_POWER:
 | |
| 			if (HCS_PPC(oxu->hcs_params))
 | |
| 				writel(temp & ~(PORT_RWC_BITS | PORT_POWER),
 | |
| 					  status_reg);
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_C_CONNECTION:
 | |
| 			writel((temp & ~PORT_RWC_BITS) | PORT_CSC, status_reg);
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_C_OVER_CURRENT:
 | |
| 			writel((temp & ~PORT_RWC_BITS) | PORT_OCC, status_reg);
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_C_RESET:
 | |
| 			/* GetPortStatus clears reset */
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto error;
 | |
| 		}
 | |
| 		readl(&oxu->regs->command);	/* unblock posted write */
 | |
| 		break;
 | |
| 	case GetHubDescriptor:
 | |
| 		ehci_hub_descriptor(oxu, (struct usb_hub_descriptor *)
 | |
| 			buf);
 | |
| 		break;
 | |
| 	case GetHubStatus:
 | |
| 		/* no hub-wide feature/status flags */
 | |
| 		memset(buf, 0, 4);
 | |
| 		break;
 | |
| 	case GetPortStatus:
 | |
| 		if (!wIndex || wIndex > ports)
 | |
| 			goto error;
 | |
| 		wIndex--;
 | |
| 		status = 0;
 | |
| 		temp = readl(status_reg);
 | |
| 
 | |
| 		/* wPortChange bits */
 | |
| 		if (temp & PORT_CSC)
 | |
| 			status |= USB_PORT_STAT_C_CONNECTION << 16;
 | |
| 		if (temp & PORT_PEC)
 | |
| 			status |= USB_PORT_STAT_C_ENABLE << 16;
 | |
| 		if ((temp & PORT_OCC) && !ignore_oc)
 | |
| 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
 | |
| 
 | |
| 		/* whoever resumes must GetPortStatus to complete it!! */
 | |
| 		if (temp & PORT_RESUME) {
 | |
| 
 | |
| 			/* Remote Wakeup received? */
 | |
| 			if (!oxu->reset_done[wIndex]) {
 | |
| 				/* resume signaling for 20 msec */
 | |
| 				oxu->reset_done[wIndex] = jiffies
 | |
| 						+ msecs_to_jiffies(20);
 | |
| 				/* check the port again */
 | |
| 				mod_timer(&oxu_to_hcd(oxu)->rh_timer,
 | |
| 						oxu->reset_done[wIndex]);
 | |
| 			}
 | |
| 
 | |
| 			/* resume completed? */
 | |
| 			else if (time_after_eq(jiffies,
 | |
| 					oxu->reset_done[wIndex])) {
 | |
| 				status |= USB_PORT_STAT_C_SUSPEND << 16;
 | |
| 				oxu->reset_done[wIndex] = 0;
 | |
| 
 | |
| 				/* stop resume signaling */
 | |
| 				temp = readl(status_reg);
 | |
| 				writel(temp & ~(PORT_RWC_BITS | PORT_RESUME),
 | |
| 					status_reg);
 | |
| 				retval = handshake(oxu, status_reg,
 | |
| 					   PORT_RESUME, 0, 2000 /* 2msec */);
 | |
| 				if (retval != 0) {
 | |
| 					oxu_err(oxu,
 | |
| 						"port %d resume error %d\n",
 | |
| 						wIndex + 1, retval);
 | |
| 					goto error;
 | |
| 				}
 | |
| 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* whoever resets must GetPortStatus to complete it!! */
 | |
| 		if ((temp & PORT_RESET)
 | |
| 				&& time_after_eq(jiffies,
 | |
| 					oxu->reset_done[wIndex])) {
 | |
| 			status |= USB_PORT_STAT_C_RESET << 16;
 | |
| 			oxu->reset_done[wIndex] = 0;
 | |
| 
 | |
| 			/* force reset to complete */
 | |
| 			writel(temp & ~(PORT_RWC_BITS | PORT_RESET),
 | |
| 					status_reg);
 | |
| 			/* REVISIT:  some hardware needs 550+ usec to clear
 | |
| 			 * this bit; seems too long to spin routinely...
 | |
| 			 */
 | |
| 			retval = handshake(oxu, status_reg,
 | |
| 					PORT_RESET, 0, 750);
 | |
| 			if (retval != 0) {
 | |
| 				oxu_err(oxu, "port %d reset error %d\n",
 | |
| 					wIndex + 1, retval);
 | |
| 				goto error;
 | |
| 			}
 | |
| 
 | |
| 			/* see what we found out */
 | |
| 			temp = check_reset_complete(oxu, wIndex, status_reg,
 | |
| 					readl(status_reg));
 | |
| 		}
 | |
| 
 | |
| 		/* transfer dedicated ports to the companion hc */
 | |
| 		if ((temp & PORT_CONNECT) &&
 | |
| 				test_bit(wIndex, &oxu->companion_ports)) {
 | |
| 			temp &= ~PORT_RWC_BITS;
 | |
| 			temp |= PORT_OWNER;
 | |
| 			writel(temp, status_reg);
 | |
| 			oxu_dbg(oxu, "port %d --> companion\n", wIndex + 1);
 | |
| 			temp = readl(status_reg);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Even if OWNER is set, there's no harm letting hub_wq
 | |
| 		 * see the wPortStatus values (they should all be 0 except
 | |
| 		 * for PORT_POWER anyway).
 | |
| 		 */
 | |
| 
 | |
| 		if (temp & PORT_CONNECT) {
 | |
| 			status |= USB_PORT_STAT_CONNECTION;
 | |
| 			/* status may be from integrated TT */
 | |
| 			status |= oxu_port_speed(oxu, temp);
 | |
| 		}
 | |
| 		if (temp & PORT_PE)
 | |
| 			status |= USB_PORT_STAT_ENABLE;
 | |
| 		if (temp & (PORT_SUSPEND|PORT_RESUME))
 | |
| 			status |= USB_PORT_STAT_SUSPEND;
 | |
| 		if (temp & PORT_OC)
 | |
| 			status |= USB_PORT_STAT_OVERCURRENT;
 | |
| 		if (temp & PORT_RESET)
 | |
| 			status |= USB_PORT_STAT_RESET;
 | |
| 		if (temp & PORT_POWER)
 | |
| 			status |= USB_PORT_STAT_POWER;
 | |
| 
 | |
| #ifndef	OXU_VERBOSE_DEBUG
 | |
| 	if (status & ~0xffff)	/* only if wPortChange is interesting */
 | |
| #endif
 | |
| 		dbg_port(oxu, "GetStatus", wIndex + 1, temp);
 | |
| 		put_unaligned(cpu_to_le32(status), (__le32 *) buf);
 | |
| 		break;
 | |
| 	case SetHubFeature:
 | |
| 		switch (wValue) {
 | |
| 		case C_HUB_LOCAL_POWER:
 | |
| 		case C_HUB_OVER_CURRENT:
 | |
| 			/* no hub-wide feature/status flags */
 | |
| 			break;
 | |
| 		default:
 | |
| 			goto error;
 | |
| 		}
 | |
| 		break;
 | |
| 	case SetPortFeature:
 | |
| 		selector = wIndex >> 8;
 | |
| 		wIndex &= 0xff;
 | |
| 		if (!wIndex || wIndex > ports)
 | |
| 			goto error;
 | |
| 		wIndex--;
 | |
| 		temp = readl(status_reg);
 | |
| 		if (temp & PORT_OWNER)
 | |
| 			break;
 | |
| 
 | |
| 		temp &= ~PORT_RWC_BITS;
 | |
| 		switch (wValue) {
 | |
| 		case USB_PORT_FEAT_SUSPEND:
 | |
| 			if ((temp & PORT_PE) == 0
 | |
| 					|| (temp & PORT_RESET) != 0)
 | |
| 				goto error;
 | |
| 			if (device_may_wakeup(&hcd->self.root_hub->dev))
 | |
| 				temp |= PORT_WAKE_BITS;
 | |
| 			writel(temp | PORT_SUSPEND, status_reg);
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_POWER:
 | |
| 			if (HCS_PPC(oxu->hcs_params))
 | |
| 				writel(temp | PORT_POWER, status_reg);
 | |
| 			break;
 | |
| 		case USB_PORT_FEAT_RESET:
 | |
| 			if (temp & PORT_RESUME)
 | |
| 				goto error;
 | |
| 			/* line status bits may report this as low speed,
 | |
| 			 * which can be fine if this root hub has a
 | |
| 			 * transaction translator built in.
 | |
| 			 */
 | |
| 			oxu_vdbg(oxu, "port %d reset\n", wIndex + 1);
 | |
| 			temp |= PORT_RESET;
 | |
| 			temp &= ~PORT_PE;
 | |
| 
 | |
| 			/*
 | |
| 			 * caller must wait, then call GetPortStatus
 | |
| 			 * usb 2.0 spec says 50 ms resets on root
 | |
| 			 */
 | |
| 			oxu->reset_done[wIndex] = jiffies
 | |
| 					+ msecs_to_jiffies(50);
 | |
| 			writel(temp, status_reg);
 | |
| 			break;
 | |
| 
 | |
| 		/* For downstream facing ports (these):  one hub port is put
 | |
| 		 * into test mode according to USB2 11.24.2.13, then the hub
 | |
| 		 * must be reset (which for root hub now means rmmod+modprobe,
 | |
| 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
 | |
| 		 * about the EHCI-specific stuff.
 | |
| 		 */
 | |
| 		case USB_PORT_FEAT_TEST:
 | |
| 			if (!selector || selector > 5)
 | |
| 				goto error;
 | |
| 			ehci_quiesce(oxu);
 | |
| 			ehci_halt(oxu);
 | |
| 			temp |= selector << 16;
 | |
| 			writel(temp, status_reg);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			goto error;
 | |
| 		}
 | |
| 		readl(&oxu->regs->command);	/* unblock posted writes */
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| error:
 | |
| 		/* "stall" on error */
 | |
| 		retval = -EPIPE;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&oxu->lock, flags);
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| 
 | |
| static int oxu_bus_suspend(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	int port;
 | |
| 	int mask;
 | |
| 
 | |
| 	oxu_dbg(oxu, "suspend root hub\n");
 | |
| 
 | |
| 	if (time_before(jiffies, oxu->next_statechange))
 | |
| 		msleep(5);
 | |
| 
 | |
| 	port = HCS_N_PORTS(oxu->hcs_params);
 | |
| 	spin_lock_irq(&oxu->lock);
 | |
| 
 | |
| 	/* stop schedules, clean any completed work */
 | |
| 	if (HC_IS_RUNNING(hcd->state)) {
 | |
| 		ehci_quiesce(oxu);
 | |
| 		hcd->state = HC_STATE_QUIESCING;
 | |
| 	}
 | |
| 	oxu->command = readl(&oxu->regs->command);
 | |
| 	if (oxu->reclaim)
 | |
| 		oxu->reclaim_ready = 1;
 | |
| 	ehci_work(oxu);
 | |
| 
 | |
| 	/* Unlike other USB host controller types, EHCI doesn't have
 | |
| 	 * any notion of "global" or bus-wide suspend.  The driver has
 | |
| 	 * to manually suspend all the active unsuspended ports, and
 | |
| 	 * then manually resume them in the bus_resume() routine.
 | |
| 	 */
 | |
| 	oxu->bus_suspended = 0;
 | |
| 	while (port--) {
 | |
| 		u32 __iomem *reg = &oxu->regs->port_status[port];
 | |
| 		u32 t1 = readl(reg) & ~PORT_RWC_BITS;
 | |
| 		u32 t2 = t1;
 | |
| 
 | |
| 		/* keep track of which ports we suspend */
 | |
| 		if ((t1 & PORT_PE) && !(t1 & PORT_OWNER) &&
 | |
| 				!(t1 & PORT_SUSPEND)) {
 | |
| 			t2 |= PORT_SUSPEND;
 | |
| 			set_bit(port, &oxu->bus_suspended);
 | |
| 		}
 | |
| 
 | |
| 		/* enable remote wakeup on all ports */
 | |
| 		if (device_may_wakeup(&hcd->self.root_hub->dev))
 | |
| 			t2 |= PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E;
 | |
| 		else
 | |
| 			t2 &= ~(PORT_WKOC_E|PORT_WKDISC_E|PORT_WKCONN_E);
 | |
| 
 | |
| 		if (t1 != t2) {
 | |
| 			oxu_vdbg(oxu, "port %d, %08x -> %08x\n",
 | |
| 				port + 1, t1, t2);
 | |
| 			writel(t2, reg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&oxu->lock);
 | |
| 	/* turn off now-idle HC */
 | |
| 	del_timer_sync(&oxu->watchdog);
 | |
| 	spin_lock_irq(&oxu->lock);
 | |
| 	ehci_halt(oxu);
 | |
| 	hcd->state = HC_STATE_SUSPENDED;
 | |
| 
 | |
| 	/* allow remote wakeup */
 | |
| 	mask = INTR_MASK;
 | |
| 	if (!device_may_wakeup(&hcd->self.root_hub->dev))
 | |
| 		mask &= ~STS_PCD;
 | |
| 	writel(mask, &oxu->regs->intr_enable);
 | |
| 	readl(&oxu->regs->intr_enable);
 | |
| 
 | |
| 	oxu->next_statechange = jiffies + msecs_to_jiffies(10);
 | |
| 	spin_unlock_irq(&oxu->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Caller has locked the root hub, and should reset/reinit on error */
 | |
| static int oxu_bus_resume(struct usb_hcd *hcd)
 | |
| {
 | |
| 	struct oxu_hcd *oxu = hcd_to_oxu(hcd);
 | |
| 	u32 temp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (time_before(jiffies, oxu->next_statechange))
 | |
| 		msleep(5);
 | |
| 	spin_lock_irq(&oxu->lock);
 | |
| 
 | |
| 	/* Ideally and we've got a real resume here, and no port's power
 | |
| 	 * was lost.  (For PCI, that means Vaux was maintained.)  But we
 | |
| 	 * could instead be restoring a swsusp snapshot -- so that BIOS was
 | |
| 	 * the last user of the controller, not reset/pm hardware keeping
 | |
| 	 * state we gave to it.
 | |
| 	 */
 | |
| 	temp = readl(&oxu->regs->intr_enable);
 | |
| 	oxu_dbg(oxu, "resume root hub%s\n", temp ? "" : " after power loss");
 | |
| 
 | |
| 	/* at least some APM implementations will try to deliver
 | |
| 	 * IRQs right away, so delay them until we're ready.
 | |
| 	 */
 | |
| 	writel(0, &oxu->regs->intr_enable);
 | |
| 
 | |
| 	/* re-init operational registers */
 | |
| 	writel(0, &oxu->regs->segment);
 | |
| 	writel(oxu->periodic_dma, &oxu->regs->frame_list);
 | |
| 	writel((u32) oxu->async->qh_dma, &oxu->regs->async_next);
 | |
| 
 | |
| 	/* restore CMD_RUN, framelist size, and irq threshold */
 | |
| 	writel(oxu->command, &oxu->regs->command);
 | |
| 
 | |
| 	/* Some controller/firmware combinations need a delay during which
 | |
| 	 * they set up the port statuses.  See Bugzilla #8190. */
 | |
| 	mdelay(8);
 | |
| 
 | |
| 	/* manually resume the ports we suspended during bus_suspend() */
 | |
| 	i = HCS_N_PORTS(oxu->hcs_params);
 | |
| 	while (i--) {
 | |
| 		temp = readl(&oxu->regs->port_status[i]);
 | |
| 		temp &= ~(PORT_RWC_BITS
 | |
| 			| PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E);
 | |
| 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
 | |
| 			oxu->reset_done[i] = jiffies + msecs_to_jiffies(20);
 | |
| 			temp |= PORT_RESUME;
 | |
| 		}
 | |
| 		writel(temp, &oxu->regs->port_status[i]);
 | |
| 	}
 | |
| 	i = HCS_N_PORTS(oxu->hcs_params);
 | |
| 	mdelay(20);
 | |
| 	while (i--) {
 | |
| 		temp = readl(&oxu->regs->port_status[i]);
 | |
| 		if (test_bit(i, &oxu->bus_suspended) && (temp & PORT_SUSPEND)) {
 | |
| 			temp &= ~(PORT_RWC_BITS | PORT_RESUME);
 | |
| 			writel(temp, &oxu->regs->port_status[i]);
 | |
| 			oxu_vdbg(oxu, "resumed port %d\n", i + 1);
 | |
| 		}
 | |
| 	}
 | |
| 	(void) readl(&oxu->regs->command);
 | |
| 
 | |
| 	/* maybe re-activate the schedule(s) */
 | |
| 	temp = 0;
 | |
| 	if (oxu->async->qh_next.qh)
 | |
| 		temp |= CMD_ASE;
 | |
| 	if (oxu->periodic_sched)
 | |
| 		temp |= CMD_PSE;
 | |
| 	if (temp) {
 | |
| 		oxu->command |= temp;
 | |
| 		writel(oxu->command, &oxu->regs->command);
 | |
| 	}
 | |
| 
 | |
| 	oxu->next_statechange = jiffies + msecs_to_jiffies(5);
 | |
| 	hcd->state = HC_STATE_RUNNING;
 | |
| 
 | |
| 	/* Now we can safely re-enable irqs */
 | |
| 	writel(INTR_MASK, &oxu->regs->intr_enable);
 | |
| 
 | |
| 	spin_unlock_irq(&oxu->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static int oxu_bus_suspend(struct usb_hcd *hcd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int oxu_bus_resume(struct usb_hcd *hcd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_PM */
 | |
| 
 | |
| static const struct hc_driver oxu_hc_driver = {
 | |
| 	.description =		"oxu210hp_hcd",
 | |
| 	.product_desc =		"oxu210hp HCD",
 | |
| 	.hcd_priv_size =	sizeof(struct oxu_hcd),
 | |
| 
 | |
| 	/*
 | |
| 	 * Generic hardware linkage
 | |
| 	 */
 | |
| 	.irq =			oxu_irq,
 | |
| 	.flags =		HCD_MEMORY | HCD_USB2,
 | |
| 
 | |
| 	/*
 | |
| 	 * Basic lifecycle operations
 | |
| 	 */
 | |
| 	.reset =		oxu_reset,
 | |
| 	.start =		oxu_run,
 | |
| 	.stop =			oxu_stop,
 | |
| 	.shutdown =		oxu_shutdown,
 | |
| 
 | |
| 	/*
 | |
| 	 * Managing i/o requests and associated device resources
 | |
| 	 */
 | |
| 	.urb_enqueue =		oxu_urb_enqueue,
 | |
| 	.urb_dequeue =		oxu_urb_dequeue,
 | |
| 	.endpoint_disable =	oxu_endpoint_disable,
 | |
| 
 | |
| 	/*
 | |
| 	 * Scheduling support
 | |
| 	 */
 | |
| 	.get_frame_number =	oxu_get_frame,
 | |
| 
 | |
| 	/*
 | |
| 	 * Root hub support
 | |
| 	 */
 | |
| 	.hub_status_data =	oxu_hub_status_data,
 | |
| 	.hub_control =		oxu_hub_control,
 | |
| 	.bus_suspend =		oxu_bus_suspend,
 | |
| 	.bus_resume =		oxu_bus_resume,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Module stuff
 | |
|  */
 | |
| 
 | |
| static void oxu_configuration(struct platform_device *pdev, void __iomem *base)
 | |
| {
 | |
| 	u32 tmp;
 | |
| 
 | |
| 	/* Initialize top level registers.
 | |
| 	 * First write ever
 | |
| 	 */
 | |
| 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
 | |
| 	oxu_writel(base, OXU_SOFTRESET, OXU_SRESET);
 | |
| 	oxu_writel(base, OXU_HOSTIFCONFIG, 0x0000037D);
 | |
| 
 | |
| 	tmp = oxu_readl(base, OXU_PIOBURSTREADCTRL);
 | |
| 	oxu_writel(base, OXU_PIOBURSTREADCTRL, tmp | 0x0040);
 | |
| 
 | |
| 	oxu_writel(base, OXU_ASO, OXU_SPHPOEN | OXU_OVRCCURPUPDEN |
 | |
| 					OXU_COMPARATOR | OXU_ASO_OP);
 | |
| 
 | |
| 	tmp = oxu_readl(base, OXU_CLKCTRL_SET);
 | |
| 	oxu_writel(base, OXU_CLKCTRL_SET, tmp | OXU_SYSCLKEN | OXU_USBOTGCLKEN);
 | |
| 
 | |
| 	/* Clear all top interrupt enable */
 | |
| 	oxu_writel(base, OXU_CHIPIRQEN_CLR, 0xff);
 | |
| 
 | |
| 	/* Clear all top interrupt status */
 | |
| 	oxu_writel(base, OXU_CHIPIRQSTATUS, 0xff);
 | |
| 
 | |
| 	/* Enable all needed top interrupt except OTG SPH core */
 | |
| 	oxu_writel(base, OXU_CHIPIRQEN_SET, OXU_USBSPHLPWUI | OXU_USBOTGLPWUI);
 | |
| }
 | |
| 
 | |
| static int oxu_verify_id(struct platform_device *pdev, void __iomem *base)
 | |
| {
 | |
| 	u32 id;
 | |
| 	static const char * const bo[] = {
 | |
| 		"reserved",
 | |
| 		"128-pin LQFP",
 | |
| 		"84-pin TFBGA",
 | |
| 		"reserved",
 | |
| 	};
 | |
| 
 | |
| 	/* Read controller signature register to find a match */
 | |
| 	id = oxu_readl(base, OXU_DEVICEID);
 | |
| 	dev_info(&pdev->dev, "device ID %x\n", id);
 | |
| 	if ((id & OXU_REV_MASK) != (OXU_REV_2100 << OXU_REV_SHIFT))
 | |
| 		return -1;
 | |
| 
 | |
| 	dev_info(&pdev->dev, "found device %x %s (%04x:%04x)\n",
 | |
| 		id >> OXU_REV_SHIFT,
 | |
| 		bo[(id & OXU_BO_MASK) >> OXU_BO_SHIFT],
 | |
| 		(id & OXU_MAJ_REV_MASK) >> OXU_MAJ_REV_SHIFT,
 | |
| 		(id & OXU_MIN_REV_MASK) >> OXU_MIN_REV_SHIFT);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct hc_driver oxu_hc_driver;
 | |
| static struct usb_hcd *oxu_create(struct platform_device *pdev,
 | |
| 				unsigned long memstart, unsigned long memlen,
 | |
| 				void __iomem *base, int irq, int otg)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 
 | |
| 	struct usb_hcd *hcd;
 | |
| 	struct oxu_hcd *oxu;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Set endian mode and host mode */
 | |
| 	oxu_writel(base + (otg ? OXU_OTG_CORE_OFFSET : OXU_SPH_CORE_OFFSET),
 | |
| 				OXU_USBMODE,
 | |
| 				OXU_CM_HOST_ONLY | OXU_ES_LITTLE | OXU_VBPS);
 | |
| 
 | |
| 	hcd = usb_create_hcd(&oxu_hc_driver, dev,
 | |
| 				otg ? "oxu210hp_otg" : "oxu210hp_sph");
 | |
| 	if (!hcd)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	hcd->rsrc_start = memstart;
 | |
| 	hcd->rsrc_len = memlen;
 | |
| 	hcd->regs = base;
 | |
| 	hcd->irq = irq;
 | |
| 	hcd->state = HC_STATE_HALT;
 | |
| 
 | |
| 	oxu = hcd_to_oxu(hcd);
 | |
| 	oxu->is_otg = otg;
 | |
| 
 | |
| 	ret = usb_add_hcd(hcd, irq, IRQF_SHARED);
 | |
| 	if (ret < 0) {
 | |
| 		usb_put_hcd(hcd);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	device_wakeup_enable(hcd->self.controller);
 | |
| 	return hcd;
 | |
| }
 | |
| 
 | |
| static int oxu_init(struct platform_device *pdev,
 | |
| 				unsigned long memstart, unsigned long memlen,
 | |
| 				void __iomem *base, int irq)
 | |
| {
 | |
| 	struct oxu_info *info = platform_get_drvdata(pdev);
 | |
| 	struct usb_hcd *hcd;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* First time configuration at start up */
 | |
| 	oxu_configuration(pdev, base);
 | |
| 
 | |
| 	ret = oxu_verify_id(pdev, base);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "no devices found!\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Create the OTG controller */
 | |
| 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 1);
 | |
| 	if (IS_ERR(hcd)) {
 | |
| 		dev_err(&pdev->dev, "cannot create OTG controller!\n");
 | |
| 		ret = PTR_ERR(hcd);
 | |
| 		goto error_create_otg;
 | |
| 	}
 | |
| 	info->hcd[0] = hcd;
 | |
| 
 | |
| 	/* Create the SPH host controller */
 | |
| 	hcd = oxu_create(pdev, memstart, memlen, base, irq, 0);
 | |
| 	if (IS_ERR(hcd)) {
 | |
| 		dev_err(&pdev->dev, "cannot create SPH controller!\n");
 | |
| 		ret = PTR_ERR(hcd);
 | |
| 		goto error_create_sph;
 | |
| 	}
 | |
| 	info->hcd[1] = hcd;
 | |
| 
 | |
| 	oxu_writel(base, OXU_CHIPIRQEN_SET,
 | |
| 		oxu_readl(base, OXU_CHIPIRQEN_SET) | 3);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_create_sph:
 | |
| 	usb_remove_hcd(info->hcd[0]);
 | |
| 	usb_put_hcd(info->hcd[0]);
 | |
| 
 | |
| error_create_otg:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int oxu_drv_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct resource *res;
 | |
| 	void __iomem *base;
 | |
| 	unsigned long memstart, memlen;
 | |
| 	int irq, ret;
 | |
| 	struct oxu_info *info;
 | |
| 
 | |
| 	if (usb_disabled())
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the platform resources
 | |
| 	 */
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 	dev_dbg(&pdev->dev, "IRQ resource %d\n", irq);
 | |
| 
 | |
| 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	base = devm_ioremap_resource(&pdev->dev, res);
 | |
| 	if (IS_ERR(base)) {
 | |
| 		ret = PTR_ERR(base);
 | |
| 		goto error;
 | |
| 	}
 | |
| 	memstart = res->start;
 | |
| 	memlen = resource_size(res);
 | |
| 
 | |
| 	ret = irq_set_irq_type(irq, IRQF_TRIGGER_FALLING);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "error setting irq type\n");
 | |
| 		ret = -EFAULT;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate a driver data struct to hold useful info for both
 | |
| 	 * SPH & OTG devices
 | |
| 	 */
 | |
| 	info = devm_kzalloc(&pdev->dev, sizeof(struct oxu_info), GFP_KERNEL);
 | |
| 	if (!info) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	platform_set_drvdata(pdev, info);
 | |
| 
 | |
| 	ret = oxu_init(pdev, memstart, memlen, base, irq);
 | |
| 	if (ret < 0) {
 | |
| 		dev_dbg(&pdev->dev, "cannot init USB devices\n");
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(&pdev->dev, "devices enabled and running\n");
 | |
| 	platform_set_drvdata(pdev, info);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	dev_err(&pdev->dev, "init %s fail, %d\n", dev_name(&pdev->dev), ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void oxu_remove(struct platform_device *pdev, struct usb_hcd *hcd)
 | |
| {
 | |
| 	usb_remove_hcd(hcd);
 | |
| 	usb_put_hcd(hcd);
 | |
| }
 | |
| 
 | |
| static int oxu_drv_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct oxu_info *info = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	oxu_remove(pdev, info->hcd[0]);
 | |
| 	oxu_remove(pdev, info->hcd[1]);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void oxu_drv_shutdown(struct platform_device *pdev)
 | |
| {
 | |
| 	oxu_drv_remove(pdev);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| /* FIXME: TODO */
 | |
| static int oxu_drv_suspend(struct device *dev)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(dev);
 | |
| 	struct usb_hcd *hcd = dev_get_drvdata(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int oxu_drv_resume(struct device *dev)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(dev);
 | |
| 	struct usb_hcd *hcd = dev_get_drvdata(dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define oxu_drv_suspend	NULL
 | |
| #define oxu_drv_resume	NULL
 | |
| #endif
 | |
| 
 | |
| static struct platform_driver oxu_driver = {
 | |
| 	.probe		= oxu_drv_probe,
 | |
| 	.remove		= oxu_drv_remove,
 | |
| 	.shutdown	= oxu_drv_shutdown,
 | |
| 	.suspend	= oxu_drv_suspend,
 | |
| 	.resume		= oxu_drv_resume,
 | |
| 	.driver = {
 | |
| 		.name = "oxu210hp-hcd",
 | |
| 		.bus = &platform_bus_type
 | |
| 	}
 | |
| };
 | |
| 
 | |
| module_platform_driver(oxu_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("Oxford OXU210HP HCD driver - ver. " DRIVER_VERSION);
 | |
| MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
 | |
| MODULE_LICENSE("GPL");
 |