715 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			715 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * A power allocator to manage temperature
 | |
|  *
 | |
|  * Copyright (C) 2014 ARM Ltd.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) "Power allocator: " fmt
 | |
| 
 | |
| #include <linux/slab.h>
 | |
| #include <linux/thermal.h>
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "thermal_trace_ipa.h"
 | |
| 
 | |
| #include "thermal_core.h"
 | |
| 
 | |
| #define FRAC_BITS 10
 | |
| #define int_to_frac(x) ((x) << FRAC_BITS)
 | |
| #define frac_to_int(x) ((x) >> FRAC_BITS)
 | |
| 
 | |
| /**
 | |
|  * mul_frac() - multiply two fixed-point numbers
 | |
|  * @x:	first multiplicand
 | |
|  * @y:	second multiplicand
 | |
|  *
 | |
|  * Return: the result of multiplying two fixed-point numbers.  The
 | |
|  * result is also a fixed-point number.
 | |
|  */
 | |
| static inline s64 mul_frac(s64 x, s64 y)
 | |
| {
 | |
| 	return (x * y) >> FRAC_BITS;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * div_frac() - divide two fixed-point numbers
 | |
|  * @x:	the dividend
 | |
|  * @y:	the divisor
 | |
|  *
 | |
|  * Return: the result of dividing two fixed-point numbers.  The
 | |
|  * result is also a fixed-point number.
 | |
|  */
 | |
| static inline s64 div_frac(s64 x, s64 y)
 | |
| {
 | |
| 	return div_s64(x << FRAC_BITS, y);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * struct power_allocator_params - parameters for the power allocator governor
 | |
|  * @allocated_tzp:	whether we have allocated tzp for this thermal zone and
 | |
|  *			it needs to be freed on unbind
 | |
|  * @err_integral:	accumulated error in the PID controller.
 | |
|  * @prev_err:	error in the previous iteration of the PID controller.
 | |
|  *		Used to calculate the derivative term.
 | |
|  * @sustainable_power:	Sustainable power (heat) that this thermal zone can
 | |
|  *			dissipate
 | |
|  * @trip_switch_on:	first passive trip point of the thermal zone.  The
 | |
|  *			governor switches on when this trip point is crossed.
 | |
|  *			If the thermal zone only has one passive trip point,
 | |
|  *			@trip_switch_on should be NULL.
 | |
|  * @trip_max_desired_temperature:	last passive trip point of the thermal
 | |
|  *					zone.  The temperature we are
 | |
|  *					controlling for.
 | |
|  */
 | |
| struct power_allocator_params {
 | |
| 	bool allocated_tzp;
 | |
| 	s64 err_integral;
 | |
| 	s32 prev_err;
 | |
| 	u32 sustainable_power;
 | |
| 	const struct thermal_trip *trip_switch_on;
 | |
| 	const struct thermal_trip *trip_max_desired_temperature;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * estimate_sustainable_power() - Estimate the sustainable power of a thermal zone
 | |
|  * @tz: thermal zone we are operating in
 | |
|  *
 | |
|  * For thermal zones that don't provide a sustainable_power in their
 | |
|  * thermal_zone_params, estimate one.  Calculate it using the minimum
 | |
|  * power of all the cooling devices as that gives a valid value that
 | |
|  * can give some degree of functionality.  For optimal performance of
 | |
|  * this governor, provide a sustainable_power in the thermal zone's
 | |
|  * thermal_zone_params.
 | |
|  */
 | |
| static u32 estimate_sustainable_power(struct thermal_zone_device *tz)
 | |
| {
 | |
| 	u32 sustainable_power = 0;
 | |
| 	struct thermal_instance *instance;
 | |
| 	struct power_allocator_params *params = tz->governor_data;
 | |
| 
 | |
| 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 | |
| 		struct thermal_cooling_device *cdev = instance->cdev;
 | |
| 		u32 min_power;
 | |
| 
 | |
| 		if (instance->trip != params->trip_max_desired_temperature)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!cdev_is_power_actor(cdev))
 | |
| 			continue;
 | |
| 
 | |
| 		if (cdev->ops->state2power(cdev, instance->upper, &min_power))
 | |
| 			continue;
 | |
| 
 | |
| 		sustainable_power += min_power;
 | |
| 	}
 | |
| 
 | |
| 	return sustainable_power;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * estimate_pid_constants() - Estimate the constants for the PID controller
 | |
|  * @tz:		thermal zone for which to estimate the constants
 | |
|  * @sustainable_power:	sustainable power for the thermal zone
 | |
|  * @trip_switch_on:	trip point for the switch on temperature
 | |
|  * @control_temp:	target temperature for the power allocator governor
 | |
|  *
 | |
|  * This function is used to update the estimation of the PID
 | |
|  * controller constants in struct thermal_zone_parameters.
 | |
|  */
 | |
| static void estimate_pid_constants(struct thermal_zone_device *tz,
 | |
| 				   u32 sustainable_power,
 | |
| 				   const struct thermal_trip *trip_switch_on,
 | |
| 				   int control_temp)
 | |
| {
 | |
| 	u32 temperature_threshold = control_temp;
 | |
| 	s32 k_i;
 | |
| 
 | |
| 	if (trip_switch_on)
 | |
| 		temperature_threshold -= trip_switch_on->temperature;
 | |
| 
 | |
| 	/*
 | |
| 	 * estimate_pid_constants() tries to find appropriate default
 | |
| 	 * values for thermal zones that don't provide them. If a
 | |
| 	 * system integrator has configured a thermal zone with two
 | |
| 	 * passive trip points at the same temperature, that person
 | |
| 	 * hasn't put any effort to set up the thermal zone properly
 | |
| 	 * so just give up.
 | |
| 	 */
 | |
| 	if (!temperature_threshold)
 | |
| 		return;
 | |
| 
 | |
| 	tz->tzp->k_po = int_to_frac(sustainable_power) /
 | |
| 		temperature_threshold;
 | |
| 
 | |
| 	tz->tzp->k_pu = int_to_frac(2 * sustainable_power) /
 | |
| 		temperature_threshold;
 | |
| 
 | |
| 	k_i = tz->tzp->k_pu / 10;
 | |
| 	tz->tzp->k_i = k_i > 0 ? k_i : 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The default for k_d and integral_cutoff is 0, so we can
 | |
| 	 * leave them as they are.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_sustainable_power() - Get the right sustainable power
 | |
|  * @tz:		thermal zone for which to estimate the constants
 | |
|  * @params:	parameters for the power allocator governor
 | |
|  * @control_temp:	target temperature for the power allocator governor
 | |
|  *
 | |
|  * This function is used for getting the proper sustainable power value based
 | |
|  * on variables which might be updated by the user sysfs interface. If that
 | |
|  * happen the new value is going to be estimated and updated. It is also used
 | |
|  * after thermal zone binding, where the initial values where set to 0.
 | |
|  */
 | |
| static u32 get_sustainable_power(struct thermal_zone_device *tz,
 | |
| 				 struct power_allocator_params *params,
 | |
| 				 int control_temp)
 | |
| {
 | |
| 	u32 sustainable_power;
 | |
| 
 | |
| 	if (!tz->tzp->sustainable_power)
 | |
| 		sustainable_power = estimate_sustainable_power(tz);
 | |
| 	else
 | |
| 		sustainable_power = tz->tzp->sustainable_power;
 | |
| 
 | |
| 	/* Check if it's init value 0 or there was update via sysfs */
 | |
| 	if (sustainable_power != params->sustainable_power) {
 | |
| 		estimate_pid_constants(tz, sustainable_power,
 | |
| 				       params->trip_switch_on, control_temp);
 | |
| 
 | |
| 		/* Do the estimation only once and make available in sysfs */
 | |
| 		tz->tzp->sustainable_power = sustainable_power;
 | |
| 		params->sustainable_power = sustainable_power;
 | |
| 	}
 | |
| 
 | |
| 	return sustainable_power;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pid_controller() - PID controller
 | |
|  * @tz:	thermal zone we are operating in
 | |
|  * @control_temp:	the target temperature in millicelsius
 | |
|  * @max_allocatable_power:	maximum allocatable power for this thermal zone
 | |
|  *
 | |
|  * This PID controller increases the available power budget so that the
 | |
|  * temperature of the thermal zone gets as close as possible to
 | |
|  * @control_temp and limits the power if it exceeds it.  k_po is the
 | |
|  * proportional term when we are overshooting, k_pu is the
 | |
|  * proportional term when we are undershooting.  integral_cutoff is a
 | |
|  * threshold below which we stop accumulating the error.  The
 | |
|  * accumulated error is only valid if the requested power will make
 | |
|  * the system warmer.  If the system is mostly idle, there's no point
 | |
|  * in accumulating positive error.
 | |
|  *
 | |
|  * Return: The power budget for the next period.
 | |
|  */
 | |
| static u32 pid_controller(struct thermal_zone_device *tz,
 | |
| 			  int control_temp,
 | |
| 			  u32 max_allocatable_power)
 | |
| {
 | |
| 	s64 p, i, d, power_range;
 | |
| 	s32 err, max_power_frac;
 | |
| 	u32 sustainable_power;
 | |
| 	struct power_allocator_params *params = tz->governor_data;
 | |
| 
 | |
| 	max_power_frac = int_to_frac(max_allocatable_power);
 | |
| 
 | |
| 	sustainable_power = get_sustainable_power(tz, params, control_temp);
 | |
| 
 | |
| 	err = control_temp - tz->temperature;
 | |
| 	err = int_to_frac(err);
 | |
| 
 | |
| 	/* Calculate the proportional term */
 | |
| 	p = mul_frac(err < 0 ? tz->tzp->k_po : tz->tzp->k_pu, err);
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the integral term
 | |
| 	 *
 | |
| 	 * if the error is less than cut off allow integration (but
 | |
| 	 * the integral is limited to max power)
 | |
| 	 */
 | |
| 	i = mul_frac(tz->tzp->k_i, params->err_integral);
 | |
| 
 | |
| 	if (err < int_to_frac(tz->tzp->integral_cutoff)) {
 | |
| 		s64 i_next = i + mul_frac(tz->tzp->k_i, err);
 | |
| 
 | |
| 		if (abs(i_next) < max_power_frac) {
 | |
| 			i = i_next;
 | |
| 			params->err_integral += err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the derivative term
 | |
| 	 *
 | |
| 	 * We do err - prev_err, so with a positive k_d, a decreasing
 | |
| 	 * error (i.e. driving closer to the line) results in less
 | |
| 	 * power being applied, slowing down the controller)
 | |
| 	 */
 | |
| 	d = mul_frac(tz->tzp->k_d, err - params->prev_err);
 | |
| 	d = div_frac(d, jiffies_to_msecs(tz->passive_delay_jiffies));
 | |
| 	params->prev_err = err;
 | |
| 
 | |
| 	power_range = p + i + d;
 | |
| 
 | |
| 	/* feed-forward the known sustainable dissipatable power */
 | |
| 	power_range = sustainable_power + frac_to_int(power_range);
 | |
| 
 | |
| 	power_range = clamp(power_range, (s64)0, (s64)max_allocatable_power);
 | |
| 
 | |
| 	trace_thermal_power_allocator_pid(tz, frac_to_int(err),
 | |
| 					  frac_to_int(params->err_integral),
 | |
| 					  frac_to_int(p), frac_to_int(i),
 | |
| 					  frac_to_int(d), power_range);
 | |
| 
 | |
| 	return power_range;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * power_actor_set_power() - limit the maximum power a cooling device consumes
 | |
|  * @cdev:	pointer to &thermal_cooling_device
 | |
|  * @instance:	thermal instance to update
 | |
|  * @power:	the power in milliwatts
 | |
|  *
 | |
|  * Set the cooling device to consume at most @power milliwatts. The limit is
 | |
|  * expected to be a cap at the maximum power consumption.
 | |
|  *
 | |
|  * Return: 0 on success, -EINVAL if the cooling device does not
 | |
|  * implement the power actor API or -E* for other failures.
 | |
|  */
 | |
| static int
 | |
| power_actor_set_power(struct thermal_cooling_device *cdev,
 | |
| 		      struct thermal_instance *instance, u32 power)
 | |
| {
 | |
| 	unsigned long state;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cdev->ops->power2state(cdev, power, &state);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	instance->target = clamp_val(state, instance->lower, instance->upper);
 | |
| 	mutex_lock(&cdev->lock);
 | |
| 	__thermal_cdev_update(cdev);
 | |
| 	mutex_unlock(&cdev->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * divvy_up_power() - divvy the allocated power between the actors
 | |
|  * @req_power:	each actor's requested power
 | |
|  * @max_power:	each actor's maximum available power
 | |
|  * @num_actors:	size of the @req_power, @max_power and @granted_power's array
 | |
|  * @total_req_power: sum of @req_power
 | |
|  * @power_range:	total allocated power
 | |
|  * @granted_power:	output array: each actor's granted power
 | |
|  * @extra_actor_power:	an appropriately sized array to be used in the
 | |
|  *			function as temporary storage of the extra power given
 | |
|  *			to the actors
 | |
|  *
 | |
|  * This function divides the total allocated power (@power_range)
 | |
|  * fairly between the actors.  It first tries to give each actor a
 | |
|  * share of the @power_range according to how much power it requested
 | |
|  * compared to the rest of the actors.  For example, if only one actor
 | |
|  * requests power, then it receives all the @power_range.  If
 | |
|  * three actors each requests 1mW, each receives a third of the
 | |
|  * @power_range.
 | |
|  *
 | |
|  * If any actor received more than their maximum power, then that
 | |
|  * surplus is re-divvied among the actors based on how far they are
 | |
|  * from their respective maximums.
 | |
|  *
 | |
|  * Granted power for each actor is written to @granted_power, which
 | |
|  * should've been allocated by the calling function.
 | |
|  */
 | |
| static void divvy_up_power(u32 *req_power, u32 *max_power, int num_actors,
 | |
| 			   u32 total_req_power, u32 power_range,
 | |
| 			   u32 *granted_power, u32 *extra_actor_power)
 | |
| {
 | |
| 	u32 extra_power, capped_extra_power;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent division by 0 if none of the actors request power.
 | |
| 	 */
 | |
| 	if (!total_req_power)
 | |
| 		total_req_power = 1;
 | |
| 
 | |
| 	capped_extra_power = 0;
 | |
| 	extra_power = 0;
 | |
| 	for (i = 0; i < num_actors; i++) {
 | |
| 		u64 req_range = (u64)req_power[i] * power_range;
 | |
| 
 | |
| 		granted_power[i] = DIV_ROUND_CLOSEST_ULL(req_range,
 | |
| 							 total_req_power);
 | |
| 
 | |
| 		if (granted_power[i] > max_power[i]) {
 | |
| 			extra_power += granted_power[i] - max_power[i];
 | |
| 			granted_power[i] = max_power[i];
 | |
| 		}
 | |
| 
 | |
| 		extra_actor_power[i] = max_power[i] - granted_power[i];
 | |
| 		capped_extra_power += extra_actor_power[i];
 | |
| 	}
 | |
| 
 | |
| 	if (!extra_power)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Re-divvy the reclaimed extra among actors based on
 | |
| 	 * how far they are from the max
 | |
| 	 */
 | |
| 	extra_power = min(extra_power, capped_extra_power);
 | |
| 	if (capped_extra_power > 0)
 | |
| 		for (i = 0; i < num_actors; i++) {
 | |
| 			u64 extra_range = (u64)extra_actor_power[i] * extra_power;
 | |
| 			granted_power[i] += DIV_ROUND_CLOSEST_ULL(extra_range,
 | |
| 							 capped_extra_power);
 | |
| 		}
 | |
| }
 | |
| 
 | |
| static int allocate_power(struct thermal_zone_device *tz,
 | |
| 			  int control_temp)
 | |
| {
 | |
| 	struct thermal_instance *instance;
 | |
| 	struct power_allocator_params *params = tz->governor_data;
 | |
| 	const struct thermal_trip *trip_max_desired_temperature =
 | |
| 					params->trip_max_desired_temperature;
 | |
| 	u32 *req_power, *max_power, *granted_power, *extra_actor_power;
 | |
| 	u32 *weighted_req_power;
 | |
| 	u32 total_req_power, max_allocatable_power, total_weighted_req_power;
 | |
| 	u32 total_granted_power, power_range;
 | |
| 	int i, num_actors, total_weight, ret = 0;
 | |
| 
 | |
| 	num_actors = 0;
 | |
| 	total_weight = 0;
 | |
| 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 | |
| 		if ((instance->trip == trip_max_desired_temperature) &&
 | |
| 		    cdev_is_power_actor(instance->cdev)) {
 | |
| 			num_actors++;
 | |
| 			total_weight += instance->weight;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!num_actors)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to allocate five arrays of the same size:
 | |
| 	 * req_power, max_power, granted_power, extra_actor_power and
 | |
| 	 * weighted_req_power.  They are going to be needed until this
 | |
| 	 * function returns.  Allocate them all in one go to simplify
 | |
| 	 * the allocation and deallocation logic.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*max_power));
 | |
| 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*granted_power));
 | |
| 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*extra_actor_power));
 | |
| 	BUILD_BUG_ON(sizeof(*req_power) != sizeof(*weighted_req_power));
 | |
| 	req_power = kcalloc(num_actors * 5, sizeof(*req_power), GFP_KERNEL);
 | |
| 	if (!req_power)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	max_power = &req_power[num_actors];
 | |
| 	granted_power = &req_power[2 * num_actors];
 | |
| 	extra_actor_power = &req_power[3 * num_actors];
 | |
| 	weighted_req_power = &req_power[4 * num_actors];
 | |
| 
 | |
| 	i = 0;
 | |
| 	total_weighted_req_power = 0;
 | |
| 	total_req_power = 0;
 | |
| 	max_allocatable_power = 0;
 | |
| 
 | |
| 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 | |
| 		int weight;
 | |
| 		struct thermal_cooling_device *cdev = instance->cdev;
 | |
| 
 | |
| 		if (instance->trip != trip_max_desired_temperature)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!cdev_is_power_actor(cdev))
 | |
| 			continue;
 | |
| 
 | |
| 		if (cdev->ops->get_requested_power(cdev, &req_power[i]))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!total_weight)
 | |
| 			weight = 1 << FRAC_BITS;
 | |
| 		else
 | |
| 			weight = instance->weight;
 | |
| 
 | |
| 		weighted_req_power[i] = frac_to_int(weight * req_power[i]);
 | |
| 
 | |
| 		if (cdev->ops->state2power(cdev, instance->lower,
 | |
| 					   &max_power[i]))
 | |
| 			continue;
 | |
| 
 | |
| 		total_req_power += req_power[i];
 | |
| 		max_allocatable_power += max_power[i];
 | |
| 		total_weighted_req_power += weighted_req_power[i];
 | |
| 
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	power_range = pid_controller(tz, control_temp, max_allocatable_power);
 | |
| 
 | |
| 	divvy_up_power(weighted_req_power, max_power, num_actors,
 | |
| 		       total_weighted_req_power, power_range, granted_power,
 | |
| 		       extra_actor_power);
 | |
| 
 | |
| 	total_granted_power = 0;
 | |
| 	i = 0;
 | |
| 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 | |
| 		if (instance->trip != trip_max_desired_temperature)
 | |
| 			continue;
 | |
| 
 | |
| 		if (!cdev_is_power_actor(instance->cdev))
 | |
| 			continue;
 | |
| 
 | |
| 		power_actor_set_power(instance->cdev, instance,
 | |
| 				      granted_power[i]);
 | |
| 		total_granted_power += granted_power[i];
 | |
| 
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	trace_thermal_power_allocator(tz, req_power, total_req_power,
 | |
| 				      granted_power, total_granted_power,
 | |
| 				      num_actors, power_range,
 | |
| 				      max_allocatable_power, tz->temperature,
 | |
| 				      control_temp - tz->temperature);
 | |
| 
 | |
| 	kfree(req_power);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_governor_trips() - get the two trip points that are key for this governor
 | |
|  * @tz:	thermal zone to operate on
 | |
|  * @params:	pointer to private data for this governor
 | |
|  *
 | |
|  * The power allocator governor works optimally with two trips points:
 | |
|  * a "switch on" trip point and a "maximum desired temperature".  These
 | |
|  * are defined as the first and last passive trip points.
 | |
|  *
 | |
|  * If there is only one trip point, then that's considered to be the
 | |
|  * "maximum desired temperature" trip point and the governor is always
 | |
|  * on.  If there are no passive or active trip points, then the
 | |
|  * governor won't do anything.  In fact, its throttle function
 | |
|  * won't be called at all.
 | |
|  */
 | |
| static void get_governor_trips(struct thermal_zone_device *tz,
 | |
| 			       struct power_allocator_params *params)
 | |
| {
 | |
| 	const struct thermal_trip *first_passive = NULL;
 | |
| 	const struct thermal_trip *last_passive = NULL;
 | |
| 	const struct thermal_trip *last_active = NULL;
 | |
| 	const struct thermal_trip *trip;
 | |
| 
 | |
| 	for_each_trip(tz, trip) {
 | |
| 		switch (trip->type) {
 | |
| 		case THERMAL_TRIP_PASSIVE:
 | |
| 			if (!first_passive) {
 | |
| 				first_passive = trip;
 | |
| 				break;
 | |
| 			}
 | |
| 			last_passive = trip;
 | |
| 			break;
 | |
| 		case THERMAL_TRIP_ACTIVE:
 | |
| 			last_active = trip;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (last_passive) {
 | |
| 		params->trip_switch_on = first_passive;
 | |
| 		params->trip_max_desired_temperature = last_passive;
 | |
| 	} else if (first_passive) {
 | |
| 		params->trip_switch_on = NULL;
 | |
| 		params->trip_max_desired_temperature = first_passive;
 | |
| 	} else {
 | |
| 		params->trip_switch_on = NULL;
 | |
| 		params->trip_max_desired_temperature = last_active;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reset_pid_controller(struct power_allocator_params *params)
 | |
| {
 | |
| 	params->err_integral = 0;
 | |
| 	params->prev_err = 0;
 | |
| }
 | |
| 
 | |
| static void allow_maximum_power(struct thermal_zone_device *tz, bool update)
 | |
| {
 | |
| 	struct thermal_instance *instance;
 | |
| 	struct power_allocator_params *params = tz->governor_data;
 | |
| 	u32 req_power;
 | |
| 
 | |
| 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 | |
| 		struct thermal_cooling_device *cdev = instance->cdev;
 | |
| 
 | |
| 		if (instance->trip != params->trip_max_desired_temperature ||
 | |
| 		    (!cdev_is_power_actor(instance->cdev)))
 | |
| 			continue;
 | |
| 
 | |
| 		instance->target = 0;
 | |
| 		mutex_lock(&instance->cdev->lock);
 | |
| 		/*
 | |
| 		 * Call for updating the cooling devices local stats and avoid
 | |
| 		 * periods of dozen of seconds when those have not been
 | |
| 		 * maintained.
 | |
| 		 */
 | |
| 		cdev->ops->get_requested_power(cdev, &req_power);
 | |
| 
 | |
| 		if (update)
 | |
| 			__thermal_cdev_update(instance->cdev);
 | |
| 
 | |
| 		mutex_unlock(&instance->cdev->lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * check_power_actors() - Check all cooling devices and warn when they are
 | |
|  *			not power actors
 | |
|  * @tz:		thermal zone to operate on
 | |
|  *
 | |
|  * Check all cooling devices in the @tz and warn every time they are missing
 | |
|  * power actor API. The warning should help to investigate the issue, which
 | |
|  * could be e.g. lack of Energy Model for a given device.
 | |
|  *
 | |
|  * Return: 0 on success, -EINVAL if any cooling device does not implement
 | |
|  * the power actor API.
 | |
|  */
 | |
| static int check_power_actors(struct thermal_zone_device *tz)
 | |
| {
 | |
| 	struct thermal_instance *instance;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	list_for_each_entry(instance, &tz->thermal_instances, tz_node) {
 | |
| 		if (!cdev_is_power_actor(instance->cdev)) {
 | |
| 			dev_warn(&tz->device, "power_allocator: %s is not a power actor\n",
 | |
| 				 instance->cdev->type);
 | |
| 			ret = -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * power_allocator_bind() - bind the power_allocator governor to a thermal zone
 | |
|  * @tz:	thermal zone to bind it to
 | |
|  *
 | |
|  * Initialize the PID controller parameters and bind it to the thermal
 | |
|  * zone.
 | |
|  *
 | |
|  * Return: 0 on success, or -ENOMEM if we ran out of memory, or -EINVAL
 | |
|  * when there are unsupported cooling devices in the @tz.
 | |
|  */
 | |
| static int power_allocator_bind(struct thermal_zone_device *tz)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct power_allocator_params *params;
 | |
| 
 | |
| 	ret = check_power_actors(tz);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	params = kzalloc(sizeof(*params), GFP_KERNEL);
 | |
| 	if (!params)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!tz->tzp) {
 | |
| 		tz->tzp = kzalloc(sizeof(*tz->tzp), GFP_KERNEL);
 | |
| 		if (!tz->tzp) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto free_params;
 | |
| 		}
 | |
| 
 | |
| 		params->allocated_tzp = true;
 | |
| 	}
 | |
| 
 | |
| 	if (!tz->tzp->sustainable_power)
 | |
| 		dev_warn(&tz->device, "power_allocator: sustainable_power will be estimated\n");
 | |
| 
 | |
| 	get_governor_trips(tz, params);
 | |
| 
 | |
| 	if (params->trip_max_desired_temperature) {
 | |
| 		int temp = params->trip_max_desired_temperature->temperature;
 | |
| 
 | |
| 		estimate_pid_constants(tz, tz->tzp->sustainable_power,
 | |
| 				       params->trip_switch_on, temp);
 | |
| 	}
 | |
| 
 | |
| 	reset_pid_controller(params);
 | |
| 
 | |
| 	tz->governor_data = params;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_params:
 | |
| 	kfree(params);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void power_allocator_unbind(struct thermal_zone_device *tz)
 | |
| {
 | |
| 	struct power_allocator_params *params = tz->governor_data;
 | |
| 
 | |
| 	dev_dbg(&tz->device, "Unbinding from thermal zone %d\n", tz->id);
 | |
| 
 | |
| 	if (params->allocated_tzp) {
 | |
| 		kfree(tz->tzp);
 | |
| 		tz->tzp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kfree(tz->governor_data);
 | |
| 	tz->governor_data = NULL;
 | |
| }
 | |
| 
 | |
| static int power_allocator_throttle(struct thermal_zone_device *tz,
 | |
| 				    const struct thermal_trip *trip)
 | |
| {
 | |
| 	struct power_allocator_params *params = tz->governor_data;
 | |
| 	bool update;
 | |
| 
 | |
| 	lockdep_assert_held(&tz->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We get called for every trip point but we only need to do
 | |
| 	 * our calculations once
 | |
| 	 */
 | |
| 	if (trip != params->trip_max_desired_temperature)
 | |
| 		return 0;
 | |
| 
 | |
| 	trip = params->trip_switch_on;
 | |
| 	if (trip && tz->temperature < trip->temperature) {
 | |
| 		update = tz->last_temperature >= trip->temperature;
 | |
| 		tz->passive = 0;
 | |
| 		reset_pid_controller(params);
 | |
| 		allow_maximum_power(tz, update);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	tz->passive = 1;
 | |
| 
 | |
| 	return allocate_power(tz, params->trip_max_desired_temperature->temperature);
 | |
| }
 | |
| 
 | |
| static struct thermal_governor thermal_gov_power_allocator = {
 | |
| 	.name		= "power_allocator",
 | |
| 	.bind_to_tz	= power_allocator_bind,
 | |
| 	.unbind_from_tz	= power_allocator_unbind,
 | |
| 	.throttle	= power_allocator_throttle,
 | |
| };
 | |
| THERMAL_GOVERNOR_DECLARE(thermal_gov_power_allocator);
 |