726 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			726 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Copyright (C) 2012 - 2014 Allwinner Tech
 | |
|  * Pan Nan <pannan@allwinnertech.com>
 | |
|  *
 | |
|  * Copyright (C) 2014 Maxime Ripard
 | |
|  * Maxime Ripard <maxime.ripard@free-electrons.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/reset.h>
 | |
| #include <linux/dmaengine.h>
 | |
| 
 | |
| #include <linux/spi/spi.h>
 | |
| 
 | |
| #define SUN6I_AUTOSUSPEND_TIMEOUT	2000
 | |
| 
 | |
| #define SUN6I_FIFO_DEPTH		128
 | |
| #define SUN8I_FIFO_DEPTH		64
 | |
| 
 | |
| #define SUN6I_GBL_CTL_REG		0x04
 | |
| #define SUN6I_GBL_CTL_BUS_ENABLE		BIT(0)
 | |
| #define SUN6I_GBL_CTL_MASTER			BIT(1)
 | |
| #define SUN6I_GBL_CTL_TP			BIT(7)
 | |
| #define SUN6I_GBL_CTL_RST			BIT(31)
 | |
| 
 | |
| #define SUN6I_TFR_CTL_REG		0x08
 | |
| #define SUN6I_TFR_CTL_CPHA			BIT(0)
 | |
| #define SUN6I_TFR_CTL_CPOL			BIT(1)
 | |
| #define SUN6I_TFR_CTL_SPOL			BIT(2)
 | |
| #define SUN6I_TFR_CTL_CS_MASK			0x30
 | |
| #define SUN6I_TFR_CTL_CS(cs)			(((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
 | |
| #define SUN6I_TFR_CTL_CS_MANUAL			BIT(6)
 | |
| #define SUN6I_TFR_CTL_CS_LEVEL			BIT(7)
 | |
| #define SUN6I_TFR_CTL_DHB			BIT(8)
 | |
| #define SUN6I_TFR_CTL_FBS			BIT(12)
 | |
| #define SUN6I_TFR_CTL_XCH			BIT(31)
 | |
| 
 | |
| #define SUN6I_INT_CTL_REG		0x10
 | |
| #define SUN6I_INT_CTL_RF_RDY			BIT(0)
 | |
| #define SUN6I_INT_CTL_TF_ERQ			BIT(4)
 | |
| #define SUN6I_INT_CTL_RF_OVF			BIT(8)
 | |
| #define SUN6I_INT_CTL_TC			BIT(12)
 | |
| 
 | |
| #define SUN6I_INT_STA_REG		0x14
 | |
| 
 | |
| #define SUN6I_FIFO_CTL_REG		0x18
 | |
| #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK	0xff
 | |
| #define SUN6I_FIFO_CTL_RF_DRQ_EN		BIT(8)
 | |
| #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS	0
 | |
| #define SUN6I_FIFO_CTL_RF_RST			BIT(15)
 | |
| #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK	0xff
 | |
| #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS	16
 | |
| #define SUN6I_FIFO_CTL_TF_DRQ_EN		BIT(24)
 | |
| #define SUN6I_FIFO_CTL_TF_RST			BIT(31)
 | |
| 
 | |
| #define SUN6I_FIFO_STA_REG		0x1c
 | |
| #define SUN6I_FIFO_STA_RF_CNT_MASK		GENMASK(7, 0)
 | |
| #define SUN6I_FIFO_STA_TF_CNT_MASK		GENMASK(23, 16)
 | |
| 
 | |
| #define SUN6I_CLK_CTL_REG		0x24
 | |
| #define SUN6I_CLK_CTL_CDR2_MASK			0xff
 | |
| #define SUN6I_CLK_CTL_CDR2(div)			(((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
 | |
| #define SUN6I_CLK_CTL_CDR1_MASK			0xf
 | |
| #define SUN6I_CLK_CTL_CDR1(div)			(((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
 | |
| #define SUN6I_CLK_CTL_DRS			BIT(12)
 | |
| 
 | |
| #define SUN6I_MAX_XFER_SIZE		0xffffff
 | |
| 
 | |
| #define SUN6I_BURST_CNT_REG		0x30
 | |
| 
 | |
| #define SUN6I_XMIT_CNT_REG		0x34
 | |
| 
 | |
| #define SUN6I_BURST_CTL_CNT_REG		0x38
 | |
| 
 | |
| #define SUN6I_TXDATA_REG		0x200
 | |
| #define SUN6I_RXDATA_REG		0x300
 | |
| 
 | |
| struct sun6i_spi {
 | |
| 	struct spi_master	*master;
 | |
| 	void __iomem		*base_addr;
 | |
| 	dma_addr_t		dma_addr_rx;
 | |
| 	dma_addr_t		dma_addr_tx;
 | |
| 	struct clk		*hclk;
 | |
| 	struct clk		*mclk;
 | |
| 	struct reset_control	*rstc;
 | |
| 
 | |
| 	struct completion	done;
 | |
| 
 | |
| 	const u8		*tx_buf;
 | |
| 	u8			*rx_buf;
 | |
| 	int			len;
 | |
| 	unsigned long		fifo_depth;
 | |
| };
 | |
| 
 | |
| static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
 | |
| {
 | |
| 	return readl(sspi->base_addr + reg);
 | |
| }
 | |
| 
 | |
| static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
 | |
| {
 | |
| 	writel(value, sspi->base_addr + reg);
 | |
| }
 | |
| 
 | |
| static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
 | |
| {
 | |
| 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
 | |
| 
 | |
| 	return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
 | |
| }
 | |
| 
 | |
| static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
 | |
| {
 | |
| 	u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
 | |
| 
 | |
| 	return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
 | |
| }
 | |
| 
 | |
| static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
 | |
| {
 | |
| 	u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
 | |
| 
 | |
| 	reg &= ~mask;
 | |
| 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
 | |
| }
 | |
| 
 | |
| static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
 | |
| {
 | |
| 	u32 len;
 | |
| 	u8 byte;
 | |
| 
 | |
| 	/* See how much data is available */
 | |
| 	len = sun6i_spi_get_rx_fifo_count(sspi);
 | |
| 
 | |
| 	while (len--) {
 | |
| 		byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
 | |
| 		if (sspi->rx_buf)
 | |
| 			*sspi->rx_buf++ = byte;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
 | |
| {
 | |
| 	u32 cnt;
 | |
| 	int len;
 | |
| 	u8 byte;
 | |
| 
 | |
| 	/* See how much data we can fit */
 | |
| 	cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
 | |
| 
 | |
| 	len = min((int)cnt, sspi->len);
 | |
| 
 | |
| 	while (len--) {
 | |
| 		byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
 | |
| 		writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
 | |
| 		sspi->len--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
 | |
| {
 | |
| 	struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
 | |
| 	reg &= ~SUN6I_TFR_CTL_CS_MASK;
 | |
| 	reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
 | |
| 
 | |
| 	if (enable)
 | |
| 		reg |= SUN6I_TFR_CTL_CS_LEVEL;
 | |
| 	else
 | |
| 		reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
 | |
| 
 | |
| 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
 | |
| }
 | |
| 
 | |
| static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
 | |
| {
 | |
| 	return SUN6I_MAX_XFER_SIZE - 1;
 | |
| }
 | |
| 
 | |
| static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
 | |
| 				 struct spi_transfer *tfr)
 | |
| {
 | |
| 	struct dma_async_tx_descriptor *rxdesc, *txdesc;
 | |
| 	struct spi_master *master = sspi->master;
 | |
| 
 | |
| 	rxdesc = NULL;
 | |
| 	if (tfr->rx_buf) {
 | |
| 		struct dma_slave_config rxconf = {
 | |
| 			.direction = DMA_DEV_TO_MEM,
 | |
| 			.src_addr = sspi->dma_addr_rx,
 | |
| 			.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 | |
| 			.src_maxburst = 8,
 | |
| 		};
 | |
| 
 | |
| 		dmaengine_slave_config(master->dma_rx, &rxconf);
 | |
| 
 | |
| 		rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
 | |
| 						 tfr->rx_sg.sgl,
 | |
| 						 tfr->rx_sg.nents,
 | |
| 						 DMA_DEV_TO_MEM,
 | |
| 						 DMA_PREP_INTERRUPT);
 | |
| 		if (!rxdesc)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	txdesc = NULL;
 | |
| 	if (tfr->tx_buf) {
 | |
| 		struct dma_slave_config txconf = {
 | |
| 			.direction = DMA_MEM_TO_DEV,
 | |
| 			.dst_addr = sspi->dma_addr_tx,
 | |
| 			.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
 | |
| 			.dst_maxburst = 8,
 | |
| 		};
 | |
| 
 | |
| 		dmaengine_slave_config(master->dma_tx, &txconf);
 | |
| 
 | |
| 		txdesc = dmaengine_prep_slave_sg(master->dma_tx,
 | |
| 						 tfr->tx_sg.sgl,
 | |
| 						 tfr->tx_sg.nents,
 | |
| 						 DMA_MEM_TO_DEV,
 | |
| 						 DMA_PREP_INTERRUPT);
 | |
| 		if (!txdesc) {
 | |
| 			if (rxdesc)
 | |
| 				dmaengine_terminate_sync(master->dma_rx);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tfr->rx_buf) {
 | |
| 		dmaengine_submit(rxdesc);
 | |
| 		dma_async_issue_pending(master->dma_rx);
 | |
| 	}
 | |
| 
 | |
| 	if (tfr->tx_buf) {
 | |
| 		dmaengine_submit(txdesc);
 | |
| 		dma_async_issue_pending(master->dma_tx);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sun6i_spi_transfer_one(struct spi_master *master,
 | |
| 				  struct spi_device *spi,
 | |
| 				  struct spi_transfer *tfr)
 | |
| {
 | |
| 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
 | |
| 	unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
 | |
| 	unsigned int start, end, tx_time;
 | |
| 	unsigned int trig_level;
 | |
| 	unsigned int tx_len = 0, rx_len = 0;
 | |
| 	bool use_dma;
 | |
| 	int ret = 0;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	if (tfr->len > SUN6I_MAX_XFER_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	reinit_completion(&sspi->done);
 | |
| 	sspi->tx_buf = tfr->tx_buf;
 | |
| 	sspi->rx_buf = tfr->rx_buf;
 | |
| 	sspi->len = tfr->len;
 | |
| 	use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
 | |
| 
 | |
| 	/* Clear pending interrupts */
 | |
| 	sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
 | |
| 
 | |
| 	/* Reset FIFO */
 | |
| 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
 | |
| 			SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
 | |
| 
 | |
| 	reg = 0;
 | |
| 
 | |
| 	if (!use_dma) {
 | |
| 		/*
 | |
| 		 * Setup FIFO interrupt trigger level
 | |
| 		 * Here we choose 3/4 of the full fifo depth, as it's
 | |
| 		 * the hardcoded value used in old generation of Allwinner
 | |
| 		 * SPI controller. (See spi-sun4i.c)
 | |
| 		 */
 | |
| 		trig_level = sspi->fifo_depth / 4 * 3;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Setup FIFO DMA request trigger level
 | |
| 		 * We choose 1/2 of the full fifo depth, that value will
 | |
| 		 * be used as DMA burst length.
 | |
| 		 */
 | |
| 		trig_level = sspi->fifo_depth / 2;
 | |
| 
 | |
| 		if (tfr->tx_buf)
 | |
| 			reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
 | |
| 		if (tfr->rx_buf)
 | |
| 			reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
 | |
| 	}
 | |
| 
 | |
| 	reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
 | |
| 	       (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
 | |
| 
 | |
| 	sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup the transfer control register: Chip Select,
 | |
| 	 * polarities, etc.
 | |
| 	 */
 | |
| 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
 | |
| 
 | |
| 	if (spi->mode & SPI_CPOL)
 | |
| 		reg |= SUN6I_TFR_CTL_CPOL;
 | |
| 	else
 | |
| 		reg &= ~SUN6I_TFR_CTL_CPOL;
 | |
| 
 | |
| 	if (spi->mode & SPI_CPHA)
 | |
| 		reg |= SUN6I_TFR_CTL_CPHA;
 | |
| 	else
 | |
| 		reg &= ~SUN6I_TFR_CTL_CPHA;
 | |
| 
 | |
| 	if (spi->mode & SPI_LSB_FIRST)
 | |
| 		reg |= SUN6I_TFR_CTL_FBS;
 | |
| 	else
 | |
| 		reg &= ~SUN6I_TFR_CTL_FBS;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's a TX only transfer, we don't want to fill the RX
 | |
| 	 * FIFO with bogus data
 | |
| 	 */
 | |
| 	if (sspi->rx_buf) {
 | |
| 		reg &= ~SUN6I_TFR_CTL_DHB;
 | |
| 		rx_len = tfr->len;
 | |
| 	} else {
 | |
| 		reg |= SUN6I_TFR_CTL_DHB;
 | |
| 	}
 | |
| 
 | |
| 	/* We want to control the chip select manually */
 | |
| 	reg |= SUN6I_TFR_CTL_CS_MANUAL;
 | |
| 
 | |
| 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
 | |
| 
 | |
| 	/* Ensure that we have a parent clock fast enough */
 | |
| 	mclk_rate = clk_get_rate(sspi->mclk);
 | |
| 	if (mclk_rate < (2 * tfr->speed_hz)) {
 | |
| 		clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
 | |
| 		mclk_rate = clk_get_rate(sspi->mclk);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup clock divider.
 | |
| 	 *
 | |
| 	 * We have two choices there. Either we can use the clock
 | |
| 	 * divide rate 1, which is calculated thanks to this formula:
 | |
| 	 * SPI_CLK = MOD_CLK / (2 ^ cdr)
 | |
| 	 * Or we can use CDR2, which is calculated with the formula:
 | |
| 	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
 | |
| 	 * Wether we use the former or the latter is set through the
 | |
| 	 * DRS bit.
 | |
| 	 *
 | |
| 	 * First try CDR2, and if we can't reach the expected
 | |
| 	 * frequency, fall back to CDR1.
 | |
| 	 */
 | |
| 	div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
 | |
| 	div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
 | |
| 	if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
 | |
| 		reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
 | |
| 		tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
 | |
| 	} else {
 | |
| 		div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
 | |
| 		reg = SUN6I_CLK_CTL_CDR1(div);
 | |
| 		tfr->effective_speed_hz = mclk_rate / (1 << div);
 | |
| 	}
 | |
| 
 | |
| 	sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
 | |
| 	/* Finally enable the bus - doing so before might raise SCK to HIGH */
 | |
| 	reg = sun6i_spi_read(sspi, SUN6I_GBL_CTL_REG);
 | |
| 	reg |= SUN6I_GBL_CTL_BUS_ENABLE;
 | |
| 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG, reg);
 | |
| 
 | |
| 	/* Setup the transfer now... */
 | |
| 	if (sspi->tx_buf)
 | |
| 		tx_len = tfr->len;
 | |
| 
 | |
| 	/* Setup the counters */
 | |
| 	sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
 | |
| 	sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
 | |
| 	sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
 | |
| 
 | |
| 	if (!use_dma) {
 | |
| 		/* Fill the TX FIFO */
 | |
| 		sun6i_spi_fill_fifo(sspi);
 | |
| 	} else {
 | |
| 		ret = sun6i_spi_prepare_dma(sspi, tfr);
 | |
| 		if (ret) {
 | |
| 			dev_warn(&master->dev,
 | |
| 				 "%s: prepare DMA failed, ret=%d",
 | |
| 				 dev_name(&spi->dev), ret);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Enable the interrupts */
 | |
| 	reg = SUN6I_INT_CTL_TC;
 | |
| 
 | |
| 	if (!use_dma) {
 | |
| 		if (rx_len > sspi->fifo_depth)
 | |
| 			reg |= SUN6I_INT_CTL_RF_RDY;
 | |
| 		if (tx_len > sspi->fifo_depth)
 | |
| 			reg |= SUN6I_INT_CTL_TF_ERQ;
 | |
| 	}
 | |
| 
 | |
| 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
 | |
| 
 | |
| 	/* Start the transfer */
 | |
| 	reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
 | |
| 	sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
 | |
| 
 | |
| 	tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
 | |
| 	start = jiffies;
 | |
| 	timeout = wait_for_completion_timeout(&sspi->done,
 | |
| 					      msecs_to_jiffies(tx_time));
 | |
| 	end = jiffies;
 | |
| 	if (!timeout) {
 | |
| 		dev_warn(&master->dev,
 | |
| 			 "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
 | |
| 			 dev_name(&spi->dev), tfr->len, tfr->speed_hz,
 | |
| 			 jiffies_to_msecs(end - start), tx_time);
 | |
| 		ret = -ETIMEDOUT;
 | |
| 	}
 | |
| 
 | |
| 	sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
 | |
| 
 | |
| 	if (ret && use_dma) {
 | |
| 		dmaengine_terminate_sync(master->dma_rx);
 | |
| 		dmaengine_terminate_sync(master->dma_tx);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
 | |
| {
 | |
| 	struct sun6i_spi *sspi = dev_id;
 | |
| 	u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
 | |
| 
 | |
| 	/* Transfer complete */
 | |
| 	if (status & SUN6I_INT_CTL_TC) {
 | |
| 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
 | |
| 		sun6i_spi_drain_fifo(sspi);
 | |
| 		complete(&sspi->done);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/* Receive FIFO 3/4 full */
 | |
| 	if (status & SUN6I_INT_CTL_RF_RDY) {
 | |
| 		sun6i_spi_drain_fifo(sspi);
 | |
| 		/* Only clear the interrupt _after_ draining the FIFO */
 | |
| 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/* Transmit FIFO 3/4 empty */
 | |
| 	if (status & SUN6I_INT_CTL_TF_ERQ) {
 | |
| 		sun6i_spi_fill_fifo(sspi);
 | |
| 
 | |
| 		if (!sspi->len)
 | |
| 			/* nothing left to transmit */
 | |
| 			sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
 | |
| 
 | |
| 		/* Only clear the interrupt _after_ re-seeding the FIFO */
 | |
| 		sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
 | |
| 
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_NONE;
 | |
| }
 | |
| 
 | |
| static int sun6i_spi_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct spi_master *master = dev_get_drvdata(dev);
 | |
| 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = clk_prepare_enable(sspi->hclk);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Couldn't enable AHB clock\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_prepare_enable(sspi->mclk);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Couldn't enable module clock\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	ret = reset_control_deassert(sspi->rstc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Couldn't deassert the device from reset\n");
 | |
| 		goto err2;
 | |
| 	}
 | |
| 
 | |
| 	sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
 | |
| 			SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err2:
 | |
| 	clk_disable_unprepare(sspi->mclk);
 | |
| err:
 | |
| 	clk_disable_unprepare(sspi->hclk);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sun6i_spi_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct spi_master *master = dev_get_drvdata(dev);
 | |
| 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
 | |
| 
 | |
| 	reset_control_assert(sspi->rstc);
 | |
| 	clk_disable_unprepare(sspi->mclk);
 | |
| 	clk_disable_unprepare(sspi->hclk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool sun6i_spi_can_dma(struct spi_master *master,
 | |
| 			      struct spi_device *spi,
 | |
| 			      struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct sun6i_spi *sspi = spi_master_get_devdata(master);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the number of spi words to transfer is less or equal than
 | |
| 	 * the fifo length we can just fill the fifo and wait for a single
 | |
| 	 * irq, so don't bother setting up dma
 | |
| 	 */
 | |
| 	return xfer->len > sspi->fifo_depth;
 | |
| }
 | |
| 
 | |
| static int sun6i_spi_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_master *master;
 | |
| 	struct sun6i_spi *sspi;
 | |
| 	struct resource *mem;
 | |
| 	int ret = 0, irq;
 | |
| 
 | |
| 	master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
 | |
| 	if (!master) {
 | |
| 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	platform_set_drvdata(pdev, master);
 | |
| 	sspi = spi_master_get_devdata(master);
 | |
| 
 | |
| 	sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
 | |
| 	if (IS_ERR(sspi->base_addr)) {
 | |
| 		ret = PTR_ERR(sspi->base_addr);
 | |
| 		goto err_free_master;
 | |
| 	}
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0) {
 | |
| 		ret = -ENXIO;
 | |
| 		goto err_free_master;
 | |
| 	}
 | |
| 
 | |
| 	ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
 | |
| 			       0, "sun6i-spi", sspi);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "Cannot request IRQ\n");
 | |
| 		goto err_free_master;
 | |
| 	}
 | |
| 
 | |
| 	sspi->master = master;
 | |
| 	sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
 | |
| 
 | |
| 	master->max_speed_hz = 100 * 1000 * 1000;
 | |
| 	master->min_speed_hz = 3 * 1000;
 | |
| 	master->use_gpio_descriptors = true;
 | |
| 	master->set_cs = sun6i_spi_set_cs;
 | |
| 	master->transfer_one = sun6i_spi_transfer_one;
 | |
| 	master->num_chipselect = 4;
 | |
| 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
 | |
| 	master->bits_per_word_mask = SPI_BPW_MASK(8);
 | |
| 	master->dev.of_node = pdev->dev.of_node;
 | |
| 	master->auto_runtime_pm = true;
 | |
| 	master->max_transfer_size = sun6i_spi_max_transfer_size;
 | |
| 
 | |
| 	sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
 | |
| 	if (IS_ERR(sspi->hclk)) {
 | |
| 		dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
 | |
| 		ret = PTR_ERR(sspi->hclk);
 | |
| 		goto err_free_master;
 | |
| 	}
 | |
| 
 | |
| 	sspi->mclk = devm_clk_get(&pdev->dev, "mod");
 | |
| 	if (IS_ERR(sspi->mclk)) {
 | |
| 		dev_err(&pdev->dev, "Unable to acquire module clock\n");
 | |
| 		ret = PTR_ERR(sspi->mclk);
 | |
| 		goto err_free_master;
 | |
| 	}
 | |
| 
 | |
| 	init_completion(&sspi->done);
 | |
| 
 | |
| 	sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
 | |
| 	if (IS_ERR(sspi->rstc)) {
 | |
| 		dev_err(&pdev->dev, "Couldn't get reset controller\n");
 | |
| 		ret = PTR_ERR(sspi->rstc);
 | |
| 		goto err_free_master;
 | |
| 	}
 | |
| 
 | |
| 	master->dma_tx = dma_request_chan(&pdev->dev, "tx");
 | |
| 	if (IS_ERR(master->dma_tx)) {
 | |
| 		/* Check tx to see if we need defer probing driver */
 | |
| 		if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
 | |
| 			ret = -EPROBE_DEFER;
 | |
| 			goto err_free_master;
 | |
| 		}
 | |
| 		dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
 | |
| 		master->dma_tx = NULL;
 | |
| 	}
 | |
| 
 | |
| 	master->dma_rx = dma_request_chan(&pdev->dev, "rx");
 | |
| 	if (IS_ERR(master->dma_rx)) {
 | |
| 		if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
 | |
| 			ret = -EPROBE_DEFER;
 | |
| 			goto err_free_dma_tx;
 | |
| 		}
 | |
| 		dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
 | |
| 		master->dma_rx = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (master->dma_tx && master->dma_rx) {
 | |
| 		sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
 | |
| 		sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
 | |
| 		master->can_dma = sun6i_spi_can_dma;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This wake-up/shutdown pattern is to be able to have the
 | |
| 	 * device woken up, even if runtime_pm is disabled
 | |
| 	 */
 | |
| 	ret = sun6i_spi_runtime_resume(&pdev->dev);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "Couldn't resume the device\n");
 | |
| 		goto err_free_dma_rx;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
 | |
| 	pm_runtime_use_autosuspend(&pdev->dev);
 | |
| 	pm_runtime_set_active(&pdev->dev);
 | |
| 	pm_runtime_enable(&pdev->dev);
 | |
| 
 | |
| 	ret = devm_spi_register_master(&pdev->dev, master);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "cannot register SPI master\n");
 | |
| 		goto err_pm_disable;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_pm_disable:
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| 	sun6i_spi_runtime_suspend(&pdev->dev);
 | |
| err_free_dma_rx:
 | |
| 	if (master->dma_rx)
 | |
| 		dma_release_channel(master->dma_rx);
 | |
| err_free_dma_tx:
 | |
| 	if (master->dma_tx)
 | |
| 		dma_release_channel(master->dma_tx);
 | |
| err_free_master:
 | |
| 	spi_master_put(master);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sun6i_spi_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_master *master = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	pm_runtime_force_suspend(&pdev->dev);
 | |
| 
 | |
| 	if (master->dma_tx)
 | |
| 		dma_release_channel(master->dma_tx);
 | |
| 	if (master->dma_rx)
 | |
| 		dma_release_channel(master->dma_rx);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id sun6i_spi_match[] = {
 | |
| 	{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
 | |
| 	{ .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, sun6i_spi_match);
 | |
| 
 | |
| static const struct dev_pm_ops sun6i_spi_pm_ops = {
 | |
| 	.runtime_resume		= sun6i_spi_runtime_resume,
 | |
| 	.runtime_suspend	= sun6i_spi_runtime_suspend,
 | |
| };
 | |
| 
 | |
| static struct platform_driver sun6i_spi_driver = {
 | |
| 	.probe	= sun6i_spi_probe,
 | |
| 	.remove	= sun6i_spi_remove,
 | |
| 	.driver	= {
 | |
| 		.name		= "sun6i-spi",
 | |
| 		.of_match_table	= sun6i_spi_match,
 | |
| 		.pm		= &sun6i_spi_pm_ops,
 | |
| 	},
 | |
| };
 | |
| module_platform_driver(sun6i_spi_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
 | |
| MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
 | |
| MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
 | |
| MODULE_LICENSE("GPL");
 |