1269 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1269 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| // Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/dma/qcom-gpi-dma.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_opp.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/property.h>
 | |
| #include <linux/soc/qcom/geni-se.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| /* SPI SE specific registers and respective register fields */
 | |
| #define SE_SPI_CPHA		0x224
 | |
| #define CPHA			BIT(0)
 | |
| 
 | |
| #define SE_SPI_LOOPBACK		0x22c
 | |
| #define LOOPBACK_ENABLE		0x1
 | |
| #define NORMAL_MODE		0x0
 | |
| #define LOOPBACK_MSK		GENMASK(1, 0)
 | |
| 
 | |
| #define SE_SPI_CPOL		0x230
 | |
| #define CPOL			BIT(2)
 | |
| 
 | |
| #define SE_SPI_DEMUX_OUTPUT_INV	0x24c
 | |
| #define CS_DEMUX_OUTPUT_INV_MSK	GENMASK(3, 0)
 | |
| 
 | |
| #define SE_SPI_DEMUX_SEL	0x250
 | |
| #define CS_DEMUX_OUTPUT_SEL	GENMASK(3, 0)
 | |
| 
 | |
| #define SE_SPI_TRANS_CFG	0x25c
 | |
| #define CS_TOGGLE		BIT(1)
 | |
| 
 | |
| #define SE_SPI_WORD_LEN		0x268
 | |
| #define WORD_LEN_MSK		GENMASK(9, 0)
 | |
| #define MIN_WORD_LEN		4
 | |
| 
 | |
| #define SE_SPI_TX_TRANS_LEN	0x26c
 | |
| #define SE_SPI_RX_TRANS_LEN	0x270
 | |
| #define TRANS_LEN_MSK		GENMASK(23, 0)
 | |
| 
 | |
| #define SE_SPI_PRE_POST_CMD_DLY	0x274
 | |
| 
 | |
| #define SE_SPI_DELAY_COUNTERS	0x278
 | |
| #define SPI_INTER_WORDS_DELAY_MSK	GENMASK(9, 0)
 | |
| #define SPI_CS_CLK_DELAY_MSK		GENMASK(19, 10)
 | |
| #define SPI_CS_CLK_DELAY_SHFT		10
 | |
| 
 | |
| #define SE_SPI_SLAVE_EN				(0x2BC)
 | |
| #define SPI_SLAVE_EN				BIT(0)
 | |
| 
 | |
| /* M_CMD OP codes for SPI */
 | |
| #define SPI_TX_ONLY		1
 | |
| #define SPI_RX_ONLY		2
 | |
| #define SPI_TX_RX		7
 | |
| #define SPI_CS_ASSERT		8
 | |
| #define SPI_CS_DEASSERT		9
 | |
| #define SPI_SCK_ONLY		10
 | |
| /* M_CMD params for SPI */
 | |
| #define SPI_PRE_CMD_DELAY	BIT(0)
 | |
| #define TIMESTAMP_BEFORE	BIT(1)
 | |
| #define FRAGMENTATION		BIT(2)
 | |
| #define TIMESTAMP_AFTER		BIT(3)
 | |
| #define POST_CMD_DELAY		BIT(4)
 | |
| 
 | |
| #define GSI_LOOPBACK_EN		BIT(0)
 | |
| #define GSI_CS_TOGGLE		BIT(3)
 | |
| #define GSI_CPHA		BIT(4)
 | |
| #define GSI_CPOL		BIT(5)
 | |
| 
 | |
| struct spi_geni_master {
 | |
| 	struct geni_se se;
 | |
| 	struct device *dev;
 | |
| 	u32 tx_fifo_depth;
 | |
| 	u32 fifo_width_bits;
 | |
| 	u32 tx_wm;
 | |
| 	u32 last_mode;
 | |
| 	unsigned long cur_speed_hz;
 | |
| 	unsigned long cur_sclk_hz;
 | |
| 	unsigned int cur_bits_per_word;
 | |
| 	unsigned int tx_rem_bytes;
 | |
| 	unsigned int rx_rem_bytes;
 | |
| 	const struct spi_transfer *cur_xfer;
 | |
| 	struct completion cs_done;
 | |
| 	struct completion cancel_done;
 | |
| 	struct completion abort_done;
 | |
| 	struct completion tx_reset_done;
 | |
| 	struct completion rx_reset_done;
 | |
| 	unsigned int oversampling;
 | |
| 	spinlock_t lock;
 | |
| 	int irq;
 | |
| 	bool cs_flag;
 | |
| 	bool abort_failed;
 | |
| 	struct dma_chan *tx;
 | |
| 	struct dma_chan *rx;
 | |
| 	int cur_xfer_mode;
 | |
| };
 | |
| 
 | |
| static void spi_slv_setup(struct spi_geni_master *mas)
 | |
| {
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 
 | |
| 	writel(SPI_SLAVE_EN, se->base + SE_SPI_SLAVE_EN);
 | |
| 	writel(GENI_IO_MUX_0_EN, se->base + GENI_OUTPUT_CTRL);
 | |
| 	writel(START_TRIGGER, se->base + SE_GENI_CFG_SEQ_START);
 | |
| 	dev_dbg(mas->dev, "spi slave setup done\n");
 | |
| }
 | |
| 
 | |
| static int get_spi_clk_cfg(unsigned int speed_hz,
 | |
| 			struct spi_geni_master *mas,
 | |
| 			unsigned int *clk_idx,
 | |
| 			unsigned int *clk_div)
 | |
| {
 | |
| 	unsigned long sclk_freq;
 | |
| 	unsigned int actual_hz;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = geni_se_clk_freq_match(&mas->se,
 | |
| 				speed_hz * mas->oversampling,
 | |
| 				clk_idx, &sclk_freq, false);
 | |
| 	if (ret) {
 | |
| 		dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
 | |
| 							ret, speed_hz);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	*clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
 | |
| 	actual_hz = sclk_freq / (mas->oversampling * *clk_div);
 | |
| 
 | |
| 	dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
 | |
| 				actual_hz, sclk_freq, *clk_idx, *clk_div);
 | |
| 	ret = dev_pm_opp_set_rate(mas->dev, sclk_freq);
 | |
| 	if (ret)
 | |
| 		dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
 | |
| 	else
 | |
| 		mas->cur_sclk_hz = sclk_freq;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void handle_se_timeout(struct spi_master *spi,
 | |
| 				struct spi_message *msg)
 | |
| {
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 	unsigned long time_left;
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	const struct spi_transfer *xfer;
 | |
| 
 | |
| 	spin_lock_irq(&mas->lock);
 | |
| 	if (mas->cur_xfer_mode == GENI_SE_FIFO)
 | |
| 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 | |
| 
 | |
| 	xfer = mas->cur_xfer;
 | |
| 	mas->cur_xfer = NULL;
 | |
| 
 | |
| 	if (spi->slave) {
 | |
| 		/*
 | |
| 		 * skip CMD Cancel sequnece since spi slave
 | |
| 		 * doesn`t support CMD Cancel sequnece
 | |
| 		 */
 | |
| 		spin_unlock_irq(&mas->lock);
 | |
| 		goto unmap_if_dma;
 | |
| 	}
 | |
| 
 | |
| 	reinit_completion(&mas->cancel_done);
 | |
| 	geni_se_cancel_m_cmd(se);
 | |
| 	spin_unlock_irq(&mas->lock);
 | |
| 
 | |
| 	time_left = wait_for_completion_timeout(&mas->cancel_done, HZ);
 | |
| 	if (time_left)
 | |
| 		goto unmap_if_dma;
 | |
| 
 | |
| 	spin_lock_irq(&mas->lock);
 | |
| 	reinit_completion(&mas->abort_done);
 | |
| 	geni_se_abort_m_cmd(se);
 | |
| 	spin_unlock_irq(&mas->lock);
 | |
| 
 | |
| 	time_left = wait_for_completion_timeout(&mas->abort_done, HZ);
 | |
| 	if (!time_left) {
 | |
| 		dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * No need for a lock since SPI core has a lock and we never
 | |
| 		 * access this from an interrupt.
 | |
| 		 */
 | |
| 		mas->abort_failed = true;
 | |
| 	}
 | |
| 
 | |
| unmap_if_dma:
 | |
| 	if (mas->cur_xfer_mode == GENI_SE_DMA) {
 | |
| 		if (xfer) {
 | |
| 			if (xfer->tx_buf) {
 | |
| 				spin_lock_irq(&mas->lock);
 | |
| 				reinit_completion(&mas->tx_reset_done);
 | |
| 				writel(1, se->base + SE_DMA_TX_FSM_RST);
 | |
| 				spin_unlock_irq(&mas->lock);
 | |
| 				time_left = wait_for_completion_timeout(&mas->tx_reset_done, HZ);
 | |
| 				if (!time_left)
 | |
| 					dev_err(mas->dev, "DMA TX RESET failed\n");
 | |
| 			}
 | |
| 			if (xfer->rx_buf) {
 | |
| 				spin_lock_irq(&mas->lock);
 | |
| 				reinit_completion(&mas->rx_reset_done);
 | |
| 				writel(1, se->base + SE_DMA_RX_FSM_RST);
 | |
| 				spin_unlock_irq(&mas->lock);
 | |
| 				time_left = wait_for_completion_timeout(&mas->rx_reset_done, HZ);
 | |
| 				if (!time_left)
 | |
| 					dev_err(mas->dev, "DMA RX RESET failed\n");
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * This can happen if a timeout happened and we had to wait
 | |
| 			 * for lock in this function because isr was holding the lock
 | |
| 			 * and handling transfer completion at that time.
 | |
| 			 */
 | |
| 			dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void handle_gpi_timeout(struct spi_master *spi, struct spi_message *msg)
 | |
| {
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 
 | |
| 	dmaengine_terminate_sync(mas->tx);
 | |
| 	dmaengine_terminate_sync(mas->rx);
 | |
| }
 | |
| 
 | |
| static void spi_geni_handle_err(struct spi_master *spi, struct spi_message *msg)
 | |
| {
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 
 | |
| 	switch (mas->cur_xfer_mode) {
 | |
| 	case GENI_SE_FIFO:
 | |
| 	case GENI_SE_DMA:
 | |
| 		handle_se_timeout(spi, msg);
 | |
| 		break;
 | |
| 	case GENI_GPI_DMA:
 | |
| 		handle_gpi_timeout(spi, msg);
 | |
| 		break;
 | |
| 	default:
 | |
| 		dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
 | |
| {
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	u32 m_irq, m_irq_en;
 | |
| 
 | |
| 	if (!mas->abort_failed)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The only known case where a transfer times out and then a cancel
 | |
| 	 * times out then an abort times out is if something is blocking our
 | |
| 	 * interrupt handler from running.  Avoid starting any new transfers
 | |
| 	 * until that sorts itself out.
 | |
| 	 */
 | |
| 	spin_lock_irq(&mas->lock);
 | |
| 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 | |
| 	m_irq_en = readl(se->base + SE_GENI_M_IRQ_EN);
 | |
| 	spin_unlock_irq(&mas->lock);
 | |
| 
 | |
| 	if (m_irq & m_irq_en) {
 | |
| 		dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
 | |
| 			m_irq & m_irq_en);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're here the problem resolved itself so no need to check more
 | |
| 	 * on future transfers.
 | |
| 	 */
 | |
| 	mas->abort_failed = false;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
 | |
| {
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
 | |
| 	struct spi_master *spi = dev_get_drvdata(mas->dev);
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	unsigned long time_left;
 | |
| 
 | |
| 	if (!(slv->mode & SPI_CS_HIGH))
 | |
| 		set_flag = !set_flag;
 | |
| 
 | |
| 	if (set_flag == mas->cs_flag)
 | |
| 		return;
 | |
| 
 | |
| 	pm_runtime_get_sync(mas->dev);
 | |
| 
 | |
| 	if (spi_geni_is_abort_still_pending(mas)) {
 | |
| 		dev_err(mas->dev, "Can't set chip select\n");
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&mas->lock);
 | |
| 	if (mas->cur_xfer) {
 | |
| 		dev_err(mas->dev, "Can't set CS when prev xfer running\n");
 | |
| 		spin_unlock_irq(&mas->lock);
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| 	mas->cs_flag = set_flag;
 | |
| 	/* set xfer_mode to FIFO to complete cs_done in isr */
 | |
| 	mas->cur_xfer_mode = GENI_SE_FIFO;
 | |
| 	geni_se_select_mode(se, mas->cur_xfer_mode);
 | |
| 
 | |
| 	reinit_completion(&mas->cs_done);
 | |
| 	if (set_flag)
 | |
| 		geni_se_setup_m_cmd(se, SPI_CS_ASSERT, 0);
 | |
| 	else
 | |
| 		geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, 0);
 | |
| 	spin_unlock_irq(&mas->lock);
 | |
| 
 | |
| 	time_left = wait_for_completion_timeout(&mas->cs_done, HZ);
 | |
| 	if (!time_left) {
 | |
| 		dev_warn(mas->dev, "Timeout setting chip select\n");
 | |
| 		handle_se_timeout(spi, NULL);
 | |
| 	}
 | |
| 
 | |
| exit:
 | |
| 	pm_runtime_put(mas->dev);
 | |
| }
 | |
| 
 | |
| static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
 | |
| 					unsigned int bits_per_word)
 | |
| {
 | |
| 	unsigned int pack_words;
 | |
| 	bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	u32 word_len;
 | |
| 
 | |
| 	/*
 | |
| 	 * If bits_per_word isn't a byte aligned value, set the packing to be
 | |
| 	 * 1 SPI word per FIFO word.
 | |
| 	 */
 | |
| 	if (!(mas->fifo_width_bits % bits_per_word))
 | |
| 		pack_words = mas->fifo_width_bits / bits_per_word;
 | |
| 	else
 | |
| 		pack_words = 1;
 | |
| 	geni_se_config_packing(&mas->se, bits_per_word, pack_words, msb_first,
 | |
| 								true, true);
 | |
| 	word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
 | |
| 	writel(word_len, se->base + SE_SPI_WORD_LEN);
 | |
| }
 | |
| 
 | |
| static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
 | |
| 					unsigned long clk_hz)
 | |
| {
 | |
| 	u32 clk_sel, m_clk_cfg, idx, div;
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (clk_hz == mas->cur_speed_hz)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = get_spi_clk_cfg(clk_hz, mas, &idx, &div);
 | |
| 	if (ret) {
 | |
| 		dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * SPI core clock gets configured with the requested frequency
 | |
| 	 * or the frequency closer to the requested frequency.
 | |
| 	 * For that reason requested frequency is stored in the
 | |
| 	 * cur_speed_hz and referred in the consecutive transfer instead
 | |
| 	 * of calling clk_get_rate() API.
 | |
| 	 */
 | |
| 	mas->cur_speed_hz = clk_hz;
 | |
| 
 | |
| 	clk_sel = idx & CLK_SEL_MSK;
 | |
| 	m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
 | |
| 	writel(clk_sel, se->base + SE_GENI_CLK_SEL);
 | |
| 	writel(m_clk_cfg, se->base + GENI_SER_M_CLK_CFG);
 | |
| 
 | |
| 	/* Set BW quota for CPU as driver supports FIFO mode only. */
 | |
| 	se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
 | |
| 	ret = geni_icc_set_bw(se);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int setup_fifo_params(struct spi_device *spi_slv,
 | |
| 					struct spi_master *spi)
 | |
| {
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
 | |
| 	u32 demux_sel;
 | |
| 
 | |
| 	if (mas->last_mode != spi_slv->mode) {
 | |
| 		if (spi_slv->mode & SPI_LOOP)
 | |
| 			loopback_cfg = LOOPBACK_ENABLE;
 | |
| 
 | |
| 		if (spi_slv->mode & SPI_CPOL)
 | |
| 			cpol = CPOL;
 | |
| 
 | |
| 		if (spi_slv->mode & SPI_CPHA)
 | |
| 			cpha = CPHA;
 | |
| 
 | |
| 		if (spi_slv->mode & SPI_CS_HIGH)
 | |
| 			demux_output_inv = BIT(spi_slv->chip_select);
 | |
| 
 | |
| 		demux_sel = spi_slv->chip_select;
 | |
| 		mas->cur_bits_per_word = spi_slv->bits_per_word;
 | |
| 
 | |
| 		spi_setup_word_len(mas, spi_slv->mode, spi_slv->bits_per_word);
 | |
| 		writel(loopback_cfg, se->base + SE_SPI_LOOPBACK);
 | |
| 		writel(demux_sel, se->base + SE_SPI_DEMUX_SEL);
 | |
| 		writel(cpha, se->base + SE_SPI_CPHA);
 | |
| 		writel(cpol, se->base + SE_SPI_CPOL);
 | |
| 		writel(demux_output_inv, se->base + SE_SPI_DEMUX_OUTPUT_INV);
 | |
| 
 | |
| 		mas->last_mode = spi_slv->mode;
 | |
| 	}
 | |
| 
 | |
| 	return geni_spi_set_clock_and_bw(mas, spi_slv->max_speed_hz);
 | |
| }
 | |
| 
 | |
| static void
 | |
| spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
 | |
| {
 | |
| 	struct spi_master *spi = cb;
 | |
| 
 | |
| 	spi->cur_msg->status = -EIO;
 | |
| 	if (result->result != DMA_TRANS_NOERROR) {
 | |
| 		dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
 | |
| 		spi_finalize_current_transfer(spi);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!result->residue) {
 | |
| 		spi->cur_msg->status = 0;
 | |
| 		dev_dbg(&spi->dev, "DMA txn completed\n");
 | |
| 	} else {
 | |
| 		dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
 | |
| 	}
 | |
| 
 | |
| 	spi_finalize_current_transfer(spi);
 | |
| }
 | |
| 
 | |
| static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
 | |
| 			  struct spi_device *spi_slv, struct spi_master *spi)
 | |
| {
 | |
| 	unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
 | |
| 	struct dma_slave_config config = {};
 | |
| 	struct gpi_spi_config peripheral = {};
 | |
| 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
 | |
| 	int ret;
 | |
| 
 | |
| 	config.peripheral_config = &peripheral;
 | |
| 	config.peripheral_size = sizeof(peripheral);
 | |
| 	peripheral.set_config = true;
 | |
| 
 | |
| 	if (xfer->bits_per_word != mas->cur_bits_per_word ||
 | |
| 	    xfer->speed_hz != mas->cur_speed_hz) {
 | |
| 		mas->cur_bits_per_word = xfer->bits_per_word;
 | |
| 		mas->cur_speed_hz = xfer->speed_hz;
 | |
| 	}
 | |
| 
 | |
| 	if (xfer->tx_buf && xfer->rx_buf) {
 | |
| 		peripheral.cmd = SPI_DUPLEX;
 | |
| 	} else if (xfer->tx_buf) {
 | |
| 		peripheral.cmd = SPI_TX;
 | |
| 		peripheral.rx_len = 0;
 | |
| 	} else if (xfer->rx_buf) {
 | |
| 		peripheral.cmd = SPI_RX;
 | |
| 		if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
 | |
| 			peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
 | |
| 		} else {
 | |
| 			int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
 | |
| 
 | |
| 			peripheral.rx_len = (xfer->len / bytes_per_word);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
 | |
| 	peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
 | |
| 	peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
 | |
| 	peripheral.cs = spi_slv->chip_select;
 | |
| 	peripheral.pack_en = true;
 | |
| 	peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
 | |
| 
 | |
| 	ret = get_spi_clk_cfg(mas->cur_speed_hz, mas,
 | |
| 			      &peripheral.clk_src, &peripheral.clk_div);
 | |
| 	if (ret) {
 | |
| 		dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!xfer->cs_change) {
 | |
| 		if (!list_is_last(&xfer->transfer_list, &spi->cur_msg->transfers))
 | |
| 			peripheral.fragmentation = FRAGMENTATION;
 | |
| 	}
 | |
| 
 | |
| 	if (peripheral.cmd & SPI_RX) {
 | |
| 		dmaengine_slave_config(mas->rx, &config);
 | |
| 		rx_desc = dmaengine_prep_slave_sg(mas->rx, xfer->rx_sg.sgl, xfer->rx_sg.nents,
 | |
| 						  DMA_DEV_TO_MEM, flags);
 | |
| 		if (!rx_desc) {
 | |
| 			dev_err(mas->dev, "Err setting up rx desc\n");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prepare the TX always, even for RX or tx_buf being null, we would
 | |
| 	 * need TX to be prepared per GSI spec
 | |
| 	 */
 | |
| 	dmaengine_slave_config(mas->tx, &config);
 | |
| 	tx_desc = dmaengine_prep_slave_sg(mas->tx, xfer->tx_sg.sgl, xfer->tx_sg.nents,
 | |
| 					  DMA_MEM_TO_DEV, flags);
 | |
| 	if (!tx_desc) {
 | |
| 		dev_err(mas->dev, "Err setting up tx desc\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	tx_desc->callback_result = spi_gsi_callback_result;
 | |
| 	tx_desc->callback_param = spi;
 | |
| 
 | |
| 	if (peripheral.cmd & SPI_RX)
 | |
| 		dmaengine_submit(rx_desc);
 | |
| 	dmaengine_submit(tx_desc);
 | |
| 
 | |
| 	if (peripheral.cmd & SPI_RX)
 | |
| 		dma_async_issue_pending(mas->rx);
 | |
| 
 | |
| 	dma_async_issue_pending(mas->tx);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static u32 get_xfer_len_in_words(struct spi_transfer *xfer,
 | |
| 				struct spi_geni_master *mas)
 | |
| {
 | |
| 	u32 len;
 | |
| 
 | |
| 	if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
 | |
| 		len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
 | |
| 	else
 | |
| 		len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
 | |
| 	len &= TRANS_LEN_MSK;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static bool geni_can_dma(struct spi_controller *ctlr,
 | |
| 			 struct spi_device *slv, struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(slv->master);
 | |
| 	u32 len, fifo_size;
 | |
| 
 | |
| 	if (mas->cur_xfer_mode == GENI_GPI_DMA)
 | |
| 		return true;
 | |
| 
 | |
| 	/* Set SE DMA mode for SPI slave. */
 | |
| 	if (ctlr->slave)
 | |
| 		return true;
 | |
| 
 | |
| 	len = get_xfer_len_in_words(xfer, mas);
 | |
| 	fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
 | |
| 
 | |
| 	if (len > fifo_size)
 | |
| 		return true;
 | |
| 	else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| static int spi_geni_prepare_message(struct spi_master *spi,
 | |
| 					struct spi_message *spi_msg)
 | |
| {
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 	int ret;
 | |
| 
 | |
| 	switch (mas->cur_xfer_mode) {
 | |
| 	case GENI_SE_FIFO:
 | |
| 	case GENI_SE_DMA:
 | |
| 		if (spi_geni_is_abort_still_pending(mas))
 | |
| 			return -EBUSY;
 | |
| 		ret = setup_fifo_params(spi_msg->spi, spi);
 | |
| 		if (ret)
 | |
| 			dev_err(mas->dev, "Couldn't select mode %d\n", ret);
 | |
| 		return ret;
 | |
| 
 | |
| 	case GENI_GPI_DMA:
 | |
| 		/* nothing to do for GPI DMA */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	mas->tx = dma_request_chan(mas->dev, "tx");
 | |
| 	if (IS_ERR(mas->tx)) {
 | |
| 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->tx),
 | |
| 				    "Failed to get tx DMA ch\n");
 | |
| 		goto err_tx;
 | |
| 	}
 | |
| 
 | |
| 	mas->rx = dma_request_chan(mas->dev, "rx");
 | |
| 	if (IS_ERR(mas->rx)) {
 | |
| 		ret = dev_err_probe(mas->dev, PTR_ERR(mas->rx),
 | |
| 				    "Failed to get rx DMA ch\n");
 | |
| 		goto err_rx;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_rx:
 | |
| 	mas->rx = NULL;
 | |
| 	dma_release_channel(mas->tx);
 | |
| err_tx:
 | |
| 	mas->tx = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
 | |
| {
 | |
| 	if (mas->rx) {
 | |
| 		dma_release_channel(mas->rx);
 | |
| 		mas->rx = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mas->tx) {
 | |
| 		dma_release_channel(mas->tx);
 | |
| 		mas->tx = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int spi_geni_init(struct spi_geni_master *mas)
 | |
| {
 | |
| 	struct spi_master *spi = dev_get_drvdata(mas->dev);
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	unsigned int proto, major, minor, ver;
 | |
| 	u32 spi_tx_cfg, fifo_disable;
 | |
| 	int ret = -ENXIO;
 | |
| 
 | |
| 	pm_runtime_get_sync(mas->dev);
 | |
| 
 | |
| 	proto = geni_se_read_proto(se);
 | |
| 
 | |
| 	if (spi->slave) {
 | |
| 		if (proto != GENI_SE_SPI_SLAVE) {
 | |
| 			dev_err(mas->dev, "Invalid proto %d\n", proto);
 | |
| 			goto out_pm;
 | |
| 		}
 | |
| 		spi_slv_setup(mas);
 | |
| 	} else if (proto != GENI_SE_SPI) {
 | |
| 		dev_err(mas->dev, "Invalid proto %d\n", proto);
 | |
| 		goto out_pm;
 | |
| 	}
 | |
| 	mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
 | |
| 
 | |
| 	/* Width of Tx and Rx FIFO is same */
 | |
| 	mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
 | |
| 
 | |
| 	/*
 | |
| 	 * Hardware programming guide suggests to configure
 | |
| 	 * RX FIFO RFR level to fifo_depth-2.
 | |
| 	 */
 | |
| 	geni_se_init(se, mas->tx_fifo_depth - 3, mas->tx_fifo_depth - 2);
 | |
| 	/* Transmit an entire FIFO worth of data per IRQ */
 | |
| 	mas->tx_wm = 1;
 | |
| 	ver = geni_se_get_qup_hw_version(se);
 | |
| 	major = GENI_SE_VERSION_MAJOR(ver);
 | |
| 	minor = GENI_SE_VERSION_MINOR(ver);
 | |
| 
 | |
| 	if (major == 1 && minor == 0)
 | |
| 		mas->oversampling = 2;
 | |
| 	else
 | |
| 		mas->oversampling = 1;
 | |
| 
 | |
| 	fifo_disable = readl(se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
 | |
| 	switch (fifo_disable) {
 | |
| 	case 1:
 | |
| 		ret = spi_geni_grab_gpi_chan(mas);
 | |
| 		if (!ret) { /* success case */
 | |
| 			mas->cur_xfer_mode = GENI_GPI_DMA;
 | |
| 			geni_se_select_mode(se, GENI_GPI_DMA);
 | |
| 			dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
 | |
| 			break;
 | |
| 		} else if (ret == -EPROBE_DEFER) {
 | |
| 			goto out_pm;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * in case of failure to get gpi dma channel, we can still do the
 | |
| 		 * FIFO mode, so fallthrough
 | |
| 		 */
 | |
| 		dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
 | |
| 		fallthrough;
 | |
| 
 | |
| 	case 0:
 | |
| 		mas->cur_xfer_mode = GENI_SE_FIFO;
 | |
| 		geni_se_select_mode(se, GENI_SE_FIFO);
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* We always control CS manually */
 | |
| 	if (!spi->slave) {
 | |
| 		spi_tx_cfg = readl(se->base + SE_SPI_TRANS_CFG);
 | |
| 		spi_tx_cfg &= ~CS_TOGGLE;
 | |
| 		writel(spi_tx_cfg, se->base + SE_SPI_TRANS_CFG);
 | |
| 	}
 | |
| 
 | |
| out_pm:
 | |
| 	pm_runtime_put(mas->dev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
 | |
| {
 | |
| 	/*
 | |
| 	 * Calculate how many bytes we'll put in each FIFO word.  If the
 | |
| 	 * transfer words don't pack cleanly into a FIFO word we'll just put
 | |
| 	 * one transfer word in each FIFO word.  If they do pack we'll pack 'em.
 | |
| 	 */
 | |
| 	if (mas->fifo_width_bits % mas->cur_bits_per_word)
 | |
| 		return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
 | |
| 						       BITS_PER_BYTE));
 | |
| 
 | |
| 	return mas->fifo_width_bits / BITS_PER_BYTE;
 | |
| }
 | |
| 
 | |
| static bool geni_spi_handle_tx(struct spi_geni_master *mas)
 | |
| {
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	unsigned int max_bytes;
 | |
| 	const u8 *tx_buf;
 | |
| 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	/* Stop the watermark IRQ if nothing to send */
 | |
| 	if (!mas->cur_xfer) {
 | |
| 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
 | |
| 	if (mas->tx_rem_bytes < max_bytes)
 | |
| 		max_bytes = mas->tx_rem_bytes;
 | |
| 
 | |
| 	tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
 | |
| 	while (i < max_bytes) {
 | |
| 		unsigned int j;
 | |
| 		unsigned int bytes_to_write;
 | |
| 		u32 fifo_word = 0;
 | |
| 		u8 *fifo_byte = (u8 *)&fifo_word;
 | |
| 
 | |
| 		bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
 | |
| 		for (j = 0; j < bytes_to_write; j++)
 | |
| 			fifo_byte[j] = tx_buf[i++];
 | |
| 		iowrite32_rep(se->base + SE_GENI_TX_FIFOn, &fifo_word, 1);
 | |
| 	}
 | |
| 	mas->tx_rem_bytes -= max_bytes;
 | |
| 	if (!mas->tx_rem_bytes) {
 | |
| 		writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void geni_spi_handle_rx(struct spi_geni_master *mas)
 | |
| {
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	u32 rx_fifo_status;
 | |
| 	unsigned int rx_bytes;
 | |
| 	unsigned int rx_last_byte_valid;
 | |
| 	u8 *rx_buf;
 | |
| 	unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	rx_fifo_status = readl(se->base + SE_GENI_RX_FIFO_STATUS);
 | |
| 	rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
 | |
| 	if (rx_fifo_status & RX_LAST) {
 | |
| 		rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
 | |
| 		rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
 | |
| 		if (rx_last_byte_valid && rx_last_byte_valid < 4)
 | |
| 			rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear out the FIFO and bail if nowhere to put it */
 | |
| 	if (!mas->cur_xfer) {
 | |
| 		for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
 | |
| 			readl(se->base + SE_GENI_RX_FIFOn);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (mas->rx_rem_bytes < rx_bytes)
 | |
| 		rx_bytes = mas->rx_rem_bytes;
 | |
| 
 | |
| 	rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
 | |
| 	while (i < rx_bytes) {
 | |
| 		u32 fifo_word = 0;
 | |
| 		u8 *fifo_byte = (u8 *)&fifo_word;
 | |
| 		unsigned int bytes_to_read;
 | |
| 		unsigned int j;
 | |
| 
 | |
| 		bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
 | |
| 		ioread32_rep(se->base + SE_GENI_RX_FIFOn, &fifo_word, 1);
 | |
| 		for (j = 0; j < bytes_to_read; j++)
 | |
| 			rx_buf[i++] = fifo_byte[j];
 | |
| 	}
 | |
| 	mas->rx_rem_bytes -= rx_bytes;
 | |
| }
 | |
| 
 | |
| static int setup_se_xfer(struct spi_transfer *xfer,
 | |
| 				struct spi_geni_master *mas,
 | |
| 				u16 mode, struct spi_master *spi)
 | |
| {
 | |
| 	u32 m_cmd = 0;
 | |
| 	u32 len;
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that our interrupt handler isn't still running from some
 | |
| 	 * prior command before we start messing with the hardware behind
 | |
| 	 * its back.  We don't need to _keep_ the lock here since we're only
 | |
| 	 * worried about racing with out interrupt handler.  The SPI core
 | |
| 	 * already handles making sure that we're not trying to do two
 | |
| 	 * transfers at once or setting a chip select and doing a transfer
 | |
| 	 * concurrently.
 | |
| 	 *
 | |
| 	 * NOTE: we actually _can't_ hold the lock here because possibly we
 | |
| 	 * might call clk_set_rate() which needs to be able to sleep.
 | |
| 	 */
 | |
| 	spin_lock_irq(&mas->lock);
 | |
| 	spin_unlock_irq(&mas->lock);
 | |
| 
 | |
| 	if (xfer->bits_per_word != mas->cur_bits_per_word) {
 | |
| 		spi_setup_word_len(mas, mode, xfer->bits_per_word);
 | |
| 		mas->cur_bits_per_word = xfer->bits_per_word;
 | |
| 	}
 | |
| 
 | |
| 	/* Speed and bits per word can be overridden per transfer */
 | |
| 	ret = geni_spi_set_clock_and_bw(mas, xfer->speed_hz);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mas->tx_rem_bytes = 0;
 | |
| 	mas->rx_rem_bytes = 0;
 | |
| 
 | |
| 	len = get_xfer_len_in_words(xfer, mas);
 | |
| 
 | |
| 	mas->cur_xfer = xfer;
 | |
| 	if (xfer->tx_buf) {
 | |
| 		m_cmd |= SPI_TX_ONLY;
 | |
| 		mas->tx_rem_bytes = xfer->len;
 | |
| 		writel(len, se->base + SE_SPI_TX_TRANS_LEN);
 | |
| 	}
 | |
| 
 | |
| 	if (xfer->rx_buf) {
 | |
| 		m_cmd |= SPI_RX_ONLY;
 | |
| 		writel(len, se->base + SE_SPI_RX_TRANS_LEN);
 | |
| 		mas->rx_rem_bytes = xfer->len;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Select DMA mode if sgt are present; and with only 1 entry
 | |
| 	 * This is not a serious limitation because the xfer buffers are
 | |
| 	 * expected to fit into in 1 entry almost always, and if any
 | |
| 	 * doesn't for any reason we fall back to FIFO mode anyway
 | |
| 	 */
 | |
| 	if (!xfer->tx_sg.nents && !xfer->rx_sg.nents)
 | |
| 		mas->cur_xfer_mode = GENI_SE_FIFO;
 | |
| 	else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) {
 | |
| 		dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n",
 | |
| 			xfer->tx_sg.nents, xfer->rx_sg.nents);
 | |
| 		mas->cur_xfer_mode = GENI_SE_FIFO;
 | |
| 	} else
 | |
| 		mas->cur_xfer_mode = GENI_SE_DMA;
 | |
| 	geni_se_select_mode(se, mas->cur_xfer_mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock around right before we start the transfer since our
 | |
| 	 * interrupt could come in at any time now.
 | |
| 	 */
 | |
| 	spin_lock_irq(&mas->lock);
 | |
| 	geni_se_setup_m_cmd(se, m_cmd, FRAGMENTATION);
 | |
| 
 | |
| 	if (mas->cur_xfer_mode == GENI_SE_DMA) {
 | |
| 		if (m_cmd & SPI_RX_ONLY)
 | |
| 			geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl),
 | |
| 				sg_dma_len(xfer->rx_sg.sgl));
 | |
| 		if (m_cmd & SPI_TX_ONLY)
 | |
| 			geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl),
 | |
| 				sg_dma_len(xfer->tx_sg.sgl));
 | |
| 	} else if (m_cmd & SPI_TX_ONLY) {
 | |
| 		if (geni_spi_handle_tx(mas))
 | |
| 			writel(mas->tx_wm, se->base + SE_GENI_TX_WATERMARK_REG);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irq(&mas->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int spi_geni_transfer_one(struct spi_master *spi,
 | |
| 				struct spi_device *slv,
 | |
| 				struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (spi_geni_is_abort_still_pending(mas))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/* Terminate and return success for 0 byte length transfer */
 | |
| 	if (!xfer->len)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
 | |
| 		ret = setup_se_xfer(xfer, mas, slv->mode, spi);
 | |
| 		/* SPI framework expects +ve ret code to wait for transfer complete */
 | |
| 		if (!ret)
 | |
| 			ret = 1;
 | |
| 		return ret;
 | |
| 	}
 | |
| 	return setup_gsi_xfer(xfer, mas, slv, spi);
 | |
| }
 | |
| 
 | |
| static irqreturn_t geni_spi_isr(int irq, void *data)
 | |
| {
 | |
| 	struct spi_master *spi = data;
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 	struct geni_se *se = &mas->se;
 | |
| 	u32 m_irq;
 | |
| 
 | |
| 	m_irq = readl(se->base + SE_GENI_M_IRQ_STATUS);
 | |
| 	if (!m_irq)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
 | |
| 		     M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
 | |
| 		     M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
 | |
| 		dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
 | |
| 
 | |
| 	spin_lock(&mas->lock);
 | |
| 
 | |
| 	if (mas->cur_xfer_mode == GENI_SE_FIFO) {
 | |
| 		if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
 | |
| 			geni_spi_handle_rx(mas);
 | |
| 
 | |
| 		if (m_irq & M_TX_FIFO_WATERMARK_EN)
 | |
| 			geni_spi_handle_tx(mas);
 | |
| 
 | |
| 		if (m_irq & M_CMD_DONE_EN) {
 | |
| 			if (mas->cur_xfer) {
 | |
| 				spi_finalize_current_transfer(spi);
 | |
| 				mas->cur_xfer = NULL;
 | |
| 				/*
 | |
| 				 * If this happens, then a CMD_DONE came before all the
 | |
| 				 * Tx buffer bytes were sent out. This is unusual, log
 | |
| 				 * this condition and disable the WM interrupt to
 | |
| 				 * prevent the system from stalling due an interrupt
 | |
| 				 * storm.
 | |
| 				 *
 | |
| 				 * If this happens when all Rx bytes haven't been
 | |
| 				 * received, log the condition. The only known time
 | |
| 				 * this can happen is if bits_per_word != 8 and some
 | |
| 				 * registers that expect xfer lengths in num spi_words
 | |
| 				 * weren't written correctly.
 | |
| 				 */
 | |
| 				if (mas->tx_rem_bytes) {
 | |
| 					writel(0, se->base + SE_GENI_TX_WATERMARK_REG);
 | |
| 					dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
 | |
| 						mas->tx_rem_bytes, mas->cur_bits_per_word);
 | |
| 				}
 | |
| 				if (mas->rx_rem_bytes)
 | |
| 					dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
 | |
| 						mas->rx_rem_bytes, mas->cur_bits_per_word);
 | |
| 			} else {
 | |
| 				complete(&mas->cs_done);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (mas->cur_xfer_mode == GENI_SE_DMA) {
 | |
| 		const struct spi_transfer *xfer = mas->cur_xfer;
 | |
| 		u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
 | |
| 		u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
 | |
| 
 | |
| 		if (dma_tx_status)
 | |
| 			writel(dma_tx_status, se->base + SE_DMA_TX_IRQ_CLR);
 | |
| 		if (dma_rx_status)
 | |
| 			writel(dma_rx_status, se->base + SE_DMA_RX_IRQ_CLR);
 | |
| 		if (dma_tx_status & TX_DMA_DONE)
 | |
| 			mas->tx_rem_bytes = 0;
 | |
| 		if (dma_rx_status & RX_DMA_DONE)
 | |
| 			mas->rx_rem_bytes = 0;
 | |
| 		if (dma_tx_status & TX_RESET_DONE)
 | |
| 			complete(&mas->tx_reset_done);
 | |
| 		if (dma_rx_status & RX_RESET_DONE)
 | |
| 			complete(&mas->rx_reset_done);
 | |
| 		if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
 | |
| 			spi_finalize_current_transfer(spi);
 | |
| 			mas->cur_xfer = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (m_irq & M_CMD_CANCEL_EN)
 | |
| 		complete(&mas->cancel_done);
 | |
| 	if (m_irq & M_CMD_ABORT_EN)
 | |
| 		complete(&mas->abort_done);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's safe or a good idea to Ack all of our interrupts at the end
 | |
| 	 * of the function. Specifically:
 | |
| 	 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
 | |
| 	 *   clearing Acks. Clearing at the end relies on nobody else having
 | |
| 	 *   started a new transfer yet or else we could be clearing _their_
 | |
| 	 *   done bit, but everyone grabs the spinlock before starting a new
 | |
| 	 *   transfer.
 | |
| 	 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
 | |
| 	 *   to be "latched level" interrupts so it's important to clear them
 | |
| 	 *   _after_ you've handled the condition and always safe to do so
 | |
| 	 *   since they'll re-assert if they're still happening.
 | |
| 	 */
 | |
| 	writel(m_irq, se->base + SE_GENI_M_IRQ_CLEAR);
 | |
| 
 | |
| 	spin_unlock(&mas->lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int spi_geni_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	int ret, irq;
 | |
| 	struct spi_master *spi;
 | |
| 	struct spi_geni_master *mas;
 | |
| 	void __iomem *base;
 | |
| 	struct clk *clk;
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 
 | |
| 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
 | |
| 	if (ret)
 | |
| 		return dev_err_probe(dev, ret, "could not set DMA mask\n");
 | |
| 
 | |
| 	base = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	if (IS_ERR(base))
 | |
| 		return PTR_ERR(base);
 | |
| 
 | |
| 	clk = devm_clk_get(dev, "se");
 | |
| 	if (IS_ERR(clk))
 | |
| 		return PTR_ERR(clk);
 | |
| 
 | |
| 	spi = devm_spi_alloc_master(dev, sizeof(*mas));
 | |
| 	if (!spi)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, spi);
 | |
| 	mas = spi_master_get_devdata(spi);
 | |
| 	mas->irq = irq;
 | |
| 	mas->dev = dev;
 | |
| 	mas->se.dev = dev;
 | |
| 	mas->se.wrapper = dev_get_drvdata(dev->parent);
 | |
| 	mas->se.base = base;
 | |
| 	mas->se.clk = clk;
 | |
| 
 | |
| 	ret = devm_pm_opp_set_clkname(&pdev->dev, "se");
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	/* OPP table is optional */
 | |
| 	ret = devm_pm_opp_of_add_table(&pdev->dev);
 | |
| 	if (ret && ret != -ENODEV) {
 | |
| 		dev_err(&pdev->dev, "invalid OPP table in device tree\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	spi->bus_num = -1;
 | |
| 	spi->dev.of_node = dev->of_node;
 | |
| 	spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
 | |
| 	spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
 | |
| 	spi->num_chipselect = 4;
 | |
| 	spi->max_speed_hz = 50000000;
 | |
| 	spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */
 | |
| 	spi->prepare_message = spi_geni_prepare_message;
 | |
| 	spi->transfer_one = spi_geni_transfer_one;
 | |
| 	spi->can_dma = geni_can_dma;
 | |
| 	spi->dma_map_dev = dev->parent;
 | |
| 	spi->auto_runtime_pm = true;
 | |
| 	spi->handle_err = spi_geni_handle_err;
 | |
| 	spi->use_gpio_descriptors = true;
 | |
| 
 | |
| 	init_completion(&mas->cs_done);
 | |
| 	init_completion(&mas->cancel_done);
 | |
| 	init_completion(&mas->abort_done);
 | |
| 	init_completion(&mas->tx_reset_done);
 | |
| 	init_completion(&mas->rx_reset_done);
 | |
| 	spin_lock_init(&mas->lock);
 | |
| 	pm_runtime_use_autosuspend(&pdev->dev);
 | |
| 	pm_runtime_set_autosuspend_delay(&pdev->dev, 250);
 | |
| 	pm_runtime_enable(dev);
 | |
| 
 | |
| 	if (device_property_read_bool(&pdev->dev, "spi-slave"))
 | |
| 		spi->slave = true;
 | |
| 
 | |
| 	ret = geni_icc_get(&mas->se, NULL);
 | |
| 	if (ret)
 | |
| 		goto spi_geni_probe_runtime_disable;
 | |
| 	/* Set the bus quota to a reasonable value for register access */
 | |
| 	mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
 | |
| 	mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
 | |
| 
 | |
| 	ret = geni_icc_set_bw(&mas->se);
 | |
| 	if (ret)
 | |
| 		goto spi_geni_probe_runtime_disable;
 | |
| 
 | |
| 	ret = spi_geni_init(mas);
 | |
| 	if (ret)
 | |
| 		goto spi_geni_probe_runtime_disable;
 | |
| 
 | |
| 	/*
 | |
| 	 * check the mode supported and set_cs for fifo mode only
 | |
| 	 * for dma (gsi) mode, the gsi will set cs based on params passed in
 | |
| 	 * TRE
 | |
| 	 */
 | |
| 	if (!spi->slave && mas->cur_xfer_mode == GENI_SE_FIFO)
 | |
| 		spi->set_cs = spi_geni_set_cs;
 | |
| 
 | |
| 	/*
 | |
| 	 * TX is required per GSI spec, see setup_gsi_xfer().
 | |
| 	 */
 | |
| 	if (mas->cur_xfer_mode == GENI_GPI_DMA)
 | |
| 		spi->flags = SPI_CONTROLLER_MUST_TX;
 | |
| 
 | |
| 	ret = request_irq(mas->irq, geni_spi_isr, 0, dev_name(dev), spi);
 | |
| 	if (ret)
 | |
| 		goto spi_geni_release_dma;
 | |
| 
 | |
| 	ret = spi_register_master(spi);
 | |
| 	if (ret)
 | |
| 		goto spi_geni_probe_free_irq;
 | |
| 
 | |
| 	return 0;
 | |
| spi_geni_probe_free_irq:
 | |
| 	free_irq(mas->irq, spi);
 | |
| spi_geni_release_dma:
 | |
| 	spi_geni_release_dma_chan(mas);
 | |
| spi_geni_probe_runtime_disable:
 | |
| 	pm_runtime_disable(dev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void spi_geni_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_master *spi = platform_get_drvdata(pdev);
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 
 | |
| 	/* Unregister _before_ disabling pm_runtime() so we stop transfers */
 | |
| 	spi_unregister_master(spi);
 | |
| 
 | |
| 	spi_geni_release_dma_chan(mas);
 | |
| 
 | |
| 	free_irq(mas->irq, spi);
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| }
 | |
| 
 | |
| static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct spi_master *spi = dev_get_drvdata(dev);
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Drop the performance state vote */
 | |
| 	dev_pm_opp_set_rate(dev, 0);
 | |
| 
 | |
| 	ret = geni_se_resources_off(&mas->se);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return geni_icc_disable(&mas->se);
 | |
| }
 | |
| 
 | |
| static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct spi_master *spi = dev_get_drvdata(dev);
 | |
| 	struct spi_geni_master *mas = spi_master_get_devdata(spi);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = geni_icc_enable(&mas->se);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = geni_se_resources_on(&mas->se);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return dev_pm_opp_set_rate(mas->dev, mas->cur_sclk_hz);
 | |
| }
 | |
| 
 | |
| static int __maybe_unused spi_geni_suspend(struct device *dev)
 | |
| {
 | |
| 	struct spi_master *spi = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = spi_master_suspend(spi);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = pm_runtime_force_suspend(dev);
 | |
| 	if (ret)
 | |
| 		spi_master_resume(spi);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __maybe_unused spi_geni_resume(struct device *dev)
 | |
| {
 | |
| 	struct spi_master *spi = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = pm_runtime_force_resume(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = spi_master_resume(spi);
 | |
| 	if (ret)
 | |
| 		pm_runtime_force_suspend(dev);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct dev_pm_ops spi_geni_pm_ops = {
 | |
| 	SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
 | |
| 					spi_geni_runtime_resume, NULL)
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
 | |
| };
 | |
| 
 | |
| static const struct of_device_id spi_geni_dt_match[] = {
 | |
| 	{ .compatible = "qcom,geni-spi" },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
 | |
| 
 | |
| static struct platform_driver spi_geni_driver = {
 | |
| 	.probe  = spi_geni_probe,
 | |
| 	.remove_new = spi_geni_remove,
 | |
| 	.driver = {
 | |
| 		.name = "geni_spi",
 | |
| 		.pm = &spi_geni_pm_ops,
 | |
| 		.of_match_table = spi_geni_dt_match,
 | |
| 	},
 | |
| };
 | |
| module_platform_driver(spi_geni_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
 | |
| MODULE_LICENSE("GPL v2");
 |