771 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			771 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Driver for Cirrus Logic EP93xx SPI controller.
 | |
|  *
 | |
|  * Copyright (C) 2010-2011 Mika Westerberg
 | |
|  *
 | |
|  * Explicit FIFO handling code was inspired by amba-pl022 driver.
 | |
|  *
 | |
|  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
 | |
|  *
 | |
|  * For more information about the SPI controller see documentation on Cirrus
 | |
|  * Logic web site:
 | |
|  *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 | |
|  */
 | |
| 
 | |
| #include <linux/io.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/spi/spi.h>
 | |
| 
 | |
| #include <linux/platform_data/dma-ep93xx.h>
 | |
| #include <linux/platform_data/spi-ep93xx.h>
 | |
| 
 | |
| #define SSPCR0			0x0000
 | |
| #define SSPCR0_SPO		BIT(6)
 | |
| #define SSPCR0_SPH		BIT(7)
 | |
| #define SSPCR0_SCR_SHIFT	8
 | |
| 
 | |
| #define SSPCR1			0x0004
 | |
| #define SSPCR1_RIE		BIT(0)
 | |
| #define SSPCR1_TIE		BIT(1)
 | |
| #define SSPCR1_RORIE		BIT(2)
 | |
| #define SSPCR1_LBM		BIT(3)
 | |
| #define SSPCR1_SSE		BIT(4)
 | |
| #define SSPCR1_MS		BIT(5)
 | |
| #define SSPCR1_SOD		BIT(6)
 | |
| 
 | |
| #define SSPDR			0x0008
 | |
| 
 | |
| #define SSPSR			0x000c
 | |
| #define SSPSR_TFE		BIT(0)
 | |
| #define SSPSR_TNF		BIT(1)
 | |
| #define SSPSR_RNE		BIT(2)
 | |
| #define SSPSR_RFF		BIT(3)
 | |
| #define SSPSR_BSY		BIT(4)
 | |
| #define SSPCPSR			0x0010
 | |
| 
 | |
| #define SSPIIR			0x0014
 | |
| #define SSPIIR_RIS		BIT(0)
 | |
| #define SSPIIR_TIS		BIT(1)
 | |
| #define SSPIIR_RORIS		BIT(2)
 | |
| #define SSPICR			SSPIIR
 | |
| 
 | |
| /* timeout in milliseconds */
 | |
| #define SPI_TIMEOUT		5
 | |
| /* maximum depth of RX/TX FIFO */
 | |
| #define SPI_FIFO_SIZE		8
 | |
| 
 | |
| /**
 | |
|  * struct ep93xx_spi - EP93xx SPI controller structure
 | |
|  * @clk: clock for the controller
 | |
|  * @mmio: pointer to ioremap()'d registers
 | |
|  * @sspdr_phys: physical address of the SSPDR register
 | |
|  * @tx: current byte in transfer to transmit
 | |
|  * @rx: current byte in transfer to receive
 | |
|  * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 | |
|  *              frame decreases this level and sending one frame increases it.
 | |
|  * @dma_rx: RX DMA channel
 | |
|  * @dma_tx: TX DMA channel
 | |
|  * @dma_rx_data: RX parameters passed to the DMA engine
 | |
|  * @dma_tx_data: TX parameters passed to the DMA engine
 | |
|  * @rx_sgt: sg table for RX transfers
 | |
|  * @tx_sgt: sg table for TX transfers
 | |
|  * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 | |
|  *            the client
 | |
|  */
 | |
| struct ep93xx_spi {
 | |
| 	struct clk			*clk;
 | |
| 	void __iomem			*mmio;
 | |
| 	unsigned long			sspdr_phys;
 | |
| 	size_t				tx;
 | |
| 	size_t				rx;
 | |
| 	size_t				fifo_level;
 | |
| 	struct dma_chan			*dma_rx;
 | |
| 	struct dma_chan			*dma_tx;
 | |
| 	struct ep93xx_dma_data		dma_rx_data;
 | |
| 	struct ep93xx_dma_data		dma_tx_data;
 | |
| 	struct sg_table			rx_sgt;
 | |
| 	struct sg_table			tx_sgt;
 | |
| 	void				*zeropage;
 | |
| };
 | |
| 
 | |
| /* converts bits per word to CR0.DSS value */
 | |
| #define bits_per_word_to_dss(bpw)	((bpw) - 1)
 | |
| 
 | |
| /**
 | |
|  * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
 | |
|  * @master: SPI master
 | |
|  * @rate: desired SPI output clock rate
 | |
|  * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
 | |
|  * @div_scr: pointer to return the scr divider
 | |
|  */
 | |
| static int ep93xx_spi_calc_divisors(struct spi_master *master,
 | |
| 				    u32 rate, u8 *div_cpsr, u8 *div_scr)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
 | |
| 	int cpsr, scr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that max value is between values supported by the
 | |
| 	 * controller.
 | |
| 	 */
 | |
| 	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate divisors so that we can get speed according the
 | |
| 	 * following formula:
 | |
| 	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
 | |
| 	 *
 | |
| 	 * cpsr must be even number and starts from 2, scr can be any number
 | |
| 	 * between 0 and 255.
 | |
| 	 */
 | |
| 	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
 | |
| 		for (scr = 0; scr <= 255; scr++) {
 | |
| 			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
 | |
| 				*div_scr = (u8)scr;
 | |
| 				*div_cpsr = (u8)cpsr;
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_chip_setup(struct spi_master *master,
 | |
| 				 struct spi_device *spi,
 | |
| 				 struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
 | |
| 	u8 div_cpsr = 0;
 | |
| 	u8 div_scr = 0;
 | |
| 	u16 cr0;
 | |
| 	int err;
 | |
| 
 | |
| 	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
 | |
| 				       &div_cpsr, &div_scr);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	cr0 = div_scr << SSPCR0_SCR_SHIFT;
 | |
| 	if (spi->mode & SPI_CPOL)
 | |
| 		cr0 |= SSPCR0_SPO;
 | |
| 	if (spi->mode & SPI_CPHA)
 | |
| 		cr0 |= SSPCR0_SPH;
 | |
| 	cr0 |= dss;
 | |
| 
 | |
| 	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
 | |
| 		spi->mode, div_cpsr, div_scr, dss);
 | |
| 	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
 | |
| 
 | |
| 	writel(div_cpsr, espi->mmio + SSPCPSR);
 | |
| 	writel(cr0, espi->mmio + SSPCR0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void ep93xx_do_write(struct spi_master *master)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	struct spi_transfer *xfer = master->cur_msg->state;
 | |
| 	u32 val = 0;
 | |
| 
 | |
| 	if (xfer->bits_per_word > 8) {
 | |
| 		if (xfer->tx_buf)
 | |
| 			val = ((u16 *)xfer->tx_buf)[espi->tx];
 | |
| 		espi->tx += 2;
 | |
| 	} else {
 | |
| 		if (xfer->tx_buf)
 | |
| 			val = ((u8 *)xfer->tx_buf)[espi->tx];
 | |
| 		espi->tx += 1;
 | |
| 	}
 | |
| 	writel(val, espi->mmio + SSPDR);
 | |
| }
 | |
| 
 | |
| static void ep93xx_do_read(struct spi_master *master)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	struct spi_transfer *xfer = master->cur_msg->state;
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = readl(espi->mmio + SSPDR);
 | |
| 	if (xfer->bits_per_word > 8) {
 | |
| 		if (xfer->rx_buf)
 | |
| 			((u16 *)xfer->rx_buf)[espi->rx] = val;
 | |
| 		espi->rx += 2;
 | |
| 	} else {
 | |
| 		if (xfer->rx_buf)
 | |
| 			((u8 *)xfer->rx_buf)[espi->rx] = val;
 | |
| 		espi->rx += 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ep93xx_spi_read_write() - perform next RX/TX transfer
 | |
|  * @master: SPI master
 | |
|  *
 | |
|  * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
 | |
|  * called several times, the whole transfer will be completed. Returns
 | |
|  * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
 | |
|  *
 | |
|  * When this function is finished, RX FIFO should be empty and TX FIFO should be
 | |
|  * full.
 | |
|  */
 | |
| static int ep93xx_spi_read_write(struct spi_master *master)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	struct spi_transfer *xfer = master->cur_msg->state;
 | |
| 
 | |
| 	/* read as long as RX FIFO has frames in it */
 | |
| 	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
 | |
| 		ep93xx_do_read(master);
 | |
| 		espi->fifo_level--;
 | |
| 	}
 | |
| 
 | |
| 	/* write as long as TX FIFO has room */
 | |
| 	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
 | |
| 		ep93xx_do_write(master);
 | |
| 		espi->fifo_level++;
 | |
| 	}
 | |
| 
 | |
| 	if (espi->rx == xfer->len)
 | |
| 		return 0;
 | |
| 
 | |
| 	return -EINPROGRESS;
 | |
| }
 | |
| 
 | |
| static enum dma_transfer_direction
 | |
| ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
 | |
| {
 | |
| 	switch (dir) {
 | |
| 	case DMA_TO_DEVICE:
 | |
| 		return DMA_MEM_TO_DEV;
 | |
| 	case DMA_FROM_DEVICE:
 | |
| 		return DMA_DEV_TO_MEM;
 | |
| 	default:
 | |
| 		return DMA_TRANS_NONE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ep93xx_spi_dma_prepare() - prepares a DMA transfer
 | |
|  * @master: SPI master
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * Function configures the DMA, maps the buffer and prepares the DMA
 | |
|  * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
 | |
|  * in case of failure.
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *
 | |
| ep93xx_spi_dma_prepare(struct spi_master *master,
 | |
| 		       enum dma_data_direction dir)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	struct spi_transfer *xfer = master->cur_msg->state;
 | |
| 	struct dma_async_tx_descriptor *txd;
 | |
| 	enum dma_slave_buswidth buswidth;
 | |
| 	struct dma_slave_config conf;
 | |
| 	struct scatterlist *sg;
 | |
| 	struct sg_table *sgt;
 | |
| 	struct dma_chan *chan;
 | |
| 	const void *buf, *pbuf;
 | |
| 	size_t len = xfer->len;
 | |
| 	int i, ret, nents;
 | |
| 
 | |
| 	if (xfer->bits_per_word > 8)
 | |
| 		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
 | |
| 	else
 | |
| 		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
 | |
| 
 | |
| 	memset(&conf, 0, sizeof(conf));
 | |
| 	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
 | |
| 
 | |
| 	if (dir == DMA_FROM_DEVICE) {
 | |
| 		chan = espi->dma_rx;
 | |
| 		buf = xfer->rx_buf;
 | |
| 		sgt = &espi->rx_sgt;
 | |
| 
 | |
| 		conf.src_addr = espi->sspdr_phys;
 | |
| 		conf.src_addr_width = buswidth;
 | |
| 	} else {
 | |
| 		chan = espi->dma_tx;
 | |
| 		buf = xfer->tx_buf;
 | |
| 		sgt = &espi->tx_sgt;
 | |
| 
 | |
| 		conf.dst_addr = espi->sspdr_phys;
 | |
| 		conf.dst_addr_width = buswidth;
 | |
| 	}
 | |
| 
 | |
| 	ret = dmaengine_slave_config(chan, &conf);
 | |
| 	if (ret)
 | |
| 		return ERR_PTR(ret);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
 | |
| 	 * because we are using @espi->zeropage to provide a zero RX buffer
 | |
| 	 * for the TX transfers and we have only allocated one page for that.
 | |
| 	 *
 | |
| 	 * For performance reasons we allocate a new sg_table only when
 | |
| 	 * needed. Otherwise we will re-use the current one. Eventually the
 | |
| 	 * last sg_table is released in ep93xx_spi_release_dma().
 | |
| 	 */
 | |
| 
 | |
| 	nents = DIV_ROUND_UP(len, PAGE_SIZE);
 | |
| 	if (nents != sgt->nents) {
 | |
| 		sg_free_table(sgt);
 | |
| 
 | |
| 		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
 | |
| 		if (ret)
 | |
| 			return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	pbuf = buf;
 | |
| 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
 | |
| 		size_t bytes = min_t(size_t, len, PAGE_SIZE);
 | |
| 
 | |
| 		if (buf) {
 | |
| 			sg_set_page(sg, virt_to_page(pbuf), bytes,
 | |
| 				    offset_in_page(pbuf));
 | |
| 		} else {
 | |
| 			sg_set_page(sg, virt_to_page(espi->zeropage),
 | |
| 				    bytes, 0);
 | |
| 		}
 | |
| 
 | |
| 		pbuf += bytes;
 | |
| 		len -= bytes;
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON(len)) {
 | |
| 		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 | |
| 	if (!nents)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
 | |
| 				      DMA_CTRL_ACK);
 | |
| 	if (!txd) {
 | |
| 		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 	return txd;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ep93xx_spi_dma_finish() - finishes with a DMA transfer
 | |
|  * @master: SPI master
 | |
|  * @dir: DMA transfer direction
 | |
|  *
 | |
|  * Function finishes with the DMA transfer. After this, the DMA buffer is
 | |
|  * unmapped.
 | |
|  */
 | |
| static void ep93xx_spi_dma_finish(struct spi_master *master,
 | |
| 				  enum dma_data_direction dir)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	struct dma_chan *chan;
 | |
| 	struct sg_table *sgt;
 | |
| 
 | |
| 	if (dir == DMA_FROM_DEVICE) {
 | |
| 		chan = espi->dma_rx;
 | |
| 		sgt = &espi->rx_sgt;
 | |
| 	} else {
 | |
| 		chan = espi->dma_tx;
 | |
| 		sgt = &espi->tx_sgt;
 | |
| 	}
 | |
| 
 | |
| 	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
 | |
| }
 | |
| 
 | |
| static void ep93xx_spi_dma_callback(void *callback_param)
 | |
| {
 | |
| 	struct spi_master *master = callback_param;
 | |
| 
 | |
| 	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
 | |
| 	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
 | |
| 
 | |
| 	spi_finalize_current_transfer(master);
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_dma_transfer(struct spi_master *master)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	struct dma_async_tx_descriptor *rxd, *txd;
 | |
| 
 | |
| 	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
 | |
| 	if (IS_ERR(rxd)) {
 | |
| 		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
 | |
| 		return PTR_ERR(rxd);
 | |
| 	}
 | |
| 
 | |
| 	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
 | |
| 	if (IS_ERR(txd)) {
 | |
| 		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
 | |
| 		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
 | |
| 		return PTR_ERR(txd);
 | |
| 	}
 | |
| 
 | |
| 	/* We are ready when RX is done */
 | |
| 	rxd->callback = ep93xx_spi_dma_callback;
 | |
| 	rxd->callback_param = master;
 | |
| 
 | |
| 	/* Now submit both descriptors and start DMA */
 | |
| 	dmaengine_submit(rxd);
 | |
| 	dmaengine_submit(txd);
 | |
| 
 | |
| 	dma_async_issue_pending(espi->dma_rx);
 | |
| 	dma_async_issue_pending(espi->dma_tx);
 | |
| 
 | |
| 	/* signal that we need to wait for completion */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct spi_master *master = dev_id;
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	u32 val;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we got ROR (receive overrun) interrupt we know that something is
 | |
| 	 * wrong. Just abort the message.
 | |
| 	 */
 | |
| 	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
 | |
| 		/* clear the overrun interrupt */
 | |
| 		writel(0, espi->mmio + SSPICR);
 | |
| 		dev_warn(&master->dev,
 | |
| 			 "receive overrun, aborting the message\n");
 | |
| 		master->cur_msg->status = -EIO;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
 | |
| 		 * simply execute next data transfer.
 | |
| 		 */
 | |
| 		if (ep93xx_spi_read_write(master)) {
 | |
| 			/*
 | |
| 			 * In normal case, there still is some processing left
 | |
| 			 * for current transfer. Let's wait for the next
 | |
| 			 * interrupt then.
 | |
| 			 */
 | |
| 			return IRQ_HANDLED;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Current transfer is finished, either with error or with success. In
 | |
| 	 * any case we disable interrupts and notify the worker to handle
 | |
| 	 * any post-processing of the message.
 | |
| 	 */
 | |
| 	val = readl(espi->mmio + SSPCR1);
 | |
| 	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 | |
| 	writel(val, espi->mmio + SSPCR1);
 | |
| 
 | |
| 	spi_finalize_current_transfer(master);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_transfer_one(struct spi_master *master,
 | |
| 				   struct spi_device *spi,
 | |
| 				   struct spi_transfer *xfer)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	u32 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ep93xx_spi_chip_setup(master, spi, xfer);
 | |
| 	if (ret) {
 | |
| 		dev_err(&master->dev, "failed to setup chip for transfer\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	master->cur_msg->state = xfer;
 | |
| 	espi->rx = 0;
 | |
| 	espi->tx = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no point of setting up DMA for the transfers which will
 | |
| 	 * fit into the FIFO and can be transferred with a single interrupt.
 | |
| 	 * So in these cases we will be using PIO and don't bother for DMA.
 | |
| 	 */
 | |
| 	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
 | |
| 		return ep93xx_spi_dma_transfer(master);
 | |
| 
 | |
| 	/* Using PIO so prime the TX FIFO and enable interrupts */
 | |
| 	ep93xx_spi_read_write(master);
 | |
| 
 | |
| 	val = readl(espi->mmio + SSPCR1);
 | |
| 	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
 | |
| 	writel(val, espi->mmio + SSPCR1);
 | |
| 
 | |
| 	/* signal that we need to wait for completion */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_prepare_message(struct spi_master *master,
 | |
| 				      struct spi_message *msg)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	unsigned long timeout;
 | |
| 
 | |
| 	/*
 | |
| 	 * Just to be sure: flush any data from RX FIFO.
 | |
| 	 */
 | |
| 	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
 | |
| 	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
 | |
| 		if (time_after(jiffies, timeout)) {
 | |
| 			dev_warn(&master->dev,
 | |
| 				 "timeout while flushing RX FIFO\n");
 | |
| 			return -ETIMEDOUT;
 | |
| 		}
 | |
| 		readl(espi->mmio + SSPDR);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We explicitly handle FIFO level. This way we don't have to check TX
 | |
| 	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
 | |
| 	 */
 | |
| 	espi->fifo_level = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_prepare_hardware(struct spi_master *master)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	u32 val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = clk_enable(espi->clk);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	val = readl(espi->mmio + SSPCR1);
 | |
| 	val |= SSPCR1_SSE;
 | |
| 	writel(val, espi->mmio + SSPCR1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
 | |
| {
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = readl(espi->mmio + SSPCR1);
 | |
| 	val &= ~SSPCR1_SSE;
 | |
| 	writel(val, espi->mmio + SSPCR1);
 | |
| 
 | |
| 	clk_disable(espi->clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
 | |
| {
 | |
| 	if (ep93xx_dma_chan_is_m2p(chan))
 | |
| 		return false;
 | |
| 
 | |
| 	chan->private = filter_param;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
 | |
| {
 | |
| 	dma_cap_mask_t mask;
 | |
| 	int ret;
 | |
| 
 | |
| 	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
 | |
| 	if (!espi->zeropage)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dma_cap_zero(mask);
 | |
| 	dma_cap_set(DMA_SLAVE, mask);
 | |
| 
 | |
| 	espi->dma_rx_data.port = EP93XX_DMA_SSP;
 | |
| 	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
 | |
| 	espi->dma_rx_data.name = "ep93xx-spi-rx";
 | |
| 
 | |
| 	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 | |
| 					   &espi->dma_rx_data);
 | |
| 	if (!espi->dma_rx) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto fail_free_page;
 | |
| 	}
 | |
| 
 | |
| 	espi->dma_tx_data.port = EP93XX_DMA_SSP;
 | |
| 	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
 | |
| 	espi->dma_tx_data.name = "ep93xx-spi-tx";
 | |
| 
 | |
| 	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
 | |
| 					   &espi->dma_tx_data);
 | |
| 	if (!espi->dma_tx) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto fail_release_rx;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail_release_rx:
 | |
| 	dma_release_channel(espi->dma_rx);
 | |
| 	espi->dma_rx = NULL;
 | |
| fail_free_page:
 | |
| 	free_page((unsigned long)espi->zeropage);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
 | |
| {
 | |
| 	if (espi->dma_rx) {
 | |
| 		dma_release_channel(espi->dma_rx);
 | |
| 		sg_free_table(&espi->rx_sgt);
 | |
| 	}
 | |
| 	if (espi->dma_tx) {
 | |
| 		dma_release_channel(espi->dma_tx);
 | |
| 		sg_free_table(&espi->tx_sgt);
 | |
| 	}
 | |
| 
 | |
| 	if (espi->zeropage)
 | |
| 		free_page((unsigned long)espi->zeropage);
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_master *master;
 | |
| 	struct ep93xx_spi_info *info;
 | |
| 	struct ep93xx_spi *espi;
 | |
| 	struct resource *res;
 | |
| 	int irq;
 | |
| 	int error;
 | |
| 
 | |
| 	info = dev_get_platdata(&pdev->dev);
 | |
| 	if (!info) {
 | |
| 		dev_err(&pdev->dev, "missing platform data\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	if (!res) {
 | |
| 		dev_err(&pdev->dev, "unable to get iomem resource\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
 | |
| 	if (!master)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	master->use_gpio_descriptors = true;
 | |
| 	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
 | |
| 	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
 | |
| 	master->prepare_message = ep93xx_spi_prepare_message;
 | |
| 	master->transfer_one = ep93xx_spi_transfer_one;
 | |
| 	master->bus_num = pdev->id;
 | |
| 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
 | |
| 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
 | |
| 	/*
 | |
| 	 * The SPI core will count the number of GPIO descriptors to figure
 | |
| 	 * out the number of chip selects available on the platform.
 | |
| 	 */
 | |
| 	master->num_chipselect = 0;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, master);
 | |
| 
 | |
| 	espi = spi_master_get_devdata(master);
 | |
| 
 | |
| 	espi->clk = devm_clk_get(&pdev->dev, NULL);
 | |
| 	if (IS_ERR(espi->clk)) {
 | |
| 		dev_err(&pdev->dev, "unable to get spi clock\n");
 | |
| 		error = PTR_ERR(espi->clk);
 | |
| 		goto fail_release_master;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate maximum and minimum supported clock rates
 | |
| 	 * for the controller.
 | |
| 	 */
 | |
| 	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
 | |
| 	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
 | |
| 
 | |
| 	espi->sspdr_phys = res->start + SSPDR;
 | |
| 
 | |
| 	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
 | |
| 	if (IS_ERR(espi->mmio)) {
 | |
| 		error = PTR_ERR(espi->mmio);
 | |
| 		goto fail_release_master;
 | |
| 	}
 | |
| 
 | |
| 	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
 | |
| 				0, "ep93xx-spi", master);
 | |
| 	if (error) {
 | |
| 		dev_err(&pdev->dev, "failed to request irq\n");
 | |
| 		goto fail_release_master;
 | |
| 	}
 | |
| 
 | |
| 	if (info->use_dma && ep93xx_spi_setup_dma(espi))
 | |
| 		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
 | |
| 
 | |
| 	/* make sure that the hardware is disabled */
 | |
| 	writel(0, espi->mmio + SSPCR1);
 | |
| 
 | |
| 	error = devm_spi_register_master(&pdev->dev, master);
 | |
| 	if (error) {
 | |
| 		dev_err(&pdev->dev, "failed to register SPI master\n");
 | |
| 		goto fail_free_dma;
 | |
| 	}
 | |
| 
 | |
| 	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
 | |
| 		 (unsigned long)res->start, irq);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| fail_free_dma:
 | |
| 	ep93xx_spi_release_dma(espi);
 | |
| fail_release_master:
 | |
| 	spi_master_put(master);
 | |
| 
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static int ep93xx_spi_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct spi_master *master = platform_get_drvdata(pdev);
 | |
| 	struct ep93xx_spi *espi = spi_master_get_devdata(master);
 | |
| 
 | |
| 	ep93xx_spi_release_dma(espi);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct platform_driver ep93xx_spi_driver = {
 | |
| 	.driver		= {
 | |
| 		.name	= "ep93xx-spi",
 | |
| 	},
 | |
| 	.probe		= ep93xx_spi_probe,
 | |
| 	.remove		= ep93xx_spi_remove,
 | |
| };
 | |
| module_platform_driver(ep93xx_spi_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("EP93xx SPI Controller driver");
 | |
| MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_ALIAS("platform:ep93xx-spi");
 |