602 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			602 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /* bbc_envctrl.c: UltraSPARC-III environment control driver.
 | |
|  *
 | |
|  * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
 | |
|  */
 | |
| 
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/kmod.h>
 | |
| #include <linux/reboot.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <asm/oplib.h>
 | |
| 
 | |
| #include "bbc_i2c.h"
 | |
| #include "max1617.h"
 | |
| 
 | |
| #undef ENVCTRL_TRACE
 | |
| 
 | |
| /* WARNING: Making changes to this driver is very dangerous.
 | |
|  *          If you misprogram the sensor chips they can
 | |
|  *          cut the power on you instantly.
 | |
|  */
 | |
| 
 | |
| /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
 | |
|  * Both are implemented using max1617 i2c devices.  Each max1617
 | |
|  * monitors 2 temperatures, one for one of the cpu dies and the other
 | |
|  * for the ambient temperature.
 | |
|  *
 | |
|  * The max1617 is capable of being programmed with power-off
 | |
|  * temperature values, one low limit and one high limit.  These
 | |
|  * can be controlled independently for the cpu or ambient temperature.
 | |
|  * If a limit is violated, the power is simply shut off.  The frequency
 | |
|  * with which the max1617 does temperature sampling can be controlled
 | |
|  * as well.
 | |
|  *
 | |
|  * Three fans exist inside the machine, all three are controlled with
 | |
|  * an i2c digital to analog converter.  There is a fan directed at the
 | |
|  * two processor slots, another for the rest of the enclosure, and the
 | |
|  * third is for the power supply.  The first two fans may be speed
 | |
|  * controlled by changing the voltage fed to them.  The third fan may
 | |
|  * only be completely off or on.  The third fan is meant to only be
 | |
|  * disabled/enabled when entering/exiting the lowest power-saving
 | |
|  * mode of the machine.
 | |
|  *
 | |
|  * An environmental control kernel thread periodically monitors all
 | |
|  * temperature sensors.  Based upon the samples it will adjust the
 | |
|  * fan speeds to try and keep the system within a certain temperature
 | |
|  * range (the goal being to make the fans as quiet as possible without
 | |
|  * allowing the system to get too hot).
 | |
|  *
 | |
|  * If the temperature begins to rise/fall outside of the acceptable
 | |
|  * operating range, a periodic warning will be sent to the kernel log.
 | |
|  * The fans will be put on full blast to attempt to deal with this
 | |
|  * situation.  After exceeding the acceptable operating range by a
 | |
|  * certain threshold, the kernel thread will shut down the system.
 | |
|  * Here, the thread is attempting to shut the machine down cleanly
 | |
|  * before the hardware based power-off event is triggered.
 | |
|  */
 | |
| 
 | |
| /* These settings are in Celsius.  We use these defaults only
 | |
|  * if we cannot interrogate the cpu-fru SEEPROM.
 | |
|  */
 | |
| struct temp_limits {
 | |
| 	s8 high_pwroff, high_shutdown, high_warn;
 | |
| 	s8 low_warn, low_shutdown, low_pwroff;
 | |
| };
 | |
| 
 | |
| static struct temp_limits cpu_temp_limits[2] = {
 | |
| 	{ 100, 85, 80, 5, -5, -10 },
 | |
| 	{ 100, 85, 80, 5, -5, -10 },
 | |
| };
 | |
| 
 | |
| static struct temp_limits amb_temp_limits[2] = {
 | |
| 	{ 65, 55, 40, 5, -5, -10 },
 | |
| 	{ 65, 55, 40, 5, -5, -10 },
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(all_temps);
 | |
| static LIST_HEAD(all_fans);
 | |
| 
 | |
| #define CPU_FAN_REG	0xf0
 | |
| #define SYS_FAN_REG	0xf2
 | |
| #define PSUPPLY_FAN_REG	0xf4
 | |
| 
 | |
| #define FAN_SPEED_MIN	0x0c
 | |
| #define FAN_SPEED_MAX	0x3f
 | |
| 
 | |
| #define PSUPPLY_FAN_ON	0x1f
 | |
| #define PSUPPLY_FAN_OFF	0x00
 | |
| 
 | |
| static void set_fan_speeds(struct bbc_fan_control *fp)
 | |
| {
 | |
| 	/* Put temperatures into range so we don't mis-program
 | |
| 	 * the hardware.
 | |
| 	 */
 | |
| 	if (fp->cpu_fan_speed < FAN_SPEED_MIN)
 | |
| 		fp->cpu_fan_speed = FAN_SPEED_MIN;
 | |
| 	if (fp->cpu_fan_speed > FAN_SPEED_MAX)
 | |
| 		fp->cpu_fan_speed = FAN_SPEED_MAX;
 | |
| 	if (fp->system_fan_speed < FAN_SPEED_MIN)
 | |
| 		fp->system_fan_speed = FAN_SPEED_MIN;
 | |
| 	if (fp->system_fan_speed > FAN_SPEED_MAX)
 | |
| 		fp->system_fan_speed = FAN_SPEED_MAX;
 | |
| #ifdef ENVCTRL_TRACE
 | |
| 	printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
 | |
| 	       fp->index,
 | |
| 	       fp->cpu_fan_speed, fp->system_fan_speed);
 | |
| #endif
 | |
| 
 | |
| 	bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
 | |
| 	bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
 | |
| 	bbc_i2c_writeb(fp->client,
 | |
| 		       (fp->psupply_fan_on ?
 | |
| 			PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
 | |
| 		       PSUPPLY_FAN_REG);
 | |
| }
 | |
| 
 | |
| static void get_current_temps(struct bbc_cpu_temperature *tp)
 | |
| {
 | |
| 	tp->prev_amb_temp = tp->curr_amb_temp;
 | |
| 	bbc_i2c_readb(tp->client,
 | |
| 		      (unsigned char *) &tp->curr_amb_temp,
 | |
| 		      MAX1617_AMB_TEMP);
 | |
| 	tp->prev_cpu_temp = tp->curr_cpu_temp;
 | |
| 	bbc_i2c_readb(tp->client,
 | |
| 		      (unsigned char *) &tp->curr_cpu_temp,
 | |
| 		      MAX1617_CPU_TEMP);
 | |
| #ifdef ENVCTRL_TRACE
 | |
| 	printk("temp%d: cpu(%d C) amb(%d C)\n",
 | |
| 	       tp->index,
 | |
| 	       (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
 | |
| {
 | |
| 	static int shutting_down = 0;
 | |
| 	char *type = "???";
 | |
| 	s8 val = -1;
 | |
| 
 | |
| 	if (shutting_down != 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
 | |
| 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
 | |
| 		type = "ambient";
 | |
| 		val = tp->curr_amb_temp;
 | |
| 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
 | |
| 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
 | |
| 		type = "CPU";
 | |
| 		val = tp->curr_cpu_temp;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_CRIT "temp%d: Outside of safe %s "
 | |
| 	       "operating temperature, %d C.\n",
 | |
| 	       tp->index, type, val);
 | |
| 
 | |
| 	printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
 | |
| 
 | |
| 	shutting_down = 1;
 | |
| 	orderly_poweroff(true);
 | |
| }
 | |
| 
 | |
| #define WARN_INTERVAL	(30 * HZ)
 | |
| 
 | |
| static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
 | |
| 		if (tp->curr_amb_temp >=
 | |
| 		    amb_temp_limits[tp->index].high_warn) {
 | |
| 			printk(KERN_WARNING "temp%d: "
 | |
| 			       "Above safe ambient operating temperature, %d C.\n",
 | |
| 			       tp->index, (int) tp->curr_amb_temp);
 | |
| 			ret = 1;
 | |
| 		} else if (tp->curr_amb_temp <
 | |
| 			   amb_temp_limits[tp->index].low_warn) {
 | |
| 			printk(KERN_WARNING "temp%d: "
 | |
| 			       "Below safe ambient operating temperature, %d C.\n",
 | |
| 			       tp->index, (int) tp->curr_amb_temp);
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			*last_warn = jiffies;
 | |
| 	} else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
 | |
| 		   tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
 | |
| 		ret = 1;
 | |
| 
 | |
| 	/* Now check the shutdown limits. */
 | |
| 	if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
 | |
| 	    tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
 | |
| 		do_envctrl_shutdown(tp);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
 | |
| 	} else if ((tick & (8 - 1)) == 0) {
 | |
| 		s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
 | |
| 		s8 amb_goal_lo;
 | |
| 
 | |
| 		amb_goal_lo = amb_goal_hi - 3;
 | |
| 
 | |
| 		/* We do not try to avoid 'too cold' events.  Basically we
 | |
| 		 * only try to deal with over-heating and fan noise reduction.
 | |
| 		 */
 | |
| 		if (tp->avg_amb_temp < amb_goal_hi) {
 | |
| 			if (tp->avg_amb_temp >= amb_goal_lo)
 | |
| 				tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
 | |
| 			else
 | |
| 				tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
 | |
| 		} else {
 | |
| 			tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
 | |
| 		}
 | |
| 	} else {
 | |
| 		tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
 | |
| 		if (tp->curr_cpu_temp >=
 | |
| 		    cpu_temp_limits[tp->index].high_warn) {
 | |
| 			printk(KERN_WARNING "temp%d: "
 | |
| 			       "Above safe CPU operating temperature, %d C.\n",
 | |
| 			       tp->index, (int) tp->curr_cpu_temp);
 | |
| 			ret = 1;
 | |
| 		} else if (tp->curr_cpu_temp <
 | |
| 			   cpu_temp_limits[tp->index].low_warn) {
 | |
| 			printk(KERN_WARNING "temp%d: "
 | |
| 			       "Below safe CPU operating temperature, %d C.\n",
 | |
| 			       tp->index, (int) tp->curr_cpu_temp);
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			*last_warn = jiffies;
 | |
| 	} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
 | |
| 		   tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
 | |
| 		ret = 1;
 | |
| 
 | |
| 	/* Now check the shutdown limits. */
 | |
| 	if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
 | |
| 	    tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
 | |
| 		do_envctrl_shutdown(tp);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (ret) {
 | |
| 		tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
 | |
| 	} else if ((tick & (8 - 1)) == 0) {
 | |
| 		s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
 | |
| 		s8 cpu_goal_lo;
 | |
| 
 | |
| 		cpu_goal_lo = cpu_goal_hi - 3;
 | |
| 
 | |
| 		/* We do not try to avoid 'too cold' events.  Basically we
 | |
| 		 * only try to deal with over-heating and fan noise reduction.
 | |
| 		 */
 | |
| 		if (tp->avg_cpu_temp < cpu_goal_hi) {
 | |
| 			if (tp->avg_cpu_temp >= cpu_goal_lo)
 | |
| 				tp->fan_todo[FAN_CPU] = FAN_SAME;
 | |
| 			else
 | |
| 				tp->fan_todo[FAN_CPU] = FAN_SLOWER;
 | |
| 		} else {
 | |
| 			tp->fan_todo[FAN_CPU] = FAN_FASTER;
 | |
| 		}
 | |
| 	} else {
 | |
| 		tp->fan_todo[FAN_CPU] = FAN_SAME;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
 | |
| {
 | |
| 	tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
 | |
| 	tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
 | |
| 
 | |
| 	analyze_ambient_temp(tp, last_warn, tp->sample_tick);
 | |
| 	analyze_cpu_temp(tp, last_warn, tp->sample_tick);
 | |
| 
 | |
| 	tp->sample_tick++;
 | |
| }
 | |
| 
 | |
| static enum fan_action prioritize_fan_action(int which_fan)
 | |
| {
 | |
| 	struct bbc_cpu_temperature *tp;
 | |
| 	enum fan_action decision = FAN_STATE_MAX;
 | |
| 
 | |
| 	/* Basically, prioritize what the temperature sensors
 | |
| 	 * recommend we do, and perform that action on all the
 | |
| 	 * fans.
 | |
| 	 */
 | |
| 	list_for_each_entry(tp, &all_temps, glob_list) {
 | |
| 		if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
 | |
| 			decision = FAN_FULLBLAST;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (tp->fan_todo[which_fan] == FAN_SAME &&
 | |
| 		    decision != FAN_FASTER)
 | |
| 			decision = FAN_SAME;
 | |
| 		else if (tp->fan_todo[which_fan] == FAN_FASTER)
 | |
| 			decision = FAN_FASTER;
 | |
| 		else if (decision != FAN_FASTER &&
 | |
| 			 decision != FAN_SAME &&
 | |
| 			 tp->fan_todo[which_fan] == FAN_SLOWER)
 | |
| 			decision = FAN_SLOWER;
 | |
| 	}
 | |
| 	if (decision == FAN_STATE_MAX)
 | |
| 		decision = FAN_SAME;
 | |
| 
 | |
| 	return decision;
 | |
| }
 | |
| 
 | |
| static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
 | |
| {
 | |
| 	enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (decision == FAN_SAME)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = 1;
 | |
| 	if (decision == FAN_FULLBLAST) {
 | |
| 		if (fp->system_fan_speed >= FAN_SPEED_MAX)
 | |
| 			ret = 0;
 | |
| 		else
 | |
| 			fp->system_fan_speed = FAN_SPEED_MAX;
 | |
| 	} else {
 | |
| 		if (decision == FAN_FASTER) {
 | |
| 			if (fp->system_fan_speed >= FAN_SPEED_MAX)
 | |
| 				ret = 0;
 | |
| 			else
 | |
| 				fp->system_fan_speed += 2;
 | |
| 		} else {
 | |
| 			int orig_speed = fp->system_fan_speed;
 | |
| 
 | |
| 			if (orig_speed <= FAN_SPEED_MIN ||
 | |
| 			    orig_speed <= (fp->cpu_fan_speed - 3))
 | |
| 				ret = 0;
 | |
| 			else
 | |
| 				fp->system_fan_speed -= 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
 | |
| {
 | |
| 	enum fan_action decision = prioritize_fan_action(FAN_CPU);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (decision == FAN_SAME)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = 1;
 | |
| 	if (decision == FAN_FULLBLAST) {
 | |
| 		if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
 | |
| 			ret = 0;
 | |
| 		else
 | |
| 			fp->cpu_fan_speed = FAN_SPEED_MAX;
 | |
| 	} else {
 | |
| 		if (decision == FAN_FASTER) {
 | |
| 			if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
 | |
| 				ret = 0;
 | |
| 			else {
 | |
| 				fp->cpu_fan_speed += 2;
 | |
| 				if (fp->system_fan_speed <
 | |
| 				    (fp->cpu_fan_speed - 3))
 | |
| 					fp->system_fan_speed =
 | |
| 						fp->cpu_fan_speed - 3;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
 | |
| 				ret = 0;
 | |
| 			else
 | |
| 				fp->cpu_fan_speed -= 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
 | |
| {
 | |
| 	int new;
 | |
| 
 | |
| 	new  = maybe_new_ambient_fan_speed(fp);
 | |
| 	new |= maybe_new_cpu_fan_speed(fp);
 | |
| 
 | |
| 	if (new)
 | |
| 		set_fan_speeds(fp);
 | |
| }
 | |
| 
 | |
| static void fans_full_blast(void)
 | |
| {
 | |
| 	struct bbc_fan_control *fp;
 | |
| 
 | |
| 	/* Since we will not be monitoring things anymore, put
 | |
| 	 * the fans on full blast.
 | |
| 	 */
 | |
| 	list_for_each_entry(fp, &all_fans, glob_list) {
 | |
| 		fp->cpu_fan_speed = FAN_SPEED_MAX;
 | |
| 		fp->system_fan_speed = FAN_SPEED_MAX;
 | |
| 		fp->psupply_fan_on = 1;
 | |
| 		set_fan_speeds(fp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define POLL_INTERVAL	(5 * 1000)
 | |
| static unsigned long last_warning_jiffies;
 | |
| static struct task_struct *kenvctrld_task;
 | |
| 
 | |
| static int kenvctrld(void *__unused)
 | |
| {
 | |
| 	printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
 | |
| 	last_warning_jiffies = jiffies - WARN_INTERVAL;
 | |
| 	for (;;) {
 | |
| 		struct bbc_cpu_temperature *tp;
 | |
| 		struct bbc_fan_control *fp;
 | |
| 
 | |
| 		msleep_interruptible(POLL_INTERVAL);
 | |
| 		if (kthread_should_stop())
 | |
| 			break;
 | |
| 
 | |
| 		list_for_each_entry(tp, &all_temps, glob_list) {
 | |
| 			get_current_temps(tp);
 | |
| 			analyze_temps(tp, &last_warning_jiffies);
 | |
| 		}
 | |
| 		list_for_each_entry(fp, &all_fans, glob_list)
 | |
| 			maybe_new_fan_speeds(fp);
 | |
| 	}
 | |
| 	printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
 | |
| 
 | |
| 	fans_full_blast();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void attach_one_temp(struct bbc_i2c_bus *bp, struct platform_device *op,
 | |
| 			    int temp_idx)
 | |
| {
 | |
| 	struct bbc_cpu_temperature *tp;
 | |
| 
 | |
| 	tp = kzalloc(sizeof(*tp), GFP_KERNEL);
 | |
| 	if (!tp)
 | |
| 		return;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&tp->bp_list);
 | |
| 	INIT_LIST_HEAD(&tp->glob_list);
 | |
| 
 | |
| 	tp->client = bbc_i2c_attach(bp, op);
 | |
| 	if (!tp->client) {
 | |
| 		kfree(tp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	tp->index = temp_idx;
 | |
| 
 | |
| 	list_add(&tp->glob_list, &all_temps);
 | |
| 	list_add(&tp->bp_list, &bp->temps);
 | |
| 
 | |
| 	/* Tell it to convert once every 5 seconds, clear all cfg
 | |
| 	 * bits.
 | |
| 	 */
 | |
| 	bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
 | |
| 	bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
 | |
| 
 | |
| 	/* Program the hard temperature limits into the chip. */
 | |
| 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
 | |
| 		       MAX1617_WR_AMB_HIGHLIM);
 | |
| 	bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
 | |
| 		       MAX1617_WR_AMB_LOWLIM);
 | |
| 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
 | |
| 		       MAX1617_WR_CPU_HIGHLIM);
 | |
| 	bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
 | |
| 		       MAX1617_WR_CPU_LOWLIM);
 | |
| 
 | |
| 	get_current_temps(tp);
 | |
| 	tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
 | |
| 	tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
 | |
| 
 | |
| 	tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
 | |
| 	tp->fan_todo[FAN_CPU] = FAN_SAME;
 | |
| }
 | |
| 
 | |
| static void attach_one_fan(struct bbc_i2c_bus *bp, struct platform_device *op,
 | |
| 			   int fan_idx)
 | |
| {
 | |
| 	struct bbc_fan_control *fp;
 | |
| 
 | |
| 	fp = kzalloc(sizeof(*fp), GFP_KERNEL);
 | |
| 	if (!fp)
 | |
| 		return;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&fp->bp_list);
 | |
| 	INIT_LIST_HEAD(&fp->glob_list);
 | |
| 
 | |
| 	fp->client = bbc_i2c_attach(bp, op);
 | |
| 	if (!fp->client) {
 | |
| 		kfree(fp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	fp->index = fan_idx;
 | |
| 
 | |
| 	list_add(&fp->glob_list, &all_fans);
 | |
| 	list_add(&fp->bp_list, &bp->fans);
 | |
| 
 | |
| 	/* The i2c device controlling the fans is write-only.
 | |
| 	 * So the only way to keep track of the current power
 | |
| 	 * level fed to the fans is via software.  Choose half
 | |
| 	 * power for cpu/system and 'on' fo the powersupply fan
 | |
| 	 * and set it now.
 | |
| 	 */
 | |
| 	fp->psupply_fan_on = 1;
 | |
| 	fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
 | |
| 	fp->cpu_fan_speed += FAN_SPEED_MIN;
 | |
| 	fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
 | |
| 	fp->system_fan_speed += FAN_SPEED_MIN;
 | |
| 
 | |
| 	set_fan_speeds(fp);
 | |
| }
 | |
| 
 | |
| static void destroy_one_temp(struct bbc_cpu_temperature *tp)
 | |
| {
 | |
| 	bbc_i2c_detach(tp->client);
 | |
| 	kfree(tp);
 | |
| }
 | |
| 
 | |
| static void destroy_all_temps(struct bbc_i2c_bus *bp)
 | |
| {
 | |
| 	struct bbc_cpu_temperature *tp, *tpos;
 | |
| 
 | |
| 	list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) {
 | |
| 		list_del(&tp->bp_list);
 | |
| 		list_del(&tp->glob_list);
 | |
| 		destroy_one_temp(tp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void destroy_one_fan(struct bbc_fan_control *fp)
 | |
| {
 | |
| 	bbc_i2c_detach(fp->client);
 | |
| 	kfree(fp);
 | |
| }
 | |
| 
 | |
| static void destroy_all_fans(struct bbc_i2c_bus *bp)
 | |
| {
 | |
| 	struct bbc_fan_control *fp, *fpos;
 | |
| 
 | |
| 	list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) {
 | |
| 		list_del(&fp->bp_list);
 | |
| 		list_del(&fp->glob_list);
 | |
| 		destroy_one_fan(fp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int bbc_envctrl_init(struct bbc_i2c_bus *bp)
 | |
| {
 | |
| 	struct platform_device *op;
 | |
| 	int temp_index = 0;
 | |
| 	int fan_index = 0;
 | |
| 	int devidx = 0;
 | |
| 
 | |
| 	while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) {
 | |
| 		if (of_node_name_eq(op->dev.of_node, "temperature"))
 | |
| 			attach_one_temp(bp, op, temp_index++);
 | |
| 		if (of_node_name_eq(op->dev.of_node, "fan-control"))
 | |
| 			attach_one_fan(bp, op, fan_index++);
 | |
| 	}
 | |
| 	if (temp_index != 0 && fan_index != 0) {
 | |
| 		kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
 | |
| 		if (IS_ERR(kenvctrld_task)) {
 | |
| 			int err = PTR_ERR(kenvctrld_task);
 | |
| 
 | |
| 			kenvctrld_task = NULL;
 | |
| 			destroy_all_temps(bp);
 | |
| 			destroy_all_fans(bp);
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp)
 | |
| {
 | |
| 	if (kenvctrld_task)
 | |
| 		kthread_stop(kenvctrld_task);
 | |
| 
 | |
| 	destroy_all_temps(bp);
 | |
| 	destroy_all_fans(bp);
 | |
| }
 |