957 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			957 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * channel program interfaces
 | |
|  *
 | |
|  * Copyright IBM Corp. 2017
 | |
|  *
 | |
|  * Author(s): Dong Jia Shi <bjsdjshi@linux.vnet.ibm.com>
 | |
|  *            Xiao Feng Ren <renxiaof@linux.vnet.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/ratelimit.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/vfio.h>
 | |
| #include <asm/idals.h>
 | |
| 
 | |
| #include "vfio_ccw_cp.h"
 | |
| #include "vfio_ccw_private.h"
 | |
| 
 | |
| struct page_array {
 | |
| 	/* Array that stores pages need to pin. */
 | |
| 	dma_addr_t		*pa_iova;
 | |
| 	/* Array that receives the pinned pages. */
 | |
| 	struct page		**pa_page;
 | |
| 	/* Number of pages pinned from @pa_iova. */
 | |
| 	int			pa_nr;
 | |
| };
 | |
| 
 | |
| struct ccwchain {
 | |
| 	struct list_head	next;
 | |
| 	struct ccw1		*ch_ccw;
 | |
| 	/* Guest physical address of the current chain. */
 | |
| 	u64			ch_iova;
 | |
| 	/* Count of the valid ccws in chain. */
 | |
| 	int			ch_len;
 | |
| 	/* Pinned PAGEs for the original data. */
 | |
| 	struct page_array	*ch_pa;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * page_array_alloc() - alloc memory for page array
 | |
|  * @pa: page_array on which to perform the operation
 | |
|  * @len: number of pages that should be pinned from @iova
 | |
|  *
 | |
|  * Attempt to allocate memory for page array.
 | |
|  *
 | |
|  * Usage of page_array:
 | |
|  * We expect (pa_nr == 0) and (pa_iova == NULL), any field in
 | |
|  * this structure will be filled in by this function.
 | |
|  *
 | |
|  * Returns:
 | |
|  *         0 if page array is allocated
 | |
|  *   -EINVAL if pa->pa_nr is not initially zero, or pa->pa_iova is not NULL
 | |
|  *   -ENOMEM if alloc failed
 | |
|  */
 | |
| static int page_array_alloc(struct page_array *pa, unsigned int len)
 | |
| {
 | |
| 	if (pa->pa_nr || pa->pa_iova)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (len == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pa->pa_nr = len;
 | |
| 
 | |
| 	pa->pa_iova = kcalloc(len, sizeof(*pa->pa_iova), GFP_KERNEL);
 | |
| 	if (!pa->pa_iova)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pa->pa_page = kcalloc(len, sizeof(*pa->pa_page), GFP_KERNEL);
 | |
| 	if (!pa->pa_page) {
 | |
| 		kfree(pa->pa_iova);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * page_array_unpin() - Unpin user pages in memory
 | |
|  * @pa: page_array on which to perform the operation
 | |
|  * @vdev: the vfio device to perform the operation
 | |
|  * @pa_nr: number of user pages to unpin
 | |
|  * @unaligned: were pages unaligned on the pin request
 | |
|  *
 | |
|  * Only unpin if any pages were pinned to begin with, i.e. pa_nr > 0,
 | |
|  * otherwise only clear pa->pa_nr
 | |
|  */
 | |
| static void page_array_unpin(struct page_array *pa,
 | |
| 			     struct vfio_device *vdev, int pa_nr, bool unaligned)
 | |
| {
 | |
| 	int unpinned = 0, npage = 1;
 | |
| 
 | |
| 	while (unpinned < pa_nr) {
 | |
| 		dma_addr_t *first = &pa->pa_iova[unpinned];
 | |
| 		dma_addr_t *last = &first[npage];
 | |
| 
 | |
| 		if (unpinned + npage < pa_nr &&
 | |
| 		    *first + npage * PAGE_SIZE == *last &&
 | |
| 		    !unaligned) {
 | |
| 			npage++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		vfio_unpin_pages(vdev, *first, npage);
 | |
| 		unpinned += npage;
 | |
| 		npage = 1;
 | |
| 	}
 | |
| 
 | |
| 	pa->pa_nr = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * page_array_pin() - Pin user pages in memory
 | |
|  * @pa: page_array on which to perform the operation
 | |
|  * @vdev: the vfio device to perform pin operations
 | |
|  * @unaligned: are pages aligned to 4K boundary?
 | |
|  *
 | |
|  * Returns number of pages pinned upon success.
 | |
|  * If the pin request partially succeeds, or fails completely,
 | |
|  * all pages are left unpinned and a negative error value is returned.
 | |
|  *
 | |
|  * Requests to pin "aligned" pages can be coalesced into a single
 | |
|  * vfio_pin_pages request for the sake of efficiency, based on the
 | |
|  * expectation of 4K page requests. Unaligned requests are probably
 | |
|  * dealing with 2K "pages", and cannot be coalesced without
 | |
|  * reworking this logic to incorporate that math.
 | |
|  */
 | |
| static int page_array_pin(struct page_array *pa, struct vfio_device *vdev, bool unaligned)
 | |
| {
 | |
| 	int pinned = 0, npage = 1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	while (pinned < pa->pa_nr) {
 | |
| 		dma_addr_t *first = &pa->pa_iova[pinned];
 | |
| 		dma_addr_t *last = &first[npage];
 | |
| 
 | |
| 		if (pinned + npage < pa->pa_nr &&
 | |
| 		    *first + npage * PAGE_SIZE == *last &&
 | |
| 		    !unaligned) {
 | |
| 			npage++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = vfio_pin_pages(vdev, *first, npage,
 | |
| 				     IOMMU_READ | IOMMU_WRITE,
 | |
| 				     &pa->pa_page[pinned]);
 | |
| 		if (ret < 0) {
 | |
| 			goto err_out;
 | |
| 		} else if (ret > 0 && ret != npage) {
 | |
| 			pinned += ret;
 | |
| 			ret = -EINVAL;
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 		pinned += npage;
 | |
| 		npage = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| err_out:
 | |
| 	page_array_unpin(pa, vdev, pinned, unaligned);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Unpin the pages before releasing the memory. */
 | |
| static void page_array_unpin_free(struct page_array *pa, struct vfio_device *vdev, bool unaligned)
 | |
| {
 | |
| 	page_array_unpin(pa, vdev, pa->pa_nr, unaligned);
 | |
| 	kfree(pa->pa_page);
 | |
| 	kfree(pa->pa_iova);
 | |
| }
 | |
| 
 | |
| static bool page_array_iova_pinned(struct page_array *pa, u64 iova, u64 length)
 | |
| {
 | |
| 	u64 iova_pfn_start = iova >> PAGE_SHIFT;
 | |
| 	u64 iova_pfn_end = (iova + length - 1) >> PAGE_SHIFT;
 | |
| 	u64 pfn;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < pa->pa_nr; i++) {
 | |
| 		pfn = pa->pa_iova[i] >> PAGE_SHIFT;
 | |
| 		if (pfn >= iova_pfn_start && pfn <= iova_pfn_end)
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| /* Create the list of IDAL words for a page_array. */
 | |
| static inline void page_array_idal_create_words(struct page_array *pa,
 | |
| 						unsigned long *idaws)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Idal words (execept the first one) rely on the memory being 4k
 | |
| 	 * aligned. If a user virtual address is 4K aligned, then it's
 | |
| 	 * corresponding kernel physical address will also be 4K aligned. Thus
 | |
| 	 * there will be no problem here to simply use the phys to create an
 | |
| 	 * idaw.
 | |
| 	 */
 | |
| 
 | |
| 	for (i = 0; i < pa->pa_nr; i++) {
 | |
| 		idaws[i] = page_to_phys(pa->pa_page[i]);
 | |
| 
 | |
| 		/* Incorporate any offset from each starting address */
 | |
| 		idaws[i] += pa->pa_iova[i] & (PAGE_SIZE - 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void convert_ccw0_to_ccw1(struct ccw1 *source, unsigned long len)
 | |
| {
 | |
| 	struct ccw0 ccw0;
 | |
| 	struct ccw1 *pccw1 = source;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i++) {
 | |
| 		ccw0 = *(struct ccw0 *)pccw1;
 | |
| 		if ((pccw1->cmd_code & 0x0f) == CCW_CMD_TIC) {
 | |
| 			pccw1->cmd_code = CCW_CMD_TIC;
 | |
| 			pccw1->flags = 0;
 | |
| 			pccw1->count = 0;
 | |
| 		} else {
 | |
| 			pccw1->cmd_code = ccw0.cmd_code;
 | |
| 			pccw1->flags = ccw0.flags;
 | |
| 			pccw1->count = ccw0.count;
 | |
| 		}
 | |
| 		pccw1->cda = ccw0.cda;
 | |
| 		pccw1++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define idal_is_2k(_cp) (!(_cp)->orb.cmd.c64 || (_cp)->orb.cmd.i2k)
 | |
| 
 | |
| /*
 | |
|  * Helpers to operate ccwchain.
 | |
|  */
 | |
| #define ccw_is_read(_ccw) (((_ccw)->cmd_code & 0x03) == 0x02)
 | |
| #define ccw_is_read_backward(_ccw) (((_ccw)->cmd_code & 0x0F) == 0x0C)
 | |
| #define ccw_is_sense(_ccw) (((_ccw)->cmd_code & 0x0F) == CCW_CMD_BASIC_SENSE)
 | |
| 
 | |
| #define ccw_is_noop(_ccw) ((_ccw)->cmd_code == CCW_CMD_NOOP)
 | |
| 
 | |
| #define ccw_is_tic(_ccw) ((_ccw)->cmd_code == CCW_CMD_TIC)
 | |
| 
 | |
| #define ccw_is_idal(_ccw) ((_ccw)->flags & CCW_FLAG_IDA)
 | |
| #define ccw_is_skip(_ccw) ((_ccw)->flags & CCW_FLAG_SKIP)
 | |
| 
 | |
| #define ccw_is_chain(_ccw) ((_ccw)->flags & (CCW_FLAG_CC | CCW_FLAG_DC))
 | |
| 
 | |
| /*
 | |
|  * ccw_does_data_transfer()
 | |
|  *
 | |
|  * Determine whether a CCW will move any data, such that the guest pages
 | |
|  * would need to be pinned before performing the I/O.
 | |
|  *
 | |
|  * Returns 1 if yes, 0 if no.
 | |
|  */
 | |
| static inline int ccw_does_data_transfer(struct ccw1 *ccw)
 | |
| {
 | |
| 	/* If the count field is zero, then no data will be transferred */
 | |
| 	if (ccw->count == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If the command is a NOP, then no data will be transferred */
 | |
| 	if (ccw_is_noop(ccw))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If the skip flag is off, then data will be transferred */
 | |
| 	if (!ccw_is_skip(ccw))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the skip flag is on, it is only meaningful if the command
 | |
| 	 * code is a read, read backward, sense, or sense ID.  In those
 | |
| 	 * cases, no data will be transferred.
 | |
| 	 */
 | |
| 	if (ccw_is_read(ccw) || ccw_is_read_backward(ccw))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ccw_is_sense(ccw))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* The skip flag is on, but it is ignored for this command code. */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * is_cpa_within_range()
 | |
|  *
 | |
|  * @cpa: channel program address being questioned
 | |
|  * @head: address of the beginning of a CCW chain
 | |
|  * @len: number of CCWs within the chain
 | |
|  *
 | |
|  * Determine whether the address of a CCW (whether a new chain,
 | |
|  * or the target of a TIC) falls within a range (including the end points).
 | |
|  *
 | |
|  * Returns 1 if yes, 0 if no.
 | |
|  */
 | |
| static inline int is_cpa_within_range(u32 cpa, u32 head, int len)
 | |
| {
 | |
| 	u32 tail = head + (len - 1) * sizeof(struct ccw1);
 | |
| 
 | |
| 	return (head <= cpa && cpa <= tail);
 | |
| }
 | |
| 
 | |
| static inline int is_tic_within_range(struct ccw1 *ccw, u32 head, int len)
 | |
| {
 | |
| 	if (!ccw_is_tic(ccw))
 | |
| 		return 0;
 | |
| 
 | |
| 	return is_cpa_within_range(ccw->cda, head, len);
 | |
| }
 | |
| 
 | |
| static struct ccwchain *ccwchain_alloc(struct channel_program *cp, int len)
 | |
| {
 | |
| 	struct ccwchain *chain;
 | |
| 
 | |
| 	chain = kzalloc(sizeof(*chain), GFP_KERNEL);
 | |
| 	if (!chain)
 | |
| 		return NULL;
 | |
| 
 | |
| 	chain->ch_ccw = kcalloc(len, sizeof(*chain->ch_ccw), GFP_DMA | GFP_KERNEL);
 | |
| 	if (!chain->ch_ccw)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	chain->ch_pa = kcalloc(len, sizeof(*chain->ch_pa), GFP_KERNEL);
 | |
| 	if (!chain->ch_pa)
 | |
| 		goto out_err;
 | |
| 
 | |
| 	list_add_tail(&chain->next, &cp->ccwchain_list);
 | |
| 
 | |
| 	return chain;
 | |
| 
 | |
| out_err:
 | |
| 	kfree(chain->ch_ccw);
 | |
| 	kfree(chain);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void ccwchain_free(struct ccwchain *chain)
 | |
| {
 | |
| 	list_del(&chain->next);
 | |
| 	kfree(chain->ch_pa);
 | |
| 	kfree(chain->ch_ccw);
 | |
| 	kfree(chain);
 | |
| }
 | |
| 
 | |
| /* Free resource for a ccw that allocated memory for its cda. */
 | |
| static void ccwchain_cda_free(struct ccwchain *chain, int idx)
 | |
| {
 | |
| 	struct ccw1 *ccw = &chain->ch_ccw[idx];
 | |
| 
 | |
| 	if (ccw_is_tic(ccw))
 | |
| 		return;
 | |
| 
 | |
| 	kfree(phys_to_virt(ccw->cda));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ccwchain_calc_length - calculate the length of the ccw chain.
 | |
|  * @iova: guest physical address of the target ccw chain
 | |
|  * @cp: channel_program on which to perform the operation
 | |
|  *
 | |
|  * This is the chain length not considering any TICs.
 | |
|  * You need to do a new round for each TIC target.
 | |
|  *
 | |
|  * The program is also validated for absence of not yet supported
 | |
|  * indirect data addressing scenarios.
 | |
|  *
 | |
|  * Returns: the length of the ccw chain or -errno.
 | |
|  */
 | |
| static int ccwchain_calc_length(u64 iova, struct channel_program *cp)
 | |
| {
 | |
| 	struct ccw1 *ccw = cp->guest_cp;
 | |
| 	int cnt = 0;
 | |
| 
 | |
| 	do {
 | |
| 		cnt++;
 | |
| 
 | |
| 		/*
 | |
| 		 * We want to keep counting if the current CCW has the
 | |
| 		 * command-chaining flag enabled, or if it is a TIC CCW
 | |
| 		 * that loops back into the current chain.  The latter
 | |
| 		 * is used for device orientation, where the CCW PRIOR to
 | |
| 		 * the TIC can either jump to the TIC or a CCW immediately
 | |
| 		 * after the TIC, depending on the results of its operation.
 | |
| 		 */
 | |
| 		if (!ccw_is_chain(ccw) && !is_tic_within_range(ccw, iova, cnt))
 | |
| 			break;
 | |
| 
 | |
| 		ccw++;
 | |
| 	} while (cnt < CCWCHAIN_LEN_MAX + 1);
 | |
| 
 | |
| 	if (cnt == CCWCHAIN_LEN_MAX + 1)
 | |
| 		cnt = -EINVAL;
 | |
| 
 | |
| 	return cnt;
 | |
| }
 | |
| 
 | |
| static int tic_target_chain_exists(struct ccw1 *tic, struct channel_program *cp)
 | |
| {
 | |
| 	struct ccwchain *chain;
 | |
| 	u32 ccw_head;
 | |
| 
 | |
| 	list_for_each_entry(chain, &cp->ccwchain_list, next) {
 | |
| 		ccw_head = chain->ch_iova;
 | |
| 		if (is_cpa_within_range(tic->cda, ccw_head, chain->ch_len))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ccwchain_loop_tic(struct ccwchain *chain,
 | |
| 			     struct channel_program *cp);
 | |
| 
 | |
| static int ccwchain_handle_ccw(u32 cda, struct channel_program *cp)
 | |
| {
 | |
| 	struct vfio_device *vdev =
 | |
| 		&container_of(cp, struct vfio_ccw_private, cp)->vdev;
 | |
| 	struct ccwchain *chain;
 | |
| 	int len, ret;
 | |
| 
 | |
| 	/* Copy 2K (the most we support today) of possible CCWs */
 | |
| 	ret = vfio_dma_rw(vdev, cda, cp->guest_cp, CCWCHAIN_LEN_MAX * sizeof(struct ccw1), false);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Convert any Format-0 CCWs to Format-1 */
 | |
| 	if (!cp->orb.cmd.fmt)
 | |
| 		convert_ccw0_to_ccw1(cp->guest_cp, CCWCHAIN_LEN_MAX);
 | |
| 
 | |
| 	/* Count the CCWs in the current chain */
 | |
| 	len = ccwchain_calc_length(cda, cp);
 | |
| 	if (len < 0)
 | |
| 		return len;
 | |
| 
 | |
| 	/* Need alloc a new chain for this one. */
 | |
| 	chain = ccwchain_alloc(cp, len);
 | |
| 	if (!chain)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	chain->ch_len = len;
 | |
| 	chain->ch_iova = cda;
 | |
| 
 | |
| 	/* Copy the actual CCWs into the new chain */
 | |
| 	memcpy(chain->ch_ccw, cp->guest_cp, len * sizeof(struct ccw1));
 | |
| 
 | |
| 	/* Loop for tics on this new chain. */
 | |
| 	ret = ccwchain_loop_tic(chain, cp);
 | |
| 
 | |
| 	if (ret)
 | |
| 		ccwchain_free(chain);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Loop for TICs. */
 | |
| static int ccwchain_loop_tic(struct ccwchain *chain, struct channel_program *cp)
 | |
| {
 | |
| 	struct ccw1 *tic;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < chain->ch_len; i++) {
 | |
| 		tic = &chain->ch_ccw[i];
 | |
| 
 | |
| 		if (!ccw_is_tic(tic))
 | |
| 			continue;
 | |
| 
 | |
| 		/* May transfer to an existing chain. */
 | |
| 		if (tic_target_chain_exists(tic, cp))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Build a ccwchain for the next segment */
 | |
| 		ret = ccwchain_handle_ccw(tic->cda, cp);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ccwchain_fetch_tic(struct ccw1 *ccw,
 | |
| 			      struct channel_program *cp)
 | |
| {
 | |
| 	struct ccwchain *iter;
 | |
| 	u32 ccw_head;
 | |
| 
 | |
| 	list_for_each_entry(iter, &cp->ccwchain_list, next) {
 | |
| 		ccw_head = iter->ch_iova;
 | |
| 		if (is_cpa_within_range(ccw->cda, ccw_head, iter->ch_len)) {
 | |
| 			ccw->cda = (__u32) (addr_t) (((char *)iter->ch_ccw) +
 | |
| 						     (ccw->cda - ccw_head));
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| static unsigned long *get_guest_idal(struct ccw1 *ccw,
 | |
| 				     struct channel_program *cp,
 | |
| 				     int idaw_nr)
 | |
| {
 | |
| 	struct vfio_device *vdev =
 | |
| 		&container_of(cp, struct vfio_ccw_private, cp)->vdev;
 | |
| 	unsigned long *idaws;
 | |
| 	unsigned int *idaws_f1;
 | |
| 	int idal_len = idaw_nr * sizeof(*idaws);
 | |
| 	int idaw_size = idal_is_2k(cp) ? PAGE_SIZE / 2 : PAGE_SIZE;
 | |
| 	int idaw_mask = ~(idaw_size - 1);
 | |
| 	int i, ret;
 | |
| 
 | |
| 	idaws = kcalloc(idaw_nr, sizeof(*idaws), GFP_DMA | GFP_KERNEL);
 | |
| 	if (!idaws)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (ccw_is_idal(ccw)) {
 | |
| 		/* Copy IDAL from guest */
 | |
| 		ret = vfio_dma_rw(vdev, ccw->cda, idaws, idal_len, false);
 | |
| 		if (ret) {
 | |
| 			kfree(idaws);
 | |
| 			return ERR_PTR(ret);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Fabricate an IDAL based off CCW data address */
 | |
| 		if (cp->orb.cmd.c64) {
 | |
| 			idaws[0] = ccw->cda;
 | |
| 			for (i = 1; i < idaw_nr; i++)
 | |
| 				idaws[i] = (idaws[i - 1] + idaw_size) & idaw_mask;
 | |
| 		} else {
 | |
| 			idaws_f1 = (unsigned int *)idaws;
 | |
| 			idaws_f1[0] = ccw->cda;
 | |
| 			for (i = 1; i < idaw_nr; i++)
 | |
| 				idaws_f1[i] = (idaws_f1[i - 1] + idaw_size) & idaw_mask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return idaws;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ccw_count_idaws() - Calculate the number of IDAWs needed to transfer
 | |
|  * a specified amount of data
 | |
|  *
 | |
|  * @ccw: The Channel Command Word being translated
 | |
|  * @cp: Channel Program being processed
 | |
|  *
 | |
|  * The ORB is examined, since it specifies what IDAWs could actually be
 | |
|  * used by any CCW in the channel program, regardless of whether or not
 | |
|  * the CCW actually does. An ORB that does not specify Format-2-IDAW
 | |
|  * Control could still contain a CCW with an IDAL, which would be
 | |
|  * Format-1 and thus only move 2K with each IDAW. Thus all CCWs within
 | |
|  * the channel program must follow the same size requirements.
 | |
|  */
 | |
| static int ccw_count_idaws(struct ccw1 *ccw,
 | |
| 			   struct channel_program *cp)
 | |
| {
 | |
| 	struct vfio_device *vdev =
 | |
| 		&container_of(cp, struct vfio_ccw_private, cp)->vdev;
 | |
| 	u64 iova;
 | |
| 	int size = cp->orb.cmd.c64 ? sizeof(u64) : sizeof(u32);
 | |
| 	int ret;
 | |
| 	int bytes = 1;
 | |
| 
 | |
| 	if (ccw->count)
 | |
| 		bytes = ccw->count;
 | |
| 
 | |
| 	if (ccw_is_idal(ccw)) {
 | |
| 		/* Read first IDAW to check its starting address. */
 | |
| 		/* All subsequent IDAWs will be 2K- or 4K-aligned. */
 | |
| 		ret = vfio_dma_rw(vdev, ccw->cda, &iova, size, false);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * Format-1 IDAWs only occupy the first 32 bits,
 | |
| 		 * and bit 0 is always off.
 | |
| 		 */
 | |
| 		if (!cp->orb.cmd.c64)
 | |
| 			iova = iova >> 32;
 | |
| 	} else {
 | |
| 		iova = ccw->cda;
 | |
| 	}
 | |
| 
 | |
| 	/* Format-1 IDAWs operate on 2K each */
 | |
| 	if (!cp->orb.cmd.c64)
 | |
| 		return idal_2k_nr_words((void *)iova, bytes);
 | |
| 
 | |
| 	/* Using the 2K variant of Format-2 IDAWs? */
 | |
| 	if (cp->orb.cmd.i2k)
 | |
| 		return idal_2k_nr_words((void *)iova, bytes);
 | |
| 
 | |
| 	/* The 'usual' case is 4K Format-2 IDAWs */
 | |
| 	return idal_nr_words((void *)iova, bytes);
 | |
| }
 | |
| 
 | |
| static int ccwchain_fetch_ccw(struct ccw1 *ccw,
 | |
| 			      struct page_array *pa,
 | |
| 			      struct channel_program *cp)
 | |
| {
 | |
| 	struct vfio_device *vdev =
 | |
| 		&container_of(cp, struct vfio_ccw_private, cp)->vdev;
 | |
| 	unsigned long *idaws;
 | |
| 	unsigned int *idaws_f1;
 | |
| 	int ret;
 | |
| 	int idaw_nr;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Calculate size of IDAL */
 | |
| 	idaw_nr = ccw_count_idaws(ccw, cp);
 | |
| 	if (idaw_nr < 0)
 | |
| 		return idaw_nr;
 | |
| 
 | |
| 	/* Allocate an IDAL from host storage */
 | |
| 	idaws = get_guest_idal(ccw, cp, idaw_nr);
 | |
| 	if (IS_ERR(idaws)) {
 | |
| 		ret = PTR_ERR(idaws);
 | |
| 		goto out_init;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate an array of pages to pin/translate.
 | |
| 	 * The number of pages is actually the count of the idaws
 | |
| 	 * required for the data transfer, since we only only support
 | |
| 	 * 4K IDAWs today.
 | |
| 	 */
 | |
| 	ret = page_array_alloc(pa, idaw_nr);
 | |
| 	if (ret < 0)
 | |
| 		goto out_free_idaws;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy guest IDAWs into page_array, in case the memory they
 | |
| 	 * occupy is not contiguous.
 | |
| 	 */
 | |
| 	idaws_f1 = (unsigned int *)idaws;
 | |
| 	for (i = 0; i < idaw_nr; i++) {
 | |
| 		if (cp->orb.cmd.c64)
 | |
| 			pa->pa_iova[i] = idaws[i];
 | |
| 		else
 | |
| 			pa->pa_iova[i] = idaws_f1[i];
 | |
| 	}
 | |
| 
 | |
| 	if (ccw_does_data_transfer(ccw)) {
 | |
| 		ret = page_array_pin(pa, vdev, idal_is_2k(cp));
 | |
| 		if (ret < 0)
 | |
| 			goto out_unpin;
 | |
| 	} else {
 | |
| 		pa->pa_nr = 0;
 | |
| 	}
 | |
| 
 | |
| 	ccw->cda = (__u32) virt_to_phys(idaws);
 | |
| 	ccw->flags |= CCW_FLAG_IDA;
 | |
| 
 | |
| 	/* Populate the IDAL with pinned/translated addresses from page */
 | |
| 	page_array_idal_create_words(pa, idaws);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_unpin:
 | |
| 	page_array_unpin_free(pa, vdev, idal_is_2k(cp));
 | |
| out_free_idaws:
 | |
| 	kfree(idaws);
 | |
| out_init:
 | |
| 	ccw->cda = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fetch one ccw.
 | |
|  * To reduce memory copy, we'll pin the cda page in memory,
 | |
|  * and to get rid of the cda 2G limitation of ccw1, we'll translate
 | |
|  * direct ccws to idal ccws.
 | |
|  */
 | |
| static int ccwchain_fetch_one(struct ccw1 *ccw,
 | |
| 			      struct page_array *pa,
 | |
| 			      struct channel_program *cp)
 | |
| 
 | |
| {
 | |
| 	if (ccw_is_tic(ccw))
 | |
| 		return ccwchain_fetch_tic(ccw, cp);
 | |
| 
 | |
| 	return ccwchain_fetch_ccw(ccw, pa, cp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cp_init() - allocate ccwchains for a channel program.
 | |
|  * @cp: channel_program on which to perform the operation
 | |
|  * @orb: control block for the channel program from the guest
 | |
|  *
 | |
|  * This creates one or more ccwchain(s), and copies the raw data of
 | |
|  * the target channel program from @orb->cmd.iova to the new ccwchain(s).
 | |
|  *
 | |
|  * Limitations:
 | |
|  * 1. Supports idal(c64) ccw chaining.
 | |
|  * 2. Supports 4k idaw.
 | |
|  *
 | |
|  * Returns:
 | |
|  *   %0 on success and a negative error value on failure.
 | |
|  */
 | |
| int cp_init(struct channel_program *cp, union orb *orb)
 | |
| {
 | |
| 	struct vfio_device *vdev =
 | |
| 		&container_of(cp, struct vfio_ccw_private, cp)->vdev;
 | |
| 	/* custom ratelimit used to avoid flood during guest IPL */
 | |
| 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 1);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* this is an error in the caller */
 | |
| 	if (cp->initialized)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/*
 | |
| 	 * We only support prefetching the channel program. We assume all channel
 | |
| 	 * programs executed by supported guests likewise support prefetching.
 | |
| 	 * Executing a channel program that does not specify prefetching will
 | |
| 	 * typically not cause an error, but a warning is issued to help identify
 | |
| 	 * the problem if something does break.
 | |
| 	 */
 | |
| 	if (!orb->cmd.pfch && __ratelimit(&ratelimit_state))
 | |
| 		dev_warn(
 | |
| 			vdev->dev,
 | |
| 			"Prefetching channel program even though prefetch not specified in ORB");
 | |
| 
 | |
| 	INIT_LIST_HEAD(&cp->ccwchain_list);
 | |
| 	memcpy(&cp->orb, orb, sizeof(*orb));
 | |
| 
 | |
| 	/* Build a ccwchain for the first CCW segment */
 | |
| 	ret = ccwchain_handle_ccw(orb->cmd.cpa, cp);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		cp->initialized = true;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * cp_free() - free resources for channel program.
 | |
|  * @cp: channel_program on which to perform the operation
 | |
|  *
 | |
|  * This unpins the memory pages and frees the memory space occupied by
 | |
|  * @cp, which must have been returned by a previous call to cp_init().
 | |
|  * Otherwise, undefined behavior occurs.
 | |
|  */
 | |
| void cp_free(struct channel_program *cp)
 | |
| {
 | |
| 	struct vfio_device *vdev =
 | |
| 		&container_of(cp, struct vfio_ccw_private, cp)->vdev;
 | |
| 	struct ccwchain *chain, *temp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!cp->initialized)
 | |
| 		return;
 | |
| 
 | |
| 	cp->initialized = false;
 | |
| 	list_for_each_entry_safe(chain, temp, &cp->ccwchain_list, next) {
 | |
| 		for (i = 0; i < chain->ch_len; i++) {
 | |
| 			page_array_unpin_free(&chain->ch_pa[i], vdev, idal_is_2k(cp));
 | |
| 			ccwchain_cda_free(chain, i);
 | |
| 		}
 | |
| 		ccwchain_free(chain);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cp_prefetch() - translate a guest physical address channel program to
 | |
|  *                 a real-device runnable channel program.
 | |
|  * @cp: channel_program on which to perform the operation
 | |
|  *
 | |
|  * This function translates the guest-physical-address channel program
 | |
|  * and stores the result to ccwchain list. @cp must have been
 | |
|  * initialized by a previous call with cp_init(). Otherwise, undefined
 | |
|  * behavior occurs.
 | |
|  * For each chain composing the channel program:
 | |
|  * - On entry ch_len holds the count of CCWs to be translated.
 | |
|  * - On exit ch_len is adjusted to the count of successfully translated CCWs.
 | |
|  * This allows cp_free to find in ch_len the count of CCWs to free in a chain.
 | |
|  *
 | |
|  * The S/390 CCW Translation APIS (prefixed by 'cp_') are introduced
 | |
|  * as helpers to do ccw chain translation inside the kernel. Basically
 | |
|  * they accept a channel program issued by a virtual machine, and
 | |
|  * translate the channel program to a real-device runnable channel
 | |
|  * program.
 | |
|  *
 | |
|  * These APIs will copy the ccws into kernel-space buffers, and update
 | |
|  * the guest physical addresses with their corresponding host physical
 | |
|  * addresses.  Then channel I/O device drivers could issue the
 | |
|  * translated channel program to real devices to perform an I/O
 | |
|  * operation.
 | |
|  *
 | |
|  * These interfaces are designed to support translation only for
 | |
|  * channel programs, which are generated and formatted by a
 | |
|  * guest. Thus this will make it possible for things like VFIO to
 | |
|  * leverage the interfaces to passthrough a channel I/O mediated
 | |
|  * device in QEMU.
 | |
|  *
 | |
|  * We support direct ccw chaining by translating them to idal ccws.
 | |
|  *
 | |
|  * Returns:
 | |
|  *   %0 on success and a negative error value on failure.
 | |
|  */
 | |
| int cp_prefetch(struct channel_program *cp)
 | |
| {
 | |
| 	struct ccwchain *chain;
 | |
| 	struct ccw1 *ccw;
 | |
| 	struct page_array *pa;
 | |
| 	int len, idx, ret;
 | |
| 
 | |
| 	/* this is an error in the caller */
 | |
| 	if (!cp->initialized)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	list_for_each_entry(chain, &cp->ccwchain_list, next) {
 | |
| 		len = chain->ch_len;
 | |
| 		for (idx = 0; idx < len; idx++) {
 | |
| 			ccw = &chain->ch_ccw[idx];
 | |
| 			pa = &chain->ch_pa[idx];
 | |
| 
 | |
| 			ret = ccwchain_fetch_one(ccw, pa, cp);
 | |
| 			if (ret)
 | |
| 				goto out_err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| out_err:
 | |
| 	/* Only cleanup the chain elements that were actually translated. */
 | |
| 	chain->ch_len = idx;
 | |
| 	list_for_each_entry_continue(chain, &cp->ccwchain_list, next) {
 | |
| 		chain->ch_len = 0;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cp_get_orb() - get the orb of the channel program
 | |
|  * @cp: channel_program on which to perform the operation
 | |
|  * @sch: subchannel the operation will be performed against
 | |
|  *
 | |
|  * This function returns the address of the updated orb of the channel
 | |
|  * program. Channel I/O device drivers could use this orb to issue a
 | |
|  * ssch.
 | |
|  */
 | |
| union orb *cp_get_orb(struct channel_program *cp, struct subchannel *sch)
 | |
| {
 | |
| 	union orb *orb;
 | |
| 	struct ccwchain *chain;
 | |
| 	struct ccw1 *cpa;
 | |
| 
 | |
| 	/* this is an error in the caller */
 | |
| 	if (!cp->initialized)
 | |
| 		return NULL;
 | |
| 
 | |
| 	orb = &cp->orb;
 | |
| 
 | |
| 	orb->cmd.intparm = (u32)virt_to_phys(sch);
 | |
| 	orb->cmd.fmt = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Everything built by vfio-ccw is a Format-2 IDAL.
 | |
| 	 * If the input was a Format-1 IDAL, indicate that
 | |
| 	 * 2K Format-2 IDAWs were created here.
 | |
| 	 */
 | |
| 	if (!orb->cmd.c64)
 | |
| 		orb->cmd.i2k = 1;
 | |
| 	orb->cmd.c64 = 1;
 | |
| 
 | |
| 	if (orb->cmd.lpm == 0)
 | |
| 		orb->cmd.lpm = sch->lpm;
 | |
| 
 | |
| 	chain = list_first_entry(&cp->ccwchain_list, struct ccwchain, next);
 | |
| 	cpa = chain->ch_ccw;
 | |
| 	orb->cmd.cpa = (__u32)virt_to_phys(cpa);
 | |
| 
 | |
| 	return orb;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cp_update_scsw() - update scsw for a channel program.
 | |
|  * @cp: channel_program on which to perform the operation
 | |
|  * @scsw: I/O results of the channel program and also the target to be
 | |
|  *        updated
 | |
|  *
 | |
|  * @scsw contains the I/O results of the channel program that pointed
 | |
|  * to by @cp. However what @scsw->cpa stores is a host physical
 | |
|  * address, which is meaningless for the guest, which is waiting for
 | |
|  * the I/O results.
 | |
|  *
 | |
|  * This function updates @scsw->cpa to its coressponding guest physical
 | |
|  * address.
 | |
|  */
 | |
| void cp_update_scsw(struct channel_program *cp, union scsw *scsw)
 | |
| {
 | |
| 	struct ccwchain *chain;
 | |
| 	u32 cpa = scsw->cmd.cpa;
 | |
| 	u32 ccw_head;
 | |
| 
 | |
| 	if (!cp->initialized)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * LATER:
 | |
| 	 * For now, only update the cmd.cpa part. We may need to deal with
 | |
| 	 * other portions of the schib as well, even if we don't return them
 | |
| 	 * in the ioctl directly. Path status changes etc.
 | |
| 	 */
 | |
| 	list_for_each_entry(chain, &cp->ccwchain_list, next) {
 | |
| 		ccw_head = (u32)(u64)chain->ch_ccw;
 | |
| 		/*
 | |
| 		 * On successful execution, cpa points just beyond the end
 | |
| 		 * of the chain.
 | |
| 		 */
 | |
| 		if (is_cpa_within_range(cpa, ccw_head, chain->ch_len + 1)) {
 | |
| 			/*
 | |
| 			 * (cpa - ccw_head) is the offset value of the host
 | |
| 			 * physical ccw to its chain head.
 | |
| 			 * Adding this value to the guest physical ccw chain
 | |
| 			 * head gets us the guest cpa.
 | |
| 			 */
 | |
| 			cpa = chain->ch_iova + (cpa - ccw_head);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	scsw->cmd.cpa = cpa;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cp_iova_pinned() - check if an iova is pinned for a ccw chain.
 | |
|  * @cp: channel_program on which to perform the operation
 | |
|  * @iova: the iova to check
 | |
|  * @length: the length to check from @iova
 | |
|  *
 | |
|  * If the @iova is currently pinned for the ccw chain, return true;
 | |
|  * else return false.
 | |
|  */
 | |
| bool cp_iova_pinned(struct channel_program *cp, u64 iova, u64 length)
 | |
| {
 | |
| 	struct ccwchain *chain;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!cp->initialized)
 | |
| 		return false;
 | |
| 
 | |
| 	list_for_each_entry(chain, &cp->ccwchain_list, next) {
 | |
| 		for (i = 0; i < chain->ch_len; i++)
 | |
| 			if (page_array_iova_pinned(&chain->ch_pa[i], iova, length))
 | |
| 				return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 |